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Abstract

In this study an alternative nonparametric estimator to the Fama and MacBeth ap-

proach for the CAPM estimation is proposed. Betas and risk premiums are estimated

simultaneously in order to increase the explanatory power of the proxy for betas. A data

driven method is proposed for selecting the smoothness degrees, which are directly related

to the subsample sizes. Based on this relation, the traditional estimator is obtained as a

particular case. Contrary to the results obtained in other studies our empirical evidence

for Spanish market data is favorable to the CAPM.
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1 Introduction

One of the most widely studied topics in financial economics is the description of the

trade-off between risk and expected return. The principal result concerning this question

is the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965), where

the first problem to be solved is the estimation of the betas. Based on empirical finance

betas are not stable over time. Evidence on beta instability dates back to the early 1970s

(Blume (1971), Gonedes (1973), Baesel (1974), etc.). More recent evidence can be found

in Bos & Newbold (1984) and González-Rivera (1997) among others.

The sequence of these unknown time-varying betas is usually estimated through either

maximum likelihood, the generalized method of moments or least squares techniques.

However, direct estimation by any of these techniques without further restrictions proves

unfeasible. Thus, in order to solve this estimation problem some assumptions must be

established concerning the structure of time-varying betas. A traditional solution to

this estimation problem consists of introducing smoothness constraints on time-varying

betas. One alternative is to assume that the sequence of coefficients is random (Cooley &

Prescott (1976)), where smoothness restrictions can be introduced in several ways; using

prior distributions (Spall (1989)), likelihood procedures in the state space form (Aoki

(1987)) or generalized flexible least squares (Lütkepohl & Herwatz (1996)). In CAPM

context, random coefficient models have been used by Fabozzi & Francis (1978), and

Kalman Filter procedures (see Harvey (1990)) for estimating CAPM betas have been

applied by Black, Fraser & Power (1992), Wells (1994) and Brooks, Faff & Josev (1997).

The main disadvantage of the random approach is that all a priori distributions involved

in the estimation as well as the initial values have to be determined in advance.

Another alternative is to assume that the sequence of betas is a deterministic function

of time. In this framework, the estimation of time-varying coefficients is reduced to the

estimation of an underlying function where the crucial point is the specification of this

unknown function that relates the sequence of betas with the time index. Most approaches

made in this direction consider that betas vary in a deterministic way across subsets of
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observations within the sample. The estimation method used is generally ordinary or

rolling least squares for a prefixed subsample.

In this paper we are interested in this last alternative: Deterministic time-varying

betas. We assume that betas are unknown smooth functions of the time index and in

order to avoid misspecification problems we propose using semiparametric estimation

techniques. The semiparametric estimator proposed is based on the estimator described

in Robinson (1989), modified to reach consistency according to the characteristics of the

estimation framework corresponding to the CAPM.

The goal of this paper is to propose a flexible semiparametric estimation method that

generalizes the traditional rolling least squares estimator. We present the traditional

estimator as a particular case and relate the selection of the prefixed subsample to the

selection of the bandwidth or smoothness parameter, which is chosen using a data driven

method. A comparison of empirical results based on variable significance and expected

signs, between the proposed and the traditional rolling estimators is made using Spanish

stock market data. We conclude that the empirical evidence is favorable to the CAPM in

terms of absence of intercept and a positive risk market premium statistically significant.

The rest of the paper is organized as follows. Section 2 presents the theoretical model

and the proposed estimation procedure, which generalizes the traditional one. Section 3

presents an illustration to compare empirical results. Section 4 concludes.

2 Theoretical model and estimation methodology

The CAPM implies that the expected return of an asset must be linearly related to the

covariance between its return and the return of the market portfolio. Sharpe (1964) and

Lintner (1965) derive the CAPM assuming the possibility of lending and borrowing at a

risk free rate of interest. This version of CAPM is generally expressed for the expected

return of the asset i through the following equation:

E(Ri)− rf = βi [E(Rm)− rf ] (1)
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where Ri is the rate of return on the i-th risky asset, Rm is the rate of return on the

market portfolio and rf is the return on the riskfree asset. Equation 1 indicates that the

expected return on the i-th risky asset must be the return on the riskfree asset plus a risk

premium. The parameter βi is interpreted as the contribution to market risk made by

the i-th asset. This coefficient is the ratio of the covariance, between its return and the

return of the market portfolio, and the market variance:

βi =
Cov(Ri, Rm)

V ar(Rm)
. (2)

The Sharpe-Lintner version can be expressed in terms of returns in excess of the riskfree

rate, “excess returns”, so defining Zi = Ri − rf as the excess of return for the i-th asset

in excess of the riskfree rate and Zm as the excess of return on the market portfolio,

Equations 1 and 2 can be rewritten as:

E(Zi) = βiE(Zm) (3)

βi =
Cov(Zi, Zm)

V ar(Zm)
. (4)

In this setting, Equation 3 has three direct implications. First, in this relation there is

no intercept. Second, the parameter βi completely captures the cross-sectional variation

of expected excess returns. And third, the market risk premium, E(Zm), must be positive.

Since the CAPM is a single-period model, that is, Equation 3 does not have a time

dimension, Fama & MacBeth (1973) estimate the CAPM using a cross-sectional approach

in order to test the second and third implications derived from Equation 3. The cross-

sectional regression model for a given time t is given by:

Zit = γ0t + γ1tβit + ηit i = 1, . . . , N (5)

where the sample size N is determined by the number of portfolios, the coefficients γ1t

(the market risk premium) and γ0t (the expected zero-beta portfolio return with respect to

the market) are unknown, Zit is the excess return of asset (portfolio) i at time t, βit is the

explanatory variable and ηit is the error term. In this context the main estimation problem
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comes from the feature that the coefficients (γ0t, γ1t) and the explanatory variable (βit)

are all unknown. Therefore, in order to estimate the gammas, the unknown betas must

be estimated. The main idea of the estimation method is to run the excess returns over

the proxy of the betas for each cross section and aggregate the estimates of the premium

in the time dimension. Thus the final model to be fitted is:

Zit = γ0t + γ1tβ̂it + ηit i = 1, . . . , N. (6)

Since the CAPM must be tested in Model 6 above the procurement of an adequate proxy

for the betas is crucial. Next we propose a flexible semiparametric estimation method for

estimating the proxy and risk premium simultaneously in Model 5 taking into account

the characteristics of the estimation setting. Before we present the whole estimation

procedure, we will focus our attention on obtaining the proxy for the unknown explanatory

variable, which must satisfy two conditions. First, it must be closely correlated to the real

variable βit, so in consequence it must be able to explain the excess of returns, Zit. And

second, in order to obtain consistency it must be temporarily uncorrelated to the error

term (ηit), that is E(
∑N

i=1 β̂itηit) = 0.

We approach the first condition for the proxy in the same way as Fama & MacBeth

(1973). The proxy of βit for a given portfolio i and a fixed time estimation moment t is

obtained as the slope coefficient in the excess-return market model for a given subsample.

That is, the beta coefficient in the following regression equation:

Zij = αitm + βitmZmj + εij j ∈ s(t, hi, T ) (7)

where Zmj is the excess return on the market portfolio at time j. The subscript m in the

coefficients, indicating market portfolio, will be dropped from now on in order to simplify

the notation (thus βit ≡ βitm). The subsample used, s(t, hi, T ), depends on the moment

in time for which we are estimating the equation (t), the parameter that regulates the

subsample or window size (hi) and the total number of observations available in the time

dimension (T ). In fact each subsample goes from t−1, i.e. the previous observation of the

time estimation moment, to s(t, hi, T ) which varies according the values of t, hi and T .
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Running Equation 7 over the time dimension we obtain the values {β̂it}T
t=1 and repeating

it independently for each portfolio i ∈ [1, N ] we get all values required to estimate the

premiums in (6).

Nonetheless, the empirical results in the relevant literature are not satisfactory because

neither the sign nor the estimated premiums are those expected. We think that one reason

for these results might be the use of an inappropriate proxy variable. Therefore, in order to

improve the explanatory power of the proxy we use a semiparametric estimator to estimate

time-varying betas which is a modified version of the estimator in Robinson (1989). The

modification is introduced in order to satisfy the second condition for the proxy, which is

easily reached if the estimation of the proxy for βit only uses past observations (j < t) in

Equation 7. Thus we propose to estimate the proxy by minimizing the following smoothed

sum of squared residuals, given portfolio i and smoothness degree hi:

min
(αit, βit)

t−Thi∑

j=t−1

Khi,tj(Zij − αit − βitZmj)2, (8)

where Khi,tj = h−1
i K ((t/T − j/T )/hi) is a symmetric second order kernel with compact

support [−1, 1] and hi, called bandwidth, determines the smoothness degree imposed and

therefore regulates the window size. So the subsample size used at each estimation time

t, given by [t − Thi, t − 1], is the same when estimating the betas for the i-th portfolio

but can be different when we estimate the betas corresponding to another portfolio. Note

that the size of all the subsamples in the i-th portfolio is determined by the smoothing

parameter hi and the number of observations in them is Thi. Large values of hi impose

higher smoothness, implying a larger subsample size so that more past observations are

employed at each local estimation and vice versa. In this sense, choosing the bandwidth

(hi) implies selecting the subsample size. This semiparametric technique for estimating

the proxy is based on the assumption that betas are somehow smooth over time. This

means that each sequence of coefficients, {βit}T
t=1, lies on an unknown function of the

time index, that is {βit = fi(t/T )}T
t=1 is a smooth function such that fi(t/T ) ∈ C2[0, 1]

for all i ∈ [1, N ]. The advantage of this estimator is that it does not need to specify the

unknown function fi(t/T ) to determine how coefficients behave in time. It also allows for
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linear and nonlinear specifications of time index.

The expression of the “smoothed rolling estimator” for the betas derived from the

normal equations from (8), once the smoothness degree hi is fixed, is given by:

(α̂it β̂it)′SR =




t−Thi∑

j=t−1

Khi,tjXjX
′
j



−1

t−Thi∑

j=t−1

Khi,tjXjZij (9)

where Xj = (1 Zmj)′ is the j-th observation of the explanatory variables and the subscript

SR denotes “smoothed rolling estimator”. The closed form expression for the estimator

ensures that no iterative methods are needed in order to calculate the estimations. And

assuming that the matrix to invert in (9) is not singular, it is the unique solution to

the system of normal equations from (8). Note that the smoothness assumption is made

over the coefficients. So a small bandwidth parameter provides very rough coefficients,

usually with no reasonable interpretations, and leads to an estimated response variable

equal to its past value (Ẑit = Zit−1). By contrast, with high degree of smoothness, little

variability is allowed and the estimations tend to be very similar over time. As usual

in a semiparametric setting (see Eubank (1988) and Härdle (1990) among others) the

selection of the bandwidth (hi) is crucial. The bandwidth cannot be very small because

the estimations will not be interpretable, but it cannot be very large because in that case

the values of the explanatory variable in the regression Equation 6 will be nearly the same

for all time periods.

Note that the traditional rolling estimator used by Fama & MacBeth (1973) can be

obtained as a particular case from (9). Recall that they estimate the series of betas

for each portfolio i by repeating the estimation for subsamples of several years prior

to each estimation moment t. The window size used, which determines the length of

the subsample, is set to be the same throughout the period and for all the portfolios

under study. The selection of the window size is based on the assumption that the

joint distribution of Zit and Zmt is stationary over time. Fisher (1970) and Gonedes

(1973) among other authors, find empirically that when using monthly data the optimal

subsample is between four and seven years, so traditionally the window size has been

taken as five years: Each subsample begins at t − 60 and ends at t − 1. Therefore the
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estimator used by Fama & MacBeth (1973) for the proxy derives from minimizing the

local sum of squared residuals corresponding to Model 7 at each moment of time using

sixty past monthly observations:

min
(αit,βit)

t−60∑

j=t−1

(Zij − αit − βitZmj)2 (10)

and the expression of the “rolling estimator” for the betas derived from the normal equa-

tions from (10) is given by:

(α̂it β̂it)′R =




t−60∑

j=t−1

XjX
′
j



−1

t−60∑

j=t−1

XjZij (11)

where Xj = (1 Zmj)′ is the j-th observation of the explanatory variables and the subscript

R denotes “rolling estimator”. Comparing expressions (10) and (11) with (8) and (9)

respectively, it is easy to observe that the estimator proposed by Fama & MacBeth (1973)

is obtained when the kernel used is uniform, that is, all observations in the subsample

are given the same weight, and the bandwidths for all portfolios are chosen as hi = 60/T ,

which implies that the number of observations used at each local estimation is sixty.

If our aim in this paper were only to generalize the estimator for the proxy, main-

taining the rest of the methodology of Fama and MacBeth, then we should pick the t-th

observation from the second element of (9) for each portfolio, build the proxy and esti-

mate the premiums in Model 6. But if the final goal is the estimation of the regression

coefficients γ0t and γ1t in Model 5 then we have to recall that we need a good proxy for

the cross-sectional regression model. That is, we are interested on estimating as well as

possible the slope values corresponding to all portfolios at the same moment in time t

that are contained in the proxy, {β̂it}N
i=1. Hence for the proxy, besides a high correlation

with the real variable to replace, we want to maximize dispersion because this increases

the precision in the estimator of the premiums. Thus, with the values of the smoothness

degrees ({hi}N
i=1) fixed we propose to estimate proxies and coefficients simultaneously by

minimizing the following smoothed sum of squared residuals:

min
(γ0t,γ1t, β̂hi,it)

T∑

t=1

N∑

i=1

(Zit − γ0t − γ1t β̂hi,it)
2 (12)
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subject to

β̂hi,it =
∑t−Thi

j=t−1 Khi,tj
∑t−Thi

j=t−1 Khi,tjZmjZij −
∑t−Thi

j=t−1 Khi,tjZmj
∑t−Thi

j=t−1 Khi,tjZij

∑t−Thi
j=t−1 Khi,tj

∑t−Thi
j=t−1 Khi,tjZ

2
mj −

(∑t−Thi
j=t−1 Khi,tjZmj

)2 (13)

which is the slope semiparametric estimator given by the second element of (9). Usually

the bandwidth is selected using a data driven method, mainly cross-validation, the penal-

ized sum of squared residuals or plug-in methods. But since in this estimation procedure

the observation corresponding to a given moment in time t is not included in the sub-

sample when estimating at that point, the minimization of the smoothed sum of squared

residuals in (8) does not lead to the typical selection of a null smoothness degree. There-

fore, we propose to select the bandwidth by minimizing the sum of squared residuals in

the main regression, Model 5. The bandwidth chosen by this minimization procedure is

such that the dispersion of the proxy, ({β̂hi,it}N
i=1), increases, leading to a greater explana-

tory power for estimating the risk premium in Model 5. Under the assumptions usually

taken in nonparametric settings, this estimator is consistent and asymptotically normally

distributed. Note that the convergence rate is lower than optimal because the order of

the bias is O(h) due to the kernel employed, equivalent to a one-sided kernel that only

takes into account past observations1.

The above minimization problem generalizes the one used by Fama & MacBeth (1973)

because no decisions have to be taken about the subsamples to be used. First, there is no

need of a subjective choice of subsample size because it is controlled by the bandwidth,

which is selected by a data driven method. Second, once the subsample is fixed, it allows

for observations to be weighted differently, giving higher weights to those that are closer

in time. Finally it allows the information about the portfolios together to be used for

obtaining a proxy with greater explanatory power.

1Similar nonparametric asymptotic results are obtained by Cline & Hart (1991) for density estimation, Müller
(1992) for regression and Chen & Liu (1993) for autoregressive models.
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3 Empirical results: An illustration

In this section we illustrate the empirical results obtained using monthly excess returns

with the appropriate adjustments for stock dividends and capital changes for 150 assets

during the period January 1968 through December 2000 for the Spanish capital market.

Ten portfolios are formed according to the capital stock exchange (size) of each firm at

the end of each year. The portfolios have an approximately similar number of assets. The

assets that make up the portfolios might change from year to year but the size remains

constant. All the assets in a given portfolio receive the same weight in calculating the

aggregate return.

The return of the risk free asset is the monthly percentage rate offered by one year

Spanish Treasury Bills in the secondary market. Before 1982 the rates of the loans granted

by financial institutions were used. Although these rates cannot be considered as real rates

of interest of risk free assets, they are considered to be a reasonable approximation. The

proxy for the market portfolio is the value-weighted stock market index in excess of the

risk free asset formed with the sample available. Table 1 presents the summary statistics

for the excess returns for the size portfolios and the index. The results are similar to

other studies using Spanish data. As usual the portfolio that contains the smallest assets

obtains higher mean returns than the rest.

Table 2 reports the summary statistics for the time series of estimated betas from the

market model, Equation 7, using the traditional rolling estimator for the period 1973:1-

2000:12. Each beta, {β̂it}T
t=1, is estimated as the slope coefficient in a time-series regression

using as its explanatory variable the market portfolio, the value weighted index. The

subsamples employed at each estimation moment t for each portfolio contain the sixty

previous observations (months), which are equally weighted. Columns two and three

present the mean and standard deviations of the time series of estimated betas for each

decile portfolio. Columns four and five show the minimum and maximum values of the

R-squared, which increase from C1 to C10 as expected due to their construction. Columns

six and seven show the minimum and maximum values of the t-statistics for testing the
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significance of the variable (H0 : βi = 0). Also as expected, all the betas are statistically

different from zero at a significance level of 5% for all the portfolios. So the value weighted

market index used to approach the true market portfolio adequately explains the excess

return of portfolios formed by size.

Tables 3 and 4 report the summary statistics for the estimated betas from the same

market model and sample period 1973:1-2000:12, but using the smoothed rolling estima-

tor with two alternative kernels, the Uniform and the Epanechnikov kernels, respectively.

As before, each beta, {β̂it}T
t=1, is estimated as the slope coefficient in a time-series re-

gression using the value weighted index as the explanatory variable. The advantage of,

and therefore the difference in, the proposed smoothed rolling estimator with respect to

the traditional rolling estimator is that it uses different subsample sizes across portfolios

and offers the possibility of weighting observations within subsamples differently. These

smoothing parameters are selected according to the data driven method based on the

minimization of the sum squared residuals in (5), where the proxy and the risk premium

are estimated through (12) using the corresponding kernel function (uniform or Epanech-

nikov). Once the smoothing parameters are chosen, and thus the subsample sizes fixed,

the weights are determined by the kernel function employed. When a uniform kernel

(K(u) = (1/2)I(|u| ≤ 1)) is applied, the observations in the subsample are given the

same weight. By contrast, if an Epanechnikov (K(u) = (3/4)(1 − u2)I(|u| ≤ 1)) kernel

is used, the observations in the subsample are not weighted equally. In this last case the

observations nearest the estimation time t are given higher weights than those farthest

from it, that is, weights decline as the time lag increases. In consequence the differences

between the results of these two tables are due to the use of different kernels. In this way,

columns two to seven present the same statistics as Table 2, but referring to the smoothed

estimators. Column three shows an increase in the variability in the time series estimated

betas, the standard deviation is greater for all portfolios than for the rolling estimator.

Columns four and five present more extreme values for R-squared. Columns six and seven

show the minimum and maximum values of the t-statistics for testing the significance of
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the market portfolio (H0 : βi = 0). Although for portfolios C5, C6, C8 and C10 the

market portfolio is always relevant, for the remaining portfolios the minimum value for

some t-statistics indicate no rejection of the null hypothesis, but the percentage with this

result is negligible. These results must not be discouraged: we prefer to renounce the

best fitting when estimating the betas in order to increase the variability for obtaining a

greater precision in the estimated premiums. With regard to Table 4 similar results are

obtained.

In order to check whether the explanatory power of the proxy increases when we use

the proposed estimation method, we estimate Model 5 and calculate the corresponding

sample variance for the explanatory variable (the proxy) and the sum of squared residuals

(SSR) for each period of time from January 1973 to December 2000. The columns in

Table 5 present the maximum and minimum values of these statistics when the proxy is

estimated using the traditional rolling estimator given in (11) and the smoothed rolling

estimator in (9) for Uniform and Epanechnikov kernels. It can be observed that the

range of variability for the proxy variable increases when we use the smoothed rolling

estimators (different subsample sizes across portfolios) instead of the traditional rolling

estimator (same subsample size for all portfolios). Furthermore when we use the smoothed

rolling estimator, the variability is greater when the observations in the subsamples are

weighted differently than when they are weighted equally. Thus, according to the fact that

an explanatory variable with a greater variance is preferred to increase its explanatory

power, the third proxy will perform better. In relation to the sum of squared residuals,

the result it is similar: the range of values for the SSR is smaller for the smoothed rolling

estimator with the Epanechnikov kernel. The explained variability of the cross section of

the excess returns of portfolios formed by size is greater for this estimator.

Table 6 presents some results for the estimated risk premiums, γ̂0t and γ̂1t. Each hori-

zontal panel contains the estimated mean premium, the t-ratio for testing the hypothesis

that the mean premium over time is equal to zero (in round brackets) and the t-ratio

calculated with the Shanken (1992) correction (in square brackets). The results in the
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first column are for the rolling estimator. It can be observed that when the proxy is

estimated using the rolling estimator, the average premium associated with the constant

is statistically different from zero at 5%. Thus the implication of absence of intercept in

the model is not supported by the data. In this same framework, the average premium

for the market is negative but not statistically different from zero at 5%, so the sensitiv-

ity to market risk does not explain the excess of return when portfolios are formed by

size. In other words, the market does not price risk. Similar results, contrary to what

is expected by theory, are obtained by Esteban (1997) and Nieto & Rodŕıguez (2005) for

the Spanish stock market2. Columns two and three present the results for the smoothed

rolling estimator using the two kernels considered. Independently of the kernel used the

results are more satisfactory: we find absence of intercept and that the market prices risk

so there is favorable evidence for CAPM. Clearly, the statistical results are better for the

Epanechnikov kernel than for the Uniform kernel. Recall that the Epanechnikov kernel

weights observations differently within the subsample, hence the estimator for the proxy

(Equation 9) can be interpreted as a kind of generalized least squares estimator where

observations are penalized according to their distance from the estimation time. The im-

provement comes from the way the available information is used, the weights decrease as

the observation goes back in time such that recent information is more highly valued.

4 Conclusions

Applying the procedure of Fama & MacBeth (1973) for the estimation of the CAPM

using Spanish stock market data produces a negative estimated market risk premium

which is not statistically significant, which implies that the market does not price risk.

These results are contrary to the CAPM because, among other things, they require that

the market risk premium to be positive and statistically different from zero in order to

support the theoretical implications. There may be several reasons for this statistical

2For the American stock market Chen, Roll & Ross (1986) or Ferson & Harvey (1991), among others, obtain
similar contrary results.
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evidence against the CAPM: Improper selection of the proxy for the market portfolio,

inappropriate subsamples for the local estimation of betas or incorrect assumptions about

the returns distribution. We are inclined to attribute it to the first two reasons and we

try to overcome the problem by using a more flexible estimator.

Our alternative to the Fama and MacBeth approach is to estimate betas and risk

premiums simultaneously using nonparametric techniques. This estimator generalizes the

estimator for the betas used by Fama & MacBeth (1973) including a data driven method

for selecting the subsample sizes. However this particular case does not minimize the sum

of squared residuals of Model 5 so it has not been chosen. Thus one possible reason for

the evidence against the CAPM is the poor explanatory power of the proxy, leading to

a reduction in the precision in the estimator of the risk premiums and consequently to

the CAPM not being supported by the data. We think that the problem with the proxy

might be due to the following points. On the one hand the same subsample size they

use for all portfolios does not seem to be optimal, and all past observations are given

the same weight. On the other hand there is no connection between the temporal and

cross-sectional dimensions in the estimation.

The advantage of the estimation procedure depends relies on its flexibility: it is able to

generalize the above points. We think that the data structure corresponding to different

portfolios is not necessarily common so the same subsample size for all portfolios may not

be adequate. And giving the same weight to all past observations presupposes that no

structural changes have occurred in previous years. It is more reasonable to give higher

weights to observations that are closer in time. We are convinced that estimating Model 5

employing all the information simultaneously leads to a more efficient estimator because it

takes into account the time and cross relations between the market, sensibilities and risk

premiums. We recall that the empirical results from the proposed estimation procedure,

considering the above generalizations, support the CAPM for the Spanish stock market in

terms of absence of intercept and a positive risk market premium which is statistically sig-

nificant. Finally, further analysis could consist of accommodating additional risk measures
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beyond the CAPM beta and estimating these models using this estimation procedure to

check whether the proposed estimation procedure provides the same satisfactory results.
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Table 1: Summary statistics for asset excess returns

Portfolio Mean S.D. Min. Max.

C1 1.31 9.62 -46.02 53.56

C2 1.28 7.28 -28.01 37.47

C3 0.97 7.73 -30.79 43.27

C4 1.29 7.19 -26.13 30.98

C5 0.99 6.79 -34.53 37.69

C6 0.92 6.27 -30.55 29.85

C7 0.59 6.46 -23.90 31.40

C8 0.70 6.64 -33.44 45.12

C9 0.63 6.05 -31.68 27.61

C10 0.74 5.85 -23.18 25.77

V W 0.61 5.88 -29.74 21.14

RFR 0.56 0.29 0.14 1.19

The table presents the summary statistics for ten portfolios formed by size, VW is the value-weighted stock

market index in excess of the risk free asset, RFR. Period 1968:1 2000:12 with 396 observations. Data in

percentages per month.
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Table 2: Summary statistics for betas estimated using the rolling estimator.

Portfolio
¯̂
β Sβ̂ Min R2 Max R2 Min tβ̂ Max tβ̂

C1 1.11 0.265 26.50 76.42 4.57 13.71

C2 0.83 0.226 18.12 68.35 3.58 11.19

C3 0.97 0.176 31.01 79.61 5.10 15.04

C4 0.93 0.143 31.14 77.16 5.12 13.99

C5 0.96 0.101 52.37 83.28 7.98 16.99

C6 0.83 0.136 46.72 83.08 7.13 16.87

C7 0.91 0.208 55.04 83.36 8.42 17.04

C8 0.95 0.172 51.17 88.22 7.79 20.84

C9 0.96 0.093 56.82 90.53 8.73 23.55

C10 0.98 0.093 79.38 97.89 14.94 51.96

The table presents the summary statistics for the betas estimated in Zit = αim + βimZmt + εit, the market

model, for 336 monthly observations corresponding to the period 1973:1-2000:12. For each portfolio i the betas

are estimated using the rolling estimator with a window size of 60, that is, all subsamples start at t − 60 and

end at t− 1:

(α̂it β̂it)′R =




t−60∑

j=t−1

XjX
′
j



−1

t−60∑

j=t−1

XjZij

where Xj = (1 Zmj)′ is the j-th observation of the explanatory variables and Zi is the excess return in the i-th

portfolio formed by size, Zm is the value-weighted market return (in excess). ¯̂
β is the average of the time series

of estimated betas. Sβ̂ is the standard error of the respective time series. Min R2 and Max R2 are the minimum

and maximum values of the respective R2 time series. Min tβ̂ and Max tβ̂ are the minimum and maximum

values of the t-statistics time series for testing H0 : βi = 0 i = 1, . . . , 10.
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Table 3: Summary statistics for the time series of betas estimated using the smoothed rolling

estimator with a Uniform kernel.

Portfolio
¯̂
βi S(β̂i)

Min R2 Max R2 Min tβ̂ Max tβ̂

C1 1.06 0.578 0.050 95.80 -0.97 12.65

C2 0.77 0.483 0.002 96.78 -0.86 13.44

C3 0.97 0.569 0.003 99.09 -0.37 20.93

C4 0.88 0.293 4.36 85.96 0.82 9.58

C5 0.93 0.149 35.93 89.60 3.81 14.97

C6 0.81 0.188 31.22 92.58 3.43 18.02

C7 0.88 0.388 10.18 96.83 0.95 15.63

C8 0.91 0.281 13.35 95.34 1.35 15.66

C9 0.92 0.210 10.30 96.12 1.17 17.24

C10 0.99 0.146 67.19 98.81 6.07 38.77

The table presents the summary statistics for the time series of betas estimated in Zit = αim + βimZmt + εit,

the market model, for 336 monthly observations corresponding to the period 1973:1-2000:12. For each portfolio

i the betas are estimated using the smoothed rolling estimator with a uniform kernel (K(u) = (1/2)I(|u| ≤ 1))

and corresponding smoothing parameter hi. So, each window size is Thi, that is, the subsamples start at t−Thi

and end at t− 1:

(α̂it β̂it)′SR =




t−Thi∑

j=t−1

Khi,tjXjX
′
j



−1

t−Thi∑

j=t−1

Khi,tjXjZij

where Xj = (1 Zmj)′ is the j-th observation of the explanatory variables and Zi is the excess return in the i-th

portfolio formed by size, Zm is the value-weighted market return (in excess). ¯̂
β is the average of the time series

of estimated betas. Sβ̂ is the standard error of the respective time series. Min R2 and Max R2 are the minimum

and maximum values of the respective R2 time series. Min tβ̂ and Max tβ̂ are the minimum and maximum

values of the t-statistics time series for testing H0 : βi = 0 i = 1, . . . , 10.
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Table 4: Summary statistics for the time series of betas estimated using the smoothed rolling

estimator with an Epanechnikov kernel.

Portfolio
¯̂
βi Sβ̂i

Min R2 Max R2 Min tβ̂ Max tβ̂

C1 1.06 0.545 7.4e-004 9.5e+001 -1.04 13.40

C2 0.78 0.573 7.7e-006 9.8e+001 -1.06 19.44

C3 0.97 0.569 3.0e-005 99.09 -0.37 20.93

C4 0.88 0.293 4.36 85.96 0.82 9.58

C5 0.93 0.149 35.93 89.60 3.81 14.97

C6 0.81 0.167 31.22 92.58 3.43 18.02

C7 0.88 0.372 9.18 93.91 0.95 11.78

C8 0.92 0.264 23.85 94.66 2.23 16.84

C9 0.93 0.190 10.09 94.89 1.34 17.24

C10 0.99 0.127 67.04 98.98 6.69 46.21

The table presents the summary statistics for the time series of betas estimated in Zit = αim + βimZmt + εit,

the market model, for 336 monthly observations corresponding to the period 1973:1-2000:12. For each portfolio

i the betas are estimated using the smoothed rolling estimator with an Epanechnikov kernel (K(u) = (3/4)(1−
u2)I(|u| ≤ 1)) and corresponding smoothing parameter hi. So, each window size is Thi, that is, the subsamples

start at t− Thi and end at t− 1:

(α̂it β̂it)′SR =




t−Thi∑

j=t−1

Khi,tjXjX
′
j



−1

t−Thi∑

j=t−1

Khi,tjXjZij

where Xj = (1 Zmj)′ is the j-th observation of the explanatory variables and Zi is the excess return in the i-th

portfolio formed by size, Zm is the value-weighted market return (in excess). ¯̂
β is the average of the time series

of estimated betas. Sβ̂ is the standard error of the respective time series. Min R2 and Max R2 are the minimum

and maximum values of the respective R2 time series. Min tβ̂ and Max tβ̂ are the minimum and maximum

values of the t-statistics time series for testing H0 : βi = 0 i = 1, . . . , 10.
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Table 5: Summary statistics for the proxy variable β̂ estimated using different estimators.

Traditional Rolling Smoothed Rolling Smoothed Rolling

(Uniform kernel) (Epanechnikov kernel)

Min Max Min Max Min Max

V ar(β̂) 0.0069 0.0507 0.0075 0.7983 0.0124 1.550

SSR 3.41e-004 1.72e-001 3.37e-004 1.43e-001 2.98e-004 1.33e-001

The table presents the summary statistics for the estimated proxy variable to be used as an explanatory variable

in the main model Zit = γ0t + γ1tβ̂it + ηit in order to estimate the market risk premium. The columns present

the maximum and minimum values of the sample variance for the explanatory variable and the sum of squared

residuals (SSR) of the T cross-sectional series of order N .
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Table 6: Average risk premium

Traditional Rolling Smoothed Rolling Smoothed Rolling

(Uniform kernel) (Epanechnikov kernel)

¯̂γ1 -0.0028 0.0079 0.0081

(-0.44756) (1.90786) (2.03633)

[-0.44539] [1.90039] [2.03084]

¯̂γ0 0.0104 0.00049 -0.00018

(1.76310) (0.09780) (-0.03785)

[1.75450] [0.09761] [-0.03758]

The estimation of the model Zit = γ0t + γ1tβit + ηit i = 1, . . . , N produces the risk premium estimates γ̂1t.

The mean of the time series risk premium estimated is called ¯̂γ1. The t-statistics for the average of the risk

premiums over time are in parentheses. This statistic, ¯̂γ1/σ̂γ̂1 , is asymptotically normally distributed. The

second parenthesis is the t-statistics with the correction proposed by Shanken (1992) for the biases introduced

by the errors-in-variables problem. Estimation results for the intercept are also presented. Period 1973:1-2000:12
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