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Abstract

When working with time series data observed at intervals smaller than

a year, it is often necessary to test for the presence of seasonal unit roots.

One of the most widely used methods for testing seasonal unit roots is that

of HEGY, which provides test statistics with non-standard distributions. This

paper describes a generalisation of this method for any periodicity and uses a

response surface regressions approach to calculate the critical values and P

values of the HEGY statistics whatever the periodicity and sample size of the

data. The algorithms are prepared with the Gretl open source econometrics

package and some new tables of critical values for daily, hourly and half-

hourly data are presented.
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1 Introduction

Unit roots may cause severe problems in a regression model if they are not prop-

erly dealt with: this may imply inconsistent coefficient estimators and nonstan-

dard distributions for significance tests and for forecast intervals. There have been

many papers on testing for unit roots since the book by Fuller (1976), which intro-

duced the test currently known as the Augmented Dickey-Fuller test, ADF (See also

Dickey & Fuller 1981). Apart from the ADF test, other tests worth mentioning are

those by Phillips & Perron (1988), the KPSS test for stationarity by Kwiatkowski

et al. (1992) and the ADF-GLS test by Elliott, Rothenberg & Stock (1996) which

have become widely used by empirical economists. However, when working with

time series data observed at intervals shorter than a year, the presence of unit roots

should be tested for, not only in the long run (frequency ω = 0) but also in seasonal

cycles. Over the last thirty years various methods have been proposed for testing

for seasonal unit roots. For example, Hasza & Fuller (1982) and Dickey, Hasza

& Fuller (1984), proposed joint tests for all seasonal unit roots, but then Osborn,

Chui, Smith & Birchenhall (1988) and in particular Hylleberg, Engle, Granger &

Yoo (1990) (hereinafter HEGY) proposed tests that enable each of the seasonal,

and frequency zero roots to be considered separatelly. There are also interesting

tests of seasonal stability by Canova & Hansen (1995), which also consider each

frequency individually. The HEGY tests are not very difficult to implement, and

have therefore become widely used among empirical economists.

One of the problems with most of the unit root tests mentioned above is that

their statistics have non-standard distributions, so in practice one needs to inter-

polate the values in the tables published to compare them with the values calcu-

lated or simulate the empirical distributions for exactly the same model and the

same sample size that is being used. MacKinnon (1994), uses simulation methods

and surface response regressions to estimate the asymptotic distributions of a large
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number of unit roots and cointegration tests at zero frequency (long run). Then in

MacKinnon (1996) he extends these results, providing a way to approximate small

sample distributions too.

Harvey & van Dijk (2006) apply the method of MacKinnon, using surface

response regressions, to provide a simple way of obtaining critical values and P

values for any sample size and any order of lags of the endogenous variable in

the regression for the HEGY tests already mentioned. All this, as in the original

HEGY article, is for quarterly data.

The main objective of this paper is to obtain a generalisation of the method of

Harvey and van Dijk for calculating the critical values and P values of the HEGY

statistics whatever the periodicity, s, and sample size T of the data.

2 Seasonal Unit Roots

Hylleberg et al. (1990) study how to test for unit roots in seasonal time series.

They take quarterly periodicity of data (s = 4) as their reference and assume that

the series xt is generated by a possibly infinite order autoregressive process,

φ(L)xt = εt (1)

where L is the lag operator, such that Lxt = xt−1, φ(L) represents the poly-

nomial 1− φ1L− φ2L
2 − · · · and εt is a white noise process with variance σ2

ε .

To test the hypothesis that the roots of φ(L) = 0 are on the unit circle against

the alternative hypothesis that are outside of the unit circle, they set up the follow-

ing procedure. They show that equation (1) can be written in an equivalent form

as:

φ∗(L)y4t = π1y1t−1 + π2y2t−1 + π3y3t−2 + π4y3t−1 + εt (2)
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where

y1t = (1 + L+ L2 + L3)xt = S(L)xt,

y2t = −(1− L+ L2 − L3)xt,

y3t = −(1− L2)xt,

y4t = (1− L4)xt = ∆4xt

and φ∗(L) is a polynomial with all the roots outside the unit circle. Equation (2)

may be estimated, in a consistent way, by ordinary least squares (OLS).

Testing the hypothesis of a unit root at zero frequency is equivalent to testing

the significance of the coefficient π1, and this can be done by using a t statistic.

However, this statistic does not follow a Student’s t-distribution. Hylleberg et al.

(1990) show that the asymptotic distribution of this tπ1 statistic is the same as that

of the Dickey-Fuller statistic.

The existence of a unit root at the Nyquist frequency, ω = π, can be checked

by a significance test on the coefficient π2, also using a t-statistic. The presence

of unit roots at frequencies ω = ±π/2 can be tested by an F-statistic for the joint

hypothesis that π3 = π4 = 0.

Beaulieu & Miron (1993) (and in a slightly different way Franses (1990)) study

the problem of testing for seasonal unit roots with monthly data. They show that

an equation with a similar structure to that of HEGY could also be proposed

for this case. In the quarterly case there are two seasonal cycles at frequencies

±π/2 and π, but in the monthly case there are six seasonal cycles at frequencies

±π/6,±π/3,±π/2,±2π/3,±5π/6, and π which, as Beaulieu and Miron show,

makes the structure of the equation a little more complicated, as it depends on 12

filters instead of only 4 (See equations 4 and 5 in Beaulieu & Miron 1993). There

4



is also a version of equation (2) for weekly data (with s = 52) in Cáceres (1996),

which depends on 52 seasonal filters.

If you want to test for seasonal unit roots in an applied study, and you have

quarterly data, then you are very lucky. You can use the aforementioned procedure

of Harvey and van Dijk to calculate critical values or P -values for your tests. If

you are working with monthly or weekly data you are not quite so lucky: you can

use the tables of critical values in the articles by Beaulieu and Miron or Cáceres

mentioned above, and use an interpolation method to calculate the critical values

that you need, but as far as I know you do not have at your disposal any method for

obtaining P -values. If you are working with daily data (s =5, 6 or 7 days a week),

hourly data (s =24 hours a day), etc. you are completely out of luck, you do not

even have tables to compare with. As stated above, the main goal of this paper is

to solve this problem.

The first step towards obtaining a general solution to the problem is to show

a generalisation of equation (2) for any periodicity s. Such a generalisation is

presented in the next section.

3 Methodology

A time series whose observations are regularly collected s times a year1 can con-

tain [s/2] different seasonal cycles, denoting by [·] the integer part of the number

contained in brackets, i.e.

[s/2] =

 s/2 if s is even

(s− 1)/2 if s is odd

1It is sometimes convenient to change the reference period from one year, for example, to one
day if data are hourly, s = 24, or one week if data are daily, s = 7.
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The angular frequencies corresponding to the seasonal cycles are ωj = 2πj
s , with

j = 1, . . . , [s/2].

Let yt be a time series integrated of order one at frequencies ω1, . . . , ωq ∈

[0, π], and let its autoregressive representation be

φ(L) yt = γ′Dt + ut, (3)

where φ(L) is a polynomial on the lag operator, Dt is a column vector with deter-

ministic terms, γ is its associated coefficients vector and u1, . . . , uT are iid(0, σ2
u).

Now define z(L) = 1 − Ls as the polynomial of order s made up of (single)

unit roots θ1, . . . , θs at frequencies2 ±ω1, . . . ,±ωq, being q = [s/2] + 1. The

roots at frequencies 0 and π (only present if s is even) are real, but the rest have

complex-conjugate values. With no loss of generality we will assume from now on

that s is even, and that θ1 = 1 (the root corresponding to ω1 = 0), θ2 = −1 (the

root of frequency ω2 = π) and the following go in pairs so that θj and θj+1 for

j = 3, 5, 7 . . . correspond to pairs of complex conjugate roots.

Model (3) may be expressed as (the proof is in appendix A):

φ∗(L)z(L)yt = γ′Dt + π1y1,t−1 + π2y2,t−1 +

+

s
2
−1∑

j=1

(π2j+1y2j+1,t−1 + π2j+2y2j+1,t−2) + ut (4)

where

y1t =
z(L)

1− L
Lyt

y2t = − z(L)

1 + L
Lyt

2We have two unit roots per each ωj ∈ (0, π) but only one per each ωj = 0, π.
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y2j+1,t = − z(L)

δ2j+1(L)δ2j+2(L)
yt; j = 1, 2, . . . ,

[
s

2

]
− 1

z(L)yt = (1− Ls)yt

being δi(L) = 1− θ−1
i L for any i = 1, . . . , s.

In practice, using data for a given sample size T , φ∗(L) is approximated by a

finite order p polynomial, so that the model (4) may be written as

z(L)yt = γ′Dt + π1y1,t−1 + π2y2,t−1 +

+

s
2
−1∑

j=1

(π2j+1y2j+1,t−1 + π2j+2y2j+1,t−2) +

+
p∑

i=1

φiz(L)yt−i + ut (5)

It is important to note that if s is odd the series does not have a seasonal root at

the angular frequency ω = π, so the term π2y2,t−1 will not appear in equations (4)

and (5).

Filters at y2j+1,t in the quarterly case reflect the same transformations of the

HEGY paper, in the monthly case are equal to those of Beaulieu and Miron apart

from a scale factor and for s = 52 are exactly the same as those used by Cáceres.

In order to test for unit roots, (5) is estimated by OLS and then the significance

of the coefficients is tested using appropiate finite sample distributions based on

Monte Carlo results. π1 = 0 implies that the series contains a unit root at the

zero frequency. When π2 = 0, there is a seasonal unit root at frequency π (two

observations per cycle). For k > 2 and even, when πk = πk−1 = 0, seasonal

unit roots are present at frequencies ±ω k+2
2

. For frequencies 0 and π it suffices

to examine the relevant t-statistics for πk = 0 against the alternative that πk < 0.

For the other frequencies, the strategy is to test πk = πk−1 = 0, with k > 2 and
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even. This may be done by means of two t-statistics, but an F -statistic for such

hypothesis, referred to here as Fk,k−1, proves to be more powerful.

By means of Itô calculus, Phillips (1987) shows that tπ1 and tπ2 asymptotically

have the Dickey-Fuller distribution. Ahtola & Tiao (1987) and Chan & Wei (1988)

note that the asymptotic distributions of the odd t statistics (apart from tπ1) are

the same across frequencies. Beaulieu and Miron show, using their Lemma 1, that

the even t statistics also have the same asymptotic distribution, and that the Fk,k−1

statistics, for k even and k > 2 converge in law to 1
2(t

2
πk

+ t2πk−1
). Because all odd

t-statistics (apart from tπ1) have the same distribution and all even statistics (apart

from tπ2) have the same distribution, all of the Fk,k−1 statistics, for k = 4, 6, 8, . . .,

have the same asymptotic distribution. By analysing the proof in Chan & Wei

(1988) and lemmas 1 to 4 in the cited article by Beaulieu and Miron it can be seen

that this asymptotic distribution does not depend on the periodicity of the data.

This is the key feature of equation (5), which enables a general method to be set up

that is valid for any periodicity. However, different periodicities imply a different

number of regressors in this equation so a movement should be expected in the

finite sample distributions of the t and F statistics depending on the periodicity s.

4 Surface response analysis

As with the ADF test of Dickey & Fuller (1979), HEGY test statistics, have non-

standard distributions even asymptotically. I am aware only of tables of critical

values for the tests for quarterly, monthly and weekly data. Anyone working, for

example with periodicity 24 (hourly data), has no tables to compare with. Further-

more, even in the case of a periodicity for which tables are available, even though

the asymptotic theory of these tests is well developed it is not easy for applied

researchers to calculate the P -value of a given test statistic. Here I use a general-
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ization of Harvey and Van Dijk’s procedure, based on response surface regressions,

that serve to obtain P -values and critical values not only for quarterly data but for

any periodicity.

To implement the response surface regressions, the first step was to estimate the

relevant quantiles of the distributions of the HEGY tests for several combinations

of T (effective sample size), p (autoregressive order) and s (periodicity) from a large

set of Monte Carlo simulations and, following MacKinnon (2000), the process was

then repeated M times for each value of T to obtain more accurate results. Each

experiment consisted on N replications, where the series yt was generated by the

data generation process ∆syt = ut with ut ∼ nid(0, 1) and the equation estimated

was (5) with p = 0, 1, . . . , pmax (being pmax the values in the table below) and

two alternatives of the deterministic component: a) intercept and s − 1 seasonal

dummies, b) intercept, s− 1 seasonal dummies and a linear trend.

All the different cases simulated are reported in table 1. The first row of this ta-

ble, for example, indicates that for quarterly data (s = 4), the model was simulated

for T = 48, 100, 136, 200 and 400 observations of yt, considering autoregressive

orders from 0 to 8, and using N = 50 000 replications and M = 25 repetitions for

each value of T . The last three columns of the table show the 95% accuracy, A, of

the quantiles 0.10, 0.05 and 0.01 estimated by the simulation method, obtained by

the following approximation (See, for example, Kleijnen 1987):

Aq ≈ 1.96

√
q(1− q)

NM

For example, the value for A0.10 in the first row, 0.00053, indicates that the esti-

mation of the quantile 0.01 obtained by simulation with N = 50 000 and M =

25 with a 95% confidence has an associated probability in the interval (0.01 ±

0.00053) = (0.00947, 0.01053).
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The Monte Carlo simulations were programmed in Gretl 1.9.4 (See Cottrell &

Lucchetti 2011). From this version Gretl uses as random number generator for the

uniform distribution the SIMD-oriented Fast Mersenne Twister (SFMT) (See Saito

& Matsumoto 2008) in particular the implementation referred to as SFMT19937,

which has a period of 219937 − 1 and is based on version 1.3.3 of the original C

code by Saito and Matsumoto3. Gretl uses Ziggurat (Marsaglia & Tsang 2000) as

the default method for generating normal variates on the basis of uniform input.

From each Monte Carlo experiment a record is made of the 221 estimated

quantiles of the statistics tπ1 , tπ2 and Fk,k−1 with k = 4, 6, 8, . . ., for probabilities

α = 0.0001, 0.0002, 0.0005, 0.001, 0.002, . . ., 0.01, 0.015, . . ., 0.99, 0.991, . . .,

0.999, 0.9995, 0.9998, 0.9999 and the estimated quantiles are used as dependent

variables in response surface regressions of the form

qαi (T, k) = θα∞ + θα1
1

T
+ θα2

1

T 2
+ θα3

1

T 3
+ θα4

k

T
+ θα5

k

T 2
+ θα6

k

T 3
+

+θα7
k2

T
+ θα8

k2

T 2
+ θα9

k2

T 3
+ θα10

k3

T
+ θα11

k3

T 2
+ θα12

k3

T 3
+

+θα13
s

T
+ θα14

s

T 2
+ θα15

s

T 3
+ ei (6)

where qαi (T, k) denotes quantile α obtained from the experiment i-th with sample

size T and AR order k. This functional form was arrived at after some experimen-

tation: is based on the one used by Harvey and van Dijk but includes a third degree

in k, which is significant when s > 4, and adds three terms to take periodicity into

account. Parameter θα∞ represents quantile α of the asymptotic distribution when

T → ∞. In the regressions estimated, some of the coefficients were not significant

but I prefered to maintain the same explanatory variables in all regressions, given

that with 50 000 or 10 000 observations this does not imply much loss of efficiency
3This can be examined using the SourceForge ‘viewvc’ interface located at

http://gretl.cvs.sourceforge.net/viewvc/gretl/gretl/rng/
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and the algorithms are thus much simpler.

When the paremeters of equation (6) are estimated by ordinary least squares,

the errors are heteroscedastic with variance depending on T and s. Several differ-

ent alternatives of weighted least squares were used to take heteroscedasticity into

account and in all cases the best result proved to be that of the default hsk native

command of Gretl. The procedure implemented by this command involves three

steps: first an OLS estimation of the model, then an auxiliary regression to generate

an estimate of the error variance, then finally weighted least squares, using the re-

ciprocal of the estimated variance as the weight. In the auxiliary regression the log

of the squared residuals from the first OLS is regressed on the original regressors

and their squares. The log transformation is performed to ensure that the estimated

variances are non-negative.

For the monthly case (s = 12), Beaulieu & Miron (1993, pp 316-317) say

with respect to the Fk,k−1 statistics4 for the different values of k = 4, 6, 8, 10, 12

that “investigation of the finite sample distributions for a subset of the cases con-

sidered below indicates that these distributions are similar for a given number of

simulations and converge as the number of simulations increases”. I used equation

(6) to test the hypothesis that all the Fk,k−1 statistics have the same distribution

across different values of k. This is a joint test of the null hypothesis that param-

eters θα∞, θα1 , . . . , θ
α
15 for the F statistics are the same for different k. Assuming

normality, albeit asymptotically, the statistic has a very high P -value so at a 5%

significance level the null is not rejected and the conclusion is that the distribution

of Fk,k−1 does not depend on k with finite samples either. The only remaining

concerns are three distributions: tπ1 , tπ2 and a generic F which is the same for

different values of k. So all the simulations of the different Fk,k−1 statistics can

be used jointly for estimating the parameters of (6), thus improving the precission
4And for the teven, todd statistics as well.
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of the estimates. Specifically, there are N([s/2] − 1) observations for estimating

the quantiles of the F statistic (for example in the monthly case, with N = 10 000

there are 50 000 observations).

After the response surface regression (6) is estimated for all 221 quantiles for

the three statistics, an interpolation between these values may be performed using

the method of MacKinnon (1996). Consider the regression

Φ−1(α) = γ0 + γ1q̂(α) + γ2q̂
2(α) + γ3q̂

3(α) + eα (7)

where α denotes one of the 221 points at which the quantiles are estimated, with

0 < α < 1, q̂(α) denotes the estimate of qα and Φ−1(α) is the inverse of the cumu-

lative standard normal distribution function. There is enough empirical evidence

to show that this equation may be a good candidate for approximating the distri-

bution of a two-tailed test statistic, such as tπ1 and tπ2 , in a small region around a

specified value of α. For an F-type test a χ2(2) is a better option than the normal

distribution in Φ−1(α). Equation (7) is usually estimated with a small, odd num-

ber of points, `, around the specified significance level, in particular, ` = 9, 11,

13 or 15 points are considered reasonable5. To account for heteroscedasticity and

serial correlation MacKinnon suggests employing a feasible GLS estimator using

a symmetric covariance matrix with elements

ω̂ij = s.e
(
θ̂αi
∞

)
s.e
(
θ̂
αj
∞
)√αi(1− αj)

αj(1− αi)
, i < j, (8)

where the standard errors of θ̂αi∞ are obtained from the OLS estimation of equa-

tion (7).

In order to calculate the P -value for an observed test statistic, τ∗, it is possible
5I see little difference in the results from 9 to 15, so in the Gretl functions provided this parameter

is left to the choice of the user.
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simply to estimate equation (7) for an small set of values of q̂(α) near τ∗ and then

compute

P ∗ = Φ(γ̂0 + γ̂1τ∗ + γ̂2τ
2
∗ + γ̂3τ

3
∗ ) (9)

To calculate the critical values of the tests the following equation may be used

q̂(p) = δ0 + δ1Φ
−1(p) + δ2(Φ

−1(p))2 + δ3(Φ
−1(p))3 + e∗p (10)

The method consists of first finding the quantile p∗ from the set of 221 mentioned

above that is closest to the probability p whose critical value is to be obtained,

then estimating the δ coefficients in (10) with the (` − 1)/2 quantiles above and

the (` − 1)/2 quantiles below p∗ and finally evaluating the right hand side of the

regression estimated at p to obtain the desired critical value.

5 Implementation of the algorithms as Gretl functions

Some scripts prepared by the author can be found at http://bit.ly/ID-GHegy

that contain:

• a function for obtaining the P -values of the tπ1 , tπ2 , and Fk,k−1 tests;

• a function that includes an algorithm for calculating the cumulative density

functions of the three tests, i.e. obtaining critical values for a given probabil-

ity;

• and finally a function for automatically calculating the HEGY tests and P -

values for any periodicity.
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6 Ensuring the quality of the computer algorithm and re-

porting new tables of critical values

Using the algorithm explained above the critical values for the same sample sizes

reported in tables 1A-1B in the HEGY article, Table A.1 in the article by Beaulieu

and Miron, and Table 3 in the paper by Cáceres were calculated. The results are

shown here in Table 2.

A comparison of the critical values in the first part of this table and the tables in

HEGY reveals very reasonable differences between. For the tπ1 and tπ2 statistics

the differences decrease when the reported probability and the sample size increase.

The biggest difference is 0.55 and the smallest is 0.05. For the F statistic, the dif-

ferences increase with the reported probability and decrease with the sample size.

The biggest difference is 1.14 and the smallest is 0.08. Remember that the tables in

HEGY were obtained by a single simulation with 24 000 observations. The tables

here were obtained with the use of the method decribed above, based on equation

(10), using all the data resulting from simulations in Table 1, and M = 25 repeti-

tions for each model. So, although both are estimations or approximations of the

true critical values, a much lower variance and thus a more accurate approximation

can be expected from the method described in this paper6.

A similar comparison between the values reported in Table A.1 in the article

by Beaulieu and Miron and those of the second part of Table 2 here shows that the

maximum divergence is 0.06 with the differences in 90% of the cells of the table

being within an interval of ±0.03. This appreciable better precission is because the

t tables in BM are also generated with 24 000 observations, but by stacking them

all 120 000 were used for the F test.
6The worse properties of the HEGY critical values are confirmed by the, somewhat erratic be-

haviour (sometimes decreasing with T and sometimes increasing with T ) of the values reported in
their tables.
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Cáceres shows the critical values only for T = 468 observations. He reports

the distribution of tπ1 , tπ2 and the Fk,k−1 k = 3, 4 . . . , 27 statistics separately for

each frequency (25 rows), without taking into account that the asymptotic distribu-

tions of these statistics for the different k values are all the same. The differences

between the values shown in the third part of Table 2 here and those reported by

Cáceres for tπ1 and tπ2 are very small, and are all within the interval ±0.03. The

values for the F tests are very similar but in this case the comparison is between

values in one row in the present paper and values in 25 rows, so in some cases they

are a little bigger, being in general contained in an interval of ±0.07. This case is

especially important because, as indicated in Table 1, I have not used periodicity

s = 52 in the simulations. In all cases the critical values are forecasts based on the

estimated coefficients of regression (10), but in this particular case the forecast is

made for a value for the periodicity that was not in the sample. It is striking to see

that the results agreed so closely.

Furthermore, this comparisons serve to ensure that the algorithm prepared here

does not work in the wrong direction because does not present major divergences

with the tables published.

Given that this paper uses a much more accurate method for estimating critical

values, it is not being over-bold to say that Table 2 here presents more reliable

critical values than those in the original papers mentioned above.

On the other hand, it is very easy to apply the algorithm presented here to cal-

culate critical value tables for other periodicities. Table 3 contains some critical

values for the HEGY tests for three alternative sets of daily data: s = 5 (one ob-

servation for each working day of the week), s = 6 (e.g. every day except Sunday)

and s = 7 (one observation for each day of the week). Table 4 presents critical

values for the HEGY tests for two sets of hourly data: s = 24 (one observation per

hour, with the day as the reference period), s = 24 × 7 = 168 (one observation
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per hour, with the week as the reference period). Finally, Table 5 shows the critical

values for two cases of half-hourly data: s = 48 (one observation per half-hour,

with the day as the reference period), s = 48 × 7 = 336 (one observation per

half-hour, with the week as reference period).

7 Conclusion

The HEGY t and F test statistics for seasonal unit roots have non-standard distri-

butions that vary with the sample size, the number of autoregressive lags included

in the model, the type and number of deterministic components and the periodicity

of the data. Tables of critical values for the quarterly, monthly and weekly cases

have already been published for some specific sample sizes, zero autoregressive

lags, and several deterministic components.

A method based on surface regressions has also been published which calcu-

lates the P -values and critical values of these tests for quarterly data for any sample

size and autoregressive order.

In the present article, I extend this method so that P -values and critical values

can be obtained also for any periodicity. Lemmas 1 and 4 in Beaulieu & Miron

(1993) are the theoretical basis that enables it to be determined that the F statistics

for frequencies in (0, π) have equal asymptotic distributions. This result enables

a general algorithm to be set up for obtaining critical values and P -values for any

periodicity.

In Section 4 the procedure for estimating the surface regresions based on Monte

Carlo simulations and for obtaining the P -values and critical values of the different

statistics is explained in detail. Users can find Gretl scripts for applying these

techniques in empirical analyses at http://bit.ly/ID-GHegy

Based on the algorithm for calculating critical values, Section 6 presents some

16



tables for the cases already known (quarterly, monthly and weekly data) and also

new tables for periodicities whose critical values were not hitherto available.

A Appendix

To obtain the representation (4) of yt, start from equation (3) and use the following

transformation [c.f. the univariate and the seasonal multivariate case in Hylleberg

et al. (1990)]

φ(L) =
s∑

k=1

λk
z(L)

δk(L)
+ z(L) φ∗∗(L) (11)

where

δk(L) = 1− θ−1
k L; λk =

φ(θk)∏
j 6=k δj(θk)

(12)

and φ∗∗(L) is a polinomial with all its roots outside the unit circle.

Alternatively, (11) may be written as

φ(L) =
s∑

k=1

λk
z(L)

δk(L)
[1− δk(L)] + z(L) φ∗(L) (13)

where φ∗(L) = φ∗∗(L) +
∑s

k=1 θk · I .

Now rearrange to avoid complex coefficients and simplify expression (13).

This equation is written as

φ(L) = λ1
z(L)

1− L
L+ λ2

z(L)

1 + L
(−L) +

+

s
2
−1∑

j=1

{
λ2j+1

z(L)

δ2j+1(L)δ2j+2(L)
[1− δ2j+1(L)] δ2j+2(L)+

+ λ2j+2
z(L)

δ2j+1(L)δ2j+2(L)
[1− δ2j+2(L)] δ2j+1(L)

}
+

+z(L) φ∗(L) (14)

17



Given that

λ2j+1 [1− δ2j+1(L)] δ2j+2(L) + λ2j+2 [1− δ2j+2(L)] δ2j+1(L) =

= λ2j+1 [δ2j+2(L)− δ2j+1(L)δ2j+2(L)] + λ2j+2 [δ2j+1(L)− δ2j+2(L)δ2j+1(L)] =

= λ2j+1

[
1− 1

θ2j+2
L−

(
1− 1

θ2j+1
L
) (

1− 1
θ2j+2

L
)]

+

+λ2j+2

[
1− 1

θ2j+1
L−

(
1− 1

θ2j+1
L
) (

1− 1
θ2j+2

L
)]

=

= λ2j+1

(
1

θ2j+1
L− 1

θ2j+1θ2j+2
L2
)
+ λ2j+2

(
1

θ2j+2
L− 1

θ2j+1θ2j+2
L2
)
=

= λ2j+1

(
1

θ2j+1
L− L2

)
+ λ2j+2

(
1

θ2j+2
L− L2

)

Then polinomial φ(L) may be expressed as:

φ(L) = λ1
z(L)

1− L
L+ λ2

z(L)

1 + L
(−L) +

+

s
2
−1∑

j=1

z(L)

δ2j+1(L)δ2j+2(L)

[(
λ2j+1

1

θ2j+1

)
L− (λ2j+1 + λ2j+2)L

2

]
+

+z(L) φ∗(L) (15)

If we define a new set of real parameters π1, π2, . . . such that:

λ1 = −π1

λ2 = −π2

λ2j+1
1

θ2j+1
+ λ2j+2

1
θ2j+2

= π2j+1

−(λ2j+1 + λ2j+2) = π2j+2

 j = 1, 2, . . . , s2 − 1

(16)

Then we have that

φ(L) = −π1
z(L)

1− L
L+ π2

z(L)

1 + L
(−L) +

+

s
2
−1∑

j=1

z(L)

δ2j+1(L)δ2j+2(L)

[
π2j+1L+ π2j+2L

2
]
+

+z(L) φ∗(L) (17)
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Then, equation (3) can be rewritten as

−π1
z(L)

1− L
Lyt + π2

z(L)

1 + L
Lyt +

s
2
−1∑

j=1

[
π2j+1

z(L)

δ2j+1(L)δ2j+2(L)
Lyt+

+π2j+2
z(L)

δ2j+1(L)δ2j+2(L)
L2yt

]
+ z(L) φ∗(L)yt = γ′Dt + ut, (18)

and reordering the terms the following is obtained

φ∗(L)z(L)yt = γ′Dt + π1
z(L)

1− L
Lyt − π2

z(L)

1 + L
Lyt −

−
s
2
−1∑

j=1

[
π2j+1

z(L)

δ2j+1(L)δ2j+2(L)
Lyt + π2j+2

z(L)

δ2j+1(L)δ2j+2(L)
L2yt

]
+

+z(L) φ∗(L)yt + ut (19)

If we call

y1t =
z(L)

1− L
Lyt

y2t = − z(L)

1 + L
Lyt

y2j+1,t = − z(L)

δ2j+1(L)δ2j+2(L)
; j = 1, 2, . . . ,

s

2
− 1

z(L)yt = (1− Ls)

The previous equation can be written as

φ∗(L)z(L)yt = γ′Dt + π1y1,t−1 + π2y2,t−1 +

+

s
2
−1∑

j=1

[π2j+1y2j+1,t−1 + π2j+2y2j+1,t−2] + ut (20)
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Table 1: Monte Carlo simulations for obtaining surface regressions and 95% accu-
racy of some estimated quantiles.

s T pmax N A0.10 A0.05 A0.01

4 48, 100, 136, 200, 400 8 50 000 0.00053 0.00038 0.00017
6 48, 100, 136, 200, 400 12 50 000 0.00053 0.00038 0.00017
12 64, 76, 100, 124, 152, 300, 400, 500 12 10 000 0, 00118 0.00085 0.00039
24 64, 76, 100, 124, 152, 300, 400, 500 12 10 000 0, 00118 0.00085 0.00039

s: periodicity

T : sample size

pmax: maximum number of AR lags, so that for each T , models are simulated with p = 0, 1 . . . , pmax

N : number of replications

Aα: 95% accuracy of the quantile α
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Table 3: Critical values from small sample distributions of test statistics for sea-
sonal unit roots obtained through surface response regressions. Three types of daily
observations.

s= 5
Auxiliary tπ1 F
regression T 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
Intercept 48 -3.26 -2.97 -2.76 -2.44 4.86 5.81 6.76 7.97
Seas. dum. 100 -3.36 -3.05 -2.79 -2.50 5.34 6.35 7.32 8.56
No trend 136 -3.38 -3.07 -2.81 -2.52 5.43 6.45 7.42 8.66

200 -3.40 -3.09 -2.83 -2.53 5.50 6.52 7.49 8.73
400 -3.42 -3.11 -2.84 -2.55 5.57 6.59 7.56 8.78

Intercept 48 -3.82 -3.47 -3.21 -2.95 4.83 5.78 6.74 7.93
Seas. dum. 100 -3.89 -3.58 -3.33 -3.05 5.31 6.31 7.28 8.51
Trend 136 -3.91 -3.60 -3.35 -3.07 5.40 6.41 7.38 8.62

200 -3.92 -3.62 -3.37 -3.09 5.48 6.50 7.46 8.70
400 -3.94 -3.64 -3.39 -3.11 5.56 6.58 7.54 8.76

s= 6
Auxiliary tπ1 tπ2 F
regression T 0.01 0.025 0.05 0.10 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
Intercept 120 -3.35 -3.04 -2.78 -2.49 -3.35 -3.03 -2.77 -2.48 5.32 6.33 7.29 8.53
Seas. dum. 240 -3.39 -3.08 -2.82 -2.53 -3.39 -3.08 -2.82 -2.53 5.49 6.50 7.46 8.69
No trend 360 -3.41 -3.10 -2.83 -2.54 -3.41 -3.09 -2.83 -2.54 5.54 6.55 7.51 8.73

480 -3.41 -3.10 -2.84 -2.55 -3.41 -3.10 -2.84 -2.55 5.56 6.58 7.54 8.75
960 -3.42 -3.11 -2.85 -2.56 -3.42 -3.11 -2.85 -2.56 5.59 6.61 7.57 8.78

5000 -3.43 -3.12 -2.86 -2.57 -3.43 -3.12 -2.86 -2.56 5.62 6.64 7.59 8.80
Intercept 120 -3.88 -3.57 -3.32 -3.04 -3.34 -3.02 -2.77 -2.48 5.29 6.29 7.25 8.48
Seas. dum. 240 -3.92 -3.62 -3.36 -3.08 -3.39 -3.08 -2.82 -2.52 5.47 6.48 7.44 8.66
Trend 360 -3.93 -3.63 -3.38 -3.10 -3.40 -3.09 -2.83 -2.54 5.52 6.53 7.49 8.71

480 -3.94 -3.64 -3.39 -3.10 -3.41 -3.10 -2.84 -2.54 5.55 6.56 7.52 8.74
960 -3.95 -3.65 -3.40 -3.12 -3.42 -3.11 -2.85 -2.55 5.59 6.60 7.56 8.77

5000 -3.96 -3.66 -3.41 -3.12 -3.43 -3.12 -2.86 -2.56 5.62 6.63 7.59 8.80
s= 7
Auxiliary tπ1 F
regression T 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
Intercept 48 -3.19 -2.89 -2.65 -2.33 4.59 5.53 6.49 7.73
Seas. dum. 100 -3.31 -3.00 -2.74 -2.45 5.17 6.16 7.11 8.34
No trend 136 -3.34 -3.03 -2.77 -2.48 5.30 6.29 7.25 8.47

200 -3.37 -3.06 -2.80 -2.51 5.41 6.41 7.37 8.59
400 -3.40 -3.09 -2.83 -2.54 5.52 6.53 7.49 8.70

Intercept 48 -3.75 -3.38 -3.11 -2.84 4.55 5.49 6.45 7.69
Seas. dum. 100 -3.84 -3.53 -3.27 -2.99 5.14 6.12 7.07 8.29
Trend 136 -3.87 -3.56 -3.31 -3.03 5.27 6.26 7.21 8.43

200 -3.89 -3.59 -3.34 -3.06 5.39 6.39 7.34 8.56
400 -3.93 -3.63 -3.38 -3.09 5.51 6.52 7.47 8.68
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