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1. Introduction

It is well understood that the central point for the empirical testing of option pricing

models is whether the actual distribution of the underlying asset implied by the option

market data is consistent with the distribution assumed by the theoretical option pricing

model.

Given the Black-Scholes (1973) assumptions, all option prices on the same underlying

security with the same expiration date but with different exercise prices should have the

same implied volatili ty. However, the well known volatili ty smile pattern suggests that

the BS formula tends to misprice deep in-the-money and deep out-of-the-money

options1. There have been various attempts to deal with this apparent failure of the BS

valuation model. In principle, as explained by Das and Sundaram (1998) and others, the

existence of the smile may be attributed to the well known presence of excess kurtosis

in the conditional return distributions of the underlying assets. It is clear that excess

kurtosis makes extreme observations more likely than in the BS case. This increases the

value of out-of-the-money and in-the-money options relative to at-the-money options,

creating the smile. However, at least in the U.S. market, the pattern shown by data

contains a clear asymmetry in the shape of the smile. This may be due to the presence of

skewness in the distribution which has the effect of accentuating just one side of the

smile.

Given this evidence, extensions to the BS model that exhibit excess kurtosis and

skewness have been proposed in recent years along two lines of research:  Jump-

diffusion models with a Poisson-driven jump process, and the stochastic volatili ty

framework are the two key developments in the theoretical option pricing literature.

                                                          
1 After the October 1987 crash, the implied volatility computed from options on stock indexes in the US
market inferred from the BS formula appears to be different across exercise prices. This is the so-called
“volatili ty smile”. In fact, as pointed out by Rubinstein (1994), Aït-Sahalia and Lo (1998a) and Dumas,
Fleming and Whaley (1998), implied volatili ties of the S&P 500 options decrease monotonicall y as the
exercise price becomes higher relative to the current level of the underlying asset. On the other hand,
Taylor and Xu (1994) show that currency options tend to present a much more pronounced smile.  Similar
patterns of implied volatil ities across exercise prices are found by Peña, Rubio and Serna (1999a) in the
Spanish options market. Moreover, Bakshi, Cao and Chen (1997), and Fiorentini, León and Rubio (1998)
report smile shapes for the (implied) instantaneous volatil ity under stochastic volatiti ty and jump-
diffusion option pricing models. León and Rubio (1999) theoretically study the behavior of the implied
volatili ty function (smile) when the true distribution of the underlying asset is consistent with the
stochastic volatility model proposed by Heston (1993).
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Unfortunately, however, the empirical evidence regarding these new models is quite

disappointing. Bates (1996), and Bakshi, Cao and Chen (1997)  reject the jump-

diffusion option pricing model on both currency options and equity options

respectively. The stochastic volatili ty model proposed by Heston (1993) is rejected by

Bakshi, Cao and Chen (1997), and Chernov and Ghysels (1998) for options written on

S&P 500 index. Fiorentini, León and Rubio (1998) reject the same model for equity

options on the Spanish IBEX-35 index.

These latter authors argue that the ultimate reasons behind the performance failure of

Heston´s model are closely related to the time-varying skewness and kurtosis found in

the data. In particular, they suggest that the assumption of a constant correlation

coeff icient between returns and stochastic volatilit y should be relaxed if we really want

to have a richer model. Unfortunately, the complexities needed to price options seem to

increase without bounds. It may be the case that simple nonparametric (semiparametric)

methodologies are able to incorporate the missing (realistic)  factors in our option

pricing models.

Along these lines, it should be pointed out that all previous models have been developed

in a competitive, frictionless framework. It may the case that liquidity costs, as

represented by the percentage bid-ask spread, account for some of the differences

observed between market prices and theoretical prices. Interestingly, Peña, Rubio and

Serna (1999a) show that liquidity costs significantly cause the magnitude of the smile in

equity options written on the Spanish IBEX-35 index2.

A potentially relevant area of research might be related to endogenously incorporating

liquidity costs in option pricing models with either stochastic volatili ty, stochastic

jumps or both. A much more simple but, at the same time, effective approach would be

based on the estimation of the implied volatili ty function with semiparametric

methodologies, where the Black-Scholes implied volatili ty is replaced by a

nonparametric function which depend upon a vector of explanatory variables. This is

the multivariate kernel regression approach which has been recently followed by Aït-

Sahalia and Lo (1998a). However, they ignore the potential effects of market frictions

on the nonparametric volatili ty function. The objective of our paper is to fill up this gap
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by incorporating, as an additional explanatory variable on the nonparametric volatili ty

function,  the percentage bid-ask spread.  Thus, we construct the corresponding call

pricing function under liquidity costs, and compare its performance relative to more

traditional option pricing models. Hence, our nonparametric volatili ty function  depends

on moneyness, time to expiration and the percentage or relative bid-ask spread. In this

sense, we are dealing with a multivariate nonparametric estimation3.

Moreover, we also estimate the state price density (SPD) or the so called (under non-

arbitrage models) risk-neutral density, with the added potential effects of market

frictions as proxied by the bid-ask spread. This is a key contribution of this paper to

previous literature on option pricing. At the same time, and from a statistical point of

view, our work improves the technique used by Aït-Sahalia and Lo (1998a) in, at least,

two important ways: (i) The use of a multivariate kernel based on a global smoothing

parameter may lead to estimation problems when obtaining the volatili ty nonparametric

function in moneyness intervals for which the amount of data is relatively small . These

intervals coincide with extreme out-the-money and in-the-money options and, of course,

these are precisely the sections of the smile in which we are particularly interested.

Given these arguments, we are planning to use the so called Symmetrized Nearest

Neighbors (SNN) estimation instead of the more traditional kernel approach. (ii )

Despite the fact that they have a three-dimensional kernel estimator, Aït-Sahalia and Lo

employ a univariate smoothing parameter criterion. Moreover, they simpli fy the

problem by eliminating the bias term in choosing the necessary bandwidth to estimate

their nonparametric volatili ty function. We employ several criteria in order to calculate

the bandwidth used in our estimations. In particular, we  employ a plug-in criterion and

multivariate approaches under three alternative specifications. Robusteness relative to

the bandwidth parameter is an important issue in nonparametric statistics.

                                                                                                                                                                         
2 See also Longstaff (1995) and Dumas, Fleming and Whaley (1998).
3 Using a linear and a quadratic parametric approach, Peña, Rubio and Serna (1999b) solve numerically a
forward partial differential equation with transaction costs also proxied by the relative bid-ask spread.
Independently of the parametric specification, they find that these models seem to perform poorly relative
to Black-Scholes.
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We report both the in-sample and out-of-sample option pricing empirical results. We

quarterly estimate our nonparametric multivariate volatili ty function and the

corresponding option prices. Independently of the bandwidth criteria used, the in-

sample results show an important improvement whenever we incorporate liquidity

effects on the estimation. This result may have serious implications for option pricing

research. However, the out-of-sample results are generally quite poor. All pricing

models have a significant degree of mispricing. This should not be surprising taking

into account that all models are estimated using quarterly data. This introduces a

demanding requirement of stabili ty to our estimated nonparametric functions, even

though it should be noticed that, using a randomization test, we are not able to reject the

stabili ty of risk-neutral densities between quarters.

The paper is organized as follows. Section 2 contains a brief discussion on the relation

between risk-neutral densities and non-arbitrage derivative pricing, and introduces our

nonparametric estimation. In Section 3 we present the data available for our research.

Section 4 discusses the nonparametric estimation of both the volatili ty smile and the

risk-neutral density. The main empirical results are reported in Section 5. We first

discuss the in-sample results, and secondly we present the stabili ty tests of the risk-

neutral densities over time and the out-of-sample performance of alternative pricing

models. We conclude in Section 6 with a summary of results and a brief discussion of

future work.

2. Nonparametr ic Estimation of Risk-Neutral Densities

2.1 Non-arbitrage Pr icing

It is well known that, under risk-neutrali ty, the price of any financial asset can be

expressed as the expected present value of its future payoffs, where the present value is

obtained relative to the riskless rate and the expectation is taken relative to the risk-

neutral density function of the payoffs.
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For completness4, we provide a brief summary of this non-arbitrage framework. Let

( )W W Wt t dt= 1 ,...,  be a d-dimensional Brownian motion. Let the stock prices be

represented by the following general model:

                     dS S dt S dW mjt jt jt jt jkt kt
k

d
= + å =

=
m s

1
1  ,   j ,...,               (1)

Let us consider next the so called market price of risk equations:

                             s q mjkt kt jt t
k

d
r m= - =å

=
  ,   j 1

1
,...,                                (2)

where m is the number of equations (number of stocks), d is the number of unknowns

(number of sources of randomness), and q t  is the market price of risk.

Moreover, we can use the Martingale Representation Theorem5 to guarantee the

existence of a d-dimensional process ( )Y Y Yt t dt= 1 ...,  so that we may solve the so

called hedging equations for D D1,..., m :

                    D Yjt jt jkt t kt
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where m is the number of unknowns (number of stocks), d is the number of equations
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.

                                                          
4 See also Aït-Sahalia and Lo (1998a, 1998b).
5 See Shreve, Chalasani and Jha (1997).
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We say that the market is complete if and only if the system (2) has a unique solution.

Then, this implies that (3) always has a solution, and every contingent claim can be

hedged. Finally, if ( )q q qt t dt= 1 ,...,  is the unique solution to (2), we define,

Z dW du

P A Z dP  , A

t u u u

tt

T
A

= - - òò
ì
í
î

ü
ý
þ

= " Îò

exp

* ( )

q q
1

2
2

00

   W

where Zt has finite variance. This probabili ty measure,P*, is the unique risk-neutral

measure of the model.

In this case, the risk-neutral density or SPD can be characterized without any explicit

reference to preferences. When we assume a geometric Brownian motion with constant

volatili ty and interest rate, the risk-neutral density is given by the conditional

distribution of the risk-neutral stochastic process given by,

dS rS dt S dWt t t t= + s *

which is the well known lognormal distribution with mean ( )r T t- -s2 2 ( )  and

variance s2( )T t- .

In general, if St is the stock price and ( )f St T
*  is the date-t risk-neutral density of the

stock price at future date T, then any european derivative with a payoff at expiration

given by some function j( )ST  can be priced by the following expression,

                    [ ]e E S e S f S dSr T t
T

r T t
T t T T

- - - - ¥
= ò

( ) ( ) ** ( ) ( ) ( )j j
0

                        (4)

where r is the constant riskless rate between t and T.
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When the derivative is a european call option with expiration at T and exercise price, X,

its price would be:

                              [ ]c e max S K f S dSr T t
T t T T= -ò

- - ¥
( ) * ( )

0
                              (5)

Finally,

                                       f S e
c

X
t T

r T t
X ST

* ( )( ) = - =
¶

¶

2

2
                                    (6)

so that, the risk-neutral density is proportional to the second derivative of the option

price function with respect to the exercise price.

2.2 Nonparametr ic Estimation

As discussed in the introduction, the idea of the paper is to estimate the risk-neutral

density nonparametrically, and to be able to price options. Our procedure is based on

the following sequence of estimations: We employ option market prices to estimate a

nonparametric volatili ty function which depends upon the degree of moneyness, time to

expiration and liquidity, proxied by the relative bid-ask spread. Then, given this

function in which volatili ty is allowed to vary with moneyness, time to expiration and

the bid-ask spread, the Black-Scholes formula can be used to obtain,

semiparametrically, option prices6. In the last step, we differentiate this option estimator

twice with respect to the exercise price to obtain (6), given the appropiate interest rate.

The issue, of course, is how to estimate the multivariate volatili ty function

nonparametrically.

                                                          
6 This semiparametric estimation of option prices considerably reduces the dimensionality of the problem.
As pointed out by Aït-Sahalia and Lo (1998a), the sample size required to achieve the same degree of
accuracy as in the full nonparametric estimation may be much smaller.
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It is important to realize that there is no an obvious way to model the influence of

moneyness, time to expiration and liquidity on the volatili ty function. It is precisely in

this sense in which the nonparametric framework provides a very flexible approach.

Let us consider a multivariate kernel estimator of the volatili ty function, with possibly

different smoothing parameters for the covariates:
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where x º X F is the degree of moneyness, where X is the exercise price and F is the

futures price (underlying asset)7, SP is the relative bid-ask spread, t is the time to

expiration,s i  is the volatilit y implied by the option price ci, hj is the bandwidth or

smoothing parameter for each covariate j SP= x t, , , and ( )~ , ,s x tSP  is the three-

dimensional nonparametric volatili ty function to be estimated.

It is important to point out that a kernel estimator based on a global smoothing

parameter may lead to poor estimation results basically in those zones where we have a

relatively small amount of data. Translating these effects to our case, it suggests that we

may obtain poor estimations for the volatili ty function for out-of-the-money and in-the-

money options. Of course, from a financial point of view, these are precisely the options

(and the sections of the volatili ty smile) which we are particulary interested in.

Given this fact, in this paper we employ the Symmetrized Nearest Neighbors (SNN)

estimation as an alternative to the classical kernel estimator. This kind of estimators was

proposed by Yang (1981), and studied in detail by Stute (1984). The idea behind them is

                                                          
7 Note that the underlying asset in the Spanish market for which we have data is the futures price on the
stock exchange index.
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very simple. When estimating in one point we calculate the weight for the rest of

observations looking at the distance between the values of the empirical distribution at

each point rather than the distance between the points themselves. Hence, the estimator

is defined as:
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where Fn(.) denotes the empirical distribution of corresponding variable, x , SP or t .

Roughly speaking, the empirical distribution changes the random design to a uniform

design with the knots uniformly spaced between zero and one. In practice, using SNN

estimators is basically the same as employing kernel estimators for Fn(X i) instead of X i.

A detailed discussion on the differences between these estimators is contained in

Appendix A, where we present and compare the minimum asymptotic mean square

error (MSE) for both kernels and SNN. Moreover, to provide some intuition related to

our particular case, we discuss an example that ill ustrates the behavior of our dataset.

As shown in Appendix A, both estimators have the same MSE under a uniform design.

On the other hand, if we assume the bias to be negligible with respect to variance, it is

easy to show that using the SNN estimator with bandwidth h is equivalent to employ a

kernel estimator with variable bandwidth equal to h f x( ) . Also, the discussion provided

in Appendix A allows us to argue that, in the tails, a smaller MSE is obtained for the

SNN estimator. It should be recalled that we are particularly concerned with the tails of

the distribution given, of course, that extreme degrees of moneyness are a key issue in

terms of both the volatilit y smile and pricing.

Once we have estimated the volatili ty function given by (8), we have to estimate the

call -pricing function. This function is evaluated as, ( )$ , , , $ ( , , )c r SPx t s x t , where the
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function $(.)c  is the same as in the Black-Scholes expression with the nonparametrically

estimated volatili ty. This is to say,

                                ( ) ( )),SP,(ˆ,r,,c),Sp,(ˆ,r,,ĉ BS txstx=txstx                            (9)

The risk-neutral density estimator follows by taking the appropriate partial second

derivative of  $(.)c  with respect to the exercise price. The detailed derivation of this

second derivative is reported in Appendix B:
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¶

2

2
                      (10)

In practice, the last and probably most important problem faced up by any researcher is

the selection of the smoothing parameters, ( )tx h,h,h SP .  It is interesting to point out

that there is a tremendous amount of literature developed for the univariate case. See

Härdle (1990) for a general presentation of this literature. Unfortunately, the bandwidth

selection becomes much more complicated in the multivariate context.

Generally speaking, there are two groups of methods to select the bandwidth: plug-in

methods and methods based on the minimization of some penalized least square error

measure. To decide the particular selection method to be employed is not a trivial task.

Even in the simpler case, in which we have a fixed design and an univariate estimator,

different asymptotically optimal methods may lead to different smoothing parameters.

In our case, we have not only a random design but also a multivariate context.

For a similar context as ours, Aït-Sahalia and Lo (1998a) use a global univariate

selection criterion. However, this criterion do not take into account the multivariate

character of the estimator (the optimum univariate bandwidths might be different from

the optimal bandwidths in the multivariate context), and, moreover, they do not offer

any criteria to choose the constant involved in the estimation.



12

It seems clear to us that the bandwidth parameter is the most important quantity to be

selected for any nonparametric estimation; it must definitely be carefully selected. It

seems, therefore, convenient to analyze the stabilit y of the smoothing estimators, and

the robustness of results, relative to alternative selection methodologies. Appendix C

contains a detailed discussion of the alternative techniques employed in this paper to

calculate the bandwidths.

With these considerations in mind, and being concerned with computational costs

whenever a very sophisticated method is used, we propose the following methodology.

We first compute the univariate pilot bandwidths for our three explanatory variables by

using a plug-in method, where the constants are selected with an iterative method due to

Gasser, Kneip and Köhler (1991) and discussed in Appendix C8.  Since the asymptotical

rates of convergence suggest that the bandwidth is influenced by the dimensionali ty of

the problem, we check the validation of these pilot bandwidths by using three

alternative multivariate cross-validation criteria. In particular, we employ the natural

extensions of Generalized Cross-Validation (GCV) method and Ricé s bandwidth

selectors to the multivariate case. All of them are presented in Appendix C. They are

evaluated in a grid of bandwidths around the pilot smoothing parameters.

As it will be shown later when presenting the empirical results, it is observed that the

multivariate criteria tend to select slightly higher parameters. There is some intuition

behind this result. The rate at which h must go to zero is of order n d- +1 4( ) , where d

denotes the dimension of the covariate vector. Therefore, it should not be surprising to

see that, whenever we employ a multivariate criterion, h becomes larger. On the other

hand, given that the final estimators do not change substantially, we report most of our

results on the basis of the plug-in smoothing parameters selector. More will be said later

on these issues.

                                                          
8 We are currently working in extending this iterative method to our multivariate case.
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3. The Data: The Spanish IBEX-35 and the Option Contract

The Spanish IBEX-35 index is a value-weighted index comprising the 35 most liquid

Spanish stocks traded in the continuous auction market system. The off icial derivative

market for risky assets, which is known as MEFF, trades a futures contract on the

IBEX-35, the corresponding option on the IBEX-35 futures contracts for calls and puts,

and individual option contracts for blue-chip stocks. Trading in the derivative market

started in 1992. The market has experienced tremendous growth from the very

beginning.  Relative to the volume traded in the Spanish continuous market, trading in

MEFF represented 40% of the regular continuous market in 1992 and 138% in 1996.

The number of all traded contracts in MEFF relative to the contracts traded in the

CBOE reached 21% in 1996.

The Spanish option contract on the IBEX-35 futures is a cash settled European option

with trading during the three nearest consecutive months and the other three months of

the March-June-September-December cycle. The expiration day is the third Friday of

the contract month. Trading occurs from 10:30 to 17:15. During the sample period

covered by this research, the multiplier has changed from 100 Spanish pesetas times the

IBEX-35 index at the beginning of the sample period to 1000 pesetas during 1998, and

prices are quoted in full points, with a minimum price change of one index point9. The

exercise prices are given by 50 index point intervals.

It is important to point out that liquidity is concentrated in the nearest expiration

contract. In fact, during the sample period almost 90% of crossing transactions occurred

in this type of contracts.

Our database is comprised of all call and put options on the IBEX-35 index  futures

traded daily on MEFF during the period January 1996 through November  1998. Given

the concentration in liquidity, our daily set of observations includes only calls and puts

with two possible expiration dates. We only include options which expire between five

and forty days. That is, we eliminate all transactions taking place during the last five

                                                          
9  Starting in January 1999, it has been changed to 10 euros.
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days before expiration, and transactions which will expire in more than forty days.

 As usual in this type of research, our primary concern is the use of simultaneous prices

for the options and the underlying security. The data, which are based on all reported

transactions during each day throughout the sample period, do not allow us to observe

simultaneously enough options with the same time-to-expiration on exactly the same

underlying security price but with different exercise prices. In order to avoid large

variations in the underlying security price, we restrict our attention to the 45- minute

window from 16:00 to 16:45. It turns out that almost 25% of crossing transactions occur

during this interval. Moreover, care was also taken to eliminate the potential problems

with artificial trading that are most likely to occur at the end of the day. Thus, all trades

after 16:45 were eliminated so that we avoid data which may reflect trades to influence

market maker margin requirements. At the same time, using data from the same period

each day avoids the possibili ty of intraday effects in the IBEX-35 futures options

market. Finally, we eliminate all call and put prices that violate the well known

arbitrage bounds. The number of observations within a day may vary according to the

number of crossing transactions associated with different exercise prices available each

day.

These exclusionary criteria yield a final daily sample of 8321 observations (4798 calls

and 3523 puts). The implied volatili ty for each of our 8321 options is estimated next. To

do so, note that we take as the underlying asset the average of the bid and ask price

quotation given for each futures contract associated with each option during the 45-

minute interval. To proxy for riskless interest rates, we use the daily series of

annualized repo T-bill rates with either one week, two weeks or three weeks to maturity.

One of these three interest rates will be employed depending upon how close the option

is to the expiration day.

Table 1 describes the sample properties of the call and put option prices employed in

this work. Average prices, average relative bid-ask spread and the number of available

calls and puts are reported for each moneyness category. Moneyness is defined as the

ratio of the exercise price to futures price. A call (put) option is said to be deep out-of-

the-money (deep in-the-money) if the ratio K/F belongs to the interval (1.03, 1.08); out-

of-the-money (in-the-money) if 1.03 > K/F ³ 1.01; at-the-money when 1.01 > K/F ³
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0.99; in-the-money (out-of-the-money) when 0.99 > K/F ³ 0.97; and deep-in-the-money

(deep out-of-the-money) if  0.97 > K/F ³ 0.90. As we already discussed, there are 4798

call option observations (3523 puts), with OTM, ATM and ITM call (put) options

respectively representing 61% (68), 30% (25) and 9% (7) . The average call (put) price

ranges from 61.6 (64.1) pesetas for deep OTM call (put) options to 381.2 (461.7)

pesetas for deep ITM call (put) options. The average relative bid-ask spread tends to

move in the opposite direction to the average price. In particular, it ranges from 0.38

(0.33) for deep OTM call (put) options to 0.12 (0.12) for deep ITM calls (ITM puts).

4. Smiles and Risk-neutral Densities

It is well recognized that option prices provide the market participants with a

tremendous amount of information. In particular, we have already discussed how to

infer the risk-neutral density or, alternatively, the Arrow-Debreu prices from trading

options on the market portfolio. This section presents our nonparametric estimation of

both the risk-neutral density and the volatili ty smile for 199810. Implications for the

behavior of the market porfolio, as represented by the IBEX-35 stock exchange index,

are drawn on the basis of the implied (risk-neutral) distribution embedded in option

prices.

We first discuss the nonparametric estimation of the univariate (traditional) volatili ty

smile. As before, we employ the SNN estimator instead of the classical kernel

estimator, and the plug-in bandwidth selection method:
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Expression (11) is firstly estimated using only call options transacted during 1998. It is

interesting to note the important differences obtained when we employ the SNN

                                                          
10 During 1998, financial markets experimented an enormous amount of volatili ty. Our presentation for
1998 should be just taken as a working example. In any case, the main implications of our analysis could
have been obtained with any other year of the sample period.
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procedure rather than the traditional kernel estimator. Figure 1 contains the

nonparametric volatili ty smile estimated with both methods. It turns out that the optimal

bandwidth under the SNN estimator is 0.093 and, as we can see in Figure 1, the smile is

optimally smoothed. A very different pictures arises when we employ the traditional

kernel estimator given by:
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The effect of undersmoothing is clearly reflected in Figure 1. The estimator is highly

variable because the optimal bandwidth selected according to the plug-in method tends

to zero. We argue that, given the specific data we usually have when doing research in

option pricing, where a lot of observations are centered around the at-the-money options

and relatively few observations are available in the extremes, the SNN estimator is more

appropriate.

It is also well known that, given equation (10), the pattern of implied volatiliti es for

alternative exercise prices (the smile) gives us a direct evidence of the risk-neutral

density function actually embedded in option price data. Note that Figure 1 suggests

that implied volatili ties are lower for low-exercise-price options than for high-exercise

price options. This is consistent with a distribution having a fatter right tail and a thinner

left tail relative to the normal distribution. In other words, Figure 1 seems to imply that,

during 1998, a positive relationship between volatili ty shocks and price changes of the

underlying asset was actually the case in the Spanish market.

To further investigate this issue, we run both a Nagarch (1,1) and a GJR (1,1)11 models

in which we are allowed to calculate the correlation between conditional variance and

the returns of the underlying asset. Let Rt be the return generated by the following

model:

Rt t= +m e

                                                          
11 GJR refers to Glosten, Jagannathan, and Runkle (1993).
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Under the Nagarch(1,1), the conditional variance, Vt, and the corresponding correlation

coeff icient are defined as:
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where g represents the relation between the shocks and the  conditional  variance,  and

w, b, a > 0, and where the correlation is:
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Under the GJR(1,1) model we have that:
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where Dt is a dummy variable defined as:
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The actual estimations using daily returns for the IBEX-35 stock exchange index during

1998 result in a significant and negative correlations of -0.753 and -0.701 for the

Nagarch(1,1) and GJR(1,1) respectively13.

                                                          
12 Note that in this model a positive g implies a negative correlation coeff icient.
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The explanation about this apparent contradiction between the direct evidence provided

by the underlying asset, and the implicit results obtained from option prices lies on the

lack of call transactions available for in-the-money calls. This suggest that, if we want

to extract information about the behavior of the underlying asset, and correctly estimate

the risk-neutral density of the underlying asset implied by option prices, we should use

both calls and puts. This argument is not related to the put-call parity relationship. It is

simply a consequence of lack of transactions in a relatively thin option market.

Figure 2 contains the nonparametric estimation of the volatili ty smile using both calls

and puts. As we can observe, once the full option market is incorporated into the

analysis, a typical asymmetric smile is obtained. This volatili ty function is consistent

with a negative asymmetric distribution of the underlying asset.

We next estimate the implied risk-neutral distribution recognizing the potential effects

of, not only moneyness, but also time to expiration and liquidity.

As we already mentioned in Section 2, we first estimate the nonparametric function,

$ ( , , )s x tSP  where x is the degree of moneyness, SP is the relative bid-ask spread, and t

is time to expiration. We employ the SNN estimator given by expression (8). It should

be pointed out that we also estimate the nonparametric volatili ty function without the

liquidity variable. This is an important issue in this paper. These estimations will allow

us to compare the implied risk-neutral densities with and without liquidity effects.

Table 2 contains the optimal bandwidths given by the plug-in criterion for our three

explanatory variables and for the three years in our sample. Given the high degree of

uncertainty experimented by the market during 1998, it should not be surprising to

observe that the bandwidths become larger for all variables during 1998. Otherwise, the

results seem to be reasonable.

Once we have the nonparametric volatili ty functions with and without liquidity, we

employ equation (10) to estimate the risk-neutral density function for 1998. In order to

                                                                                                                                                                         
13 The correlations for the whole sample period (1996-1998) are also negative and significant. They are
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do so, we first observe all exercise prices available during 1998. The rest of the

explanatory variables are assumed to be constant in their means for that year, so that the

future price, the relative spread and time to expiration  remain constant in their means,

F SP, ,t . Note that the only variable allowed to vary is the exercise price. We now

estimate the nonparametric volatili ty function given by (8) in the new knots

( )X F SPi , ,t  where X i, i = 1, . . . , n, are the number of exercise prices observed for

that particular period. The implied risk-neutral distribution is then given by14:
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Since we are interested in the effects of liquidity on option pricing, the same procedure

is repeated without taking into account the bid-ask spread variable. Thus, we have two

risk-neutral densities, where in the first one the potential effects of market frictions are

explicitly considered. As a reference, we also present the Black-Scholes distribution by

employing the at-the-money mean implied volatilit y during 1998 as an input in the

expression of the lognormal density. Note that this (mean) implied volatili ty is used as a

constant volatili ty in all knots where the density is estimated.

Figure 3 contains the estimated risk-neutral density for 1998 in terms of returns rather

than levels of exercise prices. This figure is obtained using all calls and puts available in

the sample. The returns are simply calculated as ( )R X Fi i= ln . The results suggest a

(slightly) negatively skewed distribution relative to Black-Scholes15, where the density

estimated without liquidity presents a fatter left tail relative to the density estimated

with liquidity, and a thinner right tail . This implies that the model without liquidity

would underprice out-of-the-money puts and in-the-money calls relative to the model

with liquidity, and, at the same time, the model without liquidity would overprice out-

of-the-money calls and in-the-money puts relative to the option model incorporating

liquidity.

                                                                                                                                                                         
equal to -0.407 and -0.310 for the same models.
14 In fact, the estimation of the implied risk-neutral density is easily simplified by noting  that the only
relevant term of equation (B.2), in terms of magnitude, is the  first component of the expresion. The last
two terms are very small since they are multiplied by 1/X and 1/F2 respectively.
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This evidence suggests that there might be relevant effects of liquidity on option

pricing. They will be further investigated in the next section. It should also be noted that

the implied distributions estimated nonparametrically are clearly leptokurtic relative to

Black-Scholes.

Finally, Figures 4 and 5 present the densities estimated with either only calls and only

puts respectively. Again, it is clear that one should be very careful in driving

conclusions about the behavior of the underlying asset without considering

simultaneously calls and puts in the estimation. This might be particularly important in

relatively thin option markets, where trading is much more concentrated than in markets

like the US option market.

5. Empir ical Results

5.1 In-sample pr icing performance

This section evaluates the performance of the alternative semiparametric option pricing

models described above.

Two theoretical option prices are calculated using the nonparametric volatili ty functions

estimated according to our two versions of equation (8) with and without liquidity.

Once we have these functions, we employ Black´s (1976) model to obtain our

theoretical semiparametric option prices for each call i n the sample. In particular, we

calculate the following call prices by:

                     ( ) [ ]$ , , , $ ( ) ( )( )c r e F N d X N di i i i i
r T t

i i i i
i ix t s = -- -

1 2                    (16)

where,
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where each option i available in the sample is characterized by a futures prices, Fi, an

exercise price, X i, a time to expiration, (T-t)i and, given the days to maturity, the

                                                                                                                                                                         
15 This is consistent with the volatili ty smile shown in Figure 2.
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corresponding repo rate with similar maturity, ri. As the input for volatili ty, $s i , we

introduce the estimated (nonparametrically) volatili ty function which is obtained by

either one of the following two SNN estimators:
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It should be pointed out that these two equations are estimated quarterly over the whole

sample period from January 1996 to November 1998. The plug-in criterion is employed

to calculate the optimal bandwidth for each explanatory variable and for each quarter. In

this way, we have 4798 pricing errors for calls from January 2, 1996 to November 10,

1998, and for each of the models analyzed.

Table 3 reports two measures of performance for the alternative model specifications.

Panel A contains the absolute pricing error which is the sample average of the squared

difference between the model price and the market price for each call i n the sample

period. In Panel B, the reported percentage pricing error is the squared sample average

of the theoretical price minus the market price divided by the market price. These two

statistics are calculated for each moneyness categories and for all calls in the sample.

They are given by the following expressions:
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where ci
TH  denotes the estimated price for the call option using a particular option

pricing model, and ci
M  is the corresponding option price observed in the market. N

represents the number of calls in each moneyness category (j = Deep OTM, OTM, . . . )

The results of Table 3 are reported by years. The evidence is quite striking. In all cases,

both the APE and PPE are lower when liquidity is incorporated in the estimation of the

nonparametric volatili ty function. It is clear that pricing errors for our nonparametric

model with liquidity are larger during 1998, but it is also the case that they are even

larger whenever we do not price options taking into account the bid-ask spread.

In this paper, the statistical significance of performance is assessed by analyzing the

proportion of theoretical prices lying outside their corresponding bid-ask spread

boundaries. This will allow us to test whether or not the differences between the pricing

performance of our two competing models are statistically different from zero.

For each model and each moneyness category, we compute the proportion of options

such that the estimated theoretical price falls outside the bid-ask boundary. Let us

denote by p1 the proportion of prices outside the boundary when the model does not

include liquidity, and p2 the proportion when the bid-ask spread is taken into account.

We want to test whether p2 < p1. If this were the case, we may argue that liquidity is a

relevant variable in pricing call options.

One should be careful in defining this statistic. It should be noted that these two models

are not independent. In fact, they are nested models. Thus, if we consider the difference

$ $p p2 1- , where $p2  and  $p1 denote the estimated proportions, the asymptotic normal

distribution under the null does not have the usual variance term. The reason is that the
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proportions are not independent (in fact, they are directly dependent) and the variance of

the difference should be smaller than the variance for the independent case.

To avoid this problem, we compute $p1 and we employ this proportion, which is the one

for the most restrictive case, as our null hypothesis for the second model. In other

words, we test H p p0 2 1: $³  against  H p pa: $2 1< . In this context, the Z-statistic is given

by:

                                          Z
p p

p p n
=

-

-

$ $

$ ( $ )
2 1

1 11
                                         (21)

where n is the sample size. This statistic is asymptotically distributed as a standardized

normal variable.

Given that we are also interested in knowing whether a given theoretical valuation

model undervalues or overvalues market prices, the Z-statistic is also calculated to

obtain the proportion for which the theoretical model yields a price below the bid quote,

and the proportion for which the model gives a price above the ask quote. If a

theoretical model tends to undervalue market prices, it would yield a higher proportion

of prices below the bid quote. If, on the other hand, the model tends to overvalue market

prices, it would have a higher proportion of prices above the ask quote.

Table 4 contains the results for each year and for each moneyness category. As in the

previous table, the empirical results are quite impressive. For OTM and ATM calls the

pricing performance of the semiparametric option pricing model with liquidity is

statistically and systematically superior to the model without liquidity. In-sample

pricing performance is clearly better by recognizing that liquidity effects are present in

the pricing of options. This is also the case when we consider all calls together. The

evidence is slightly less clear for ITM calls and particularly for 1998. In any case, only

in 1998 for ITM calls, the model without liquidity performs better than the model with

the liquidity effect (the case of the price below the bid quote). Liquidity, as proxied by

the relative bid-ask spread, seems to be an important variable in pricing call options in

the Spanish market.
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In order to validate our previous results we have carried out a slightly different in-

sample test. We separate the sample of each quarter in two subsamples. The first

subsample contains 10% of calls for each moneyness degree (subsample 10). The other

subsample (subsample 90) contains the rest of the sample. We estimate the price of each

call i n the subsample 10 with the information contained in the subsample 90. The

bandwidths used are the ones selected by the plug-in method with all available calls in

the quarter. This is not the usual in-sample pricing because the calls in the subsample 10

are not included in their estimation. As in the previous case, in Table 5 we now report

both the absolute pricing error and the relative pricing error as a measure of pricing

performance. In the first two panels of Table 5 we observe that in all cases both

measures are lower when liquidity is incorporated in the estimation of the

nonparametric volatili ty function. We again analyze the proportion of theoretical prices

lying outside their corresponding bid-ask spread boundaries. Panel C presents the

results when we consider all calls together. Again, the option pricing model with

liquidity is superior to the model without liquidity, although in some cases we are not

able to reject the null hypothesis. The same holds when we separate the subsample

according to  moneyness degree16.

                                                          
16 Results are available upon request.
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5.2 In-sample pr icing performance with alternative smoothing parameters

As mentioned in Section 2.2, we check the appropriateness of the plug-in smoothing

parameter estimators by calculting three different bandwidths obtained from the three

alternative multivariate criteria described in Appendix C. They are given by expressions

(C.4), (C.5) and (C.6).

It should be recognized that our nonparametric problem is inherently a multivariate

estimation problem. These alternative criteria -the GCV and the Ricé s estimators- have

been used in univariate contexts. However, in practice and to the best of our knowledge,

they have not been extended to the multivariate case until this paper. They are easier

generalized to the multivariate case than the plug-in method.

Table 6 reports the bandwidths obtained for each criteria and for each year during the

sample period. In 1996 and 1997, for time to expiration and the spread variable, the

bandwiths selected by the multivariate criteria tend to be higher than optimal parameter

from the plug-in method. As discussed in Section 2.2, this result may be expected.

However, this is not the case for 1998, where the smoothing parameter selected for the

moneyness degree is lower than the selected with the plug-in method.

Table 7 compares the effects of the GCV selection method with the plug-in method on

option pricing. As we can observe from the table, when we take out the 10% of the

sample, we are not able to statistically reject the equali ty of proportions between the two

selection models. This result suggests that the plug-in method produces a quite good

estimation of the smoothing parameter. In any case, although not reported, the results in

terms of lower proportions of prices lying outside the bid-ask spread boundaries in the

model with liquidity remain the same. Of course, further research specifically directed

toward this issue is clearly justified17.

                                                          
17 Note that Table 7 is different from Table 4. This is because in Table 4 we price quaterly, with the
bandwiths selected for each quarter, and in Table 7 we price with the bandwidths selected yearly.
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5.3 Stabili ty of the Risk-Neutral Density and the Out-of-sample Pr icing

Performance

We next use data and the estimated nonparametric volatili ty function from one quarter

to price options in the following quarter. To justify this out-of-sample analysis is

reasonable to argue that a previous stabili ty tests on the risk-neutral densities should be

performed. We propose a new stabili ty test to analyze the stabili ty of the risk-neutral

densities over all quarters in our sample period.

Aït-Sahalia and Lo (1998a) deal with a similar problem and they derive a diagnostic test

based on the integrated squared difference between two risk-neutral densities estimated

over two different time periods.

Of course, testing the equali ty of two nonparametric functions is not a trivial issue. First

of all , we work with asymptotic distributions and, secondly, there are several quantities

that must be estimated and may affect the results substantially. Practical reasons have

led us to propose a simple and easy to implement test based on the so called

randomization tests to detect if the differences between the risk-neutral densities are

statistically significant. This test lies on the permutation of options in our dataset.

More specifically, we assume that options may be randomly assigned to different testing

periods. Data are permuted repeatedly and the test statistic shown below is computed

for each of the resulting data permutations. These data permutations, including the one

representing the obtained results, constitute the reference set for determining the level of

significance. The proportion of data permutations in the reference set that have a value

of the test stastistic greater than or equal to the value of the experimentally obtained

results is the p-value. It should be noted that, in the proposed test, the basis for

permuting the data is random assignment. This is why is known as a randomization

test18. The null hypothesis is that the risk-neutral density is the same for each pair of

quarters.

The steps follow to implement this tests are as follows:
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(i) We define a grid of points (returns) where the risk-neutral density is estimated. Note

that this is necessary given that the two groups (two periods) do not necessarily have in

common the same returns (same set of exercise prices) of the underlying asset. The

number of points in the grid is denoted by Ng.

(ii ) We estimate the risk-neutral densities, (.)(.), *
1

*
+qq ff , using the method described in

Section 4, where q denotes a particular given quarter, and liquidity is included.

(iii ) We define the test statistic as:

                                     Tobs q
j

N g

= å
=

 f (S ) - f (S ) j q+1
*

j
*

1
                                  (22)

(iv) We permute the rows of the data matrix -in our case the set of call options for both

quarters q and q+1 a given number of times. In this case we employ 200 permutations.

In general, we denote B the number of permutations.

(v) For each of the b = 1, . . . , B permutations of the data, we assign Nq options to

quarter q and the rest to the following quarter. This constitutes our new dataset

originated from permuting the data.

(vi) We estimate f fq q
*b *b(.), (.)+1 , by keeping the values for the bandwidths we obtained

under the original dataset. This seems to be reasonable since the optimal bandwidth is

not affected by the randomization process, and computational costs are cheaper.

(vii ) We compute the test statistic of equation (22) for each of the b = 1, . . . , B

permutations of data.

(viii ) We next calculate the p-value or the criti cal value for our randomization test. The

proportion of data permutations in the reference set that has values of the statistic (22)

greater than or equal to the value for the experimentally obtained results is the p-value

                                                                                                                                                                         
18 See Good (1994) for details on randomization tests.
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we are looking for. The criti cal value is the (1-a)th percentile of the values taken by the

test statistic calculated from the respective permutations.

(ix) We conclude whether or not the differences in the risk-neutral densities between

two consecutive quarters are statistically significant at the a level of signii fcance.

The results are contained in Table 8. They show a remarkably stabili ty between risk-

neutral densities for any two consecutive quarters. It should be pointed out that this

result is also consistent with the findings of Aït-Sahalia and Lo (1998a), where they are

not able to reject the stabili ty for two semesters during the same year. In our data, and

for all cases, the null hypothesis of no significant differences between quarters can not

be rejected. It may be noticed that in every turn of the year, the p-value obtained is

lower than in other cases, although we can not reject the null hypothesis.

This striking result seems to be useful in justifying the use of a given risk-neutral

density estimated for a given quarter as the basis for pricing options during the

following quarter. The out-of-sample performance is investigated next. We use the

nonparametric volatili ty function estimated for a given quarter q as the true volatili ty

function for the following quarter q+1.

We again calculate the theoretical option prices of our two competing models using

expression (16) by employing the nonparametric volatili ty function estimated over the

previous quarter. As before, the Z-statistic given in equation (21) is used.

The results are contained in Table 9. Unfortunately, the empirical performance of both

models is really disappointing. Independently of the moneyness degree considered, we

are not able to reject the equali ty of performance between the two models. Moreover,

the proportions of theoretical prices lying outside the bid-ask spread is considerably

higher than in the in-sample case. The conclusion seems to be clear. The out-of-sample

performance of our semiparametric models is quite poor either with liquidity or without

liquidity.

It should be noticed that the results of Table 9 are based on the comparison between the

second and third quarter of each year during the sample period. We report this specific



29

out-of-sample quarter performance as a representative case of what is found in all

quarters. In fact, as a way of aggregating quarter Z statistics over a single year, the

quarter Z´s are added and divided by the squared root of the number of quarters where

we do the pricing ( 4  in 1997, 3  in 1996 and 1998), to obtain an aggregate N(0,1)

statistic from which an aggregate p-value is obtained. These aggregate p-values for

differences in proportions between the two competing models are reported in Table 10.

In this case, we just include the results for all calls. As it can be observed, we are never

able to reject the equali ty of proportions between the model with liquidity and the

model without liquidity. The out-of-sample performance is always poor independently

of the model.

This is an interesting result. In spite of the fact that we are not able to reject the stabili ty

of the risk-neutral densities over time, the pricing results are very disappointing. This

should be understood as a warning about the stabili ty test as a sufficient condition for

pricing.

6. Conclusions

This paper has investigated the effects of liquidity, as proxied by the relative bid-ask

spread, on the pricing of options. Given the evidence contained in Peña, Rubio and

Serna (1999a) where linear (and non-linear) causali ty tests between the shape of the

volatili ty smile and the bid-ask spread show a bidirectional Granger causality, this paper

estimates a nonparametric volatili ty function in which liquidity is incorporated as a key

explanatory variable. Given the structure of our dataset accross the degree of

moneyness, the paper employs the Symmetrized Nearest Neighbors (SNN)

nonparametric estimator rather than the traditional kernel estimator. Moreover, special

care is taken in the estimation of the smoothing parameter. The results show that the in-

sample performance is clearly favorable to a semiparametric model with liquidity

relative to a similar model estimated without liquidity. In fact, liquidity is very useful i f

we employ options close together on time. This is supported by the in-sample pricing

when we take off 10% of data.
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Unfortunately, however, the out-of-sample performance results are quite disappointing.

We employ the nonparametric volatili ty function estimated for a given quarter q as the

true volatili ty function for the following quarter q+1. Our two semiparametric

competing option pricing models present high proportions of theoretical prices lying

outside the bid-ask spread boundaries. At the same, we are not able to reject the equali ty

of these proportions across both models. This result is found despite the fact that we do

not reject the stabili ty of risk-neutral densities over the quarters covered by the research.

Future work will concentrate in extending the univariate plug-in criterion to a

multivariate framework. We will also analyze whether the optimal multivariate plug-in

selection method is able to obtain a better trade-off between bias and variance in the

estimation of the volatilit y function around the at-the-money options.

Finally, given our in-sample result, we are planning to analyze the pricing performance

of our semiparametric option pricing model with liquidity on daily basis. This is to say,

we will daily estimate the nonparametric volatili ty function with the SNN estimator, and

this function will be used as an input in the option pricing function for the following

day. This procedure is closer in spirit to other empirical related papers in option pricing.
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APPENDIX A

SYMM ETRIZED NEAREST NEIGHBORS (SNN) METHODOLOGY

For simplicity, we make a comparison between kernel and SNN estimators in the

univariate context. Let us assume the following data generating process,

                                       ( )Y m X ni i i= + =e  ;  i 1,...                                            (A.1)

where m(.) is the unknown function, and X i are i.i.d. random variables having a density

function f(x). The disturbance terms are also assumed to be i.i.d., and a sample of size n

is taken. The main advantage of the nonparametric estimation is that we do not have to

assume anything about the functional form of the regression function. We only assume

that this function is smooth and (at least) twice differentiable. The kernel estimator is:
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where h is the smoothing or bandwidth parameter to be selected.

The kernel or weight function K has the following properties:

K u du

K u udu
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  (finite)

   (finite)

In practice, we employ the Gaussian kernel which has these properties and is given by,

K u e u( ) = -1

2

2 2

p

The estimation proposed by Yang (1984) and studied by Stute (1984) is:
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The known k-nearest neighbors estimate define neighbors in terms of the k-nearest

points of x. On the other hand, with the SNN methodology, neighbors are defined in

terms of the distance between the values of the empirical distribution function at each

point. Since expression (A.3) picks up its neighbors symmetrically, it is known as the

Symmetrized Nearest Neighbors (SNN).

Under the usual assumptions in kernel estimation, it is well known that the leading term

in the mean square error is given by19:

                       ( ) ( )
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                  (A.4)

where dK and cK are constants (already defined above) that depend on the kernel chosen,

and s2  is the variance of the disturbance term.

The MSE for the SNN estimator is:
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By minimizing the MSE for each case, the optimal bandwidth h is derived. This is

substituted into (A.4) and (A.5) to get the minimum MSE denoted by MSE*. If we

employ the kernel estimator:

                     ( )
( ) ( )

MSE m x
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where,
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f x
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2

On the other hand, if we use a SNN estimator has an equivalent expression which

asymptotically is equal to:
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where,
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S x
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6

Thus, we can conclude that it is advisable to employ the SNN estimator instead of the

kernel estimator when ( ) ( )MSE m x MSE m xS K* $ ( ) * $ ( )< . This will be the case for any

x such that:

                                                
H x

f x
S x

( )

( )
( )

4
>                                                 (A.8)

Alternatively, condition (A.8) is equivalent to:

         ( ) ( ) ( )¢¢ + ¢ ¢ > ¢¢ - ¢ ¢ Û ¢ ¢ ¢ ¢ + ¢¢ >m f m f m f m f m f m f m f2 2 02 2             (A.9)

As we already mentioned, depending on the specific functional form of the unknown

function, m(x), and the density function, f(x), we would prefer either one of them. This

is shown in the following simple example. The intuition behind this example is that it

seems reasonable to expect that a typical smile volatili ty pattern (if it exists) may be

captured by a (parametric) quadratic regression equation. At the same, it is not plausible

to assume that the design of moneyness is fixed during the period of study. Hence, the

assumption of a normal density for x seems appropriate.

                                                                                                                                                                         
19 MSE = (Bias)2 + Variance.
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 Suppose that we have the following parametric model:

y m xi i i= +( ) e

where

m x axi i( ) = 2

Let us also assume that the errors are i.i.d. and that x have a normal density with mean 0

and variance s2:

f x e x s( ) = -1

2

2 2

p

By taking the appropriate derivatives for m(x) and f(x) and substituting them into

expression (A.9), we obtain that the MSE under the kernel estimation is higher than in

the SNN estimation as long as s|x| > .  In words, when the points are in a distance from

the mean (in this example zero, but it may be generalized) higher than the standard

deviation, we obtain better results using the SNN estimation.

This example suggests that whenever we are interested in estimating in those places

where the density is very small (away from the mean), the SNN may yield better results

than the traditional kernel estimators. Given the empirical distribution of moneyness,

this suggest that, in general, the ( )MSE m xS* $ ( )  might be lower in those sections of the

smile where the degree of moneyness is far away from at-the-money options. Of course,

as we said before, whether in general  ( ) ( )MSE m x MSE m xS K* $ ( ) ( ) * $ ( )< >  depends on

the particular functional form of the unknown function m(.) and the density f(x). We

suspect that in most cases the SNN estimator would present better results when

estimating in places where the density is small .

APPENDIX B

APPROPRIATE DERIVATIVES FOR THE CALCULATION

OF THE RISK-NEUTRAL DENSITY
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The Black-Scholes formula for a European futures call option is20:
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N(d1) is the value for the accumulative probabili ty distribution of a normal variable with

mean 0 and variance 1. Its derivative is, therefore, the normal density function:
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It is easy to show that,
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Our objective is to find the second derivative of the call price with respect to the

exercise price. It should be noted that, in our case, the volatili ty is a function of the

exercise price too:
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We need the following results,

                                                          
20 In fact, this is Black (1976).



36

( )[ ]

¶
¶

¶

¶ ps

s

s

¶

¶ s

¶
¶s

¶
¶s¶ s

¶

¶s s

c

X
e N d

c

X
e

X T t

F X T t

T t

d

X X T t

c
e N d F T t

c

X
e

F

X
N d

c
e F

d
T tN d

r T t

r T t

r T t

r T t

r T t

=

=
-

-
- -

-

ì

í
ï

î
ï

ü

ý
ï

þ
ï

=
-

-

= ¢ -

= - ¢¢

= - - ¢¢

- -

- -

- -

- -

- -

( )

( )

( )

( )

( )

( )

( )
exp

ln ( )

( )

( )

( )

( )

2

2

2 2

2 2

2

1

1

1

2

2
2

1

1

2

2

2

1

1

We need to calculate the derivatives of our volatili ty function estimation with respect to

the exercise price, ¶s ¶$ X   and  ¶ s ¶2 2$ X . To obtain them, a kernel estimation is used.

But recall that our nonparametric estimation of volatili ty depends on moneyness, and it

does not depend on the exercise price. Hence, the appropriate derivatives for the

volatili ty with respect to the exercise price are:
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APPENDIX C

SELECTING THE SMOOTHING PARAMETER

We know that the accuracy of kernel smoothers as estimators of any function m(.), as in

expression (A.1) is a function of the kernel and the bandwidth h. In practice, it is well

accepted that the accuracy depends mainly on the chosen smoothing parameter h. In this

appendix we first discuss the plug-in method as applied to our multivariate particular

case. Secondly, we present the multivariate cross-validation criteria also employed in

our estimations.

Let us briefly describe the appropriate algorithm for the simple kernel univariate case.

We know that asymptotic mean squared error for the usual kernel estimator is given by

the following equation:
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and the asymptotic integrated mean squared error is:
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where the problem is that ¢¢m x( )  is unknown and must be estimated. Note that this is

the case given that the constants ck and dk depend on the kernel function assumed, n is

the sample size, and the value of the variance of the response variable may easily be

estimated as,
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Let ( )$ ,m x h2 2  be the estimator of ¢¢m x( )  where h2 refers to the second derivative It

turns out that this can be estimated using a kernel estimator again
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where the specific kernel assumed must have the following properties:
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In particular, the kernel function ¢¢ = - + -K u u u( ) ( )
105

16
5 6 14 2  has these properties

and has been used in this estimation.

The bandwidth h2 is estimated directly according to the algorithm proposed by Gasser,

Kneip, and Köhler (1991) for the univariate case. The algorithm is performed by the

following steps:
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· Obtain the expression for the mean integrated squared error for the nonparametric

regression (expression C.2)

· Estimate the partial derivatives involved using pilot bandwidths. In this case we need

the second derivative of the m(x) function, where the pilot bandwidth is h2.

· Get the initial bandwidth and transform it to obtain another pilot bandwidths.

· Iterate until convergence.

The extension of this univariate plug-in method to the multivariate case is not trivial.

For this reason, in order to check the robustness of our results, we employ the (easier)

extensions of the univariate cross-validation criteria given in Härdle (1990). In

particular, the criteria employed in this research and their penalizing functions are the

following:

(i) The Generalized Cross-Validation (GCV), where we have to minimize:
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(ii ) Ricé s bandwidth selector I, where we have to minimize:
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(iii ) Ricé s bandwidth selector II, where we have to minimize:
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where RSS(.) is the sum of squared residuals; this is to say, the residuals we obtain in

the nonparametric estimation with the kernel. Finally, K(0) is the kernel evaluated at 0.
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It is important to point out that either (C.4), (C.5) or (C.6) are truly multivariate

bandwidth selection methods.
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TABLE 1

SAMPLE CHARACTERISTICS OF IBEX-35 FUTURES OPTIONS

Average prices, average relative bid-ask spread and the number of available calls are reported for each
moneyness category. All call options transacted over the 45 minute interval from 16:00 to 16:45 are
employed from January 2, 1996 to November 10, 1998. X is the exercise price and F denotes the futures
price of the IBEX-35 index. Moneyness is defined as the ratio of the exercise price to the futures price.
OTM, ATM, and ITM are out-of-the-money, at-the-money, and in-the-money options respectively.

------------------------------------------------------------------------------------------------------------------------------
                                                                                  CALLS
------------------------------------------------------------------------------------------------------------------------------
                                         Moneyness          Average               Average           Number of
                                              (K/F)                 Price            Bid-Ask Spread   Observations
------------------------------------------------------------------------------------------------------------------------------
DEEP OTM: 1.03-1.08  61.6 0.378 1478

OTM: 1.01-1.03  81.7 0.237 1457

ATM: 0.99-1.01  120.4 0.174 1422

ITM: 0.97-0.99  180.0 0.122 355

DEEP ITM: 0.90-0.97  381.2 0.124  86

ALL CALLS:        -  99.6 0.251 4798
------------------------------------------------------------------------------------------------------------------------------
                                                                                  PUTS
------------------------------------------------------------------------------------------------------------------------------
                                         Moneyness          Average               Average           Number of
                                              (K/F)                 Price            Bid-Ask Spread   Observations
------------------------------------------------------------------------------------------------------------------------------
DEEP OTM: 1.03-1.08  461.7 0.197 53

OTM: 1.01-1.03  165.2 0.119 180

ATM: 0.99-1.01  126.5 0.152 878

ITM: 0.97-0.99  90.6 0.196 988

DEEP ITM: 0.90-0.97  64.1 0.325  1424

ALL PUTS:        -  98.2 0.233 3523
------------------------------------------------------------------------------------------------------------------------------
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TABLE 2

SMOOTHING PARAMETERS CALCULATED BY THE ITERATIVE PLUG-IN METHOD:
THE NONPARAMETRIC VOLATIL ITY FUNCTION

All call option data for each year separately is used in calculating the optimal bandwidth parameters for
each of our three explanatory variables when estimating the nonparametric volatili ty function,
$ ( , , )s x tSP . We follow the univariate iterative procedure suggested by Gasser, Kneip, and Köhler

(1991) in which the optimal bandwidth parameter, hj, (j = x, SP, t) is obtained by minimizing the mean
integrated squared error.

------------------------------------------------------------------------------------------------------------------------------
BANDWIDTH
PARAMETERS                                1996                                 1997                                  1998
------------------------------------------------------------------------------------------------------------------------------
hx (moneyness) 0.0537 0.0614 0.0931 
------------------------------------------------------------------------------------------------------------------------------
hSP (bid-ask spread) 0.0383 0.0434 0.0721
------------------------------------------------------------------------------------------------------------------------------
ht (time to expiration) 0.0397 0.0502 0.0941
------------------------------------------------------------------------------------------------------------------------------



47

TABLE 3

IN-SAMPLE ABSOLUTE AND PERCENTAGE PRICING ERRORS FOR ALTERNATIVE
SEMIPARAMETRIC OPTION PRICING MODELS: THE LIQUIDITY EFFECTS

The nonparametric volatility function is estimated for each quarter from January 2, 1996 to November 10,
1998 using all available call options in each quarter. The corresponding call price is calculated by using
the Black-Scholes pricing function evaluated at the previously (nonparametrically) estimated volatility.
The bandwidths parameters are obtained by the plug-in method. The reported absolute pricing error is the
sample average of the squared difference between the model price and the market price for each call in a
given moneyness category. The reported percentage pricing error is the sample average of the squared
difference between the model price and the market price divided by the market price for each call i n a
given moneyness category. We compare the pricing errors between the semiparametric option pricing
model with liquidity (WL) and the semiparametric option pricing model without liquidity (WOL). For
presentation reasons, the empirical results are aggregated for years. Moneyness is defined as the ratio of
the exercise price to the futures price. OTM, ATM, and ITM are out-of-the-money, at-the-money, and in-
the-money options respectively.
------------------------------------------------------------------------------------------------------------------------------

                            PANEL A: ABSOLUTE PRICING ERRORS FOR CALLS
------------------------------------------------------------------------------------------------------------------------------
                                                  1996                       1997         1998
------------------------------------------------------------------------------------------------------------------------------
                                           WL        WOL                  WL       WOL                     WL       WOL
------------------------------------------------------------------------------------------------------------------------------
DEEP OTM 0.523 1.985 3.909     8.713 24.816   41.548

OTM 1.351     2.671 3.919     9.362 20.026   32.404

ATM 1.138      2.932 5.343     11.866  22.823   38.489

ITM 0.711      2.803 4.065     11.487  22.499   27.186

DEEP ITM 0.444      2.095 4.592     15.810   3.324     6.492

ALL CALLS 1.123      2.724                  4.031     10.096  22.730   37.420
------------------------------------------------------------------------------------------------------------------------------

                              PANEL B: PERCENTAGE PRICING ERRORS FOR CALLS
------------------------------------------------------------------------------------------------------------------------------
                                                  1996                       1997         1998
------------------------------------------------------------------------------------------------------------------------------
                                           WL        WOL                  WL       WOL                     WL       WOL
------------------------------------------------------------------------------------------------------------------------------
DEEP OTM 0.072    0.221 0.083    0.210 2.082    2.312

OTM 0.206    0.393 0.068    0.149 0.148    0.217

ATM 0.026    0.061 0.038    0.087 0.082    0.151

ITM 0.006    0.031 0.019    0.061 0.055    0.070

DEEP ITM 0.002    0.012 0.015    0.038 0.006    0.013

ALL CALLS 0.012    0.247 0.066    0.159 1.333    1.485
------------------------------------------------------------------------------------------------------------------------------
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TABLE 4

IN-SAMPLE STATISTICAL SIGNIFICANCE OF PERFORMANCE FOR ALTERNATIVE
SEMIPARAMETRIC OPTION PRICING MODELS: THE LIQUIDITY EFFECTS

The nonparametric volatili ty function is estimated for each quarter from January 2, 1996 to November 10, 1998 using all available
call options in each quarter. The corresponding call price is calculated by using the Black-Scholes pricing function evaluated at the
previously (nonparametrically) estimated volatility. The bandwidths parameters are obtained by the plug-in method. The statistical
performance for pricing errors is assessed by analyzing the proportion of theoretical prices lying outside their corresponding bid-ask
spread boundaries. The Z-statistic for testing the differences between two proportions is employed. The statistic is asymptotically
distributed as a standarized normal variable. We report the statistical significance of pricing errors between the semiparametric
option pricing model with liquidity (WL) and the semiparametric option pricing model without liquidity (WOL). For presentation
reasons, the empirical results are aggregated for years. Moneyness is defined as the ratio of the exercise price to the futures price.
OTM, ATM, and ITM are out-of-the-money, at-the-money, and in-the-money options respectively.
------------------------------------------------------------------------------------------------------------------------------
                                           1996                                    1997                                  1998
------------------------------------------------------------------------------------------------------------------------------
CATEGORIES     WL       WOL    Z-STAT     WL       WOL    Z-STAT    WL     WOL     Z-STAT
-----------------------------------------------------------------------------------------------------------------------------
OTM CALLS:
Bid > c > Ask 0.110 0.216 -6.89      0.171    0.417   -17.07     0.306    0.430    -7.39

(0.000)   (0.000)    (0.000)

c > Ask 0.064 0.135 -5.56    0.086     0.237    -12.13     0.156    0.232     -5.30
(0.000)   (0.000)     (0.000)

c < Bid 0.046 0.081 -3.42    0.084     0.179    -8.45     0.149    0.197     -3.57
(0.000)                 (0.000)                  (0.000)

------------------------------------------------------------------------------------------------------------------------------
ATM CALLS:
Bid > c > Ask 0.100 0.217 -7.18      0.180    0.357   -7.71     0.245    0.411    -6.03

(0.000)   (0.000)    (0.000)

c > Ask 0.050 0.115 -5.19    0.117     0.221    -5.20     0.141    0.220     -3.38
(0.000)   (0.000)     (0.000)

c < Bid 0.050 0.101 -4.31    0.101     0.224    -4.48     0.103    0.191     -3.98
(0.000)                 (0.000)                  (0.000)

------------------------------------------------------------------------------------------------------------------------------
ITM CALLS:
Bid > c > Ask 0.139 0.213 -3.44      0.137    0.391   -6.10     0.302    0.372    -1.33

(0.000)   (0.000)    (0.091)

c > Ask 0.054 0.114 -2.65    0.036     0.166    -4.11     0.151    0.232     -1.78
(0.004)   (0.000)     (0.037)

c < Bid 0.084 0.129 -1.89    0.101     0.224    -3.46     0.151    0.139     0.311
(0.029)                 (0.000)                  (0.622)

------------------------------------------------------------------------------------------------------------------------------
ALL CALLS:
Bid > c > Ask 0.109 0.220 -10.51      0.170    0.400   -19.56     0.290    0.421    -9.47

(0.000)   (0.000)    (0.000)

c > Ask 0.057 0.124 -8.05    0.090     0.228    -13.70     0.152    0.229     -6.53
(0.000)   (0.000)     (0.000)

c < Bid 0.052 0.095 -5.77    0.080     0.172    -10.15     0.138    0.192     -4.90
(0.000)                 (0.000)                  (0.000)

------------------------------------------------------------------------------------------------------------------------------



49

TABLE 5
THE 10% IN-SAMPLE PRICING ERRORS FOR ALT ERNATIVE SEMIPARAMETRIC

OPTION PRICING MODELS: THE LIQUIDITY EFFECTS
The nonparametric volatili ty function is estimated from January 2, 1996 to November 10. The price of each call is estimated in a

subsample containing 10% of all available calls. They are estimated using the remaining 90% of calls. The corresponding call price

is calculated by using the Black-Scholes pricing function evaluated at the previously (nonparametrically) estimated volatility. The

bandwidths parameters are obtained by the plug-in method. Panel A: The reported absolute pricing error is the sample average of the

squared difference between the model price and the market price for each call in a given moneyness category. Panel B: The reported

percentage pricing error is the sample average of the squared difference between the model price and the market price divided by the

market price for each call in a given moneyness category. Panel C: The statistical performance for pricing errors is assessed by

analyzing the proportion of theoretical prices lying outside their corresponding bid-ask spread boundaries. The Z-statistic for testing

the differences between two proportions is employed. The statistic is asymptotically distributed as a standarized normal variable.

The empirical results are aggregated for years. Moneyness is defined as the ratio of the exercise price to the futures price. OTM,

ATM, and ITM are out-of-the-money, at-the-money, and in-the-money options respectively. We compare the pricing errors between

the semiparametric option pricing model with liquidity (WL) and the semiparametric option pricing model without liquidity (WOL).

------------------------------------------------------------------------------------------------------------------------------
PANEL A: ABSOLUTE PRICING ERRORS FOR CALLS
------------------------------------------------------------------------------------------------------------------------------
                                                  1996                       1997         1998
------------------------------------------------------------------------------------------------------------------------------
                                           WL        WOL                  WL       WOL                     WL       WOL
------------------------------------------------------------------------------------------------------------------------------
DEEP OTM             0.689      2.029     11.880     15.186 39.265    47.205

OTM             2.037      3.221     13.789     18.284 32.575    37.702

ATM             3.268      5.129               13.459     19.394 19.428    33.007

ITM             1.594      2.438       3.082     10.143   5.591    16.596

DEEP ITM              0.016     0.143     15.086     21.028   1.530      3.941

ALL CALLS              2.521     3.997               12.594     17.095 32.144    40.135
------------------------------------------------------------------------------------------------------------------------------
PANEL B: PERCENTAGE PRICING ERRORS FOR CALLS
------------------------------------------------------------------------------------------------------------------------------
                                           WL        WOL                  WL       WOL                     WL       WOL
------------------------------------------------------------------------------------------------------------------------------
DEEP OTM            0.102    0.133        0.233    0.288     1.228    1.568

OTM            0.113    0.149        0.164    0.231     0.303    0.323

ATM            0.068    0.107        0.116    0.149     0.106    0.164

ITM            0.016    0.026                     0.018    0.051     0.018    0.051

DEEP ITM            0.000    0.000        0.037    0.052     0.004    0.010

ALL CALLS            0.088    0.121        0.179    0.231     0.807    1.026
------------------------------------------------------------------------------------------------------------------------------
PANEL C: PERFORMANCE FOR ALTERNATIVE MODELS
------------------------------------------------------------------------------------------------------------------------------
CATEGORIES     WL       WOL    Z-STAT     WL       WOL    Z-STAT    WL     WOL     Z-STAT
------------------------------------------------------------------------------------------------------------------------------
ALL CALLS:
Bid > c > Ask       0.196     0.344     -3.80        0.512     0.668    -4.28         0.438    0.570   -2.93

         (0.000)                       (0.000)   (0.001)

c > Ask               0.108     0.175     -2.16        0.295     0.403    -2.84         0.272   0.338    -1.53
         (0.015)        (0.002)    (0.063)

c < Bid               0.087     0.169     -2.63        0.216     0.265    -1.40          0.165  0.231    -1.72
         (0.004)        (0.080)    (0.043)
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TABLE 6

A COMPARISON OF ALTE RNATIVE SMOOTHING PARAMETERS:
THE NONPARAMETRIC VOLATIL ITY FUNCTION

All call option data for each year separately is used in calculating the optimal bandwidth parameters for
each of our three explanatory variables when estimating the nonparametric volatili ty function,
$ ( , , )s x tSP . We compare the univariate iterative procedure suggested by Gasser, Kneip, and Köhler

(1991) in which the optimal bandwidth parameter is obtained by minimizing the mean integrated squared
error,  the multivariate the Generalized Cross-Validation (GCV) in which the RSS is penalized by:

( )[ ]1 1 1 0 3
2

- n K h h hSP( ) x t , the multivariate Ricé s bandwidth selector (I), with penalty equal to

( )1 1 2 0 3- n K h h hSP( ) x t , and the multivariate Ricé s bandwidth selector (II), in which the RSS

is penalized by ( )-2 02 3$ ( )s n K h h hSPx t  where s2 is the variance of the residuals of the kernel

regression.
------------------------------------------------------------------------------------------------------------------------------
                                                                                                   1996
------------------------------------------------------------------------------------------------------------------------------
BANDWIDTH
PARAMETERS                            PLUG-IN               GCV                  RICE I                 RICE II
------------------------------------------------------------------------------------------------------------------------------
hx (moneyness) 0.0537 0.0537 0.0537 0.0537 

hSP (bid-ask spread) 0.0383 0.0882 0.0882 0.0729

ht (time to expiration) 0.0397 0.0915 0.0915 0.0756
------------------------------------------------------------------------------------------------------------------------------
                                                                                                  1997
------------------------------------------------------------------------------------------------------------------------------
BANDWIDTH
PARAMETERS                            PLUG-IN               GCV                  RICE I                 RICE II
------------------------------------------------------------------------------------------------------------------------------
hx (moneyness) 0.0614 0.0614 0.1166 0.0614 

hSP (bid-ask spread) 0.0434 0.0998 0.0824 0.0998

ht (time to expiration) 0.0502 0.0502 0.0502 0.0502
------------------------------------------------------------------------------------------------------------------------------
                                                                                                   1998
------------------------------------------------------------------------------------------------------------------------------
BANDWIDTH
PARAMETERS                            PLUG-IN               GCV                  RICE I                 RICE II
------------------------------------------------------------------------------------------------------------------------------
hx (moneyness) 0.0931 0.0465 0.0838 0.0465 

hSP (bid-ask spread) 0.0721 0.0721 0.0721 0.0721

ht (time to expiration) 0.0941 0.0941 0.0847 0.0941
------------------------------------------------------------------------------------------------------------------------------
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TABLE 7

THE 10% IN-SAMPLE PRICING PERFORMANCE FOR THE SEMIPARAMETRIC OPTION
PRICING MODEL WITH L IQUIDITY FOR ALTERNATIVE SMOOTHING PARAMETERS:

The nonparametric volatility function is estimated  yearly during the sample period. The price of each call

is estimated in a subsample containing 10% of all available calls. They are estimated using the remaining

90% of calls. The corresponding call price is calculated by using the Black-Scholes pricing function

evaluated at the previously (nonparametrically) estimated volatili ty. We compare the statistical

significance of the in-sample pricing performance when the following smoothing parameter selection

procedures are employed:  the univariate iterative procedure suggested by Gasser, Kneip, and Köhler

(1991) in which the optimal bandwidth parameter is obtained by minimizing the mean integrated squared

error nad  the multivariate the Generalized Cross-Validation (GCV) in which the RSS is penalized by:

( )[ ]1 1 1 0 3
2- n K h h hSP( ) x t . The statistical performance is assessed by analyzing the proportion of

theoretical prices lying outside their corresponding bid-ask spread boundaries. The Z-statistic for testing

the differences between two proportions is employed. The statistic is asymptotically distributed as a

standarized normal variable.

------------------------------------------------------------------------------------------------------------------------------
                                          1996                                      1997                                  1998
------------------------------------------------------------------------------------------------------------------------------
                           Plug-in   GCV    Z-STAT    Plug-in   GCV   Z-STAT   Plug-in   GCV     Z-STAT
-----------------------------------------------------------------------------------------------------------------------------
ALL CALLS:
Bid > c > Ask 0.444 0.549 -2.59      0.697    0.732   -1.03     0.743    0.743     0.00

(0.004)   (0.151)    (0.500)

c > Ask 0.268 0.326 -1.55    0.383     0.413    -0.77     0.493    0.493      0.00
(0.006)   (0.220)     (0.500)

c < Bid 0.176 0.222 -1.36    0.314     0.319    -0.19     0.250    0.250      0.00
(0.086)                 (0.436)                  (0.500)

------------------------------------------------------------------------------------------------------------------------------
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TABLE  8

 A RANDOMIZATION TEST FOR THE STABIL ITY OF DENSITIES OVER TIME

A new test to analyze the stability of the risk-neutral density over different quarters is proposed. We
basically assume that options may be randomly assigned to different quarters. Data are permuted
repeatedly and the test statistic shown below is computed for each of the resulting data permutations.
These data permutations, including the one representing the obtained results, constitute the reference set
for determining the level of significance. The proportion of data permutations in the reference set that
have a value of the test stastistic greater than or equal to the value of the experimentally obtained results
is the p-value. It should be noted that,  in the proposed test, the basis for permuting the data is random
assignment. This is why is known as a randomization test. The null hypothesis is that the risk-neutral
density is the same for each pair of quarters. The test statistic is defined as:

Tobs q
j

Ng= å
=

 f (S ) - f (S ) j q+1
*

j
*

1

where Ng is the number of time points in the previously defined grid where the risk-neutral densities are
estimated, and q refers to quarter.
------------------------------------------------------------------------------------------------------------------------------
QUARTERS               VALUE OF THE TEST STATISTIC             P-VALUE       VALUE AT 10%
------------------------------------------------------------------------------------------------------------------------------
1st 96 = 2nd 96 0.3123 0.790 0.793

2nd 96 = 3rd 96 0.3748 0.730 0.783

3rd 96 = 4th 96 0.2818 0.510 0.496

4th 96 = 1st 97 0.5101 0.130 0.562

1st 97 = 2nd 97 0.2154 0.735 0.452

2nd 97 = 3rd 97 0.2635 0.655 0.516

3rd 97 = 4th 97 0.4031 0.430 0.680

4th 97 = 1st 98 0.1972 0.275 0.250

1st 98 = 2nd 98 0.1413 0.770 0.353

2nd 98 = 3rd 98 0.2388 0.715 0.449
------------------------------------------------------------------------------------------------------------------------------
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TABLE 9
OUT-OF-SAMPLE STATISTICAL SIGNIFICANCE OF PERFORMANCE FOR

ALTERNATIVE SEMIPARAMETRIC OPTION PRICING MODELS: THE LIQUIDITY
EFFECTS

The nonparametric volatili ty function is estimated for each quarter from January 2, 1996 to November 10, 1998 using all available
call options in each quarter. The corresponding call price is calculated by using the Black-Scholes pricing function evaluated at the
previously (nonparametrically) estimated volatility. The bandwidths parameters are obtained by the plug-in method. The statistical
performance for pricing errors is assessed by analyzing the proportion of theoretical prices lying outside their corresponding bid-ask
spread boundaries. The Z-statistic for testing the differences between two proportions in each quarter is employed. The statistic is
asymptotically distributed as a standarized normal variable. We report the statistical significance of pricing errors between the
semiparametric option pricing model with liquidity (WL) and the semiparametric option pricing model without liquidity (WOL),
using data and the estimated nonparametric volatili ty function from one quarter to price options in the following quarter. For
presentation reasons, the empirical results are reported only for the 2nd vs. the 3rd. quarter of each year. Moneyness is defined as the
ratio of the exercise price to the futures price. OTM, ATM, and ITM are out-of-the-money, at-the-money, and in-the-money options
respectively.
------------------------------------------------------------------------------------------------------------------------------
                                    1996 (2nd vs. 3rd)             1997 (2nd vs. 3rd)              1998 (2nd vs. 3rd)
------------------------------------------------------------------------------------------------------------------------------
CATEGORIES     WL       WOL    Z-STAT     WL       WOL    Z-STAT    WL     WOL     Z-STAT
-----------------------------------------------------------------------------------------------------------------------------
OTM CALLS:
Bid > c > Ask 0.670 0.592 2.12      0.789    0.778   0.50     0.915    0.907    0.54

(0.982)   (0.691)    (0.705)

c > Ask 0.111 0.139 -1.07    0.282     0.277    0.23     0.384    0.382     0.10
(0.142)   (0.591)     (0.539)

c < Bid 0.558 0.452 2.85    0.506     0.501    0.21     0.530    0.525     0.21
(0.997)                 (0.583)                  (0.583)

------------------------------------------------------------------------------------------------------------------------------
ATM CALLS:
Bid > c > Ask 0.569 0.512 1.26      0.771    0.638   2.84     0.838    0.838    0.00

(0.896)   (0.997)    (0.500)

c > Ask 0.227 0.138 2.87    0.180     0.085    3.48     0.462    0.451     0.20
(0.997)   (0.999)     (0.582)

c < Bid 0.341 0.373 -0.74    0.590     0.552    0.78     0.376    0.387     -0.21
(0.229)                 (0.782)                  (0.417)

------------------------------------------------------------------------------------------------------------------------------
ITM CALLS:
Bid > c > Ask 0.703 0.741 -0.43      0.400    0.600   -2.23     0.937    0.937    0.00

(0.333)   (0.012)    (0.500)

c > Ask 0.148 0.148 0.00    0.033     0.200    -2.28     0.937    0.937     0.00
(0.500)   (0.011)     (0.500)

c < Bid 0.555 0.592 -0.39    0.366     0.400    -0.37     0.000    0.000     0.00
(0.318)                 (0.355)                  (0.500)

------------------------------------------------------------------------------------------------------------------------------
ALL CALLS:
Bid > c > Ask 0.635 0.574 2.23      0.762    0.737   1.22     0.901    0.894    0.45

(0.987)   (0.888)    (0.673)

c > Ask 0.158 0.139 0.95    0.245     0.231    0.74     0.419    0.415     0.18
(0.828)   (0.770)     (0.571)

c < Bid 0.477 0.434 1.55    0.516     0.506    0.44     0.481    0.479     0.09
(0.939)                 (0.670)                  (0.535)

------------------------------------------------------------------------------------------------------------------------------
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 TABLE 10

OUT-OF-SAMPLE STATISTICAL SIGNIFICANCE OF PERFORMANCE FOR
ALTERNATIVE SEMIPARAMETRIC OPTION PRICING MODELS:

AGGREGATING P-VALUES FOR THE DIFFERENCES IN PROPORTIONS OF
THEORETICAL PRICES LYING OUTSIDE THE BID-ASK BOUNDARIES

The nonparametric volatili ty function is estimated for each quarter from January 2, 1996 to November 10, 1998 using all available
call options in each quarter. The corresponding call price is calculated by using the Black-Scholes pricing function evaluated at the
previously (nonparametrically) estimated volatility. The bandwidths parameters are obtained by the plug-in method. The statistical
performance for pricing errors is assessed by analyzing the proportion of theoretical prices lying outside their corresponding bid-ask
spread boundaries. The Z-statistic for testing the differences between two proportions in each quarter is employed. The statistic is
asymptotically distributed as a standarized normal variable. We report the statistical significance of pricing errors between the
semiparametric option pricing model with liquidity (WL) and the semiparametric option pricing model without liquidity (WOL),
using data and the estimated nonparametric volatili ty function from one quarter to price options in the following quarter.. We add
the Z-statistic corresponding to each quarter every year, the sum is divided by the square root of 4, and the associated p-value to this
aggregate Z-statistic is reported.
------------------------------------------------------------------------------------------------------------------------------
                                           1996                                  1997                                    1998
------------------------------------------------------------------------------------------------------------------------------
                                   AGGREGATE                  AGGREGATE                   AGGREGATE
                            P-VALUE (from quarters)    P-VALUE (from quarters)     P-VALUES (from quarters)
-----------------------------------------------------------------------------------------------------------------------------
ALL CALLS:
Bid > c > Ask 0.994 0.992 0.998

c > Ask 0.963 0.935 0.999

c < Bid 0.976 0.974 0.999
------------------------------------------------------------------------------------------------------------------------------
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Figure 1: Nonparametric Volatility Smiles in 1998:
 Kernel Estimator versus the SNN estimator
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Figure 2: Nonparametric Volatility. Calls and Puts in 1998
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Figure 3:Risk-Neutral Densities for Calls and Puts in 1998: Liquidity Effects
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Figure 4: Risk-Neutral Densities for Calls in 1998
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Figure 5: Risk-Neutral Densities for Puts in 1998
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