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Abstract

Recent empirical analyses on different datasets have revealed a common
exponential behaviour in the shape of the probability density of the corpo-
rate growth rates. We briefly review these analyses and present new evidence
on this topic based on corporate data from Italian Manufacturing Industry.
We then propose a very simple model that, under rather general assump-
tions, provides a robust explanation of the observed regularities. The model
is based on a very simple stochastic process describing the random partition
of a number of “business opportunities” among a population of identical
firms. A theoretical result is presented for the limiting case in which the
number of firms and opportunities go to infinity. Moreover, using simula-
tions, we show that even in a moderately small industry the agreement with
asymptotic results is almost complete.

1 Introduction

One of the most traditional problems in the Industrial Organization literature
concerns the statistical properties of the size of firms and its dynamics. Early
investigations were conducted over datasets at a high level of aggregation, which
included large firms operating in very different sectors and the focus of the analysis
was, in particular, the shape of the distribution of firms size. For instance Hart and
Prais (1956) study the distribution of the whole U.K. manufacturing industry while

∗Comments by Mikhail Anoufriev, Carolina Castaldi and Roberto Gabriele have helped shap-
ing this draft. We also would like to thank Elena Cefis, Roberto Monducci(ISTAT) and the
support of the Italian Ministry of University and Research.
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Simon and Bonini (1958) explore the size distribution of the top manufacturing
firms of the U.S. economy, across all the sectors. It is plausible that considering
such aggregate data is likely (1) to introduce statistical regularities that are only
the result of aggregation (e.g. via Central Limit Theorem) and (2) to conceal the
true characteristics of the dynamics of business firms that are active in specific
sectors. Indeed Hymer and Pashigian (1962), analyze more disaggregated data,
and find a high heterogeneity in firms size distribution across different sectors.
They conclude that it is quite unclear whether any “stylized fact” concerning the
size distribution actually exists.

More recently a new strand of analysis, pioneered by Stanley et al. (1996)
(see also Bottazzi et al. (2001)), focused on the shape of the growth rates distri-
bution and its dependence on company size. In line with these new studies the
present paper analyses the growth rates distribution of business firms in the Italian
manufacturing industry using data disaggregated by sectors in order to avoid the
aforementioned problems. The findings are impressive. While the size distribu-
tion is strongly variable across sectors, the growth rate distribution show basically
identical shape in most sectors.

In the literature one finds few standard stochastic models aimed of explaining
the mentioned industry dynamics. From the seminal work of Gibrat (Gibrat, 1931)
to the more recent contributions of Geroski (2000) and Amaral et al. (2001), all
models share a common feature. They do not assume any interdependence between
the histories of different firms. The dynamics of each firm is a stochastic process,
encompassing growth, diversification, entry and exit, that, nevertheless, does not
keep in consideration the dynamics of the other firms. In this sense, any firm acts
as a monopolist in a sector where the growth dynamics can be represented simply
as an exogenous expansion (or contraction) of the demand. A slightly different
kind of models, originally proposed by Simon (see Ijiri and Simon (1977)) and
later reconsidered by Sutton (1998) make the assumption that there is a finite
set of pre-existing “growth” opportunities (or equivalently, a constant arrival of
new opportunities) and that firms growth process is conditioned by the number of
opportunities they are able to catch. Roughly speaking, one could say that these
models, generically known as “islands models”, try to provide a first account of
the competitive behavior among firms based on the idea that firms need to seize
the most out of a scarce resources.

In the present paper we build a stylized model of firm dynamics where this idea
of “competition” is introduced. The model is, indeed, similar to the previously
cited tradition, at least in its aspiration to meet both the requirements of simplicity
and generality. A stochastic model is used and each firm is considered a different
realization of the same process. Similarly to what happens in the “island” models,
this symmetry is however broken at the aggregate level, in the sense that the firms
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population total growth is bounded by a finite set of sector-specific opportunities.
The novelty of our approach resides in the way in which we describe the random

distribution of opportunities among firms. Indeed the assumption that a random
”assignment” of opportunities across firms can provide a zero-level approximation
of a competitive dynamics, in other terms a ”competition with random outcome”,
solves only part of the problem, and the implied random process of ”assignment”
must be specified. In providing this specification, we depart from the original
”splitting” procedure found in the Simon-inspired literature and we introduce a
different (and, at a first glance, maybe, unusual) statistics to describe the outcome
of the “random competition”. The fundamental justification of choosing a different
description for the “opportunities assignment” relies on the possibility of obtain-
ing much better description of the empirical findings. Rephrasing William Feller
We have here an instructive example of the impossibility of selecting or justifying

probability models by A PRIORI argument (Feller (1968), p.41)
The extreme simplicity of the model assumptions, suggests that this model can

be a good description of many economic sectors.
In Sec. 2 we examine the empirical data. In Sec. 3 we propose a new and alter-

native theory based on a stochastic model of the growth process whose generality
and robustness is provided by the theorem proved in Sec. 4. In Sec. 5 we present
numerical simulations and discuss their agreement with empirical evidence. In
Sec. 6 we draw some conclusions and briefly comment on the needs for further
theoretical research.

2 Empirical evidence

Some years ago in a series of papers based on the COMPUSTAT database Stanley
et al. (1996) and Amaral et al. (1997) analyzed the probability distribution of
the (log) growth rates of many U.S. manufacturing firms. These studies were
performed using observations in the time frame 1974− 93 and on companies with
primary activity 1 belonging to the SIC code range 2000 − 3299. The authors
found that the growth rates followed a tent-shape distribution, and in particular,
they proposed to describe the empirical observations using a Laplace (symmetric
exponential) functional form

fL(x; µ, a) =
1

2a
e−

|x−µ|
a (1)

More recently Bottazzi et al. (2001), using the PHID database, found the same ex-
ponential behavior of the growth rate distribution analyzing the largest worldwide
companies in the pharmaceutical industry.

1The different lines of business inside the same multi-activity firm were completely aggregated.
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Figure 1: Binned empirical densities of
the growth rates for the three sectors of
textiles (181 firms), treatment of met-
als and metal coating (182 firms) and
special purpose (metallurgy, mining,
chemistry . . . ) machines (424 firms).
The distribution pooled over all the
years is reported.
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Figure 2: Binned empirical densities
of the growth rates for the three sec-
tors of shoes (245 firms), not publish-
ing printery (199 firms) and furniture
(444 firms). The distribution pooled
over all the years is reported.

In the present section we extend these analysis in two directions. First, a new
dataset is studied that includes many sectors of the Italian manufacturing industry.
Second, by considering firms disaggregated by sectors, we are able to check to what
extent the mentioned findings were a mere effect of aggregation.

The analysis presented here draws upon the MICRO.1 databank developed
by the Italian Statistical Office (ISTAT)2. MICRO.1 contains longitudinal data
on a panel of several thousands of Italian manufacturing firms, with 20 or more
employees, over a decade. For statistical reliability we restrict our analysis to
the period 1989 − 96 and to the sectors with more than 44 firms. Under these
constraints, the number of 3 digit sectors under study is reduced from 97 to 55.

It should be stressed that we do not present here a detailed statistical descrip-
tion of the business companies and their dynamics. For the purpose of the present
paper we are only interested in the analysis of probability distribution of compa-
nies growth rates3. According to what done in Bottazzi et al. (2001) we use sales
as a definition of the size of the firm.

Let Si,j(t) represents the sales of the i-th firm in the j-th sector at time t.
In order to eliminate possible trends, both sector specific and industry-wide, we

2The database has been made available to our team under the mandatory condition of cen-
sorship of any individual information.

3For an in depth analysis of some sectors and a more extensive description of the database
see Bottazzi et al. (2002).
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Figure 4: The binned empirical density
of the b parameter values estimated us-
ing maximum likelihood over the dif-
ferent sectors. A Monte Carlo com-
putation of the theoretical distribu-
tion under the hypothesis of Laplace-
distributed growth rates is also shown.

consider the normalized (log) sales

si,j(t) = log(Si,j(t))− < log(Si,j(t)) >i (2)

where < . >i stands for the average over all the firms of the j-th sector. The
variable under study becomes:

ri,j(t) = si,j(t + 1) − si,j(t) (3)

Fig. 1 and Fig. 2 show the growth rates density for 6 different 3 digit sectors
chosen because both numerous and rather disparate. The activity indeed ranges
from shoes making to the treatment of metals for industrial purposes. All the 7
years of data are pooled together since the differences across time in the distri-
bution shape are negligible for any sector. As can be seen, the Laplace fit well
describes the observations.

To give a synthetic account of the robustness and generality of this result
(without showing 55 plots) we consider a family of distributions, introduced in
Bottazzi et al. (2002), that includes the Laplace as a particular case. We fit it over
the different sectors and we obtain a measure of the deviation from the exponential
behavior.

The Subbotin family (Subbotin, 1923) is defined by 3 parameters: a positioning
parameter µ, a scale parameter a and a shape parameter b. Its functional form
reads

f(x) =
1

2ab1/bΓ(1/b + 1)
e−

1

b |x−µ

a |b (4)
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where Γ(x) is the Gamma function. The lower is the shape parameter b, the fatter
are the distribution tails. For b < 2 the distribution is leptokurtic and is platikurtic
for b > 2. When b = 2 this distribution reduces to a Gaussian and for b = 1 to a
Laplace.

In Fig. 3 we report the distribution function of the b’s parameter estimated
using maximum likelihood over the 55 sectors. Notice that almost 80% of the
b values range between .85 and 1.2, suggesting that (1) provides a very good
approximation of the empirical densities.

At this stage, it is important to verify if the observed departures of the b pa-
rameter from the Laplace value of 1 shown in Fig. 3 can be explained by statistical
error only, i.e. if this model can be assumed not only as a proxy but as a complete
statistical description of the data. The answer is partially negative. This can be
straightforwardly checked using Monte Carlo techniques. Suppose that the 55 sec-
tors are distinct and independent realizations of the same Laplace model but with
different values of a and different numbers of firms. Knowing these parameters4

it is possible to compute, using repeated simulations, the probability to obtain
a given value of b via maximum likelihood procedure. In Fig. 4 the binned em-
pirical density of the b values, together with the Monte Carlo theoretical density
are shown. The agreement is not perfect, suggesting that the observed deviations
from the Laplace model cannot be fully explained by statistical errors. Neverthe-
less this can be considered a rather robust ”stylized fact” that deserves economic
explanation.

3 A model of firms growth dynamics

In this Section we propose a simple model for the growth dynamics of business
firms that explains the tent-shape distribution of the rates of growth discussed
above. We do not claim that it can constitute a perfect description of the economic
dynamics of any company, rather, it is intended to be a stylized “metaphor” of
the growth dynamics observed in reality. We think that, due to the looseness and
plausibility of assumptions, it can provide, at least, a “first order” approximation
of the real dynamics in many different sectors.

The model is based on a simple stochastic process describing the random par-
tition of a number of “business opportunities” among a population of identical
firms. We use here the generic term “opportunity” to refer to all the variegated
“accidents” that can plausibly affect the history of a business firm, encompassing,
among others, the exploitation of technological novelties, the reaction to demand
shocks and the effects of managerial reorganizations.

4We use the simple relation between the standard deviation of the distribution σ and the
parameter a, namely σ =

√
2 a, to obtain an estimation for its value.
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We consider a population of N firms and suppose that at each time step, M
opportunities appear that can be exploited by firms to increase their business.
The specification of the model has two main elements. The way opportunities are
captured by firms, and the way these affect the business of the firms.

Opportunities assignment

In order to describe how opportunities are distributed over the population of firms,
we assume a random “assignment” process that can be called “random partition”5.
Consider a starting sequence of N + M − 1 symbols, the first N − 1 being fences
# and the other M zeros 0. Now take a random permutation of this sequence and
assign to the first firm a number of opportunities that is equal to the number of
0 preceding the first #, to the second firm a number that is equal to the number
of 0 between the first and the second # and so on. For example, suppose to have
3 firms and 4 opportunities, so that the starting sequence is (##0000). Now if
the random permutation of its terms leads to the sequence (0#000#), the result
would be an assignment of 1 opportunity to firm 1, three opportunities to firm 2
and no opportunities to the last firm.

From the previous description it is immediate to see that the total number of
distinct partitions A(N, M) is the number of possible permutations of N + M − 1
elements over the number of possible permutations of the N − 1 fences and the M
zeros

A(N, M) =

(

N + M − 1

N − 1

)

(5)

and the probability that a given firm gets exactly h opportunities becomes

P (h; N, M) =

(

N+M−h−2
N−2

)

(

N+M−1
N−1

) (6)

which corresponds to the Bose-Einstein distribution. The outcome of the previous
procedure can be completely described by the occupancy N -tuple (m1(t), m2(t), . . . , mN (t))
where mi(t) is the number of opportunities assigned to firm i and

∑

i mi(t) = M .
In order to clarify the nature of the previous process and to better understand

where this description departs from the traditional approach let us briefly describe
in the same framework the random “assignment” process that is typically, and
mainly implicitly, assumed in the literature (Ijiri and Simon, 1977; Sutton, 1998;
Amaral et al., 2001). Consider now a starting sequence of only N − 1 fences #
and think about the space between two adjacent fences as representing one single
firm.

5The process described here is essentially the Bose-Einstein statistics used in physics to de-
scribe the behavior of a large family of subnuclear particles.
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Consider the first opportunity and assign it to a randomly chosen firm, each
firm having the same probability 1/N to be selected. This assignment can be
represented placing a 0 between the fences corresponding to this firm. Repeating
this procedure M times one finally obtains, analogously to the previous case, a
sequence of N +M−1 elements which again corresponds to an occupancy N -tuple.

In this case, since the assignment of each opportunity to a given firm is an
independent event with constant probability 1/N the resulting distribution for the
number of shocks takes the well known binomial form

B(h; N, M) =

(

M

h

) (

1

N

)h (

1 − 1

N

)M−h

(7)

An example can probably clarify the differences between the two assignment
procedures described above better than many equations. Consider the case of 2
opportunities and 2 firms. According to the first mechanism the possible assign-
ments are provided by the random permutations of the sequence #00, i.e. by the
3 sequences #00, 0#0 and 00#. Then, the probability of a given firm to obtain
0,1 or 2 opportunities is the same and equal to 1/3. On the contrary, according
to the latter mechanism the possible assignments are obtained as follows: starting
from the string # one begins by randomly placing the first opportunity and ob-
tains, with equal probability, the sequence 0# or #0. Then one proceeds to the
assignment of the second opportunity, randomly placing another 0 to the left or
to the right of the #. This leads with equal probability to one of the 4 sequences
00#,0#0,#00 and 0#0. Then, the probability of a given firm to obtain 0,1 and 2
opportunities are respectively 1/4,1/2 and 1/4.

It is now clear how, starting with two equally plausible interpretation of a ran-
dom “ assignment”, we end up with two completely different occupancy statistics
as shown in Fig. 5.

Opportunities exploitation

Using the random assignment described above one obtains a partition of opportu-
nities among firms summarized by the occupancy vector (m1(t), m2(t), . . . , mN(t))
where

∑

i mi(t) = M and mi(t) represents the number of opportunities assigned
to firm i. These “business opportunities” can be thought of as the source of micro-
shocks affecting the size of firms. This is a rather common prescription for this
kind of model, and dates back to the early works of Simon (see e.g. Ijiri and
Simon (1977)). We make no assumptions on the actual nature of these shocks
and we want to relate “opportunities” to “growth” in the simplest way. Hence,
we assume that these micro-shocks are randomly and independently drawn from a
distribution with zero mean and fixed variance v0. Then the total growth of firm i
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Figure 5: The comparison of a binomial (7) and a Bose-Einstein (6) distribution
with N = 100 firms and an average number of shocks per firm M/N = 100.

is obtained adding mi(t) independent micro-shocks and if si(t) stands for the (log)
size of firm i at time t, its growth equation reads

si(t + 1) = si(t) + ri(t) (8)

ri(t) =

mi(t)
∑

j=1

εj(t)

where ε are i.i.d. with a common distribution f(ε; v0) with variance v0. The
random growth rates ri are then identically6 distributed across firms and their
unconditional probability density reads

p(x; N, M, v0) =
M

∑

h=0

P (h; N, M) f(x; v0)
?h (9)

where f(x; v0)
?h stands for the h-time convolution of the micro-shocks density

(i.e. the distribution of the sum of h micro shocks). The average number of
opportunities per firm is M/N and the distribution of growth rates r has mean 0
and variance v = v0M/N .

At this point it is useful to clarify a few points about the above assumptions.
First, concerning the 0 mean hypothesis, notice that the choice of a distribution
with a non-zero mean m0 would simply introduce an industry-wide growth trend

6But not independently, due to the global constraint
∑

i
mi = M
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proportional to Mm0 which is irrelevant if one is interested in the distribution of
growth rates7. Second, both the hypotheses of no correlation among micro-shocks
and of constant variance in their distribution are working hypotheses introduced
to keep the discussion clearer and can be relaxed8. Finally, the choice of the shape
for the micro-shocks distribution is, as we show in the next Section, completely
irrelevant in all the case of interest.

4 The “large industry” limit

In this Section we present analytical results, concerning the growth rates distri-
bution, in the case in which the total number of firms is large and their growth is
generated by the assignment of a large number of small shocks. More precisely, we
study the model in the limit M, N → ∞ and v0 → 0. In order to obtain non-trivial
results, however, the variance of growth rates must remain finite, and one has to
impose the condition that the previous limits are performed in such a way as to
keep v = v0M/N invariant so that when M and N change the micro-shocks distri-
bution must be rescaled proportionally to N/M . We ensure that micro-shocks can
be easily rescaled by using a random variable x drawn from a probability density
g(x) with zero mean and unit variance and by taking the micro-shocks in (8) to
be ε =

√
v0 x. The density that appears in (9) then reads

f(x; v0) =
1√
v0

g(
x√
v0

) . (10)

This device ensures that the shape of the micro-shocks distribution is preserved
when their scale changes.

Lemma

The limit of the Bose-Einstein distribution defined in (6) when M, N → ∞
with constant λ = M/N is a Geometric distribution with mean λ.

Proof

Consider the generic term in (6), expanding the binomial coefficient one obtains

P (h; N, M) =
(N + M − h − 2)!

(N − 2)! (M − h)!

(N − 1)! M !

(N + M − 1)!
(11)

that after the expansion of the factorial terms and some easy simplifications reduces
to

P (h; N, M) =
(N − 1) M (M − 1) . . . (M − h + 1)

(N + M − 1) (N + M − 2) . . . (N + M − h − 1)
(12)

7Notice that in all the empirical studies cited in Section 2 the actual variable under study is
the “normalized” growth rate, i.e. the growth rate of market shares.

8For instance introducing a mild correlation among micro-shocks or introducing a random
variance extracted from a given distribution.
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Dividing both numerator and denominator by Nh+1 the expression can be rewritten
as

P (h; N, M) =
N − 1

N

M
N

(

M
N

− 1
N

)

. . .
(

M
N

− h−1
N

)

(

1 + M
N

− 1
N

) (

1 + M
N

− 2
N

)

. . .
(

1 + M
N

− h+1
N

) . (13)

Substituting M/N = λ and taking the limit for N → ∞, the previous equation
reduces to the h-th term of a geometric distribution

ph(λ) =
λh

(1 + λ)h+1
(14)

Q.E.D.

From the assumptions of the lemma, the limit for N, M → ∞ is obtained
with constant total variance v. Recalling the previous definitions, if we now set
v0 = v/λ where λ = M/N and use (10), we obtain the growth rates distribution
(see (9))

p(x; λ, v, N) =

λN
∑

h=0

P (h; N, λN) (

√

λ

v
g(

√

λ

v
x))?h (15)

whose behavior in the “large industry limit” is provided by the following theorem.

Theorem

Suppose that the density g in (10) possesses all the central moments. Then the
summation in (15) converges in the limit for N, λ → ∞ to a Laplace distribution
with parameter

√

v/2, i.e.

lim
λ,N→∞

p(x; λ, v, N) = fL(x;
√

v/2) =
1√
2v

e−
√

2/v |x| (16)

Proof

Let us start by considering the characteristic function of the growth rates dis-
tribution

p̃(k; λ, v, N) =

∫ +∞

−∞

dx ei k x p(x; λ, N) (17)

The series in (15) is absolutely convergent and one can pass the Fourier integral
inside the series to obtain

p̃(k; λ, v, N) =

λN
∑

h=0

P (h; N, λ, v, N) g̃(

√

v

λ
k)h (18)

11



where g̃ is the characteristic function of the micro-shocks distribution and we used
the fact that the characteristic function of the h-convolution of density g is h times
its characteristic function.

For any value of λ > 0 one can evaluate the limit for N → ∞ and use the
previous Lemma to obtain:

lim
N→∞

p̃(k; λ, v, N) = p̃(k; λ, v) =
1

1 + λ

∞
∑

h=0

(

λ

1 + λ

)h

g̃(

√

v

λ
k)h. (19)

Since g̃ is a characteristic function it is |g(x)| ≤ 1, ∀x ( Lemma 1, p.499, Feller
(1971)), so that the geometric series in (19) can be resummed to give:

p̃(k; λ, v) =
1

1 + λ − λ g̃(
√

v
λ

k)
. (20)

If mh stands for the h-th moment of the g distribution, using (10) and the
hypothesis that mh exist ∀h, the infinite series expansion for the rescaled micro-
shock distribution reads

g̃(

√

v

λ
k) = 1 − 1

2

v

λ
k2 +

+∞
∑

h=3

1

h!
mh

(v

λ

)
h
2

(i k)h (21)

under the assumption that m2 = 1. Substituting this expansion in (20) and keeping
only the leading term in 1/λ we obtain:

p̃(k; λ, v) =
1

1 + v
2
k2 + o(1/λ)

λ→+∞−→ 1

1 + v
2
k2

(22)

Since the limit function in (22) is continuous at the origin we can conclude
that the original series in (15) converge to a proper density function (Theorem 2,
p. 508, Feller (1971))9.

Finally, substituting the definition of the Laplace density (1) in (17) and per-
forming the integral it is easy to check that the last expression is the characteristic
function of a Laplace distribution with parameter a =

√

v/2.
Q.E.D.

5 Simulations

The above theorem ensures that, when the number of firms and opportunities goes
to infinity, the growth rates distribution generated by the model converges to the

9The requirement of continuity in 0 is needed in order to assure that the limit density function
is not defective.
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Figure 6: The absolute deviation D as
a function of the average number of
micro-shocks per firm M/N for differ-
ent values of N . Micro-shocks are nor-
mally distributed.
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Figure 7: The absolute deviation D as
a function of the average number of
micro-shocks per firm M/N for differ-
ent values of N . The micro-shocks dis-
tribution is a Gamma with shape pa-
rameter 1.

Laplace. If the parameters values estimated from the data were sufficiently near
to the asymptotic region considered in the theorem, the model would reproduce,
with a sufficiently high “degree of precision”, our empirical observations.

The aim of the present Section is to provide an estimate of the fitness of our
model to the empirical findings of Sec. 2. We want to verify that, setting the
model parameters to the “typical” values suggested by real data, one is able to
obtain, via simulations, the same kind of exponential behavior for the growth rates
distribution found in empirical investigations.

First of all, we consider the probability distribution of our model Fmodel(x; N, M),
derived from the density defined in (9) and with micro shocks as defined in (10).
We compare it with the Laplace FL(x) using different values of the parameters
defining the model, namely the total number of firms composing the sector N ,
the total number of opportunities M , and the shape of their distribution g. Since
the variance of the growth rates can be perfectly reproduced with a tuning of the
micro-shocks variance, we consider unit variance distributions and set v0 = N/M .

We use the maximum absolute deviation as a measure of this agreement:

D(N, λ) = max−∞<x<+∞ |Fmodel(x; N, N λ) − FL(x)| (23)

where λ = M/N is the average number of opportunities per firm. The values of
D for different values of N and λ are plotted in Fig. 6 and Fig. 7 for, respectively,
Gaussian and Gamma distributed micro-shocks. For a fixed value of N , as λ
increases, the value of D decreases and eventually reaches a constant asymptotic
value. This constant regime, for the lower values of N , can be clearly seen in Fig. 6.
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Figure 8: N? as a function of λ = M/N
for Normal and Gamma distributed
micro-shocks. The straight lines are
obtained using (24) to approximate the
value of D.
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Figure 9: The model growth rates
probability density with N = 100, λ =
M/N = 16 and micro-shocks normally
distributed. The statistics is collected
over 7 independent realizations to pro-
vide direct comparability to the em-
pirical plots in Sec. 2. The theoreti-
cal Laplace density with unit variance
(a = 1/

√
2) is also shown.

When N is large, the curves for different values of N collapse and D becomes a
function of λ only. This can be directly checked observing that the curves for the
largest values of N are basically superimposed in both Fig. 6 and Fig. 7. The
variation of D as a function of λ, until the constant regime sets in, is perfectly
fitted by a power-like behavior

log(D(N � 1, λ)) ∼ a log(λ) + b (24)

The fitted parameters on a population of N = 500 firms are a = −0.970±5.210−3,
b = −0.84± 2.210−2 for the Gaussian case and a = −0.560± 2.610−3, b = −1.04±
1.110−2 for the Gamma. The remarkable increase in the value of D for the latter
is due to the large skewness of the distribution.

Using the absolute deviation D one is able to measure the agreement be-
tween the model and the Laplace distribution as a function of the parameters
values. More precisely, one can compare the value of D obtained in (23) with the
Kolmogorov-Smirnov statistics, i.e. the maximum absolution deviation D?(N)
between the empirical distributions of two finite samples of size N composed by
independent random variables extracted from a Laplacian. With this comparison
we are able to assess in what region of the parameters space the two distributions,
FL and Fmodel , provide analogous results (with respect to a Kolmogorov-Smirnov
test performed over a sample of a given size).
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In particular, we can compute the number of observation10 N?(D, r) needed to
reject, with a given significance r, the null hypothesis of Laplacian distribution if
a maximum absolute deviation D is observed. If one chooses for r the standard
value of .05 the behavior of N ?(D(N >> 1, λ), .05) as a function of λ is reported
in Fig. 8 for the same micro-shocks distributions, Normal and Gamma, used in
Fig. 6 and Fig. 7. Even for relatively small values of λ ∼ 20, the discrepancies
between our model and the Laplace distribution can only be statistically revealed
using rather large samples, with more than 500 observations.

We now turn to study the fitness of our model with the empirical findings
presented in Sec. 2. Notice that the exact tuning of all the parameters of the model
is not feasible. While the number N of firms in the different sectors is known, and
the final variance v can be obtained from the relevant samples, nothing can be said
about the number of opportunities M and the shape of the related shocks g, whose
nature was left largely unspecified in the definition of the model. Nevertheless,
since the number of firms per sector is high (on average N = 130), one can use the
N large limit in (24) for an estimate of the discrepancy to obtain a lower bound
on the value of λ for different micro-shock densities g. From Fig. 7 it appears that
even with skewed shapes a number of opportunities per firm ≥ 20 is enough to
obtain a rather good agreement: indeed the typical number of observations for a
sector ∼ 1000 lies near or above the considered N ?.

Finally, we check the fitness in a specific case. We run simulations of the model
with N = 100 and λ = 16. Results reported in Fig. 9 show that the agreement is
good even if the value of λ is low.

We can conclude that the model presented in Section 3 does generate, for a wide
range of parameters values, growth rates distributions that are almost identical to
the Laplace, hence providing a complete explanation of this “stylized fact”.

6 Final Notes and Outlook

In the present paper we add crucial evidence in support of the tent-shape of the
firm growth rates distribution, extending previous findings with respect to two di-
rections. First we replicate the analysis already performed by Stanley et al. (1996)
and Bottazzi et al. (2001) respectively on COMPUSTAT and PHID databases,
on a new databank (MICRO.1) covering many firms in the Italian manufacturing
industry. Second, using data disaggregated by sector, we prove that the shape

10This number can be written

N?(D, r) =
1

2

(

Q−1

ks
(r)/d − .12 +

√

(Q−1

ks
(r)/d − .12)2 − .44

)2

where Qks is the distribution of the Kolmogorov-Smirnov statistics (see e.g. Press et al. (1993)).

15



of these distributions is not a mere effect of aggregation. Although intersectoral
differences clearly arise, we conclude, in line with previous studies, that the tent-
shape distribution of corporate growth rates appears as an extremely robust feature
of the manufacturing industry, characterized by a higher regularity than the one
shown by size distributions.

A possible explanation of this impressive evidence can be found in the same
nature of the “stochastic description” of firms dynamics. Suppose indeed that
the growth dynamics of business firms can be well described, in general, by a
stochastic model, apart from very rare events, ranging from earthquakes to the
discovery of balance sheet accounting frauds, that have nothing to do with the
“generic” economic behavior. If these events are, as it is the case, rare and of large
magnitude, they can in fact permanently modify the shape of the size distribution.
On the other hand, their impact on the growth rate distribution remain small and
proportional to their sheer number.

Notice however that, contrary to what reported in Stanley et al. (1996) and
Amaral et al. (1997), preliminary studies on MICRO.1 seem to suggest that using
different definitions of firm size, like, for instance, number of employees or value
added, would introduce relevant differences in the shape of the distributions.

We also present a model of the growth dynamics of firms. The model clearly
originates in the Simon inspired literature on firm dynamics with which it shares
two central features. First, different firms are viewed as different realizations of
the same stochastic process. Second, the model includes a very simple idea of
competition among firms that try to seize the most out of a scarce resource.

The essential novelty lies in the use of a ”non trivial” assignment of business
opportunities to firms described by the Bose-Einstein statistics. This statistics in-
troduces a sort of ”attracting force” between the various opportunities that tends
to group them in bigger chunks leading to the appearance of two noticeable proper-
ties: the presence of a fat tail, which indicates a more likely presence of extremely
large number of ”opportunities” assigned to a single firm and the absence of a
natural ”scale” in the number of opportunities, hinted by the 0 value of the dis-
tribution mode.

The ability of the model to reproduce empirical findings without requiring a
fine tuning of the parameters is ensured by the Theorem in Sec. 4 and constitutes
its main strength.

The analysis presented in this paper can be extended following different lines of
investigation. Concerning the empirical evidence, both the intersectoral diversity
and the sensitivity to the definition of size suggest the need for further investigation
aimed to disentangle presumably different degrees of ”lumpiness” in the dynamics
of different variable . On the other hand, the proposed model can be possibly
extended to include these sources of “heterogeneity” and specific tests, having
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more discriminatory power, can be developed to better decide its agreement with
the actual shapes of the observed data.
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