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Abstract

This paper is devoted to the study of how to extend a dichotomous
partition of a universal set X into good and bad objects to an ordering
on the power set of X. We introduce a family of rules that naturally
take into account the number of good objects and the number of bad
objects, and provide axiomatic characterizations of two rules for rank-
ing sets in such a context.
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1 Introduction

In this paper we study the question of how a decision maker ranks sets of

objects (individuals, goods, etc.) in contexts where the a priori information

�R. Arlegi acknowledges �nancial support by the Spanish Ministry of Science and Tech-
nology (Project SEJ2006-11510 and Juan de la Cierva program) and by Junta de Castilla
y León (Project VA040A05).
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he has about them is dichotomous in the sense that: (i) the decision maker

partitions the set of all objects into �good� and �bad� items, and (ii) the

said partition is the only information he uses in order to evaluate sets. In

other words, degrees of goodness or badness are ignored and thus, only two

indi¤erence classes are considered. Situations where such a ranking can be of

use include matching, the choice of assemblies, the election of new committee

members, group identi�cation and coalition formation, among others.

Barberà et al. (2001), Dimitrov et al. (2007), Kasher and Rubinstein

(1997), or Samet and Schmeidler (2003), for instance, study society forma-

tion problems in which the distinction is between candidates who qualify for

membership on the basis of the opinion of some founder or member of the

society, and those who do not merit such a quali�cation. Dichotomy in this

context would be especially meaningful if quali�cation for membership were

based on a certain religious principle or political ideology. It would also be

natural if societal decisions were settled by vote and the voters had only

to decide for or against, as in Barberà et al. (2001). In other cases, the

members of the society have to decide who is entitled to perform a certain

activity within the group, such as driving a car or teaching at the university.

Analogously, we might consider college admission problems, where the good

(bad) objects might be all those students that do (do not) ful�l a certain

academic requirement.

The objects over which the dichotomous partition is made need not nec-

essarily be people, however. A certain religious doctrine might also serve as

the criterion by which to partition a set of norms into good and bad. Sim-

ilarly, one might consider the mix of day/night shifts allocated to a worker

over a certain period of time, or whether the answers of a participant in

a test or TV quiz are right or wrong. Finally, Bogomolnaia et al. (2005)
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propose di¤erent examples to analyze allocation mechanisms for problems in

which agents partition potential lottery outcomes dichotomously into good

outcomes and bad ones.

At this point it is important, in any case, to notice that the speci�cation

of good and bad objects in most of these contexts implies homogeneity and

full substitutability of the objects within a particular group.

Given such a dichotomous setting (in which each object is either good or

bad), the speci�c question we ask is the following: how can one meaningfully

extend this rudimentary information about preferences over single objects to

an ordering on their power set? We answer this question by introducing three

core axioms that naturally de�ne a family of rules for ranking sets in this

context and by presenting axiomatic characterizations of two di¤erent rules

that belong to the de�ned family. Each of these rules takes into account the

number of good objects and the number of bad objects in the corresponding

sets under comparison; they di¤er in the way in which these two numbers

are combined.

Moreover, each rule induces a unique separable preference relation over

the set of all groups of objects. That is, given an arbitrary set of objects, the

addition of a good object to this set always results in a higher ranked set,

while the addition of a bad object results in a lower ranked set. Clearly then,

the set of all good objects and the set of all bad objects, respectively, con-

stitute the top and the bottom of the induced preference relations. Bearing

this in mind, our results can be interpreted as an axiomatic characterization

of two subclasses of the class of separable preferences, the latter being com-

monly used as a primitive in the analysis of voting situations (cf. Barberà

et al. (1991), Berga et al. (2004), Ju (2003, 2005)) and coalition formation

games (cf. Burani and Zwicker (2003), Dimitrov et al. (2006)).
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On the other hand, the results can be also seen as a contribution to the

problem of ranking sets of objects in the context of choice under complete

uncertainty1 for the special case in which outcomes are compared dichoto-

mously as in Bogomolnaia et al. (2005).

2 Basic setup

We denote by X the nonempty �nite set of objects. These objects may be

candidates considered for membership in a club, for example, or possible

coalition partners, bills under legislative consideration, etc. We assume that

each object is either good or bad, and that there is at least one good object

and at least one bad object (cf. Fishburn (1992)). We denote by G the set

of all good objects in X; the set of all bad objects is X nG.
The set of all subsets of X, including the empty set, will be denoted by

X . The elements of X are the (alternative) groups of objects an agent may

be confronted with. The question now arises of how this agent ranks sets

consisting of good and bad elements based on his partition (G;X nG) of
X. Consequently, the problem to be analyzed is how to establish a re�exive,

transitive and complete binary relation % on X . For all C;D 2 X , C % D
is to be interpreted as �C is at least as good as D�. The asymmetric and

symmetric factors of % will be denoted by � (�is better than�) and � (�is

as good as�), respectively. Finally, we denote by P the set of all re�exive,

transitive and complete binary relations on X .
1 In the problems of choice under complete uncertainty, or ignorance, the probabilities

of the outcomes generated by each action are not taken into account. Therefore, each

individual decision is simply described by the set of outcomes it generates (see Barberà et

al. (2004) for motivation and a survey of this approach).
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3 A family of rules

We start our analysis by introducing the following axioms:

Local monotonicity towards good elements (LM): There exists A 2 X n fXg
such that A [ fxg � A for some x 2 G n A.

Local aversion towards bad elements (LA): There exists A 2 X n fXg such
that A [ fxg � A for some x 2 X n (A [G).

Independence (IND): For all A;B 2 X , and all x 2 X n A, y 2 X n B with

x 2 G, y 2 G, A % B , A [ fxg % B [ fyg.

Axiom LM states that we can always �nd some set, A, that can be im-

proved by adding some good new element to it. This is a rather weak require-

ment if one assumes that good objects are valuable to the decision maker.

Especially, the axiom becomes very plausible if one thinks of A as the empty

set and x as any good element.

The second axiom, LA, expresses the idea that there is some situation

in which the decision maker fears the addition of more bad elements. In

particular, AV says that there exist some set, A, and some bad element not

belonging to A, such that the former is worsened by the addition of the latter.

Finally, IND illustrates the e¤ect of adding (or dropping) two elements

that are �of the same type� in the sense that they are either both good or

both bad. The axiom, which says that the original ranking between any two

sets of objects is preserved under such a modi�cation, is an adaptation to

our context of other similar axioms often found in the literature on ranking

sets (cf. Kannai and Peleg (1984) or Pattanaik and Xu (1990) among many

others).

In fact, IND captures a double assumption: on the one hand it clearly

proposes some idea of separability. On the other hand, given that it applies to
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every pair of elements, x and y, belonging to the same category, it illustrates,

albeit less explicitly, our second main assumption about the preferences over

objects; namely, that no degrees of goodness or badness are considered.2

As it turns out, these three axioms generate a family of rules that are

based on two numbers only - the number of good elements and the number

of bad elements, where the former are positively weighted and the latter are

negatively weighted.

Theorem 1 Let %2 P satisfy IND, LM, and LA. Then, for all A;B 2 X ,
(1) (jA \Gj > jB \Gj and jA nGj < jB nGj) implies A � B,
(2) (jA \Gj � jB \Gj and jA nGj � jB nGj) implies A % B.

The proof is presented in the appendix.

4 Characterization results

We now present axiomatic characterizations of two rules that belong to the

above described family of rules.

The �rst rule turns out to result from the interplay of the core axioms in-

troduced in the previous section and a robustness axiom that we are about to

introduce. The idea behind this axiom works as follows. Imagine a situation

in which a set of elements, A, consists only of a proper subset of bad elements

from another set, B, which, as well as the bad elements, might also contain

good ones. Imagine also that the decision maker, nevertheless, declares a

strict preference for A over B. We interpret this premise as revealing that

2 The double dimension of IND might be made more explicit by splitting it into two

di¤erent conditions: (1) For all x 2 X nA, y 2 X nB with x 2 G, y 2 G, fxg � fyg; (2)

For all A;B 2 X , and all x 2 XnA, y 2 XnB with fxg � fyg, A % B , A[fxg % B[fyg.

6



the decision maker is insensitive to the presence of good elements in B, and

that what prevails is the fact that A contains fewer bad elements. In such a

situation, therefore, we require that the decision-maker remains insensitive

when a new element is added to the set B in the sense that the corresponding

strict preference is preserved.

Robustness (ROB): For all A;B 2 X with A � (B nG) and for all x 2 X,
A � B ) A � B [ fxg.

As shown in our next theorem, the addition of ROB to IND, LM, and

LA results in the characterization of the bad-elements-priority rule %bp2 P,
which was �rst de�ned in Dimitrov at al. (2003)3:

For all A;B 2 X ,

A %bp B i¤

8>><>>:
jA nGj < jB nGj ,
or

jA nGj = jB nGj and jA \Gj � jB \Gj :

Theorem 2 Let %2 P. Then % satis�es IND, LM, LA, and ROB if and

only if %=%bp.

The proof is presented in the appendix.

In order to demonstrate the independence of the axioms used for the

characterization of %bp, consider the following examples:

:(IND): Let jXj � 3. For all A;B 2 X , let % be de�ned as follows: (1) if

jAj � 3 and jBj � 3, then A � B, (2) if jAj < 3 and jBj � 3, then A � B,
(3) if jAj < 3 and jBj < 3, then %=%bp.

:(LM): For all A;B 2 X , A % B i¤ jA nGj � jB nGj.
3 The cited paper does not contain a suitable axiomatic characterization of the pro-

posed rule.
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:(LA): For all A;B 2 X , A % B i¤ (1) jA nGj > jB nGj, or (2) jA nGj =
jB nGj and jA \Gj � jB \Gj.

:(ROB): For all A;B 2 X , A % B i¤ (1) jA \Gj > jB \Gj, or (2) jA \Gj =
jB \Gj and jA nGj � jB nGj.

The second rule from the family of rules described in the previous section

is of an additive nature and can be introduced by means of the following

axiom.

Local dichotomy (LD): There exists A 2 X;nfXg such that Anfxg � A[fyg
for some x 2 A \G and some y 2 X n (A [G).

Condition LD is a much weaker version of a dichotomy axiom used in

Dimitrov et al. (2004). LD states that there exist some set, A, a good

element x, and a bad element y, such that the decision maker considers the

non-inclusion of the good element x in A and the inclusion of the bad element

y in A to be indi¤erent. In other words, the axiom displays a local perfect

substitution between �the presence of a good element�and �the absence of

a bad element�for some A 2 X; n fXg, x 2 A and y 2 X n A .
We are now ready to present the characterization of the di¤erence rule,

%d2 P, de�ned as follows4:
For all A;B 2 X ,

A %d B i¤ jA \Gj � jA nGj � jB \Gj � jB nGj :

Theorem 3 Let %2 P. Then % satis�es IND, LM, and LD if and only if

%=%d.

The proof is presented in the appendix.

4 See Dimitrov et al. (2004) for a di¤erent characterization of the same rule.
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In order to check the independence of the axioms used for the character-

ization of %d, the reader may consider the following examples:

:(IND): Let X = fx; yg, G = fxg, and consider the following ranking on
X : ; � fx; yg � fxg � fyg.

:(LM): For all A;B 2 X , A � B.

:(LD): For all A;B 2 X , A % B i¤ jAj � jBj.

As we show in Lemma 4 in the appendix, %2 P satis�es axioms IND,

LM, and LD if and only if % satis�es IND, LA, and LD. Thus, we have the
following alternative characterization of the di¤erence rule.

Theorem 4 Let %2 P. Then % satis�es IND, LA, and LD if and only if

%=%d.

To check the independence of the above three axioms characterizing %d,
we may take the following examples:

:(IND): Let X = fx; yg, G = fxg, and consider the following ranking on
X : ; � fx; yg � fyg � fxg.

:(LA): For all A;B 2 X , A � B.

:(LD): For all A;B 2 X , A % B i¤ jAj � jBj.

5 Concluding remarks

Among the di¤erent ways in which the decision maker may evaluate sets of

objects containing both good and bad elements, we have presented two plau-

sible solutions derived from a common axiomatic basis. These core axioms

are Independence (IND), Local monotonicity towards good elements (LM),
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and Local aversion towards bad elements (LA), and they determine a whole

family of rules. Then, imposing the Robustness axiom (ROB) we obtain

a characterization of the bad-elements-priority rule. Finally, if, instead of

(ROB), we use Local dichotomy (LD) and either (LM) and (IND), or (LA)

and (IND), then an additive rule that maximizes the di¤erence between the

number of good and bad elements is obtained.

Our model performs an axiomatic analysis based on a very elementary

partition of the set of objects into good and bad items. A natural step for-

ward in this research is to advance in de�ning the structure of the decision

maker�s information about the alternatives. For instance, the simple infor-

mation structure described in this paper could be enriched by embedding a

similarity relation (cf. Pattanaik and Xu (2000)) on the sets of good and bad

objects. This would allow discrimination among di¤erent subgroups of good

(bad) objects and would also enable consideration of extensions to the rules

characterized here.

6 Appendix

This section collects the proofs of all theorems that appear in the text. In

what follows, for all S � X and all k 2 f1; : : : ; jSjg, we denote by (S)k any
subset of S with k elements.

We will �rst prove the following two lemmas.

Lemma 1 Let %2 P satisfy IND and LM. Then B [ E � B for all B 2 X
and all E � (G nB) n f;g.

Proof of Lemma 1. Take %2 P as above and let E = fe1; : : : ; eng. By
LM, there exists A 2 X n fXg such that A [ fxg � A for some x 2 G n A.
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Repeated application of IND implies that fxg � ; for some x 2 G n A. By
re�exivity, ; � ; and by IND, fxg � fe1g. Thus, by transitivity, fe1g � ;.
Now, by applying IND, B [ fe1g � B. Repeating the same argument with
e2 we obtain B [ fe1; e2g � B [ fe1g, and by the same argument repeated
(n� 2)-times and transitivity, we get B [ E � B.

Lemma 2 Let %2 P satisfy IND and LA. Then B [ E � B for all B 2 X
and all E � (X n (B [G)) n f;g.

Proof of Lemma 2. The proof is similar to the proof of Lemma 1 except

that LA is applied instead of LM.

Theorem 1 Let %2 P satisfy IND, LM, and LA. Then, for all A;B 2 X ,
(1) (jA \Gj > jB \Gj and jA nGj < jB nGj) implies A � B,
(2) (jA \Gj � jB \Gj and jA nGj � jB nGj) implies A % B.

Proof of Theorem 1. (1) Let jA \Gj > jB \Gj and jA nGj < jB nGj.
By re�exivity, ; � ;. If jB \Gj = 0 (i.e., B \ G = ;), A \ G � ; follows
from Lemma 1 with A \ G in the role of E, i.e., we have A \ G � B \ G
in this case. If jB \Gj = s > 0, the application of IND s-times results in

(A \G)s � B \ G. By Lemma 1, with (A \G) n (A \G)s in the role of E,
we have A \G � (A \G)s. This, by transitivity, results in A \G � B \G.
Therefore, whether B \G 6= ; or B \G = ;, we have that A \G � B \G.
By Lemma 2 and jB nGj > 0 (i.e., B n G 6= ;), we have B \ G � B.

If A n G = ;, we have by transitivity that A � B. Suppose now that

jA nGj = v. Starting from A \ G � B \ G and applying v-times IND, we

obtain A � (B \G)[ (B nG)v. By Lemma 2, with (B nG)n (B nG)v in the
role of E, (B \G) [ (B nG)v � B. By transitivity, A � B.
(2) The case in which jA \Gj > jB \Gj and jA nGj < jB nGj was

proved in the previous paragraph. Thus, we will distinguish the three re-
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maining possible cases:

(2.1) jA \Gj > jB \Gj and jA nGj = jB nGj,
(2.2) jA \Gj = jB \Gj and jA nGj < jB nGj, and
(2.3) jA \Gj = jB \Gj and jA nGj = jB nGj.
(2.1) As in the �rst part of the proof, it can be proved, by using re�exivity,

IND and LM, that A \G � B \G. If jA nGj = jB nGj = 0, then it follows
directly that A � B. If jA nGj = jB nGj = u > 0, by IND repeated u-times,
A � B.
(2.2) Let jA nGj = u. By re�exivity, ; � ;, and applying u-times IND,

A n G � (B nG)u. By Lemma 2, with (B nG) n (B nG)u in the role of
E, (B nG)u � B n G. By transitivity, A n G � B n G. Applying IND
jA \Gj = jB \Gj-times, A � B.
(2.3) From re�exivity, ; � ;, and applying IND jA \Gj = jB \Gj-times,

A \G � B \G. Again by IND applied jA nGj = jB nGj-times, A � B.

Theorem 2 Let %2 P. Then % satis�es IND, LM, LA, and ROB if and

only if %=%bp.

Proof of Theorem 2. It is not di¢ cult to check that %bp satis�es the four
axioms. Suppose now that %2 P satis�es IND, LM, LA, and ROB. We have
to prove that, for all A;B 2 X ,
(1) jA nGj < jB nGj implies A � B,
(2) (jA nGj = jB nGj and jA \Gj > jB \Gj) implies A � B, and
(3) (jA nGj = jB nGj and jA \Gj = jB \Gj) implies A � B.
(1) Let jA nGj = u and jB nGj = v, with v > u. By re�exivity and IND

applied u-times, A nG � (B nG)u. By Lemma 2, with (B nG) n (B nG)u in
the role of E, (B nG)u � B nG. By transitivity, A nG � B nG.
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Now, let us consider the following partitions of A nG and B nG :

A nG = (A nG)1 [ (A nG)2 ;

B nG = (B nG)1 [ (B nG)2 ;

where

(A nG)1 = fx 2 A nG j x 2 B nGg ;

(A nG)2 = fx 2 A nG j x 2 X n (B nG)g ;

(B nG)1 = fx 2 B nG j x 2 A nGg = (A nG)1 ;

(B nG)2 = fx 2 B nG j x 2 X n (A [G)g :

Let (A nG)1 =
�
a�1 ; : : : ; a

�
u1

	
= (B nG)1, (A nG)2 =

�
a�u1+1; : : : ; a

�
u

	
,

(B nG)2 =
�
b�u1+1; : : : ; b

�
v

	
. Note that, by hypothesis,

��(B nG)2�� > ��(A nG)2��.
Consider

�
b�u1+1; : : : ; b

�
u

	
� (B nG)2. Then

�
(A nG)1 [

�
b�u1+1; : : : ; b

�
u

	�
n

(A nG)2 � AnG by Theorem 1. By transitivity,
�
(A nG)1 [

�
b�u1+1; : : : ; b

�
u

	�
n

(A nG)2 � B n G. By ROB,
�
(A nG)1 [

�
b�u1+1; : : : ; b

�
u

	�
n (A nG)2 � B.

Now, if A\G = ;, then A � AnG by re�exivity, and by transitivity, A � B.
If A \G 6= ;, then, by Lemma 1, A � A nG, and by transitivity, A � B.
(2) LetAnG =

�
a�1 ; : : : ; a

�
u

	
, BnG =

�
b�1 ; : : : ; b

�
u

	
, A\G =

�
a+1 ; : : : ; a

+
r

	
,

andB\G =
�
b+1 ; : : : ; b

+
s

	
, r > s. By Theorem 1, (A nG)[

�
a+1 ; : : : ; a

+
s

	
� B.

By Lemma 1, A � (A nG) [
�
a+1 ; : : : ; a

+
s

	
. Again by transitivity, A � B.

(3) By Theorem 1, A � B.

Theorem 3 Let %2 P. Then % satis�es IND, LM, and LD if and only if

%=%d.

We will �rst prove the following two lemmas.

Lemma 3 Let %2 P satisfy IND and LD, and let A;B 2 X be such that
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B = A [ E with jE \Gj = jE nGj. Then A � B.

Proof of Lemma 3. Take %2 P as above and let E \ G =
�
e+1 ; : : : ; e

+
n

	
,

E nG =
�
e�1 ; : : : ; e

�
n

	
.

If jE \Gj = jE nGj = 0, the lemma follows by re�exivity. If jE \Gj =
jE nGj > 0, we have by LD that there exists F 2 X;nfXg such that Fnfxg �
F [ fyg for some x 2 F \ G and some y 2 X n (F [G). Applying IND
repeatedly, we have ; � fx; yg for some x 2 F \G and some y 2 X n(F [G).
By re�exivity, ; � ; and by IND applied twice, fx; yg � fe+1 ; e�1 g. Thus,
by transitivity, ; � fe+1 ; e�1 g. By IND, fe+2 ; e�2 g � fe+1 ; e+2 ; e�1 ; e�2 g and by
transitivity, ; � fe+1 ; e+2 ; e�1 ; e�2 g. Repeating the same argument (n�2)-times
and by transitivity, we have ; � E. Thus, by IND, A � A [ E, i.e., A � B.

Lemma 4 %2 P satis�es IND, LM, and LD if and only if it satis�es IND,

LA, and LD.

Proof of Lemma 4. Let %2 P satisfy IND, LM, and LD. We have to show
that % also satis�es LA. Notice �rst that Lemma 1 and Lemma 3 hold. In

particular, by Lemma 1 we have that fx; yg � fxg for all x 2 X and all

y 2 G 2 X; with y 6= x. Furthermore, by Lemma 3, we have ; � fx; yg for
all G 2 X;, all x 2 G, and all y 2 X nG.
In order to prove that % satis�es LA, we �rst prove the following Claim:

fxg � fx;wg for all x 2 X, all G 2 X; n fXg and all w 2 X n G with

w 6= x. This would demonstrate that, for each G 2 X; n fXg, there exists
A 2 X n fXg such that A [ fwg � A for some w 2 X n (A [G), as required
by LA. In particular, A could be any singleton included in G.

Consider �rst the case in which jXj = 2 and let X = fx;wg with w 2
X n G. Since G is nonempty, this means that G = fxg. Then, by Lemma

14



1, fx;wg � fwg. By IND, fxg � ;. On the other hand, by Lemma 3,
; � fx;wg. Thus, by transitivity, fxg � fx;wg.
Suppose next that jXj � 3, and take x;w as in the Claim. If G 6= fxg,

then there exists z 2 G, z 6= x. By Lemma 3, ; � fz; wg, and by Lemma 1
we have fz; wg � fwg. By transitivity, ; � fwg, and by IND, fxg � fx;wg.
If G = fxg, then, by Lemma 1, fx;wg � fwg. By IND, fxg � ;. On the
other hand, by Lemma 3, ; � fx;wg. Thus, by transitivity, fxg � fx;wg.
Suppose next that %2 P satis�es IND, LA, and LD. The proof that %

also satis�es LM is analagous to the above one by virtue of the fact that in

this case Lemma 2 and Lemma 3 hold.

Corollary 1 Let %2 P satisfy IND, LM, and LD. Then the statement

in Lemma 2 holds, that is, B [ E � B for all B 2 X and all E �
(X n (B [G)) n f;g.

Proof Theorem 3. It can be easily checked that %d satis�es the three ax-
ioms. Suppose now that %2 P satis�es IND, LM, and LD. We have to prove
that, for all A;B 2 X ,
(1) jA \Gj � jA nGj > jB \Gj � jB nGj implies A � B, and
(2) jA \Gj � jA nGj = jB \Gj � jB nGj implies A � B.
Let jA \Gj = r, jB \Gj = s, jA nGj = u, jB nGj = v.
(1) In this case r � u > s � v. We consider the following three possible

cases:

(1.1) r > u and s > v,

(1.2) r > u and s � v,
(1.3) r � u and s < v.
(1.1) Let r > u and s > v. By re�exivity, ; � ;. By Lemma 3,

(A \G)u [ (A nG) � ;. Also by Lemma 3, (B \G)v [ (B nG) � ;.
Thus, by transitivity, (A \G)u [ (A nG) � (B \G)v [ (B nG). Given that
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r � u > s � v, by IND applied (s � v)-times (A \G)u+s�v [ (A nG) �
(B \G)v+s�v [ (B nG), i.e., (A \G)u+s�v [ (A nG) � B. By Lemma 1,

A � (A \G)u+s�v [ (A nG), and by transitivity, A � B.
(1.2) Let r > u and s � v. As in case (1.1), by re�exivity, Lemma 3 and

transitivity we get (A \G)u [ (A nG) � (B \G) [ (B nG)s. By Lemma 1,
A � (A \G)u [ (A nG), and, if s < v, by Lemma 2,

(B \G) [ (B nG)s � B:

If s = v, (B \G) [ (B nG)s = B. In any case, by transitivity, A � B.
(1.3) Let r � u and s < v. As before, by re�exivity, Lemma 3 and

transitivity we get (A \G) [ (A nG)r � (B \G) [ (B nG)s. Since r � u >
s � v, then u � r < v � s. Then we can apply IND (u � r)-times obtaining
(A \G) [ (A nG)r+u�r � (B \G) [ (B nG)s+u�r. That is, A � (B \G) [
(B nG)s+u�r. By Lemma 3,

(B \G) [ (B nG)s+u�r � B:

Then, by transitivity, A � B.
(2) In this case r � u = s � v. If r � u (s � v), then, as in case (1), by

re�exivity, Lemma 3 and transitivity we get

(A \G)u [ (A nG) � (B \G)v [ (B nG) ;

and by IND applied (r � u)(= s� v)-times, A � B.
If r < u (s < v), then, by re�exivity, Lemma 3 and transitivity we get

(A \G) [ (A nG)r � (B \G) [ (B nG)s ;

and by IND applied (u� r)(= v � s)-times, A � B.
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