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Abstract

The Boruvka’s algorithm, which computes the minimum cost spanning tree,

is used to define a rule to share the cost among the nodes (agents). We show

that this rule coincides with the folk solution, a very well-known rule of this

literature.
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1 Introduction

In this paper we study minimum cost spanning tree problems (mcstp). Consider that a

group of agents, located at different geographical places, wants some particular service

which can only be provided by a common supplier, called the source. Agents will be

served through connections which entail some cost. However, they do not care whether

they are connected directly or indirectly to the source.

There are many economic situations that can be modeled in this way. For instance,

several towns may draw power from a common power plant, and hence they may share

the cost of the distribution network. This example appears in Dutta and Kar (2004)

[14]. Bergantiños and Lorenzo (2004, 2005, 2008) [1] [2] [3] study a real situation

where villagers should pay the cost of constructing pipes from their respective houses

1



to a water supplier. Other examples are communication networks, such as telephone,

Internet, wireless telecommunication, or cable television.

The literature onmcstp starts by defining algorithms for constructing minimum cost

spanning trees (mt). The first algorithm for finding an mt was developed in Boruvka

(1926) [12]. Its purpose was an efficient electrical coverage of Bohemia. There are now

two algorithms commonly used, Kruskal’s algorithm developed in Kruskal (1956) [18]

and Prim’s algorithm developed in Prim (1957) [20]. All three are greedy algorithms

that run in polynomial time. But constructing an mt is only a part of the problem.

Another important issue is how to allocate the cost associated with the mt among the

agents. Several authors have introduced rules in mcstp through some algorithms for

constructing mt. The idea is to propose rules to divide the cost among the agents in a

fair way1.

Bird (1976) [9], Dutta and Kar (2004) [14], and Bergantiños and Vidal-Puga (2007a)

[6] introduce three rules based on Prim’s algorithm. Feltkamp et al (1994a) [16] in-

troduce a rule based on Kruskal’s algorithm. The rules introduced by Bergantiños

and Vidal-Puga (2007a) [6] and Feltkamp et al (1994a) [16] coincide. A proof of this

statement can be found, for instance, in Bergantiños and Lorenzo-Freire (2008) [5]. We

call this rule the folk solution, which can be obtained in other ways. Let us mention

some of them.

A simple mcstp is an mcstp where the cost of each arc is either 0 or 1. Norde et al

(2004) [19] prove that each mcstp can be obtained as a linear combination of simple

mcstp where all the coefficients are non-negative. Thus, we can generate a solution

from the set of simple mcstp to the set of all mcstp by using the linear combination.

Branzei et al (2004) [13] and Bergantiños and Vidal-Puga (2009) [8] prove that the

folk solution can be obtained in this way. Bogomolnaia and Moulin (2008) [11] also

apply this approach to mcstp for generating several solutions.

Another way of obtaining rules in mcstp is through cooperative games with trans-

ferable utility (TU games). Given an mcstp we associate a TU game. Later, we

compute a cooperative solution in the TU game. The solution to the initial mcstp is

the solution of the TU game. Bergantiños and Vidal-Puga (2007a, 2007b) [6] [7] prove

that the folk solution can be obtained in this way by applying the Shapley value to

several TU games.

Recently, Bogomolnaia et al (2008) [10] and Dutta and Mishra (2008) [15] apply

the ideas behind the folk solution to some related problems.

Nevertheless, as far as we know, no rule has been introduced through Boruvka’s

1In this paper we refer ro fairness as general principle to achieve, and not as a well-defined math-

ematical object.

2



algorithm. We do it. The idea behind this algorithm is the following. Initially the

network is empty and each agent is a single component. We sequentially add to the

network, for each connected component, the cheapest arc joining this connected com-

ponent with some agent outside it and without introducing cycles. We divide the cost

of any arc selected by Boruvka’s algorithm following three principles. First, each agent

is assigned to the arc selected by the component he belongs to. Each agent pays,

partially, the cost of the assigned arc. Second, all agents pay the same proportion of

the arc assigned. Namely, each agent i pays pca(i) where ca(i) is the cost of the arc a (i)

assigned to agent i. Third, the proportion paid, p, should be as large as possible.

We prove that the rule we introduce coincides with the folk solution. Our result

gives more support to the folk solution as it can be obtained in several ways.

In Prim the cost of any arc is paid only by one agent. Fairness is recovered by

taking the average over the set of allocations induced by the possible orders of the

agents. In Kruskal and Boruvka the cost of any arc is divided between several agents.

Fairness is obtained by dividing the cost of any arc in an equitable way.

Let us compare the definitions of the folk solution through Kruskal and Boruvka

more carefully. In Kruskal’s algorithm the mt is constructed by sequentially adding

arcs with the lowest cost and without introducing cycles. Assume that we add arc

(i, j) , which links connected components Si and Sj. We divide the cost of arc (i, j)

among the agents according to the following principles. First, agents in a component

Si already connected to the source (0 ∈ Si) pay nothing. Second, only agents who

benefit directly when adding an arc, Si ∪ Sj , could pay something. Third, all agents

in the same connected component pay the same. Fourth, the total amount paid by a

group is proportional to the new agents to whom this group is connected (agents in Si

pay proportionally to |Sj|).

An important difference is that the order in which we add the arcs could be different.

Moreover, in Kruskal at each step we add an arc, which is paid completely. In Boruvka,

at each step we can add several arcs. At least one of them is paid completely but others

can be paid only partially. Above we have mentioned the four principles for dividing

the cost of an arc (i, j) following Kruskal. Principles one and three have also been

applied with Boruvka. Principle two is similar in the sense that agents outside Si ∪Sj

pay nothing. Whereas in Kruskal all agents in Si∪Sj when 0 /∈ Si∪Sj pay something,

in Boruvka it is possible that agents in Si or Sj pay nothing. Principle four is different.

In Boruvka all agents in Si ∪ Sj pay the same.

The paper is organized as follows. In Section 2 we define mcstp. In Section 3 we

present our results. The proof of the main result is in Appendix.
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2 The minimum cost spanning tree problem

In this section we introduce minimum cost spanning tree problems and revise some

results of the literature that are relevant for this paper.

Let N = {1, 2, ...} be the set of all possible agents. Given N ⊂ N finite, |N |

denotes the number of elements in N .

We are interested in networks whose nodes are elements of a set N0 = N ∪ {0},

where N ⊂ N is finite and 0 is a special node called the source. Usually we take

N = {1, ..., |N |} .

A cost matrix C = (cij)i,j∈N0 over N represents the cost of a direct link between

any pair of nodes. We assume that cij = cji ≥ 0 for each i, j ∈ N0 and cii = 0 for each

i ∈ N0. Since cij = cji we will work with undirected arcs, i.e (i, j) = (j, i).

We denote the set of all cost matrices over N as CN . Given C, C ′ ∈ CN , we say

C ≤ C ′ if cij ≤ c′ij for all i, j ∈ N0. We denote the set of all cost matrices over N with

all the costs different as DN , i.e. C ∈ DN if cii′ �= cjj′ when (i, i′) �= (j, j′).

A minimum cost spanning tree problem, briefly mcstp, is a pair (N0, C) where

N ⊂ N is a finite set of agents, 0 is the source, and C ∈ CN is the cost matrix.

Given an mcstp (N0, C), we denote the mcstp induced by C in S ⊂ N as (S0, C).

A graph g over N0 is a subset of {(i, j) : i, j ∈ N0, i �= j}. The elements of g are

called arcs. Given S ⊂ N0 we denote by gS the restriction of g to the elements of S,

i.e. gS = {(i, j) ∈ g : i, j ∈ S}.

Given a graph g and a pair of nodes i and j, a path from i to j in g is a sequence of

different arcs {(ih−1, ih)}
l

h=1 satisfying (ih−1, ih) ∈ g for all h ∈ {1, 2, ..., l}, i = i0 and

j = il.

A tree over N is a graph t satisfying that for all i, j ∈ N0 there exists a unique path

from i to j in g. Usually we write t = {(i0, i)}i∈N where i0 represents the first agent

in the unique path in t from i to 0. We denote the set of trees over N as T N0 .

Given an mcstp (N0, C) and a graph g, we define the cost associated with g as

c (N0, C, g) =
∑

(i,j)∈g

cij. When there are no ambiguities, we write c (g) or c (C, g) instead

of c (N0, C, g).

Any graph g over N0 induces a partition of N0 as follows: We say that S ⊂ N0 is a

connected component induced by g if two conditions hold. First, for any i, j ∈ S, there

exists a path in g connecting nodes i and j. Second, for each i ∈ S and j ∈ N0\S,

there exist no path in g connecting nodes i and j. The set of connected components is

a partition of N0, which we denote as P (N0, g). Clearly, if t is a tree P (N0, t) = {N0}.

A minimum cost spanning tree for (N0, C), briefly an mt, is a tree t ∈ T N0 such

that c (t) = ming∈T N
0

c (g). It is well-known in the literature on mcstp that there exists
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an mt, even though it does not need to be unique. Given an mcstp (N0, C) we denote

by m (N0, C) the cost associated with any mt t in (N0, C).

Probably, the most famous algorithms for computing the mt associated with an

mcstp are the ones introduced in Boruvka (1926) [12], Kruskal (1956) [18], and Prim

(1957) [20].

A (cost allocation) rule is a function f such that for each mcstp (N0, C), we have

f (N0, C) ∈ RN and
∑

i∈N

fi (N0, C) = m (N0, C) . As usual, fi (N0, C) represents the

cost assigned to agent i.

Feltkamp et al (1994a) [16] introduce a rule based on Kruskal’s algorithm. Bergantiños

and Vidal-Puga (2007a) [6] introduce a rule based on Prim’s algorithm. Bergantiños

and Lorenzo-Freire (2008) [5] prove that both rules coincide. We call this rule the folk

solution and we denote it by ϕ.

We briefly discuss the definition of the folk solution through the algorithms of Prim

and Kruskal.

• Prim’s algorithm. Idea: starting from the source we construct an mt by sequen-

tially connecting agents with the lowest cost and without introducing cycles.

Bird (1976) [9] defines a rule when the mcstp has a unique mt: each agent pays

his connection cost.

When several mt exist, Dutta and Kar (2004) [14] connect the agent with the

lowest index according to a predetermined order µ of the set of agents. The

allocation induced by each order µ could be unfair. Fairness is recovered by

computing the average over the set of all possible orders µ.

Bergantiños and Vidal-Puga (2007a) [6] prove that the folk solution can be ob-

tained by applying the previous procedure based on Prim’s algorithm to the

irreducible problem (N0, C
∗) . C∗ is obtained from C by reducing the cost of any

arc as much as possible without changing the total cost of connecting all agents

to the source.

• Kruskal’s algorithm. Idea: the mt is constructed by sequentially adding arcs

with the lowest cost without introducing cycles.

Feltkamp et al (1994a) [16] define the folk solution through Kruskal’s algorithm.

We now define it using the formulation given in Bergantiños et al (2008) [4].

Assume that we add arc (i, j) , which links connected components Si and Sj .

We divide the cost of arc (i, j) among agents in N according with the following

principles:

5



1. Agents already connected to the source pay nothing (if 0 ∈ Si, each agent

in Si pays nothing).

2. Only agents who benefit directly when adding an arc could pay something

(agents in N\ (Si ∪ Sj) pay nothing).

3. All agents in the same connected component pay the same.

4. The total amount paid by a group is proportional to the new agents to

whom this group is connected (agents in Si pay proportionally to |Sj|).

Then, agent i pays






|Sj |

|Si∪Sj ||Si|
if 0 /∈ Si ∪ Sj

1
|Si|

if 0 ∈ Sj

0 if 0 ∈ Si.

3 A rule based on Boruvka’s algorithm

Boruvka (1926) [12] provides an algorithm for computing an mt. We provide a way of

sharing the cost of any arc selected by Boruvka’s algorithm. We first describe Boruvka’s

algorithm in a formal way.

Let π be an order over the set of all possible arcs. Namely

π : {(i, j) : i, j ∈ N0, i �= j} →

{

1, 2, .....,

(
|N |

2

)}

.

Remember that we are taking (i, j) = (j, i) .

Boruvka’s algorithm (associated with the order π).

Step 1: Let gπ,0 = ∅. Notice that P (N0, g
π,0) = {{0} , {1} , ..., {|N |}}.

Assume we have reached Step s (s = 1, 2, ...) and we have defined gπ,s−1.

Step s: For each T ∈ P (N0, g
π,s−1), 0 /∈ T, let

(
iπ,T , jπ,T

)
∈ T × (N0\T ) be such

that ciπ,T jπ,T = min {cij : i ∈ T, j ∈ N0\T}. In case there is more than one possible arc,

we select the one with the lowest position in the order π.

gπ,s = gπ,s−1 ∪
{(

iπ,T , jπ,T
)
: T ∈ P

(
N0, g

π,s−1
)}

.

It is well known that if for each T ∈ P (N0, g
π,s−1) the arc

(
iπ,T , jπ,T

)
is selected

through π, then gπ,s is a graph with no cycles.
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If P (N0, g
s) = {N0}, then gπ,s is a tree and the process is over. If P (N0, g

π,s) �=

{N0}, then we go to Step s+ 1.

The process finishes in a finite number of steps. The tree obtained by this procedure

is denoted by tπ. It is well known that for each order π, tπ is an mt. Moreover, given an

mt t, there exists an order π such that tπ coincides with t. It is possible that tπ = tπ
′

,

even if π and π′ are different orders. For instance, if all the costs are different, tπ = tπ
′

for all π and π′.

When no confusion arises we write gs, iT , ... instead of gπ,s, iπ,T , .... respectively.

Remark 1. We have presented Boruvka’s algorithm in a different way. Usually,

the condition 0 /∈ T does not appear. We have added it in order to adapt the algorithm

to our objective: to divide the cost of the mt among the agents. If 0 ∈ T, then agents

in T do not need to be connected to more agents.

Let us apply Boruvka’s algorithm to the following examples.

Example 1. N = {1, 2} and C is given by c01 = 10, c02 = 100, and c12 = 2. This

situation can be represented by Figure 1.

1 2

0

2

10 100

Figure 1: A two-node case.

Since all the costs are different, it is not necessary to specify the order π.

1. Step 1.
(
i{1}, j{1}

)
= (1, 2) , and

(
i{2}, j{2}

)
= (2, 1) . Then, g1 = {(1, 2)} .

2. Step 2. P (N0, g
1) = {{0} , N} and

(
iN , jN

)
= (1, 0) .

Now g2 = {(0, 1) , (1, 2)} is the mt.

Example 2. Let (N0, C) be the mcstp given by Figure 2:

Since all the costs are different, it is not necessary to specify the order π.

1. Step 1.
(
i{1}, j{1}

)
= (1, 2) ,

(
i{2}, j{2}

)
= (2, 1) , and

(
i{3}, j{3}

)
= (3, 1)

Then, g1 = {(1, 2) , (1, 3)} .
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1 2

0

3

12

6 8

15

4

20

Figure 2: A three-node case with all costs different.

2. Step 2. P (N0, g
1) = {{0} , N} and

(
iN , jN

)
= (1, 0) .

Now g2 = {(0, 1) , (1, 2) , (1, 3)} is the mt.

We now introduce a rule in mcstp based on Boruvka’s algorithm. Our first idea is

the following. At each step, each connected component select an arc. The cost of each

selected arc is divided equally among all agents belonging to the components selecting

this arc. Let us clarify it in Example 1.

Example 1.

1. Step 1. Connected components {1} and {2} select (1, 2) . Thus, c12 is divided

equally between agents 1 and 2.

2. Step 2. Connected component {1, 2} selects (0, 1) . Thus, c01 is divided equally

between agents 1 and 2.

Finally, each agent i ∈ N pays, 1
2
c12 +

1
2
c01 = 6.

Example 2 shows that we must elaborate more our previous idea in order to get a

rule.

Example 2.

1. Step 1. Connected components {1} and {2} select (1, 2) whereas {3} selects

(1, 3) . Arc (1, 2) should be paid by agents 1 and 2. But, what happens with

(1, 3)?

Assume that c13 is paid by agent 3.
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2. Step 2. The component N selects (0, 1) . We consider two ways of sharing the

cost of (0, 1) .

(a) We divide the cost equally among all agents, which is the way to proceed

following the general idea we are applying. Thus, agents 1 and 2 pay 1
2
c12+

1
3
c01 and agent 3 pays c13 +

1
3
c01.

Let (N0, C
ε) be the mcstp where cε01 = 6 + 3ε, cε02 = 6 + 4ε, cε03 = 6 + 5ε,

cε12 = 6, cε13 = 6+ε, and cε23 = 6+2ε. Applying the previous idea to (N0, C
ε)

we obtain that agents 1 and 2 pay around 5 whereas agent 3 pays around 8.

Thus, the quasi-symmetric problem (N0, C
ε) has an asymmetric solution.

Since, we are trying to get a fair rule, this procedure does not seem to be a

good idea.

(b) Any mt has |N | arcs and |N | agents. Since the cost of each arc should be

divided among the |N | agents, it seems reasonable to require that the sum

of the proportions of the costs of the mt that each agent pays should be 1.

In case (a) the sum of these proportions for agents 1 and 2 is 1
2
+ 1

3
= 5

6

whereas for agent 3 is 1 + 1
3
= 8

6
.

If we want to make these proportions equal among them, then c01 should be

paid between agents 1 and 2 because agent 3 has already paid the cost of

arc (1, 3) at Step 1. Thus, agents 1 and 2 pay 1
2
c12 +

1
2
c01 and agent 3 pays

c13.

Let (N0, C
ε) be themcstp where cε01 = 20, cε02 = 20+ε, cε03 = 20+2ε, cε12 = 6,

cε13 = 6 + ε, and cε23 = 6 + 2ε. Applying the previous idea to (N0, C
ε) we

obtain that agents 1 and 2 pay around 13 whereas agent 3 pays around 6.

Again, the quasi-symmetric problem (N0, C
ε) has an asymmetric solution.

Since, we are trying to get a fair rule, this procedure does not seem to be a

good idea.

Remark 2. Feltkamp, Tijs, and Muto (1994b) [17] introduce a rule called the

Decentralized Rule in DN . This rule is defined using the ideas of 2 (b) .

In both cases, (a) and (b) , we do not find a fair rule. The problem is motivated

because, in Step 1, c13 is only paid by agent 3. Thus, we have decided to change the

way in which we divide c13. We follow the ”same proportion” approach. We require

that all agents must pay the same proportion of the arc they are selecting. Thus,

it could be possible that some arcs are only paid partially. In this case, we focus

on ”paid connected components”, namely agents who are connected through arcs paid
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completely, instead of connected components, and we apply the ideas mentioned above.

Let us clarify this procedure in Example 2.

1. Connected components {1} and {2} select (1, 2) whereas {3} selects (1, 3) .

(a) Arc (1, 2) should be paid by agents 1 and 2 and arc (1, 3) by agent 3. Thus,

the proportion paid is p = 1
2
. Notice that if p > 1

2
, then agents 1 and 2 pay

more than the cost or arc (1, 2) .

Agents 1 and 2 pay 1
2
c12 and agent 3 pays 1

2
c13.

(b) Now there are two paid connected components {1, 2} and {3} . Arc (1, 3)

joins both components but only half of the cost was paid.

{1, 2} selects (1, 3) and {3} selects (1, 3) , as before. Thus, agents 1, 2, and

3, pay the same proportion of the cost of arc (1, 3) not paid yet.

Agents 1, 2, and 3 pay 1
6
c13.

2. The component N selects (0, 1) .

(a) The cost of arc (0, 1) is divided equally among all agents in the component.

Agents 1, 2, and 3 pay 1
3
c01.

Finally, agents 1 and 2 pay 3
6
c12+

1
6
c13+

2
6
c01 whereas agent 3 pays

3
6
c13+

1
6
c13+

2
6
c01.

Notice that at each step, each agent pays the same proportion of the cost of an arc.

The arc each agent pays depends on his position on the matrix C.

We now explain, in an informal way, how to compute this rule (βπ), summarizing

the ideas explained above. Initially all agents are isolated. At Step s − 1 agents are

partitioned into paid connected components. We describe Step s. Each one of these

components select a non paid arc following Boruvka’s algorithm. The cost of the arcs

selected at Step s is divided according with the following principles:

• Each agent pays a proportion, p, of the cost of the arc selected by the component

he belongs to.

• This proportion is equal for all players, not only inside each component, but

across components..

• The proportion paid should be as large as possible. Namely, if each agent pays

p′ > p, then there exists an arc such that the amount paid by the agents assigned

to this arc is larger than the cost of the arc.
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Let π be some order of the arcs N0, C a cost matrix, and tπ (or simply t) the arc

selected following Boruvka’s algorithm associated with π. We now define βπ formally.

Step 0. We define:

• a0,πi = ∅ for all i ∈ N.

In general, as,πi , or simply asi , denotes the arc in t that agent i pays partially in

Step s.

• p0,π = 0.

In general, ps,π, or simply ps, denotes the proportion of the cost of the arc that

each agent pays in Step s.

• ̺0,πij = 0 for all (i, j) ∈ t.

In general, ̺s,πij , or simply ̺sij , denotes the proportion of the cost of arc (i, j)

already paid in Step s. Namely, ̺sij =
s∑

r=0

pr

• A0 (π) = t.

In general, As,π, or simply As, denotes the set of non-completely paid arcs in Step

s. Thus, As =
{
(i, j) ∈ t : ̺sij < 1

}
.We denoteA

s
= t\As =

{
(i, j) ∈ t : ̺sij = 1

}
.

• f 0,πi = 0 for all i ∈ N.

In general, f s,πi , or simply fsi , denotes the cost that agent i pays in Step s. Thus,

f si = pscasi .

Assume that we have defined Step r for all r < s. We now define Step s. For

simplicity, we omit reference to the order π.

Given a connected component T ∈ P
(
N0, A

s−1
)
, 0 /∈ T, we select the arc

(
iT , jT

)

as in Boruvka’s algorithm. Namely, ciT jT = min {cij : i ∈ T, j ∈ N0\T} and for all

i′ ∈ T, j′ ∈ N0\T such that ci′j′ = min {cij : i ∈ T, j ∈ N0\T} , π
(
iT , jT

)
≤ π (i′, j′) .

It is obvious that
(
iT , jT

)
∈ t. Moreover, if component T selected

(
iT , jT

)
in Step s−1

and
(
iT , jT

)
was not completely paid at the beginning of Step s (

(
iT , jT

)
∈ As−1),

component T also selects
(
iT , jT

)
in Step s.

Given k ∈ T ∈ P
(
N0, A

s−1
)
, we define ask =

(
iT , jT

)
. That is, each agent will pay

the cost of the arc selected by Boruvka’s algorithm for the component he belongs to.

For each arc (i, j) ∈ As−1, let Ns
ij = {k ∈ N : ask = (i, j)} be the set of agents that

will pay the cost of arc (i, j) . We define

ps = min

{
1− ̺s−1ij∣∣N s

ij

∣∣ : (i, j) ∈ As−1, N s
ij �= ∅

}

.
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Notice that, assuming that all agents must pay the same proportion of the cost the

arc, ps is the maximum proportion that agents can pay in Step s.

For each (i, j) ∈ As−1, we define ̺sij = ̺s−1ij +
∣∣N s

ij

∣∣ ps . Thus, ̺sij ≤ 1 for each

(i, j) ∈ As−1. Moreover, there exists at least one (i, j) ∈ As−1 such that ̺sij = 1. Thus,

As � As−1 and A
s−1

� A
s
. That is, there are more arcs paid completely.

This process finishes when A
s
= t. Since asi ∈ t for all agent i and all Step s, and

A
s−1

� A
s
, this process finishes in a finite number of steps (at most |N |), say γ.

Moreover, it is not difficult to check that
γ∑

s=1

ps = 1.

Definition 1. Given an order π of the set of arcs and a cost matrix C, we define

the Boruvka’s rule induced by the order π as

βπi (N0, C) =

γ∑

s=1

fsi for each i ∈ N.

We now compute βπ in Example 2 following this procedure.

Example 2. We have seen that, since all the cost of the arcs are different, tπ =

{(0, 1) , (1, 2) , (1, 3)} for all π. Thus,

Step s = 0 s = 1 s = 2 s = 3 TOTAL

as1 ∅ (1, 2) (2, 3) (0, 1)

as2 ∅ (1, 2) (2, 3) (0, 1)

as3 ∅ (2, 3) (2, 3) (0, 1)

ps 0 1
2

1
6

1
3

1

̺s01 0 0 0 1

̺s12 0 1

̺s23 0 1
2

1

f s1 0 2 1 4 7

f s2 0 2 1 4 7

f s3 0 3 1 4 8

As t {(0, 1) , (2, 3)} {(0, 1)} ∅

A
s

∅ {(1, 2)} {(1, 2) , (2, 3)} t

We now see an example when the order π matters.

Example 3. Let (N0, C) be the mcstp represented by Figure 3.

In this example we need to specify the order. There exist two possibilities.

12
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20

18

15

Figure 3: A three-node case with equal costs.

1. Let π be an order in which π (1, 3) < π (0, 1). If we formally compute βπ , we

realize that it is very similar to the one in Example 2. The only difference is the

following:

Step s = 0 s = 1 s = 2 s = 3 TOTAL

f s,π1 0 2 2 4 8

f s,π2 0 2 2 4 8

f s,π3 0 6 2 4 12

2. Let π′ be an order in which π′ (0, 1) < π′ (1, 3). We formally compute βπ .

Step s = 0 s = 1 s = 2 TOTAL

as,π
′

1 ∅ (1, 2) (0, 1)

as,π
′

2 ∅ (1, 2) (0, 1)

as,π
′

3 ∅ (1, 3) (1, 3)

ps,π
′

0 1
2

1
2

1

̺s,π
′

01 0 0 1

̺s,π
′

12 0 1

̺s,π
′

23 0 1
2

1

f s,π
′

1 0 2 6 8

f s,π
′

2 0 2 6 8

f s,π
′

3 0 6 6 12

As,π
′

t {(0, 1) , (1, 3)} ∅

A
s,π′

∅ {(1, 2)} t

13



Notice that in this case the process finishes in two stages. Moreover Step 2 of

π′ is completely unrelated with stages 2 and 3 of π (agents pay different arcs, at

each stage the proportion is different, ....).

All the rules defined through Prim’s algorithm, namely Bird (1976) [9], Dutta and

Kar (2004) [14], and Bergantiños and Vidal-Puga (2007a) [6], depend on the order in

which the arcs are selected. Two different orders can produce different allocations.

Thus, these authors define a rule simply by taking the average over the allocation

induced by the different orders. Feltkamp et al (1994a) [16] introduce a rule using

Kruskal’s algorithm. For each order in which the arcs are selected, they propose an

allocation. Even though, this allocation could depend on the order, they prove that,

it is actually independent. Thus, they define the rule as the allocation generated by

each order. We believe that this fact makes the definition more interesting.

We have generated an allocation for each order of the arcs following Boruvka’s

algorithm. Even though this allocation could depend on the order, we prove that

it is independent (as in Feltkamp et al (1994a) [16]). Moreover we prove that this

allocation coincides with the folk solution ϕ. All these statements are proved in the

following theorem.

Theorem 1. For each order π, βπ coincides with ϕ.

Proof. See Appendix.

Let us compare the definitions of the folk solution through Kruskal and Boruvka.

An important difference is that the order in which we add the arcs could be different.

Moreover, in Kruskal at each step we add an arc, which is paid completely. In Boruvka,

at each step we can add several arcs. At least one of them is paid completely but others

could be paid only partially. Above we have mentioned the four principles to divide

the cost of an arc (i, j) following Kruskal. We see which of those principles are applied

with Boruvka.

1. It is similar. In Boruvka agents already connected to the source, through com-

pletely paid arcs, pay nothing.

2. The same principle applies in the sense that agents outside Si ∪ Sj pay nothing.

Whereas in Kruskal all agents in Si ∪ Sj pay something (when 0 /∈ Si ∪ Sj), in

Boruvka it is possible that agents in Si or Sj pay nothing.

3. It is the same.

4. It is different. In Boruvka all agents in Si ∪ Sj pay the same.

14



4 Appendix

We prove Theorem 1.

We first introduce some properties of rules in mcstp. Let f be a rule.

Separability (SEP) For all mcstp (N0, C) and all S ⊂ N satisfying m (N0, C) =

m (S0, C) +m ((N\S)0 , C), we have

fi (N0, C) =

{
fi (S0, C) if i ∈ S

fi ((N\S)0 , C) if i ∈ N\S.

Equal Sharing of Extra Costs (ESEC) Let (N0, C) and (N0, C
′) be two mcstp.

Let c0, c
′
0 ≥ 0. Assuming c0i = c0 and c′0i = c0 for all i ∈ N , c0 < c′0, and

cij = c′ij ≤ c0 for all i, j ∈ N , we have

fi (N0, C
′) = fi (N0, C) +

c′0 − c0
|N |

for all i ∈ N.

Continuity (CON) For all N , f is a continuous function on CN .

Independence of Irrelevant Trees (IIT) Let (N0, C) and (N0, C
′) be two mcstp.

Assuming t be a mt in both (N0, C) and (N0, C
′), and cij = c′ij for all (i, j) ∈ t,

we have

f (N0, C) = f (N0, C
′) .

Bergantiños and Vidal-Puga (2007) prove that ϕ satisfies SEP, ESEC, CON, and

IIT. We will use this result throughout the proof.

Let π be any order of the arcs in N0, C a cost matrix, and tπ = {(i0, i)}i∈N the

mt in (N0, C) obtained through Boruvka’s algorithm. We will prove that βπ (N0, C) =

ϕ (N0, C).

We proceed by induction on the number of agents. For |N | = 1, the result is clear.

Assume that the result holds for less than |N | agents. We now prove it for |N | agents.

We first prove that it is enough to prove that the result holds for matrices in DN ,

the set of matrices where all costs are different.

Lemma 1. Given an order π, if βπ (N0, C) = ϕ (N0, C) for all C ∈ DN , then

βπ (N0, C) = ϕ (N0, C) for all C ∈ CN .

Proof of Lemma 1. Notice that DN is a dense subset of CN . Let C ∈ CN\DN and

tπ the tree obtained through Boruvka’s algorithm. We can find a sequence of matrices

{Cm}∞m=1 such that

15



1. Cm ∈ DN for all m,

2. tπ is an mt in Cm for all m,

3. if cii′ = cjj′ and π (i, i′) < π (j, j′), then cmii′ < cmjj′ for all m, and

4. Cm approaches C as m increases.

Under conditions 2 and 3 when we compute βπ (N0, C) and βπ (N0, C
m) , we have

that for any m: γ (N0, C) = γ (N0, C
m) ; as,πi (N0, C) = as,πi (N0, C

m) for any i ∈ N

and any s = 0, ..., γ (N0, C) ; p
s,π (N0, C) = ps,π (N0, C

m) for any s = 0, ..., γ (N0, C) ;

̺s,πij (N0, C) = ̺s,πij (N0, C
m) for any (i, j) ∈ tπ and any s = 0, ..., γ (N0, C) ; and

As,π (N0, C) = As,π (N0, C
m) for any s = 0, ..., γ (N0, C) .

Let i ∈ N. Thus, for each m

βπi (N0, C
m) =

γ(N0,Cm)∑

s=1

ps (N0, C
m) cmasi (N0,Cm)

=

γ(N0,C)∑

s=1

ps (N0, C) c
m
asi (N0,C)

.

Now,

lim
m→∞

βπi (N0, C
m) =

γ(N0,C)∑

s=1

ps (N0, C) casi (N0,C) = βπi (N0, C) .

Since (N0, C
m) ∈ DN , βπi (N0, C

m) = ϕi (N0, C
m) . Since ϕ satisfies CON,

lim
m→∞

βπi (N0, C
m) = lim

m→∞
ϕi (N0, C

m) = ϕi (N0, C) . �

Hence, we prove the result assuming that C ∈ DN . Then, tπ = tπ
′

and βπ (N0, C) =

βπ
′

(N0, C) for any pair of orders π and π′. Thus, it is enough to prove that βπ (N0, C) =

ϕ (N0, C) for some order π.

Let π be an order and t = tπ. Let N0 = {i ∈ N : i0 = 0} and (j0, j) the most

expensive arc in t. We consider several cases:

Case 1. |N0| ≥ 2. For any i ∈ N0, let F i be the set of agents j ∈ N such that (0, i)

is in the unique path in t from j to 0. Then, {F i}i∈N0 is a partition of N satisfying

that
∑

i∈N0

m (F i
0, C) = m (N0, C) and tF i

0

is a tree in (F i
0, C) for all i ∈ N0.

Since ϕ satisfies SEP , for all i ∈ N0 and k ∈ F i, we have ϕk (N0, C) = ϕk (F
i
0, C).

We just need to prove βπk (N0, C) = βπk (F
i
0, C) for all i ∈ N0 and k ∈ F i and apply the

induction hypothesis.
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We need to prove that for each i ∈ N0, the cost of the arcs in tF i
0
is paid only by

the agents in F i. Suppose not. Then, there exist i ∈ N0 and k ∈ F i such that k selects

in step s+1 an arc as+1k =
(
iT , jT

)
∈ t\tF i

0
for some T ∈ P

(
N0, A

s)
with k ∈ T . Let s

be the first stage in which we can find such i ∈ N0 and k ∈ F i. Thus, as+1l =
(
iT , jT

)

for all l ∈ T . Since
(
iT , jT

)
/∈ tF i

0

, we deduce that the arcs in tT0 have been paid in

Step s, namely, tT0 ⊂ A
s
. By definition, all agents in T are connected through arcs

in t. Thus, tT0 is a tree in T0. Since in tT0 there are exactly |T | arcs, the cost of the

arcs in tT0 is paid only by agents in T (s is the first stage in which an agent k ∈ F i is

paying an arc outside tF i
0

), and each agent pays the same proportion pr at each step r,

we deduce that
s∑

r=1

pr = 1. This means that the procedure is already finished in Step

s. Hence, there is no Step s + 1, which is a contradiction. �

Case 2. |N0| = 1 and j0 �= 0 (the most expensive arc does not connect to the

source). Let F be the set of agents i ∈ N such that arc (j0, j) is in the unique path in

t from i to 0. Let F = N \F . Notice that F �= ∅ and F �= ∅ because j ∈ F and j0 ∈ F .

We first prove that agents in F only pay the cost of the arcs in tF0 . Suppose not.

Then, there exists k ∈ F such that as+1k = (j0, j) for some step s. Let s be the first

stage where this happens. Let T ∈ P
(
N0, A

s)
with k ∈ T . Thus, as+1i = (j0, j) for

all i ∈ T . Since cj0j > cii′ for all (i, i
′) ∈ tF 0 and tF 0 is a tree in F 0, we deduce that

T = F and tF0 ⊂ A
s
. Since there are exactly

∣∣F
∣∣ arcs in tF 0 , and all the agents pay

the same proportion pr at each Step r, we deduce that
s∑

r=1

pr = 1. This means that

the procedure is already finished in Step s. Hence, there is no Step s + 1, which is a

contradiction.

Similarly, we can prove that agents in F only pay the cost of arcs in tF∪{j0}.

Take the matrix C ′ ∈ DN defined as c′0j = cj0j , c
′
j0j = c0j, and c′il = cil otherwise.

It is clear, following the above reasoning, that βπ (N0, C) = βπ (N0, C
′).

Since t is the unique mt in (N0, C) , t
′ = (t\ {(j0, j)}) ∪ {(0, j)} is the unique mt

in (N0, C
′). Thus, C ′ is in Case 1. Hence, βπ (N0, C

′) = ϕ (N0, C
′).

Take now the matrix C ′′ ∈ CN defined as c′′0j = cj0j and c′′il = cil otherwise. It is

straightforward to check that both t and t′ are mt in C ′′. Since ϕ satisfies IIT ,

ϕ (N0, C
′) = ϕ (N0, C

′′) = ϕ (N0, C) . �

Case 3. |N0| = 1 and j0 = 0. Let (k0, k) ∈ t\ {(0, j)} be the most expensive arc

in t\ {(0, j)}. Under our hypothesis, k0 �= 0.

We define a new matrix C ′ ∈ CN from C by reducing the cost of the arcs in

{(0, i)}i∈N to the same cost as arc (k0, k). Namely, for each i, l ∈ N , c′0i = ck0k, and

c′il = cil. Of course C ′ /∈ DN .
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We consider an order π such that for each i, i′, i′′ ∈ N, π (i′, i′′) < π (0, i) . Namely,

the arcs {(0, i)}i∈N are the last according with π. Moreover, π (0, j) < π (0, k) < π (0, i)

for all i ∈ N\ {j, k} .

We now proceed by a series of claims:

Claim 1: βπi (N0, C) = βπi (N0, C
′) +

c0j−ck0k
|N |

for all i ∈ N .

Proof of Claim 1. When computing βπi (N0, C) and βπi (N0, C
′) , we realize:

• tπ (N0, C
′) = tπ (N0, C) = t.

• Both procedures coincide until step γ−1 where all the arcs in t\ {(0, j)} are com-

pletely paid in both procedures and (0, j) is not paid at all. Namely, A
γ−1,π

(N0, C) =

A
γ−1,π

(N0, C
′) = t\ {(0, j)} and ̺γ−1,π0j (N0, C) = ̺γ−1,π0j (N0, C) = 0.

Thus, f s,πi (N0, C) = f s,πi (N0, C
′) for all i ∈ N and all s = 1, ..., γ − 1.

• In Step γ, all the players choose arc (0, j) . Namely, as,πi (N0, C) = as,πi (N0, C
′) =

(0, j) for all i ∈ N. Hence, the cost of arc (0, j) is shared equally among all agents.

Namely, pγ = 1
|N |

.

Thus, for all i ∈ N, fγ,πi (N0, C) =
c0j
|N |

and fγ,πi (N0, C) =
c′
0j

|N |
.

• γ (N0, C) = γ (N0, C
′) = γ.

• Now, for all i ∈ N ,

βπi (N0, C)− βπi (N0, C
′) =

γπ(N0,C)∑

s=1

fs,πi (N0, C)−

γπ(N0,C′)∑

s=1

f s,πi (N0, C
′)

=
c0j
|N |

−
c′0j
|N |

=
c0j − ck0k
|N |

. �

We consider an order π′ such that for each i, i′, i′′ ∈ N, π′ (0, i) < π′ (i′, i′′) . Namely,

the arcs {(0, i)}i∈N are the first according with π′. Moreover, π′ (0, j) < π′ (0, k) <

π′ (0, i) for all i ∈ N\ {j, k} .

Claim 2. βπ (N0, C
′) = βπ

′

(N0, C
′) .

Proof of Claim 2. Since themcstp is the same we omit (N0, C
′) from the notation.

Let G be the set of agents i ∈ N such that arc (k0, k) is in the unique path in t

from i to 0. Let G = N \G. Notice that G �= ∅ and G �= ∅ because k ∈ G and k0 ∈ G.

We prove that βπi = βπ
′

i for all i ∈ G. The case i ∈ G can be proved in a similar

way and we omit it.

We know that tπ = t. Because of the definition of βπ there exist r1 and r2 such that

18



1. From Step 1 to Step r1 agents in G select arcs in tG, namely as,πi ∈ tG for all

s = 1, ..., r1 and all i ∈ G.

All arcs in tG have been paid completely in Step r1, namely tG ⊂ A
r1,π

.

2. From Step r1+1 to Step r2 all agents in G select arc (k0, k) , namely asi = (k0, k)

for all s = r1 + 1, ..., r2 and all i ∈ N.

All arcs in tG ∪ {(k0, k)} have been paid completely in Step r2, namely tG ∪

{(k0, k)} ⊂ A
r2,π

.

3. Hence, as,πi = (0, j) for all i ∈ N and γπ = r2 + 1.

It is easy to see that tπ
′

= (t\ {(k0, k)})∪{(0, k)} . Because of the definition of βπ
′

,

1. From Step 1 to Step r1 agents in G select arcs in tG, namely as,π
′

i ∈ tG for all

s = 1, ..., r1 and all i ∈ G.

Moreover, as,π
′

i = as,πi and ps,π = ps,π
′

for all s = 1, ..., r1 and all i ∈ G.

All arcs in tG have been paid completely in Step r1, namely tG ⊂ A
r1,π

.

2. From Step r1 + 1 to Step γπ
′

all agents in G select arc (0, k) , namely asi = (0, k)

for all s = r1 + 1, ..., γπ
′

and all i ∈ N.

Let i ∈ G. Then,

βπi =
r1∑

s=1

ps,πc′as,πi
+

r2∑

s=r1+1

ps,πc′as,πi
+ pγ

π,πc′
a
γπ,π
i

=
r1∑

s=1

ps,πcas,πi +

(

1−
r1∑

s=1

ps,π

)

ck0k.

Moreover,

βπ
′

i =
r1∑

s=1

ps,π
′

c′
a
s,π′

i

+

γπ
′

∑

s=r1+1

ps,π
′

c′
a
s,π′

i

=
r1∑

s=1

ps,πcas,πi +

(

1−
r1∑

s=1

ps,π

)

ck0k. �

Claim 3. βπ
′

(N0, C
′) = ϕ (N0, C

′) .

Proof of Claim 3. The proof is analogous to the proof of Case 1 and hence we

omit it. �
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Claim 4: ϕi (N0, C) = ϕi (N0, C
′) +

c0j−ck0k
|N |

for all i ∈ N .

Proof of Claim 4. Let C ′′ ∈ CN defined as c′′0i = c0j and c′′il = cil for all i, l ∈ N .

Since ϕ satisfies ESEC, or all i ∈ N,

ϕi (N0, C
′′) = ϕi (N0, C

′) +
c0j − ck0k
|N |

Since t is anmt in (N0, C
′′) and (N0, C) and ϕ satisfies IIT , ϕ (N0, C

′′) = ϕ (N0, C).

�

We now prove that βπ (N0, C) = ϕ (N0, C) in Case 3. For all i ∈ N

βπi (N0, C)
Claim 1
= βπi (N0, C

′) +
c0j − ck0k
|N |

Claim 2
= βπ

′

i (N0, C
′) +

c0j − ck0k
|N |

Claim 3
= ϕi (N0, C

′) +
c0j − ck0k
|N |

Claim 4
= ϕi (N0, C) .
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