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Abstract

It has been recently emphasized that, if individuals have heterogeneous dynamics, estimates

of shock persistence based on aggregate data are significatively higher than those derived

from its disaggregate counterpart. However, a careful examination of the implications of this

statement on the various tools routinely employed to measure persistence is missing in the

literature.

This paper formally examines this issue. We consider a disaggregate linear model with

heterogeneous dynamics and compare the values of several measures of persistence across ag-

gregation levels. Interestingly, we show that the average persistence of aggregate shocks, as

measured by the impulse response function (IRF) of the aggregate model or by the average of

the individual IRFs, is identical on all horizons. This result remains true even in situations

where the units are (short-memory) stationary but the aggregate process is long-memory or

even nonstationary. In contrast, other popular persistence measures, such as the sum of the

autoregressive coefficients or the largest autoregressive root, tend to be higher the higher the

aggregation level. We argue, however, that this should be seen more as an undesirable property

of these measures than as evidence of different average persistence across aggregation levels.

The results are illustrated in an application using U.S. inflation data.
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1. INTRODUCTION

In this paper we are interested in the measurement of the persistence of economic shocks

across different aggregation levels in a context where the underlying processes are allowed

to have heterogeneous dynamics. By persistence, we refer to the speed and pattern of

adjustment of the process (or processes) of interest to economic shocks of different natures.

Heterogeneous dynamics at the individual level have been found to be important in a

wide variety of contexts, such as in the speed of reversion of real exchange rates (Imbs et

al., 2005 and Crucini and Shintani, 2008) and of income shocks (Hu and Ng, 2004), in the

dynamics of saving behavior (Haque et al., 2000), in inflation dynamics (Altissimo et al.,

2006a and the references therein), in labor demand across firms (Zhang and Small, 2006),

etc. In fact, one could argue that the existence of some degree of heterogeneity across

individuals is likely to be the rule rather than the exception in most contexts.

A recent strand of literature has pointed out that, if the underlying DGP is a dynamic

model with heterogeneous coefficients, estimates of shock persistence based on aggregate

data are significatively higher than those derived from averaging the corresponding persis-

tence measures computed with disaggregate data. Two explanations have been provided

to account for this phenomenon. On the one hand, building on the results of Pesaran and

Smith (1995), it has been argued that estimates computed with aggregate data are biased

and that the sign of the bias is positive (see Imbs et al., 2005). On the other, influenced by

the results in Robinson (1978) and Granger (1980), some authors have suggested that the

aggregation of heterogeneous dynamic processes is not an innocuous operation and that it

may tend to increase overall shock response (see Altissimo et al., 2009 among others).

Several empirical studies corroborate these arguments by finding estimates of persistence

that vary considerably across aggregation levels and are, in general, higher, the higher

the level of aggregation (see Imbs et al., 2005, Altissimo et al., 2009, 2006b, Clark, 2006,

Lünnemann and Mathä, 2004, etc). In contrast, some authors have reported very similar

persistence values across aggregation levels in highly heterogeneous datasets (Crucini and

Shintani, 2008, Gadea and Mayoral, 2009). The conclusions of these articles are typically

drawn by comparing averages of individual persistence measures with their corresponding
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values computed with aggregate data. However, different papers employ different tools

to measure persistence and therefore, it is not clear whether these findings are related to

specific properties of the considered data or whether the use of a particular persistence

measure can systematically bias the conclusions towards a specific direction.

This paper examines the relationship among measures of persistence of aggregate shocks

computed at different levels of aggregation. We consider a model with a large number of

individual processes that may have heterogeneous dynamics, the dynamic random coeffi-

cients model, and we use the most widely employed measures to establish the comparisons,

namely, the impulse response function and other popular scalar measures such as the sum

of the autoregressive coefficients, the largest autoregressive root, the half-life, etc.

Our results demonstrate that not all the measures routinely employed in applications

to establish persistence comparisons fair equally well. We show that the response to an

aggregate shock, as measured by the impulse response function (IRF) of the aggregate

model or by the average of the individual IRFs, is the same on all horizons with or without

individual dynamic heterogeneity. This implies that, according to the IRF, the aggregation

of heterogeneous units does not magnify the average response to a shock and that one

could use averages of individual IRFs (and its related scalar measures) to calibrate macro

phenomena.

This conclusion is not in contradiction with previous studies that have shown that the

stochastic properties of the aggregate process can differ from those of the individual units

under heterogeneity. Thus, as is well known, the aggregation of heterogeneous (short-

memory) stationary processes can give rise to an aggregate variable that presents long

memory or is even nonstationary (see Robinson, 1978, Granger, 1980 and Zaffaroni, 2004

for a complete characterization of this phenomenon).1 However, it is shown that the above-

described relationship between the disaggregate and aggregate IRF still holds in these set-

ups, implying a similar average shock response across aggregation levels even when the

aggregate process is long memory or nonstationary.

This apparent contradiction highlights the fact that there is no consensus in the literature

as to the definition of persistence. This paper emphasizes that, if by persistence one refers

1An stationary process is short (long)-memory if its autocorrelation function is (is not) summable.
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to the evolution of the response to shocks as described by the IRF, then the existence

of individual heterogeneity does not magnify the average response to a shock when more

aggregated data is considered. Given the empirical relevance of the IRF as a tool to track

the evolution of economic shocks, this distinction can be very important in applications.

In contrast, other popular persistence measures, such as the sum of the autoregressive

coefficients (SAC), are not invariant to aggregation when individual heterogeneity is allowed

for, being typically larger, the higher the level of aggregation. However, we argue that this

should be interpreted more as an undesirable property of these measures, rather than as a

sign of different average persistence across aggregation levels. The reason is the following:

the SAC was introduced as a summary of the IRF because it has a direct relation with the

cumulative impulse response (CIR), namely, SAC=1-CIR−1 (Andrews and Chen, 1994).

Typically, when applied to disaggregate data, the SAC is computed for each of the micro-

units and its average is used as a measure of micro-persistence. Then, this value is compared

to the SAC obtained with aggregate data. However, since the relation between the CIR

and the SAC is not linear, the average SAC has not a direct connection with the average

CIR. We show that, while the average CIR remains constant across aggregation levels,

a straightforward application of Jensen’s inequality ensures that the average SAC tends

to increase systematically with the level of aggregation. Thus, by relying on the latter

measure, one could conclude that the average response to a shock increases with the level of

aggregation when, in fact, a more thorough analysis of the IRF would suggest the opposite.

Similar problems appear when other tools, such as the largest autoregressive root (LAR),

are employed for these purposes.

The previous results have some important implications on macroeconomic modelling.

Some authors have warned against the practice of using averages of microparameters to

calibrate macro models (Altissimo et al., 2009). Our findings qualify this statement by

showing that the adequacy of this procedure entirely depends on the type of microparameter

employed. Thus, averages of individual IRFs can be used in macro calibration independently

of whether there is heterogeneity or not at the individual level or whether the aggregate

process is long memory or nonstationary while the individual units are stationary. However,

as mentioned above, this conclusion cannot be extended to other popular parameters.
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The findings detailed above are true for the population. We have further explored whether

good sample counterparts of the relevant aggregate and disaggregate persistence measures

can be obtained. Two issues have been analyzed. Firstly, to derive the above-described

results, it has been assumed that the aggregate process equals the expected value of the

individual models. However, aggregate data is usually computed as a (possibly weighted)

average of the individual data. We review the conditions that are needed for the holding of

a Law of Large numbers relating the sample mean and the expected value of the individual

relations. Secondly, it has been argued that under individual dynamic heterogeneity it

can be difficult to obtain good estimates of the aggregate model because it usually has a

very complicated dynamic structure (Pesaran and Smith, 1995). We show that standard

estimation methods allow one to obtain estimates of the IRF computed with aggregate data

with good large and finite sample properties. Interestingly, we show that in situations where

persistence is high, the finite sample properties of aggregate estimates can improve, rather

than deteriorate, as the degree of individual heterogeneity increases. Another important

implication of our theoretical results is that not only aggregate but also disaggregate data

can be employed to obtain estimates of the aggregate IRF. Moreover, it is shown that the

use of the latter type of data can bring about important efficiency gains.

Finally, to illustrate the theoretical results, U.S. inflation data at different levels of aggre-

gation has been analyzed and it has been shown that the IRF remains fairly constant across

them. Furthermore, we find that other measures, such as the SAR, systematically increase

with the level of aggregation, as reported in previous studies. Thus, by focusing only on the

latter set of measures, one can easily conclude that the effect of aggregate shocks changes

across aggregation levels when, in fact, a careful examination of the IRF would suggest the

opposite.

The structure of this paper is as follows. Section 2 presents a simple model for the

individual data, the dynamic random coefficients model (RCM), and defines some tools for

measuring the average impact of an aggregate shock on the economy. Section 3 compares

the measures of average micro-persistence derived in Section 2 with those obtained from

the corresponding aggregate model. Section 4 considers aspects that are important for the

empirical application of the results derived in Section 3, such as the holding of a Law of
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Large Numbers that relates the aggregate model (obtained as the expected value of the

micro-relations) with real data (defined as a weighted sum of individual variables), as well

as a discussion of the asymptotic and finite sample properties of the estimators of the IRF

under heterogeneity. Section 5 extends the results obtained in previous sections in several

directions. Section 6 presents an empirical illustration that analyzes the persistence of U.S.

inflation data at different levels of aggregation and Section 7 concludes.

2. HETEROGENEITY AND PERSISTENCE AT THE MICRO-LEVEL

Consider the problem of assessing the impact of an aggregate shock when micro data is

available and the different units can be heterogeneous. This section presents a standard

univariate disaggregate model and reviews some measures of shock persistence that can be

employed, or have been employed in the past, for analyzing this issue. Section 3 applies

similar measures to the aggregate model and compares the two sets of results, while Section

5 extends the analysis to the multivariate setting.

A simple but commonly postulated model for microeconomic behavior that allows for

heterogeneous dynamics is the Random Coefficients Model.2 It describes an economy in

which each unit i satisfies a linear regression with a Koyck lag given by:

yit = aiyit−1 + b′ixit + νit, i = 1, ..., N, t = 1, ...T, (1)

νit = ρiut + εit, (2)

where t denotes time, yit and xit are observable variables and ai = ā+ ηai , bi = b̄+ ηbi , ρi =

1+ηρi are unknown coefficients, where ηk, for k ∈ {a, b, ρ}, are mutually independent, zero-
mean random variables with variance σ2k. The innovation νit is the sum of two orthogonal,

zero-mean martingale difference sequences, one common to all agents and one idiosyncratic,

with variances σ2u > 0 and σ2ε, respectively. The distribution of a has bounded support in the

interval (-1,1] and it is assumed that EI
(
ah
)
exists for all h, where EI (.) denotes expectation

across the distribution of individuals.3 The process xit is assumed to be independent of ut
2See Hsiao and Pesaran (2007) for a recent survey and Pesaran et al. (2002) and Pesaran (2006) for

details on the estimation of this model.
3A sufficient, although not necessary, condition for this assumption to hold for all h is that the support

of a is strictly contained in the interval [-1,1].
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and the expectation EI (b
′xt) is assumed to exist. If xit is just a constant, then (1) is

simply the first-order autoregressive model. The distribution of agents can be discrete or

continuous and the number of agents is assumed to be countably or uncountably infinite.

Suppose now that, at time t, a unitary aggregate shock occurs and one is interested in

measuring its average impact over time on a system like (1), populated by heterogeneous

individuals. For each unit i, the impact of this shock can be evaluated through the IRF,

defined as the difference between two forecasts (see Koops et al., 1996)

IRF i(t, h) = E (yit+h|ut = 1; zit−1)−E (yit+h|ut = 0; zit−1) (3)

where the operator E(.|.) denotes the best mean squared error predictor and

zit−1 =
(

yit−1, yit−2, ... xit−1, xit−2...
)′
. Application of this definition to (1) yields

IRF i(t, h) = ρia
h
i , for h ≥ 0. (4)

The average response to this aggregate shock can be computed as the expected value of

(4) over the distribution of units, that we denote as disaggregate IRF (IRFdis), given by

IRFdis (t, h) = EI (IRF (t, h)) = EI
(
ah
)
, for h ≥ 0, (5)

since EI (ρ) has been normalized to 1. For the simple DGP considered in this section,

IRFdis is given by the h-th moment of the distribution of a.

Since the IRF is an infinite vector of numbers, it is a rather unwieldy measure of per-

sistence. For this reason, scalar measures are frequently preferred, such as the Cumulated

Impulse Response (CIR), which evaluates the total cumulative effect of a shock over time,

and the half life (HL), defined as the number of periods it takes until half the effect of

a shock dissipates. Using expression (5), it is straightforward to define the corresponding

versions of these measures at the micro level. The average cumulative response (denoted as

CIRdis) can be computed as

CIRdis =
∞∑

h=0

IRFdis (t, h) , (6)

which, for the simple model considered in this section, yields CIRdis = EI

(
1
1−a

)
. As for
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the disaggregate HL (HLdis) , it can be defined as the value of h that verifies4

IRFdis (t, h)|h=HLdis = 0.5. (7)

In many applications average shock persistence is evaluated using the sum of the autore-

gressive coefficients (SAC) and the largest autoregressive root. Typically, they are computed

for each individual time series and, then, averages (or distribution quantiles) are reported

as measures of average micro persistence; See Altissimo et al. (2006a), Bilke (2005), Clark

(2006), Lünnemann and Mathä (2004), etc.

Finally, other authors have employed an alternative definition of ‘disaggregate’ IRF to the

one presented in this section to draw their conclusions about persistence. This is the case

of Imbs et al. (2005), who first construct an ‘artificial’ representative agent model, y∗t , that

has the same autoregressive structure as the units yit but whose AR coefficients are given

by the average of the individual-specific coefficients. Then, they compute the ‘disaggregate’

IRF by applying the standard definition of the IRF in (3) on y∗t .

In the following section we assess the performance of the above-defined measures of per-

sistence when used to compare persistence across aggregation levels.

3. INDIVIDUAL HETEROGENEITY AND PERSISTENCE AT THE

MACRO LEVEL

This section compares the response to the same aggregate shock over time when it is com-

puted from the micro model (1) or from its corresponding aggregate process. To establish

the relation, we first focus on the IRF and, then, the behavior of other popular persistence

measures is also examined. For the sake of clarity, this section deals with a very simple

model. Section 5 will extend the present analysis by relaxing some of the assumptions that

will be imposed below.

How is the IRF computed from aggregate data related to the average of the individual

impulse responses defined in Section 2? In a representative agent economy, the answer is

trivial. This is because the individual and the aggregate models share the same dynamics

4Notice that, since the HL is a nonlinear function of the IRF, the average of the individual HLs does not

coincide, in general, with the HL associated with IRFdis defined in (7) .
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so the IRFs derived from each model are also the same. When the individuals are hetero-

geneous, however, the dynamics of the aggregate process are generally different from those

of the individual units. If all the micro-units are stationary and there is a finite number of

them, it is still easy to derive the relationship between the two sets of IRFs.

Consider the simplest case: let y1t and y2t be defined as in (1) and (2) , and let Yt =

(y1t + y2t)/2 be the aggregate process. If yit, for i = {1, 2}, is weakly stationary (assuming

that bi = 0 for simplicity), then

y1t = ρ1ut + a1ρ1ut−1 + a21ρ1ut−2...+ ǫ1t, (8)

y2t = ρ2ut + a2ρ2ut−1 + a22ρ2ut−1...+ ǫ2t, (9)

and

Yt =

(
(ρ1 + ρ2)ut + (a1ρ1 + a2ρ2)ut−1 + (a

2
1ρ1 + a22ρ2)ut−2...+ ǫ1t + ǫ2t

)

2
, (10)

where ǫit =
∑
∞

j=0 a
j
iεit−j, i = {1, 2}. Since the IRF to a unitary change of ut is given by

the coefficients of u in the expressions above, it is clear that the IRF of Yt is given by the

average of the individual impulse responses. Thus, if consistent estimators are employed,

the limit of the IRF estimated with aggregate data and that of the average of the micro

IRFs should be the same since they are estimates of the same population quantity.

The former derivation has important limitations since it relies heavily on the existence

of the MA(∞) representation of the micro-units and of the aggregate process. Thus, if

some of the processes at the disaggregate level contain a unit root, it could not be applied.

Furthermore, if the number of individual processes is allowed to go to infinity, the existence

of the MA(∞) representation of the aggregate process is not guaranteed, even when all

the micro units are weakly stationary (see Granger, 1980). For the sake of generality, in

the following we consider the AR representation instead, since it does not present these

problems. The calculations, however, are not so straight forward as when the MA one is

employed.

We now analyze the relation between the aggregate and individual IRFs in the more

general case where there is an infinite number of individual processes that can be stationary

or not. Before computing the aggregate IRF, it is first necessary to consider the aggregation

of model (1) in these circumstances. This problem has been addressed by Lewbel (1994),
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who followed the“stochastic” approach to aggregation introduced by Kelejian (1980) and

formalized by Stoker (1984). The latter author defines an aggregate function as the expected

value over the distribution of agents of the micro relations (see Stoker, 1984, Definition 2)

Yt = EI (yt) =

∫
ytP (yt|θt)dyt, (11)

where θ (t) is a parameter vector that could vary over time but not across individuals and

EI (.) gives the time path of the dependent variable mean.

To apply the results in Lewbel (1994), we further assume that B = EI (b) , Xt = EI (xt) ,

and EI (νt) = ut exist. For simplicity, we also consider that the variables b and x are

uncorrelated for all t, and that a is independent of the distribution of (b′x + ν). Some of

these conditions can be easily relaxed without any change in the main result, as will be

shown in Section 5. So,

Yt = EI (ayt−1) +B′X + ut, (12)

where Yt = EI(yt). Lewbel (1994) showed that, under the above-mentioned assumptions,

expression (12) can be written as

Yt =
∞∑

s=1

AsYt−s +B′Xt + ut, (13)

for constants A1, A2, ..., defined as As = E (αs), where α1 = a and αs = (αs−1 −As−1) a

for s > 1.

These constants can be easily shown to satisfy the equation

As = ms −
s−1∑

r=1

ms−rAr. (14)

Thus, model (13) can be employed to evaluate how the aggregate variable Yt responds to

changes in the aggregate shock, ut.

3.1 Comparing aggregate versus disaggregate response

As in Section 2, we consider a unitary common shock occurring at time t and now we

are interested in its effect on the aggregate variable Yt+h, for h ≥ 1. The (aggregate) IRF
(denoted henceforth as IRFAG) can be easily computed as

IRFAG(t, h) = E (Yt+h|ut = 1;Zt−1)−E (Yt+h|ut = 0;Zt−1) , (15)
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where Zt−1 = (Yt−1, Yt−2, ... , Xt−1, Xt−2, ...). Application of this definition to (13) yields

IRFAG (t, h) =





IRFAG (t, 0) = 1,
∑h
j=1AjIRFAG (h− j) , if h ≥ 1.

(16)

Although this expression seems complex, it can, in fact, be notably simplified. Notice that

equation (14) can be rewritten as ms =
∑s−1
r=0mrAs−r and, iterating the latter expression,

it is straightforward to show that5

IRFAG (t, 1) = m1 = EI (a) = IRFdis (t, 1)

IRFAG (t, 2) = m2 = EI
(
a2
)
= IRFdis (t, 2)

...

IRFAG(t, h) = mh = EI
(
ah
)
= IRFdis (t, h) . (17)

Thus, there is a direct link between the micro and the aggregate response to a common

shock: the IRF computed in the aggregate model is just the expected value of the individ-

ual IRFs and, as will be shown in the next section, this is also true under less stringent

assumptions than the ones imposed above. This result is very interesting because it implies

that the aggregation of heterogeneous processes does not amplify the average response to

a given shock. It also implies that, if the aggregate process is highly persistent, it is not

so only because the micro-units are heterogeneous but because, on average, they are highly

persistent too. Another interesting consequence is that in order to obtain estimates of the

standard (aggregate) IRF not only aggregate but also disaggregate data can be employed

and, as will be shown in Section 4, the use of the latter type of data can bring about

important efficiency gains.

The result above does not imply that other key properties of the micro processes are

invariant to aggregation. As is well known, the aggregation of short-memory stationary

processes may induce long memory or nonstationary behavior in the aggregate variable (see

Section 4 for details). Similarly, if some of the individual processes are I(1) while the others

are strictly stationary, the aggregate will also be an I(1) process. Nevertheless, even in this

5A related and independently developed result has recently been put forward by Caballero and Engel

(2007). They consider a model of infrequent price adjustment at the disaggregate level and show that the

response to a monetary shock is the same at the micro and at the macro level.
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case, the above-described relationship among IRFs across different aggregation levels still

applies.

To illustrate this argument, consider again model (1) under the assumptions of Sections

2 and 3, with a having support in the interval (0, 1) . Clearly, since ai < 1 for all i, all

individual processes are (short-memory) stationary. Thus, they admit aWold representation

(for simplicity, we assume that bi = 0 for all i)

yit = νit + aiνit−1 + a2i νit−2 + ..., i = 1, ...,N, t = 1, ...T. (18)

The aggregate process Yt = EI (yt) could be computed by taking expectations in (18),

provided the expected value of the right-hand side yields a well-defined MA representation.

This will happen as long as the resulting MA coefficients are square-summable, that is, if
∑
∞

j=0EI
(
aj
)2

< ∞. As shown by Zaffaroni (2004), the holding of this condition crucially

depends on the behavior of the distribution of a in a neighborhood of 1, as will be explained

in more detail in Section 4. Consider, for instance, that a follows a Beta(p, q) distribution

in the interval (0,1). The moments of a are given by

mj = E
(
aj
)
=

B (p+ j/2, q)

B (p, q)
,

where p, q > 0 are the parameters of the distribution and B (p, q) is the Beta function. It

holds, for large j, that

mj ≈ (p+ j/2)−q . (19)

Clearly, for values of q smaller than 0.5, the sequence {mj}∞j=0 is not square-summable,
implying that the MA representation of Yt is not mean-square convergent and, so, Yt is not

covariance-stationary. Notice, however, that the AR expansion described in (12) exists and

is well defined, since A (L)Yt is a mean-square convergent random variable. If 0.5 < q < 1,

Yt is stationary and the k-th autocorrelation can be approximated by ρk ≈ ck1−2q. Then,

if q ∈ (0.5, 1) the correlations are not summable and Yt is a long memory process.6 Notice,

however, that the aggregate IRF derived from Yt would equal the average of the micro IRFs

derived from the stationary processes, since all the conditions needed for obtaining (17) are

fulfilled.
6More specifically, Yt could be approximated by a fractionally-integrated proces with order of integration

d = (1− q). See Granger (1980) and Zaffaroni (2004) for details.
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3.2 Other measures of persistence

We now examine how the remaining measures of persistence mentioned in Section 2

perform in this framework.

The aggregate versions of the CIR and the HL are defined as

CIRAG =
∞∑

h=0

IRFAG (t, h) ,

and

IRFAG (t, h)|h=HLAG = 0.5,

respectively. Clearly, the equality between the IRFAG and the IRFdis, established in (17),

implies that the CIR and the HL also present the same population values across aggregation

levels.

Many empirical papers focus on the sum of autoregressive coefficients for comparing shock

response across aggregation levels. In these articles, the SAC computed with aggregate

data (denoted henceforth as SACAG) is compared with the average of the individual SACs

(SACdis). This measure was originally introduced by Andrews and Chen (1994) because it

has a direct relation with the CIR through the expression

SAC = 1−CIR−1, (20)

and so, “different values of the SAC can be interpreted easily in terms of persistence because

they correspond straightforwardly to different values of the CIR” (Andrews and Chen, 1994).

However, although this relation holds when a single series is employed, it is clear that

relation (20) no longer holds when the SAC and the CIR are replaced by the corresponding

averages. In fact, although the CIR remains constant across aggregation levels, the SAC

increases systematically with the level of aggregation. To see this, notice that, for the simple

model described in (1), CIRdis is given by CIRdis = 1 +EI (a) + EI
(
a2
)
+ ... = EI

(
1
1−a

)

and recall that CIRdis = CIRAG. Since
1
1−a is a convex function, Jensen’s inequality implies

that

SACAG = 1−
(
EI

(
1

1− a

))
−1

> 1−
(

1

1−EI (a)

)
−1

= EI (a) = SACdis, (21)
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so the aggregate SAC is bigger than the average of the individual SACs unless there is no

heterogeneity, in which case both measures are equal. Notice, however, that this result does

not imply that average persistence increases with the level of aggregation: it only implies

that under individual heterogeneity, SACdis is a poor summary of CIRdis, and therefore, is

not a suitable tool for establishing persistence comparisons.

The inequality in (21) can be illustrated with a simple example. Consider, again, a

collection of individuals behaving as in (1) (with bi = 0, for all i for simplicity) with a

heterogenous autoregressive parameter, a, that follows a U(0,1) distribution. Thus, the

(population) value of the average of the individual SACs, SACdis, is equal to 0.5. With

respect to CIRdis, the moments of the uniform distribution, given by E
(
ah
)
= (h+ 1)−1,

are not summable and so CIRdis =
∑
∞

h=0E
(
ah
)
=∞.

As for the corresponding aggregate values, notice that, in this case, Yt can be obtained

by taking expectations in (18) since the aggregate MA(∞) representation is well defined.7

Bearing in mind that A (z) = M (z)−1 for all z, where M(z) =
∑
∞

j=0E
(
aj
)
zj , it follows

that, in particular, A (1) =M (1)−1 =
(∑

∞

h=0E
(
ah
))−1

= 0. Thus, SACAG = 1−A (1) = 1.

Finally, it is easy to check that CIRAG = CIRdis = ∞. So, although the CIR remains

constant across aggregation levels, the SAC increases considerably (from 0.5 to 1). This

could clearly lead to the wrong conclusion that shocks are more persistent at the aggregate

than at the micro level.

The LAR suffers from similar problems to the SAC. For instance, for the example above,

it is easy to see that LARdis = SARdis = 0.5 and LARAG = SARAG = 1, where LARdis and

LARAG are the average of the individual LARs and the LAR associated with Yt, respectively.

Thus, the LAR should not be employed to compare persistence across aggregation levels

either.

Finally, in some applications, an alternative definition of disaggregate IRF to the one

presented in this paper has been employed (see Imbs et al., 2005). As mentioned in Section

2, the strategy consists of fitting autoregressive models to each of the individual processes

and to compute the average of the AR coefficient estimates. Next, an “averaged” model

is constructed, having the same AR structure as the individuals but whose coefficients are

7Yt is stationary with variance σ2u
∑

∞

j=0
(j + 1)−2 <∞.
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given by these averaged estimates. Then, the IRF of this artificially generated process is

computed as in a model with homogeneous coefficients. Thus, estimates of the function

IRF (t, h) = EI (a)
h , for h ≥ 0, (22)

are provided as measures of micro-persistence. But clearly, since the IRF is not a linear

function, (22) does not capture the average response of the micro units. Furthermore,

whenever the support of a is positive, ah is strictly convex and the application of Jensen’s

inequality yields

EI(IRF (t, h)) = EI
(
ah
)
> IRF (t, h) = EI (a)

h , for all h > 1. (23)

It follows that, if estimates of (22) are compared with those of IRFAG, differences might

arise but mainly due to the underestimation of the average shock response at the micro

level rather than to an overestimation of the response when aggregate data is employed.8

The discussion above suggests that one of the reasons why empirical papers have found

different degrees of shock persistence across aggregation levels is related to the type of tools

employed to measure it. The following section reviews further issues that are also important

for understanding why such differences might arise in practise.

4. AGGREGATION, THE LAW OF LARGE NUMBERS AND

ESTIMATION

The discussion contained in Section 3 is based on results that are true for the population.

But, in order to be of interest to practitioners, it must be possible to obtain good approxima-

tions to the population values when the corresponding sample counterparts are employed,

at least when N and T are sufficiently large. Thus, two issues deserve consideration here.

Firstly, the population aggregate model is defined as the expected value of the individual

processes. However, aggregate data, denoted as ȲNt henceforth, is usually constructed as (a

possibly weighted) average of the individual data. Hence, ȲNt would approximately follow

8Gadea and Mayoral (2008) have shown that the reduction in real exchange rate persistence found by

Imbs et al. (2005) using sectoral real exchange rates is due to their definition of average micro-persistence.

When the disaggregate IRF defined in (5) is employed, standard estimates of persistence are recovered.
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the aggregate model in (13) if a LLN relating Yt and ȲNt holds. Secondly, it has been

argued that estimation of the aggregate model can be problematic when the individuals are

heterogeneous such that the resulting persistence estimates can be biased upwards (Pesaran

and Smith, 1995, Imbs et al. 2005). In this section we briefly examine these two issues.

4.1. Aggregation and the LLN

For simplicity, we assume that the aggregate data ȲNt is constructed as a simple average

of a large number of individual processes

ȲNt =

∑N
i=1 yit
N

,

where yit is defined as in (1) with bi = 0 for all i. ȲNt can be written as the sum of two

terms

ȲNt =
1

N

(
N∑

i=1

εit
(1− aiL)

+
N∑

i=1

ρiut
(1− aiL)

)
, (24)

that will be referred to as the idiosyncratic and common components, respectively. Then,

ȲNt would be a good approximation of the aggregate model derived in Section 3 provided

that a LLN applies, such that ȲNt and Yt = EI (yt) are close for large N. However, it has

been argued that, for the disaggregate model considered in this paper, such a LLN might

not hold (see, for instance, Forni and Lippi, 1997, p. 17). Since the applicability of the

results obtained in Section 3 relies on this convergence, it is worth considering this issue in

more detail.

The holding of a LLN relating ȲNt and Yt hinges on whether the limit of ȲNt when

N → ∞ is stationary or not. So, before considering the convergence of ȲNt and Yt, the

asymptotic properties of ȲNt as N increases should be reviewed.

This issue has been analyzed by Zaffaroni (2004) and we briefly summarize the results

that are relevant to the problem considered here. The asymptotic behavior of ȲNt critically

depends on the properties of the distribution of a around 1. As shown by Granger (1980), if

the support of a is given by [δ1, δ2] with δ2 < 1, the corresponding aggregate process is I(0),

for any shape of the distribution of a. On the other hand, if δ2 = 1 and the distribution

of a is such that P (a = 1) > 0, then ȲNt converges to an I(1) random variable. An

interesting intermediate case arises whenever δ2 = 1 and a belongs to a family of absolutely
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continuous distributions such that P (a = 1) = 0. To characterize the convergence in this

case, Zaffaroni (2004) considers the following semiparametric specification of the density of

a ∈ (0, 1) around unity,9

f (a) ∼ cb (1− a)−b , as a→ 1, 0 < cb <∞, b ∈ [0, 1)

In this case, ȲNt converges to a stationary random variable provided b < 0.5 and to a

nonstationary one otherwise. Interestingly, if 0 ≤ b < 0.5, the limit of ȲNt is a long-memory

process and if b > 0, the limit process can be characterized as a fractionally integrated

process with order of integration d = b.

Under similar assumptions as the ones adopted in this paper, Zaffaroni (2004) shows that

provided the limit of ȲNt is stationary, a strong LLN holds and ȲNt
L2→ Et (yt) = Yt. In

this case, the idiosyncratic component converges almost surely to zero while the common

component converges in L2 to the corresponding expectation
10

N−1
N∑

i=1

ρiut
(1− aiL)

L2→ EI

(
ρut

1− aL

)
=

∞∑

j=0

EI
(
aj
)
ut−j.

However, whenever the limit of ȲNt is a nonstationary random variable, the conver-

gence above fails: the idiosyncratic component no longer vanishes because the variance of

N−1
∑N
i=1

εit
(1−aiL)

tends to infinity. On the other hand, the common component does not

converge to its expected value because neither the Bochner nor the Pettis integral of this

component exist.

In principle, this could be a major drawback for the results established in Section 3. If

nonstationary variables are observed, ȲNt might not be a good proxy for Yt. Then, one

should not expect the persistence estimates obtained with aggregate data, ȲNt, to be close

to those obtained with the corresponding disaggregate variables. Notice, however, that this

9This condition is semiparametric because the behavior of the density for any given interval [0, γ
2
] with

γ
2
< 1 is unspecified. Standard distributions, such as the Uniform or the Beta, are contained in this

specification by setting d = 0 and d ≥ 0, respectively.
10The expectation of the idiosyncratic component is taken with respect to the Pettis integral (see Uhlig,

1986). This is because the Bochner integral (which extends the definition of the Lebesgue integral to functions

taking values in a Banach space) of that component may not exist. This is the well known measurability

problem (Judd, 1985).

17



problem has an easy solution. Taking first differences from the original aggregate data, ȲNt,

we obtain

(1− L) ȲNt =
1

N

(
N∑

i=1

(1− L) εit
(1− aiL)

+
N∑

i=1

(1− L)ρiut
(1− aiL)

)
, (25)

and, in this case, the same results as in the case where the limit of ȲNt is stationary are

recovered, that is, the idiosyncratic component in (25) converges to zero while the common

one converges to the corresponding expectation. Thus, it holds that

(1− L) ȲNt
L2→ (1− L)Yt, (26)

where (1− L)Yt is the first difference of Yt = EI (yt) and is a stationary process. Thus,

whenever nonstationarity is detected, the usual procedure of first differentiating the data

would be sufficient in order to guarantee the convergence of (1− L) ȲNt to (1− L)Yt. The

IRF of Yt can be estimated by first estimating the IRF associated with (1− L) ȲNt, and,

then, cumulating the corresponding values. That is,

̂IRFAG (t, h) =
h∑

j=1

̂IRF(1−L)ȲN (j, t) ,

where ̂IRFAG (t, h) and ̂IRF(1−L)Ȳ (j, t) denote the estimates of the IRFs associated with

Yt and with (1− L)Yt, respectively.

4.2. Aggregation and Inference

As regards the estimation of the aggregate process, difficulties arise because Yt contains

an infinite number of parameters. Several authors have emphasized that this may bias the

estimates of the aggregate model in such a way that aggregate persistence measures present

an upward bias (Pesaran and Smith, 1995, Imbs et al., 2005).

However, Berk (1974) and Lewis and Reinsel (1985) have shown that, if Yt is short-

memory,
√
T -consistent and asymptotically normally distributed, estimates can be obtained

by approximating the AR(∞) process by an AR(k) model, where k does not increase too

quickly or too slowly. More specifically, k should verify an upper bound condition, k3/T →
0, and a lower bound one, T 1/2

∑
∞

j=k+1 |Aj| → 0 as k, T →∞.11

11Related results for the case where Yt is a long memory case have been recently presented by Godet
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The lag length, k, is the key parameter in implementing procedures that approximate

AR(∞) models in applications. However, the above-described theoretical restrictions pro-

vide little practical guidance for choosing an appropriate value of k. Ng and Perron (1995)

show that standard selection criteria (the AIC and the BIC) choose values of k, k̂, that are

proportional to logT and, so, do not verify the lower bound condition stated above. In fact,

bias terms arising as a consequence of the asymptotic misspecification of the model when

these criteria are employed are of order T−1/2, considerably more severe than the usual

finite sample biases that are typically of order T−1.

Kuersteiner (2005) has shown that the general-to-specific (GTS) approach introduced by

Ng and Perron (1995) can be used to produce a data-dependent selection rule such that

the parameters obtained in the AR(k) (VAR(k)) model are consistent and asymptotically

normal for the parameters of the underlying VAR(∞) model. Then, the consistency and

the asymptotic normality of aggregate IRF estimates in AR(∞) (VAR(∞)) models follow
from an application of the delta method.12

In the following subsection we present the results of a small Monte Carlo experiment

designed to evaluate the finite-sample performance of the above-described estimation strat-

egy when applied to estimate the aggregate IRF under individual heterogeneity. We also

analyze the finite sample behavior of IRF estimates based on disaggregate information. A

more detailed assessment of the finite-sample performance of these estimation techniques

can be found in Mayoral (2009).

4.3. Finite sample properties of IRF estimators under individual heterogeneity

In this Monte Carlo experiment we are interested in evaluating the finite-sample prop-

erties of IRFs estimators computed with aggregate and disaggregate data as the degree of

heterogeneity of the underlying processes increases. In order to isolate the impact of an

increase in heterogeneity from an increase in average persistence, different degrees of het-

(2008).
12Bootstrap methods have also been employed for inference in univariate AR(∞)models, see Kreiss (1997),

Choi and Hall (2000) and Gonçalves and Kilian (2004) among others. Extensions to the multivariate case

have been proposed by Paparoditis (1996) and Inoue and Kilian (2002).
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erogeneity have been considered while keeping the level of persistence constant. In order to

achieve this, the following approach was adopted. The data has been generated according

to the model:

yit = aiyit−1 + ρiut + εit, i = 1, ..., N, t = 1, ...T, (27)

where T = {100, 400}, N = {200}, ut and εit are i.N (0, 1) and i.N (0, σεi ) random vari-

ables, respectively and σεi and ρi are draws from two independent uniform distributions in

the interval (0.5, 1.5). The autoregressive parameter a is distributed as a U (δ1, δ2), for

different values of (δ1, δ2) . These values determine both the degree of heterogeneity of the

individual units and the level of persistence of the aggregate. In this exercise, the degree

of heterogeneity will be determined by the standard deviation of a, σa, while the level of

persistence will be measured by the cumulated impulse response up to lag 100, CIR(100).

To select (δ1, δ2), the following approach has been pursued. Firstly, we have set three

levels of persistence, denoted as LP I, II and III, corresponding to the case where there is

no heterogeneity and a takes the values a = {0.85, 0.90, 0.95}, respectively. The persistence
implied by a model like (27) in these cases, as measured by the CIR(100), yields

LP I: CIR (100) =
100∑

j=0

0.85j = 6.67.

LP II: CIR (100) =
100∑

j=0

0.9j = 10.

LP III: CIR (100) =
100∑

j=0

0.95j = 19.89.

Secondly, four values of σa have been considered, namely σa = {0, 0.01, 0.05, 0.1}. Next,
the values (δ1, δ2) are chosen in such a way that the desired σa is obtained and the resulting

set of heterogeneous processes imply a similar value of the CIR(100) as LP I to LP III. Under

heterogeneity, CIR(100) =
∑100
j=0E

(
aj
)
=
(

1
δ2−δ1

)∑100
j=0

(
δj+12 − δj+11

)
/j + 1. Then, the

restriction on the standard deviation implies that (δ2 − δ1) =
√
12σa while the condition

on the CIR allows us to identify unique values for (δ1, δ2) . Table I reports these values for

each of the levels of persistence and heterogeneity considered in this experiment.
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T���� I. D	
��	�
�	�� �� a

a ∼ U (δ1, δ2)

σa= 0.0 σa= 0.01 σa= 0.05 σa= 0.1

CIR(100) δ1 δ2 δ1 δ2 δ1 δ2 δ1 δ2

LP I 6.67 0.85 0.85 0.83 0.866 0.7470 0.9202 0.6155 0.9619

LP II 10 0.90 0.90 0.882 0.9166 0.7900 0.9632 0.6455 0.9919

LP III 19.89 0.95 0.95 0.9300 0.9646 0.826 0.992 0.6700 1.00

The aggregate process, Yt, has been computed as the simple average of the y′its

Yt =

∑N
i=i yit
N

.

To estimate the resulting data, an AR(k) process has been fitted to Yt, where k was

chosen according to different approaches, namely, the AIC and the GTS. Following Ng and

Perron (1995), the maximum value of k, kmax, was set according to the rule kmax(YT ) ≈
10∗ (T/100)0.25, which for the values of T considered in this experiment yields kmax = {10,
14}. Disaggregate data has also been employed to estimate the IRF following a similar

approach. This time, kmax was set to kmax(YT )/3. For each replication r, the estimated

disaggregate and aggregate models have been employed to compute the corresponding IRFs,

denoted as ̂IRFdis,r and ̂IRFAG,r, respectively. ̂IRFdis,r has been obtained as the mean of

the individual IRFs while ̂IRFAG,r is the sample analog of (16) .

Table II reports the average mean squared error (MSE) of ̂IRFdis and ̂IRFAG which is

defined as

MSEdis = R−1
R∑

r=1


h−1

h∑

j=0

(
̂IRFdis,r (j)− IRFtrue,r (j)

)2

 ,

and

MSEAG = R−1
R∑

r=1


h−1

h∑

j=0

(
̂IRFAG,r (j)− IRFtrue,r (j)

)2

 ,

where R = 1000 is the number of replications, h = 50 is the horizon of the IRF and IRFtrue,r
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is the true IRF in replication r, given by

IRFtrue,r (j) = N−1
N∑

i=1

aji,r, j = 1, ..., h.

Only values obtained by selecting k using the GTS approach are reported. Those obtained

by using the AIC were very similar so they are omitted for the sake of brevity.

T���� II. M��� S�
���� E����, GTS 
�����	�� ������

T=100

σa= 0.0 σa= 0.01 σa= 0.05 σa= 0.1

MSEdis MSEAG MSEdis MSEAG MSEdis MSEAG MSEdis MSEAG

LP I 0.0016 0.0067 0.0015 0.0068 0.0017 0.0074 0.0021 0.0078

LP II 0.0060 0.0229 0.0060 0.0208 0.0062 0.0192 0.0069 0.0183

LP III 0.04828 0.1010 0.0402 0.0876 0.0236 0.0528 0.0111 0.0270

T=400

LP I 0.0003 0.0021 0.0003 0.0021 0.0004 0.0022 0.0004 0.0026

LP II 0.0012 0.0058 0.0013 0.0060 0.0012 0.0062 0.0012 0.0065

LP III 0.0072 0.0246 0.0073 0.0241 0.0037 0.0153 0.0018 0.0101

Figures I to III present the average over the number of replications of IRFtrue, ̂IRFdis

and ̂IRFAG for LP I-III, respectively. For each sample size, T = {100, 400}, four graphs are
presented in each figure, corresponding to the different degrees of heterogeneity considered.

Graphs in the upper left corner correspond to the case where there is no heterogeneity

(σa = 0), while the remaining graphs display estimated IRFs under positive σ′as.

Several interesting conclusions can be drawn from inspecting Table II and Figures I to III.

Firstly, good estimators of the IRF can be obtained with either aggregate or disaggregate

data using standard estimation methods. Thus, dynamic heterogeneity at the individual

level does not seem to be an obstacle to obtain estimators of IRFAG with good finite-

sample properties, even when AR(k) models with moderate values of k are used to fit the

aggregate model. Figures I to III show that the average bias is in general small and fairly

similar for the σa = 0 and the σa > 0 cases. However, the bias is usually smaller for
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̂IRFdis than for ̂IRFAG. Similar conclusions are drawn by analyzing the average MSE:

MSEdis is always smaller than MSEAG, even in the absence of heterogeneity. This result

is very interesting since it suggests that the use of disaggregate information can bring about

important efficiency gains in the estimation of aggregate quantities.

Secondly, increasing heterogeneity for a given level of persistence does not affect much

MSEdis unless persistence is high (LP III), in which case MSEdis tends to decrease as

heterogeneity increases. A similar pattern is observed for MSEAG : for moderate levels

of persistence (LP I), increasing σa deteriorates MSEAG. However the opposite effect is

found in more persistent situations. For instance, for LP III with T = 100, the MSEAG for

σa = 0.1 is only 1/4 the MSEAG obtained for the case of no heterogeneity (σa = 0). This

evidence is surprising and at odds with the common belief that individual heterogeneity

hurts the properties of aggregate estimators.

Thirdly, increasing the level of persistence always increases the MSE. This increase may

be due to the well-known downward bias affecting the OLS estimator of AR coefficients

when persistence is high. Interestingly, the increase tends to be smaller in the presence of

heterogeneity. For instance, for σa = 0 and T = 100, the MSE of ̂IRFdis

(
̂IRFAG

)
increases

by a factor of 8 (4.5) when moving from LP II to LP III. However, for σa = 0.1, the MSE

of ̂IRFdis

(
̂IRFAG

)
rises only by a factor of 1.5 (1.5) from LP II to LP III. Finally, both

the bias and the MSE drop considerably when larger sample sizes are considered.
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F	� 1. Estimated IRFs, LP I. T={100, 400}.
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F	� 3. Estimated IRFs, LP III. T={100, 400}.
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5. EXTENSIONS

A more realistic approach than the one analyzed in Section 3 would entail considering

vector autoregressive processes, fewer assumptions of independence and uncorrelatedness

between the variables of the model as well as allowing for more general individual dynamics.

This section extends the results of Section 3 in these directions.

We now consider vector autoregressive (VAR) systems at the disaggregate level. To do

so, equation (1) is reinterpreted so that yit and νit = ρiut+εit are now J vectors of random

variables, ai is a J×J matrix of random coefficients, ρi is a diagonal J×J matrix verifying

that EI (ρi) = IJ , where IJ is the identity matrix of order J, and for simplicity, bi is set to

0 for all i.

The individual IRF associated with this model can be obtained by

IRF i(t, h) = E (yit+h|ut = δ; zit−1)−E (y
it+h|ut = 0̄; zit−1) (28)

where zit−1 =
(

yit−1, yit−2, ...
)′

, 0̄ is a J vector of zeroes and δ are the relevant

experimental shocks. Under the assumptions of Section 3, it is easy to check that, in the

vector case, the individual IRF is given by

IRF i(t, h) = ahi ρiδ, for h ≥ 0. (29)

and, so, the average response can be defined as

IRFdis (t, h) = EI (IRF (t, h)) = EI
(
ah
)
δ, for h ≥ 0. (30)

The aggregate VAR can be obtained using a similar strategy as in the scalar case. Taking

expectations in (1) and adding and subtracting the matrix A1 = E (a1) , we get

Yt = EI (yt) = A1Yt−1 +EI ((A1 −E(A1)) (ayt−2 + νt−1)) + ut.

Defining the J×J matrix As = E (αs) , where αs = (αs−1 −As−1)a and α1 = a, one can

iterate the procedure above to obtain the aggregate model

Yt =
∞∑

s=1

AsYt−s + ut.
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The aggregate IRF can be obtained as,

IRFAG(t, h) = E (Yt+h|ut = δ;Zt−1)−E (Yt+h|ut = 0̄;Zt−1)

where Zt−1 = (Yt−1, Yt−2, ...) , which yields the expression IRFAG (t, 0) = δ and

IRFAG (t, h) =
h∑

j=1

AjIRFAG (h− j) , for h ≥ 1. (31)

As in the scalar case, it is easy to show that the relations As = ms −
∑s−1
r=1ms−rAr and

ms =
∑s−1
r=0mrAs−r also hold in the matrix case, where ms, defined as ms = EI (a

s) , is of

order J × J. Thus, it is straightforward to check that

IRFAG (t, h) = EI
(
ah
)
δ. (32)

So, comparing (32) and (30) , one can conclude that in the vector case, the average

response to an economic shock is the same, regardless of the level of aggregation at which

it is considered.

When correlation between some of the random variables entering the micro model is

allowed, in general, additional terms enter the aggregate equation. For instance, the as-

sumption most likely to be violated is that of independence between a and b. Whenever this

assumption is violated, it is obtained that (see Lewbel, 1994)

Yt =
∞∑

s=1

AsYt−s +B′Xt +
∞∑

s=1

Cov (αs, b)Xt−s + ut, (33)

where α1 = a and αs+1 = (αs −E (αs))a, for s ≥ 1. However, it is straightforward to check

that the expression of the aggregate IRF in (16) is not altered by the addition of this new

term and, hence, the relation between the micro and macro IRFs established in Section 3 is

preserved. If Xt is a simply a vector of ones, then, provided
∑
∞

s=1Cov (αs, b) <∞, the new

term is just an addition to the aggregate intercept. Otherwise, in order to have consistent

estimates of the aggregate responses, an increasing number of lags of Xt should be included

in the aggregate equation.

If the distributions of b and xt are not independent, the aggregate model becomes,

Yt =
∞∑

s=1

AsYt−s +B′Xt +Cov (b, xt) + ut, (34)
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and, as in the previous case, the expression of the aggregate IRF is not affected by this

term. If the covariance between b and xt is finite constant over time, the Cov (b, xt) is also

an addition to the aggregate constant term.

The next step would be to allow higher order lags at the disaggregate level. To simplify

the exposition, we next analyze the AR(2) case. The AR(p) one, though notationally

cumbersome, can be analyzed in the same manner. Suppose the individual agents i behave

according to the model,

yit = a1iyit−1 + a2iyit−2 + uit, i = 1, ...,N, t = 1, ...T. (35)

In addition to the assumptions stated in Section 3, we now require the existence of all the

moments of a2 and all the cross-moments between a1 and a2. Notice that we do not need

to assume independence between a1 and a2. The aggregate model is obtained by taking

expectations in (35) ,

Yt = EI(a1yt−1) +EI(a2yt−2) + ut, t = 1, ...T.

which can be written as an AR(∞) process

Yt =
∞∑

j=0

CjYt−j + ut. (36)

In order to obtain the coefficients Cj , define αj1 = aj, Ajk = E (αjk) and αjk+1 =

(αjk −E (αjk))aj , for j = 1, 2 and k = 1, 2 ..., and notice that

EI(a1yt−1) = EI (a1 +EI (a1)−EI (a1) yt−1) =

EI (a1)Yt−1 +EI(α12yt−2) +EI ((a1 −E (a1))a2yt−3) ,

and

EI(a2yt−2) = EI (a2 +EI (a2)−EI (a2) yt−2) =

EI (a2)Yt−2 +EI((a2 −EI (a2))a1yt−3) +EI (α22yt−4) , etc.
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Iterating the procedure above, after some algebra, one can obtain that13

C1 = EI (α11) = EI (a1)

C2 = EI (α12) +EI (α21) = V ar (a1) +EI (a2)

C3 = EI(α13) + 2cov(a1, a2) = Cov(a21, a1) + 2cov(a1, a2)

C4 = EI (α14) +EI (α22) + 3cov (a1a2, a1) , etc. (37)

Next, we check that the disaggregate and aggregate IRFs are the same. The IRF for each

of the micro-units can be easily computed from definition (3) and, taking expectations, it

is obtained that

IRFdis (t, 1) = EI (a1) ; IRFdis (t, 2) = EI
(
a21
)
+EI (a2) ;

IRFdis (t, 3) = EI
(
a31
)
+ 2EI (a1a2) ; IRFdis (t, 4) = EI

(
a41
)
+ 3EI

(
a21a2

)
+EI

(
a22
)
,

and, in general,

IRFdis (t, h) = EI (IRF (t, h)) = EI (a1IRF (t, h− 1) + a2IRF (t, h− 2))) . (38)

It is not difficult, although algebraically tedious, to check that the aggregate IRF asso-

ciated with the aggregate process (35) coincides with the one obtained from averaging the

individual IRFs. For instance, consider the first values of the aggregate IRF that are given

by

IRFAG (t, 1) = C1 = EI (a1) = IRFdis (t, 1)

IRFAG (t, 2) = C21 +C2 = EI
(
a21
)
+EI (a2) = IRFdis (t, 2)

IRFAG (t, 3) = C31 + 2C1C2 +C3 = EI
(
a31
)
+ 2EI(a1a2) = IRFdis (t, 3)

IRFAG (t, 4) = C41 + 3C
2
1C2 + 2C3C1 +C22 +C4

= EI
(
a41
)
+ 3EI

(
a21a2

)
+EI

(
a22
)
= IRFdis (t, 4) , etc. (39)

Hence, the aggregate IRF is just the expected value of the individual IRFs, as shown in

Section 3 for the simple AR(1) case. The same result also holds when more general AR(p)

dynamics are considered.

13Notice that these coefficients are different from the ones provided by Lewbel (1994) (Equations 6’ and

16) since those expressions contain some typos.
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6. EMPIRICAL ILLUSTRATION

Monetary authorities and central banks are very interested in knowing how sluggishly

inflation returns to its long-run equilibrium level after the arrival of a shock. Recently, it

has been argued that the persistence of shocks to inflation tends to increase with the level

of aggregation. For instance, one of the conclusions of the Inflation Persistence Network,

created by the European Central Bank with the aim of analyzing the patterns of European

inflation persistence, was that there is clear evidence of large differences across sectors and

“that measures of the degree of inflation persistence increase with the level of aggregation.

Individual or highly disaggregate price series are, on average, much less persistent than

aggregate ones” (see Angeloni et al., 2007, and the references therein).14 Similar findings

have been reported for U.S. inflation (Clark, 2006).

Most of the empirical studies that have compared the persistence of inflation shocks across

different aggregation levels have relied on averages of the SAC (or other scalar measures

such as the LAR) as measures of disaggregate persistence (see Clark, 2006, Altissimo et

al., 2006a, and the references therein). However, this approach can be problematic for the

reasons discussed in Section 3.

This section compares estimates of U.S. inflation persistence computed at different levels

of aggregation. In addition to the SAC, cross-sectional averages of the IRFs are considered

as measures of shock response.

We use a similar data set to Clark (2006). Price indexes and nominal expenditures for all

components of consumption, as measured in the NIPA accounts, have been obtained from

the webpage of the Bureau of Economic Analysis (BEA). This dataset permits breakdowns

at various levels of aggregation. We focus on core inflation, which excludes food and en-

ergy prices. Then, the aggregate variable, denoted as Level 1, is core inflation. We also

report results for data broken into several levels of disaggregation, each spanning all the

core inflation. The most disaggregate level (that we will refer to as Level 4) contains 109

disaggregate prices. Level 3 and Level 2 aggregate these 109 series into 46 and 11 categories,

respectively. See Clark (2006) for details on the construction of these variables. The data

14These conclusions are based on a number of studies that can be found in the network’s webpage at

http://www.ecb.int/events/conferences/html/inflationpersistence.en.html.
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is quarterly and covers the period 1976 to 2002.15

To illustrate the existence of heterogeneity in inflation data, the mean, the standard de-

viation and the sum of the autoregressive coefficients (with and without small-sample bias

correction) have been computed for each of the 109 series in Level 4. Table III summarizes

the results by presenting some descriptive statistics of the quantities obtained. More specif-

ically, it reports the average, the weighted average, the three quantiles and the minimum

and maximum values of the individual statistics detailed above. The weights employed to

construct the weighted averages represent the listed components shares of core PCE nominal

spending in 2001, in percentage terms. To compute the SAC, AR(k) processes have been

fitted, where k has been chosen according to the GTS. Bias-corrected estimates (denoted

as SACB-C in the table) have been calculated following Kilian’s (1998) method.

T���� III. D�
��	 �	!� S���	
�	�
 (L�!�� 4)

Mean inflation Std inflation SAC SACB-C

Average 3.70 5.53 0.660 0.771

W. average 3.95 5.69 0.741 0.832

S. deviation 1.50 4.09 0.218 0.185

First quantile 2.88 3.45 0.538 0.678

Second quantile 4.04 4.36 0.729 0.804

Third quantile 4.75 5.89 0.810 0.911

Min -1.91 2.25 -0.240 -0.141

Max 7.64 29.4 0.955 1.00

Inspection of Table III reveals that disaggregate inflation data is highly heterogeneous.

The mean inflation values over the period considered range from -1.91 to 7.46 with a mean

(median) of 3.70 (4.04) and a standard deviation of 1.5. Individual dispersion also shows

important disparities across series, as shown by the minimum and maximum values (2.25

and 29, respectively). More importantly, the dynamics of inflation series, as measured by

the SAC, also seem to be very heterogeneous. Values of the SAC (bias-corrected SAC)

15Clark (2006) analyzed the period 1959-2002. Nevertheless, in order to avoid problems derived from

the existence of structural breaks around the 1973 crisis, which would have a great impact on persistence

estimates (see Perron, 1989), we have preferred to avoid this period by considering only post-crisis data.
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range from -0.24 (-0.14) to 0.95 (1.00), with a mean of 0.66 (0.77) and a standard deviation

of 0.21 (0.18).

Table IV reports several measures of persistence computed at different levels of aggrega-

tion (Levels 1 to 4). To compute impulse response functions, AR(k) processes have been

estimated where the order k has been chosen according to the GTS and to the AIC.16 The

first four rows of Table IV present the sum of the first h values of the IRFs relative to

aggregation levels 1 to 4, for h = {4, 8, 12, 16 and 20}, that is, the cumulated response of

inflation from 1 to 5 years after the shock occurs. The bottom row of Table IV reports

the average value of the SAC for the four aggregation levels. Figure IV, in turn, depicts

the IRFs associated to aggregation levels 1 to 4. Confidence intervals have been computed

using bootstrap methods.

In agreement with the theoretical results, Table IV shows that impulse responses com-

puted from aggregate and sectoral data are very close at all the considered horizons. As

can be seen from Figure IV, the four IRFs present approximately the same values and the

same pattern of decay, so they imply a very similar degree of shock persistence, in line with

the results presented in Table IV.

The values of the SAC, however, vary considerably across aggregation levels, reproducing

what has been found in previous studies. Values of the SAC range from the 0.66 corre-

sponding to aggregation level 4 (with a confidence interval of (0.64, 0.68)) to the 0.86 for

level 1 (with a C.I. of (0.82, 0.92)). Therefore, from only looking at these figures, one would

conclude that the response to a shock is higher, the higher the level of aggregation at which

it is measured. However, a more detailed analysis of the evolution of the shock as described

by the IRF suggest the opposite conclusions.

16The maximum number of lags was set to 20, 16, 12 and 8, for aggregation levels 1 to 4, respectively.

The significance level for applying the general-to-specific criterion was 10%. Small sample-bias corrected

estimates have also been computed but they are not reported since results are qualitatively identical.
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T���� IV. P��
	
����� M��

��


IRF
 �� �	������� A�������	�� L�!��


Level 1 Level 2 Level 3 Level 4
∑h
i=1 IRFLevel 1(h)

∑h
i=1 IRFLevel 2 (h)

∑h
i=1 IRFLevel 3 (h)

∑h
i=1 IRFLevel 4 (h)

GTS AIC GTS AIC GTS AIC GTS AIC

h = 4 1.77 1.92 2.05 1.97 1.88 1.86 1.81 1.82

h = 8 3.06 3.77 3.28 3.05 3.04 2.98 2.91 2.91

h = 12 4.01 4.27 4.08 3.69 3.90 3.77 3.72 3.76

h = 16 4.58 4.86 4.67 4.17 4.59 4.41 4.33 4.43

h = 20 4.86 5.30 5.20 4.60 5.13 4.93 4.81 4.99

SAC �� �	������� A�������	�� L�!��


0.86
(0.82,0.92)

0.86
(0.82,0.92)

0.81
(0.74,0.83)

0.77
(0.73,0.81)

0.69
(0.65,0.71)

0.69
(0.65,0.71)
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(0.64,0.69)
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(0.64,0.68)
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7. CONCLUSION

This paper examines the relations among shock persistence measures computed at dif-

ferent levels of aggregation in a context where the units may exhibit heterogeneous linear

dynamics. It is shown that the average of the individual IRFs equals the aggregate IRF at

all horizons, implying that the average effect of aggregate shocks is not amplified by the

aggregation of heterogeneous processes. A similar relationship also holds for some scalar

measures of persistence such as the CIR. However, other tools as the SAR or the LAR

have poor properties in this framework. In particular, they tend to yield higher values the

higher the level of aggregation considered. Since these measures are the most employed in

applications, it is not surprising that different average shock behavior has been reported in

many empirical papers. An empirical application using U.S. inflation data that illustrates

the theoretical results has also been provided.

Our results have some important implications on macroeconomic modelling. Some au-

thors have warned against the practice of using averages of microparameters to calibrate

macro models (Altissimo et al., 2009). However, our results qualify this statement by show-

ing that the adequacy of this procedure depends on the type of microparameter employed.

Thus, averages of individual IRFs can be used in macro calibration independently of whether

there is heterogeneity or not at the individual level or whether the aggregate process is long

memory or nonstationary while the individual units are stationary.

This paper opens several avenues for future research. Our results imply that under

linearity both macro (aggregate) or micro (disaggregate) data can be used to estimate the

impulse response function associated to an aggregate shock. Furthermore, they suggest that

important efficiency gains can be obtained by using micro information. Thus, a thorough

examination of the large and finite sample properties of micro and macro estimators is

needed. A first step in this direction can be found in Mayoral (2009).

The relation between the micro and the aggregate IRFs can also be exploited in other

ways. If disaggregate data is available, it is possible to completely determine the dynamics

of the aggregate process. If the latter is stationary, the disaggregate IRF defined in (5)

equals the coefficients of the Wold representation of the aggregate process. Then, the macro
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dynamics can be identified very simply from the (average) of the micro impulse responses

(and vice versa). If the aggregate process is not stationary, its Wold representation does not

exist. However, the coefficients of the polynomial A (z) =M (z)−1, where M(z)=
∑
∞

j=0mjz
j

are mj are the coefficients of the disaggregate IRF, are those corresponding to the AR(∞)
representation of the aggregate process. These relationships could potentially be used to

improve the accuracy of the estimation combining micro and macro data, in the spirit of

Imbens and Lancaster (1994).

It would also be possible to recover micro information when only aggregate data is avail-

able. Since the aggregate IRF identifies all the moments of the distribution of the autoregres-

sive parameter, a, it is possible to infer some interesting information about the distribution

of this parameter only from the aggregate data. For instance, probability bounds for a can

be easily computed from the aggregate data by applying Markov and Chevichev inequal-

ities. Furthermore, under certain conditions, the whole distribution of the autoregressive

parameter a can be recovered using only aggregate data. This is the well known “moment

problem”, that consists of inverting the mapping that takes a probability measure to the

sequences of moments. This problem already has a long tradition, begun by Stieljes in 1894

and developed by subsequent authors (see, for instance, Lin, 1997 for a description of the

conditions needed to recover the density from the moments).
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