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1. Introduction

∙ Consider a static, unobserved effects probit model for panel data:

Pyit  1|xit,ci  xit  ci, t  1, . . . ,T.     (1)

What are the quantities of interest for most purposes? Possibilities: (i)

The element of , the j. These give the directions of the partial effects

of the covariates on the response probability. For any two continuous

covariates, the ratio of coefficients, j/h, is identical to the ratio of

partial effects (and the ratio does not depend on the covariates or

unobserved heterogeneity, ci).
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(ii) The magnitudes of the partial effects. These depend not only on the

value of the covariates, say xt, but also on the value of the unobserved

heterogeneity. In the continuous covariate case,

∂Pyt  1|xt,c
∂xtj

 jxt  c.     (2)

∙ Questions: (i) Assuming we can estimate , what should we do about

the unobservable c? (ii) If we can only estimate  up-to-scale, can we

still learn something useful about magnitudes of partial effects? (iii)

What kinds of assumptions do we need to estimate partial effects?
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2. A General Setup and Quantities of Interest

∙ Let xit,yit : t  1, . . . ,T be a random draw from the cross section.

Suppose we are interested in

Eyit|xit,ci  mtxit,ci.     (3)

ci can be a vector of unobserved heterogeneity.

∙ Partial effects: if xtj is continuous, then

jxt,c ≡
∂mtxt,c
∂xtj

,     (4)

or discrete changes.

4



∙ How do we account for unobserved ci? If we know enough about the

distribution of ci we can insert meaningful values for c. For example, if

c  Eci, then we can compute the partial effect at the average

(PEA),

PEAjxt  jxt,c.     (5)

Of course, we need to estimate the function mt and c. If we can

estimate the distribution of ci, or features in addition to its mean, we

can insert different quantiles, or a certain number of standard deviations

from the mean.
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∙ Alternatively, we can obtain the average partial effect (APE) (or

population average effect) by averaging across the distribution of ci:

APExt  Ecijxt,ci.     (6)

The difference between (5) and (6) can be nontrivial. In some leading

cases, (6) is identified while (5) is not. (6) is closely related to the

notion of the average structural function (ASF) (Blundell and Powell

(2003)). The ASF is defined as

ASFxt  Ecimtxt,ci.     (7)

∙ Passing the derivative through the expectation in (7) gives the APE.
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∙ How do APEs relate to parameters? Index model:

mtxt,c  Gxt  c,     (8)

where G is differentiable. Then

jxt,c  jgxt  c,     (9)

where g is the derivative of G. Even if G is known, magnitude

of effects cannot be estimated without making assumptions about the

distribution of ci

∙ Important: Definitions of partial effects do not depend on whether xt

is correlated with c. Of course, whether and how we estimate them

certainly does.
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3. Exogeneity Assumptions

∙ As in linear case, cannot get by with just specifying a model for the

contemporaneous conditional distribution, Dyit|xit,ci.

∙ The most useful definition of strict exogeneity for nonlinear panel

data models is

Dyit|xi1, . . . ,xiT,ci  Dyit|xit,ci.     (10)

Chamberlain (1984) labeled (10) strict exogeneity conditional on the

unobserved effects ci. Conditional mean version:

Eyit|xi1, . . . ,xiT,ci  Eyit|xit,ci.     (11)
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∙ The sequential exogeneity assumption is

Dyit|xi1, . . . ,xit,ci  Dyit|xit,ci.     (12)

Unfortunately, it is much more difficult to allow sequential exogeneity

in in nonlinear models. (Most progress for lagged dependent variables

or specific functional forms, such as exponential.)

∙ Neither strict nor sequential exogeneity allows for contemporaneous

endogeneity of one or more elements of xit, where, say, xitj is correlated

with unobserved, time-varying unobservables that affect yit.
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4. Conditional Independence

∙ In linear models, serial dependence of idiosyncratic shocks is easily

dealt with, either by “cluster robust” inference or Generalized Least

Squares extensions of Fixed Effects and First Differencing. With

strictly exogenous covariates, serial correlation never results in

inconsistent estimation, even if improperly modeled. The situation is

different with most nonlinear models estimated by MLE.

∙ Conditional independence (CI) (under strict exogeneity):

Dyi1, . . . ,yiT|xi,ci 
t1

T

Dyit|xit,ci.     (13)
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∙ In a parametric context, the CI assumption reduces our task to

specifying a model for Dyit|xit,ci, and then determining how to treat

the unobserved heterogeneity, ci.

∙ In random effects and correlated random frameworks (next section),

CI plays a critical role in being able to estimate the “structural”

parameters and the parameters in the distribution of ci (and therefore, in

estimating PEAs). In a broad class of popular models, CI plays no

essential role in estimating APEs.

11



5. Assumptions about the Unobserved Heterogeneity

Random Effects

∙ Generally stated, the key RE assumption is

Dci|xi1, . . . ,xiT  Dci.     (14)

Under (14), the APEs are actually nonparametrically identified from

rtxt ≡ Eyit|xit  xt.     (15)

∙ In some leading cases (RE probit and RE Tobit with heterogeneity

normally distributed), if we want PEs for different values of c, we must

assume more: strict exogeneity, conditional independence, and (14)

with a parametric distribution for Dci.
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Correlated Random Effects

A CRE framework allows dependence between ci and xi, but restricted

in some way. In a parametric setting, we specify a distribution for

Dci|xi1, . . . ,xiT, as in Chamberlain (1980,1982), and much work

since. Distributional assumptions that lead to simple estimation –

homoskedastic normal with a linear conditional mean — can be

restrictive.

∙ Possible to drop parametric assumptions with

Dci|xi  Dci|x̄i,     (16)

without restricting Dci|x̄i. Altonji and Matzkin (2005, Econometrica).

∙ Other functions of xit : t  1, . . . ,T are possible.
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∙ APEs are identified very generally. For example, under (16), a

consistent estimate of the average structural function is

ASFxt  N−1∑
i1

N

mtxt, x̄i,     (17)

where mt is the mean function Eyit|xit, x̄i.

∙ Need a random sample x̄i : i  1, . . . ,N.
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Fixed Effects

∙ The label “fixed effects” is used in different ways by different

researchers. One view: ci, i  1, . . . ,N are parameters to be estimated.

Usually leads to an “incidental parameters problem.”

∙ Second meaning of “fixed effects”: Dci|xi is unrestricted and we

look for objective functions that do not depend on ci but still identify

the population parameters. Leads to “conditional MLE” if we can find

“sufficient statistics” s i such that

Dyi1, . . . ,yiT|xi,ci, s i  Dyi1, . . . ,yiT|xi, s i.     (18)

∙ Conditional Independence is usually maintained.

∙ Key point: PEAs and APEs are generally unidentified.
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6. Dynamic Models

∙ Nonlinear models with only sequentially exogenous variables are

difficult to deal with. More is known about models with lagged

dependent variables and otherwise strictly exogenous variables:

Dyit|zit,yi,t−1, . . . ,zi1,yi0,ci, t  1, . . . ,T,     (19)

which we assume also is Dyit|zi,yi,t−1, . . . ,yi1,yi0,ci. Suppose this

distribution depends only on zit,yi,t−1,ci with density

ftyt|zt,yt−1,c;. The joint density of yi1, . . . ,yiT given yi0,zi,ci is


t1

T

ftyt|zt,yt−1,c;.     (20)
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∙ How do we deal with ci along with the initial condition, yi0? Various

approaches have been suggested. One that meshes well with Stata’s

built-in commands (random effects probit, Tobit, count) was proposed

by Wooldridge (2005, Journal of Applied Econometrics). Idea is to

model Dci|yi0,zi directly. Leads to Dyi1, . . . ,yiT|yi0,zi and MLE

conditional on yi0,zi. This can be computationally simple for popular

models, and can be made somewhat flexible.

∙ The APEs for the conditional mean are easy to obtain.
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7. Control Function Methods with Endogenous Covariates

∙ General idea is to model endogeneity as an omitted (time-varying)

variable. So, start with a “structural” model

Eyit1|zi,yit2,ci1,vit1  Eyit1|zit1,yit2,ci1,vit1,     (21)

where ci1 is the time-constant unobserved effect and vit1 is a

time-varying omitted factor that can be correlated with yit2. (Papke and

Wooldridge, 2008, Journal of Econometrics).

∙ Elements of zit are assumed strictly exogenous, and we have at least

one exclusion restriction: zit  zit1,zit2.

∙ APEs average out ci1,vit2.
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∙With a continuous endogenous explanatory variable, yit2, can often

combine the Chamberlain-Mundlak approach to unobserved effects

with the control function approach (Smith-Blundell, Rivers-Vuong) to

arrive at

Dyit1|yit2,zit1, z̄i,vit2     (22)

or

Eyit1|yit2,zit1, z̄i,vit2,     (23)

where vit2 are reduced form errors, say,

yit2  t2  zit2  z̄i2  vit2, t  1, . . . ,T.     (24)
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∙ It can be shown that the APEs are generally available from

ASFyt2,zt1  N−1∑
i1

N

m̂tyt2,zt1, z̄i, v̂it2,     (25)

where mt is the mean function in (23). So, the time averages of the

exogenous variables and the reduced form residuals get averaged out.

∙ Two-step pooled methods are very computationally attractive.

Usually, pooled OLS followed by pooled probit, Tobit, GLM (or even a

Cragg hurdle model).
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8. Estimating Popular Models

∙ Pooled and random effects estimation commands in Stata (for probit,

Tobit, Poisson, GLM, GEE) often can be used.

∙ Stata egen command for generating time averages. Need leads and

lags of exogenous variables, and the initial condition, for dynamic

models.

∙ For pooled methods, use the “panel bootstrap” feature in Stata to

obtain standard errors or confidence intervals.

∙ Computational time is an issue for dynamic models because it uses

full “random effects” with lots of covariates.
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8.1 Binary and Fractional Response

∙ Unobserved effects (UE) “probit” model:

Eyit|xit,ci  xit  ci, t  1, . . . ,T.     (26)

Assume strict exogeneity (conditional on ci) and Chamberlain-Mundlak

device:

ci    x̄i  ai, ai|xi ~Normal0,a
2.     (27)

∙ In binary response case under serial independence, all parameters are

identified and MLE (Stata: xtprobit) can be used. Just add the time

averages x̄i as an additional set of regressors. Then ̂c  ̂  x̄̂ and

̂c
2 ≡ ̂

′ N−1∑i1
N x̄i

′x̄i ̂  ̂a
2. Can evaluate PEs at, say, ̂c  k̂c.
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∙ The APEs are identified from the ASF, estimated as

ASFxt  N−1∑
i1

N

xt̂a  ̂a  x̄i̂a     (28)

where, for example, ̂a  ̂/1  ̂a
21/2.

∙ For binary or fractional response, APEs are identified without the

conditional serial independence assumption. Use pooled Bernoulli

quasi-MLE (Stata: glm) or generalized estimating equations (Stata:

xtgee) to estimate scaled coefficients based on

Eyit|xi  xita  a  x̄ia.     (29)

(Time dummies have been supressed for simplicity.)
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∙ Remember, the Bernoulli log-likelihood is in the linear exponential

family (LEF). Pooled GLM or GEE easy computationally.

∙ Example from Papke and Wooldridge (2008, Journal of

Econometrics). Effects of school spending on student performance (4th

grade math pass rate). Spending might be endogenous even after

controlling for unobserved heterogeneity. An IV is available, so

zit  zit1, zit2. The reduced form for yt2 is

yit2  t2  zit2  z̄i2  vit2, t  1, . . . ,T     (30)

and the estimating equation is
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Eyit1|yit2,zi,vit2  1yit2  zit11  t1  z̄i1  1vit2,     (31)

for scaled coefficients. In first stage, (30) is estimated by regressing

yit2  logspending on time period (year) dummies, all exogenous

variables, and time averages to get residuals, v̂it2. These residuals are

included, along with time dummies, yit2, zit1, and z̄i in a pooled

fractional probit.

∙ The estimation is relatively fast, and bootstrapping is quite feasible.

∙ The following code is for the strictly exogenous case.
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use meap92_01, clear
keep if year  1994
cap drop alavgrexp alunch alenroll
egen double alavgrexp  mean(lavgrexp), by(distid)
egen double alunch  mean(lunch), by(distid)
egen double alenroll  mean(lenroll), by(distid)

capture program drop math4boot

program math4boot, rclass
loc x "lavgrexp alavgrexp lunch alunch lenroll alenroll"
glm math4 ‘x’ y96-y01 if year  1994, fa(bin) link(probit)
predict double x1b1hat, xb
gen double scalenormalden(x1b1hat)
gen double pe1scale*_b[lavgrexp]
summarize pe1, meanonly
return scalar ape1r(mean)
gen double pe2scale*_b[lunch]
summarize pe2, meanonly
return scalar ape2r(mean)
gen double pe3scale*_b[lenroll]
summarize pe3, meanonly
return scalar ape3r(mean)
drop x1b1hat scale pe1 pe2 pe3

end

loc x "lavgrexp alavgrexp lunch alunch lenroll alenroll"
glm math4 ‘x’ y96-y01 if year  1994, fa(bin) link(probit)
mat be(b)

*Bootstrap SE by resampling districts, not observations
bootstrap r(ape1) r(ape2) r(ape3), reps(500) seed(123) cluster(distid): math4boot
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Math Pass Rates: Spending Strictly Exogenous

Model: Linear Fractional Probit Fractional Probit

Estimation Method: Fixed Effects Pooled QMLE GEE

Coefficient Coefficient APE Coefficient APE

log(arexppp)
.071
. 377

.207
. 881

.069
. 299

.206
. 885

.070
. 298

lunch
.073
−. 042

.207
−. 219

.067
−. 074

.209
−. 237

.067
−. 080

log(enroll)
.0488
. 0021

.138
. 089

.044
. 030

.139
. 088

.045
. 029

Working Correlation — — .491

Scale Factor — .337 .337
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Math Pass Rates: Spending Endogenous

Model: Linear Fractional Probit

Estimation Method: Instrumental Variables Pooled QMLE

Coefficient Coefficient APE

log(arexppp)
.221
. 555

.759
1. 731

.255
. 583

lunch
.074
−. 062

.202
−. 298

.068
−. 100

log(enroll)
.070
. 046

.209
. 286

.070
. 096

v̂2
.232
−. 424

.811
−1. 378 —
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∙ Simple dynamic model (for binary only):

Pyit  1|zit,yi,t−1,ci  zit  yi,t−1  ci.     (32)

A simple analysis is available if we specify

ci|zi,yi0  Normal  0yi0  zi,a
2     (33)

Then

Pyit  1|zi,yi,t−1, . . . ,yi0,ai 

zit  yi,t−1    0yi0  zi  ai,     (34)

where ai ≡ ci −  − 0yi0 − zi.
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∙ Turns out we can use standard random effects probit software (Stata:

xtprobit), with explanatory variables 1,zit,yi,t−1,yi0,zi in time period

t. Easily get the average partial effects, too:

ASFzt,yt−1  N−1∑
i1

N

zt̂a  ̂ayt−1

 ̂a  ̂a0yi0  zi̂a,     (35)

with coefficients scaled by 1  ̂a
2−1/2.

∙ Labor force participation example with N  5, 663 and T  5. The

APE estimated from this method is about .259. If we ignore the

heterogeneity, APE is . 837.
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use lfp, clear
tsset id period
* Lagged dependent variable:
bysort id (period): gen lfp_1  L.lfp
* Put initial condition in periods 2-5:
by id: gen lfp1  lfp[1]
* Create kids variables for periods 2-5:
forv i2/5 {
by id: gen kids‘i’  kids[‘i’]
}
* Create lhinc variables for periods 2-5:
forv i2/5 {
by id: gen lhinc‘i’  lhinc[‘i’]
}

capture program drop reprobit_boot
program reprobit_boot, rclass
xtset newid period
xtprobit lfp lfp_1 lfp1 kids kids2-kids5 lhinc lhinc2-lhinc5 educ black age agesq per3-per5, re from(b)
predict double xdh, xb
gen double xdh0  xdh - _b[lfp_1]*lfp_1
gen double xdh1  xdh0  _b[lfp_1]
replace xdh0  xdh0/sqrt(1  e(sigma_u)^2)
replace xdh1  xdh1/sqrt(1  e(sigma_u)^2)
gen double pe1  normal(xdh1) - normal(xdh0)
summarize pe1, meanonly
return scalar ape1r(mean)
drop xdh xdh0 xdh1 pe1
end

xtprobit lfp lfp_1 lfp1 kids kids2-kids5 lhinc lhinc2-lhinc5 educ black age agesq per3-per5, re
mat be(b)

* Bootstrap within women.
tsset, clear
bootstrap r(ape1), reps(200) seed(123) cluster(id) idcluster(newid): reprobit_boot
tsset id period

program drop reprobit_boot
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8.2. Corner Solution Responses

∙ If yit (or yit1 has a corner at zero, but is unbounded, or has two

corners, one might want to apply Tobit. Analysis is very similar to

probit. Use Chamberlain device and then either pooled Tobit (robust,

APEs) or random effects Tobit (Stata: xttobit).

∙ If yit2 is a continuous endogenous explanatory variable, estimate its

reduced form using the Chamberlain-Mundlak device, just as in (30).

Then, put these residuals, v̂it2, in a pooled Tobit analysis.

∙ In other words, Tobit of yit1 on yit2,zit1, z̄i, v̂it2 pooled across i and t.

Simple test of the null of exogeneity of yit2 as robust t statistic on v̂it2.

∙ Use Tobit conditional mean expressions, average across z̄i, v̂it2.
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∙ Simple estimation of a panel hurdle model, such as Cragg’s, is more

controversial. In the strictly exogenous case, assume Dyit|xit, x̄i

follows Cragg’s model for each t [which does not follow from the same

assumption for Dyit|xit,ci, which is why it is somewhat

controversial]. In the case with an endogenous variable, can assume

Dyit1|yit2,zit1, z̄i,vit2 follows Cragg’s model. Then, for example,

Eyit1|yit2,zit1, z̄i,vit2  wit110wit111  11wit111/11,     (36)

where wit1  yit2,zit1, z̄i,vit2, 10 are the parameters in the Cragg

probit, and 11,11 are the parameters from the truncated normal

distribution;  is the inverse Mills ratio.
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∙ First step is to obtain the v̂it2 from the pooled OLS regression yit2 on

1,d2t, . . . ,dTt,zit, z̄i across i and t, and obtain the residuals, v̂it2 (see

(30)). Next, estimate a pooled Cragg model of yit1 on

1,d2t, . . . ,dTt,yit2,zit1, z̄i, v̂it2. Given the estimates from this two-step

procedure, the partial effects are obtained from the estimated average

structural function,

ASFyt2,zt1  N−1∑
i1

N

̂ t0  ̂10yt2  zt1̂10  z̄i̂10  ̂10vit2

 ̂ t1  ̂11yt2  zit1̂11  z̄i̂11  ̂11vit2

 ̂11̂ t1  ̂11yt2  zt1̂11  z̄i̂11  ̂11vit2/̂11.

    (37)
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∙ Take derivatives or changes with respect to elements of yt2,zt1.

Bootstrapping is very convenient for obtaining the standard errors.

∙ One defense of this approach: it specifies

Dyit1|yit2,zi  Dyit1|yit2,zit1, z̄i,vit2. In other words, it uses a model

for a distribution conditional on observables, and this model can be

tested directly. (Not all of the identification assumptions can be, of

course.)
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9. Extensions

∙With more work (programming!) can obtain useful extensions of

basic models, for example, allow nonnormality or heteroskedasticity in

the heterogeneity distribution:

ci|xi ~ Normal  x̄i,a
2 expx̄.     (38)

∙ Essentially, would lead to a command in Stata such as “xthetprob,” a

random effects panel extension of “hetprob.”

∙ Or, allow “slope” heterogeneity, such as

Pyit  1|xit,ci,bi  xitbi  ci.     (39)

∙ Typically, can identify average partial effects.
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