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Diagnostic Test Evaluation

DIAGNOSTIC TEST
Any measurement aiming to identify individuals who could
potentially benefit from preventative or therapeutic intervention
This includes:

1 Elements of medical history

2 Physical examination

3 Imaging procedures

4 Laboratory investigations

5 Clinical prediction rules
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Diagnostic Test Evaluation

1 The performance of a diagnostic test assessed by comparison
of index and reference test results on a group of subjects

2 Ideally these should be patients suspected of the target
condition that the test is designed to detect.

Binary test data often reported as 2×2 matrix

Reference Test
Positive

Reference Test
Negative

Test Positive True Positive False Positive

Test Negative False Negative True Negative
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Measures of Diagnostic Performance

Sensitivity (true positive rate) The proportion of people with
disease who are correctly identified
as such by test

Specificity (true negative rate) The proportion of people without
disease who are correctly identified
as such by test

Positive predictive value The proportion of test positive
people who truly have disease

Negative predictive value The proportion of test negative
people who truly do not have
disease



Measures of Diagnostic Performance

Likelihood ratios (LR) The ratio of the probability of a positive (or
negative) test result in the patients with
disease to the probability of the same test
result in the patients without the disease

Diagnostic odds ratio The ratio of the odds of a positive test
result in patients with disease compared to
the odds of the same test result in patients
without disease.

ROC Curve Plot of all pairs of (1-specificity, sensitivity)
as positivity threshold varies



Meta-analysis of Diagnostic Performance

Rationale

1 Evaluation of the quality and scope of available primary
studies

2 Determination of the proper and efficacious use of diagnostic
and screening tests in the clinical setting in order to guide
patient treatment

3 Decision making about health care policy and financing

4 Identification of areas for further research, development, and
evaluation
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Meta-analysis of Diagnostic Performance

Major steps

1 Framing objectives of the review

2 Identifying the relevant literature

3 Assessment of methodological quality and applicability to the
clinical problem at hand

4 Summarizing the evidence qualitatively and if appropriate,
quantitatively(meta-analysis)

5 Interpretation of findings and development of
recommendations
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Validity of Meta-analysis of Diagnostic Test Accuracy

Depends on presence, extent and sources of variability due to:

1 Methodological quality bias

2 Covariate Heterogeneity

3 Publication and other sample size-related bias

4 Threshold Effects

5 Unobserved heterogeneity
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Extent of Heterogeneity

1 Assessed statistically using the quantity I 2 described by
Higgins and Colleagues (2002).

2 Defined as percentage of total variation across studies
attributable to heterogeneity rather than chance.

3 I 2 is alculated as:

I 2 = ((Q − df )/Q)× 100. (1)

Q is Cochran’s heterogeneity statistic; df equals degrees of
freedom.

4 I 2 lies between 0% and 100%: 0% indicates no observed
heterogeneity, greater than 50% considered substantial
heterogeneity.

5 Advantage of I 2 : does not inherently depend on the number
of the studies.
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Sources of Heterogeneity: Meta-regression

1 There are different sources of heterogeneity in meta-analysis:
characteristics of the study population, variations in the study
design (type of design, selection procedures, sources of
information, how the information is collected), different
statistical methods, and different covariates adjusted for (if
relevant)

2 Formal investigation of sources of heterogeneity is performed
by meta-regression, a collection of statistical procedures
(weighted/unweighted linear, logistic regression) in which the
study effect size is regressed on one or several covariates
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Methodological Quality

The assessment of quality has to consider details of study design
and execution such as:

1 Cogency of the research question and clinical context

2 Appropriateness of patient population

3 Sufficient description and well-defined interpretation of index
diagnostic technique(s)

4 Appropriateness and sufficient description of reference
standard information

5 Other factors that can affect the integrity of the study and
the generalizability of the results
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Methodological Quality

Methods of quality assessment may focus on:

1 Absence or presence of key qualities in the study report
(checklist approach)

2 Scores developed for this purpose (scale approach)

3 Levels-of-evidence methods by which a level or grade is
assigned to studies fulfilling a predefined set of criteria
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Threshold effects

1 Most diagnostic tests have multiple or continuous outcomes

2 Dichotomization or application of cutoff value used to classify
results into positive or negative

3 Implicit positivity threshold: based on
interpretation/judgement/machine calibration e.g. radiologists
classifying images as normal or abnormal

4 Explicit positivity threshold: based on a numerical threshold
e.g. blood glucose level above which patient may be said to
have diabetes
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Threshold effects

1 The chosen threshold may vary between studies of the same
test due to inter-laboratory or inter-observer variation

2 The higher the cut-off value, the higher the specificity and the
lower the sensitivity

3 Threshold-based interdependence between sensitivity and
specificity tested a priori using a rank correlation test such as
Spearman’s rho after logit transformation
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Publication and Other Precision-related Biases

Publication bias Tendency for investigators, reviewers, and editors
to submit or accept manuscripts for publication
based on the direction or strength of the study
findings.

Funnel plot Exploratory tool for investigating publication bias,
plotting a measure of effect size versus a measure
of study precision

1 Funnel plot should appear symmetric if no bias is present

2 Assessment of such a plot is very subjective.

3 Non-parametric and linear regression methods used to
formally test funnel plot asymmetry.
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Examples of Tests For Funnel Plot Asymmetry

(Begg 1994) Rank correlation between standardized effect and
its standard error

(Egger 1997) Linear regression of intervention effect against its
standard error weighted by inverse of the
variance of intervention effect estimate

(Macaskill 2001) Linear regression of intervention effect on sample
size

(Harbord 2006) Modified vesion of (Egger 1997) based on
”score” and ”score variance” of the log odds
ratio

(Peters 2006) Linear regression of intervention effect on inverse
of sample size



Problems with sample size and standard error

1 The asymptotic standard error is a biased estimate of the true
standard error, with larger bias for smaller cell sizes, as occurs
with larger DORs and smaller studies

2 Diagnostic studies have unequal sample sizes in diseased and
non-diseased groups which reduces the precision of an
estimate of test accuracy for a given sample size

3 The standard error of the logDOR depends on proportion
testing positive. However, individual studies often differ in
positivity threshold leading to variability in proportion testing
postive
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Summary ROC Meta-analysis of Diagnostic Test Accuracy

The most commonly used and easy to implement method

1 Linear regression analysis of the relationship
D = a + bS where :
D = (logit TPR) - (logit FPR) = ln DOR
S = (logit TPR) + (logit FPR) = proxy for the threshold

2 a and b may be estimated by weighted or unweighted least
squares or robust regression, back-transformed and plotted in
ROC space

3 Differences between tests or subgroups may examined by
adding covariates to model

Moses, Shapiro and Littenberg. Med Decis Making (1993)12:1293-1316
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Summary ROC Meta-analysis of Diagnostic Test Accuracy

1 Assumes variability in test performance due only to threshold
effect and within-study variability

2 Does not provide average estimates of sensitivity and
specificity

3 Continuity correction may introduce non-negligible downward
bias to the estimated SROC curve

4 Does not account for measurement error in S

5 Ignores potential correlation between D and S

6 Confidence intervals and p-values are likely to be inaccurate
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Recent Developments

Publication Bias test for Diagnostic Meta-analysis

1 linear regression of log odds ratio on inverse square root of
effective sample size

2 Uses the effective sample size as weight

3 Effective sample size=4*(ndis*nndis)/sample size

Bivariate Mixed Effects Models

1 Focused on inferences about sensitivity and specificity but
SROC curve(s) can be derived from the model parameters

2 Generalization of the commonly used DerSimonian and Laird
random effects model

Arends et al. Med Decis Making. Published online June 30, 2008
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Publication Bias test for Diagnostic Meta-analysis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2425

26

27

28

29

30
31

32

33

34

35

36

37

38

39
40

41

42

43

.05

.1

.15

.2

.25

.3

1/
ro

ot
(E

S
S

)

1 10 100 1000

Diagnostic Odds Ratio

Study

Regression
Line

Deeks’ Funnel Plot Asymmetry Test
pvalue  =   0.89

 



Bivariate Linear Mixed Model

Level 1: Within-study variability(
logit (pAi )
logit (pBi )

)
∼ N

((
µAi

µBi

)
,Ci

)

Ci =

(
s2
Ai 0
0 s2

Bi

)
pAi and pBi Sensitivity and specificity of the ith study

µAi and µBi Logit-transforms of sensitivity and specificity of the
ith study

Ci Within-study variance matrix

s2
Ai and s2

Bi variances of logit-transforms of sensitivity and
specificity

Reitsma JB et al. J. Clin Epidemiol (2005) 58:982-990



Bivariate Linear Mixed Model

Level 2: Between-study variability(
µAi

µBi

)
∼ N

((
MA

MB

)
,ΣAB

)

ΣAB =

(
σ2

A σAB

σAB σ2
B

)
µAi and µBi Logit-transforms of sensitivity and specificity of the

ith study

MA and MB Means of the normally distributed logit-transforms

ΣAB Between-study variances and covariance matrix

Reitsma JB et al. J. Clin Epidemiol (2005) 58:982-990



Bivariate Binomial Mixed Model

Level 1: Within-study variability

yAi ∼ Bin (nAi , pAi )

yBi ∼ Bin (nBi , pBi )

nAi and nBi Number of diseased and non-diseased

yAi and yBi Number of diseased and non-diseased with true test
results

pAi and pBi Sensitivity and specificity of the ith study

Chu H, Cole SR (2006) J. Clin Epidemiol 59:1331-1332
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Bivariate Mixed Models

1 Exact binomial approach preferred especially for small sample
data and for avoiding continuity correction

2 The relation between logit-transformed sensitivity and
specificity is given by µAi = a+b×µBi with slope b = σAB/σ2

A

and intercept a = MA - b×MB

3 SROC may be obtained after anti-logit transformation of the
regression line
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Methodological Framework

Propose a generalized framework for diagnostic meta-analysis
based on a modification of the bivariate Dale model:

1 Univariate random-effects logistic models for sensitivity and
specificity are associated through a log-linear model of odds
ratios with effective sample size as independent variable

2 This unifies the estimation of summary test performance and
assessment of the presence, extent, and sources of variability
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Methodological Framework

Discuss specification, estimation, diagnostics, and prediction of
model:

1 Using a motivating dataset of 43 studies investigating
FDG-PET for staging the axilla in patients with newly
diagnosed breast cancer

2 Taking advantage of the ability of gllamm to model a mixture
of discrete and continous outcomes
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Bivariate Dale Model (Correlated Binary Responses)

1 Joint probabilities decomposed into two marginal distributions for
the main effects

2 One log-cross-ratio for the association between two responses

h1{p1+(x)}=B1x;
h2{p+1(x)}=B2x;
h{(p11(x)*p22(x))/(p12(x)*p21(x))}=B3x

1 h1, h2, h3 are link functions in the GLM terminology

2 p1+ and p+1 are the marginal probabilities for response1=1 and
response2=1 respectively

3 Most popular choice for h1=h2 is the logit function

4 Commonly used link function for h3 is the natural logarithm:

ln(cross-ratio)=ln{(p11(x)*p22(x))/(p12(x)*p21(x))}



Modified Bivariate Dale Model

Within-study variability

yAi ∼ Bin (nAi , pAi )

yBi ∼ Bin (nBi , pBi )

nAi and nBi Number of diseased and non-diseased

yAi and yBi Number of diseased and non-diseased with true test
results

pAi and pBi Sensitivity and specificity of the ith study



Modified Bivariate Dale Model

Between-study variability(
µAi

µBi

)
∼ N

((
MA

MB

)
,ΣAB

)

ΣAB =

(
σ2

A 0
0 σ2

B

)
µAi and µBi Logit-transforms of sensitivity and specificity of the

ith study

MA and MB Means of the normally distributed logit-transforms

ΣAB Between-study variances



Modified Bivariate Dale Model

Association Model

Associates the univariate random-effects logistic models for
sensitivity and specificity in the form a log-linear model:

logDORi = a+b×ESSi

intercept a = adjusted odds ratio

and slope b = bias coefficient



Example: PET for axillary staging of breast Cancer

1 PET or Positron Emission Tomography uses radiolabeled
glucose analog to evaluate tumor metabolism

2 This radiological test may be used to stage and/or examine
the extent of breast cancer

3 The accuracy of axillary PET has been studied by many
researchers

4 We obtained, by searching PUBMED, 43 studies published
between 1990 and 2008
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Example: PET for axillary staging of breast Cancer

Table: Dataset

Idnum Author Year TP FP FN TN SIZE
1 Tse 1992 4 0 3 3 10
2 Adler1 1993 8 0 1 10 18
3 Hoh 1993 6 0 3 5 14
4 Crowe 1994 9 0 1 10 20
5 Avril 1996 19 1 5 26 51
6 Bassa 1996 10 0 3 3 16
7 Scheidhauer 1996 9 1 0 8 18
8 Utech 1996 44 20 0 60 124
9 Adler2 1997 19 11 0 20 50
10 Palmedo 1997 5 0 1 14 20
11 Noh 1998 12 0 1 11 24
12 Smith 1998 19 1 2 28 50
13 Rostom 1999 42 0 6 26 74
14 Yutani1 1999 8 0 2 16 26
15 Hubner 2000 6 0 0 16 22
- - - - - - - -
- - - - - - - -
32 Wahl 2004 66 40 43 159 308
33 Zornoza 2004 90 2 17 91 200
34 Weir 2005 5 3 13 19 40
35 Gil-Rendo 2006 120 2 22 131 275
36 Kumar 2006 16 2 20 40 80
37 Stadnik 2006 4 0 1 5 10
38 Chung 2006 25 0 17 18 51
39 Veronesi 2006 38 5 65 128 236
40 Cermik 2008 40 15 39 125
41 Ueda 2008 34 6 25 118
42 Fuster 2008 14 0 6 32
43 Heuser 2008 8 0 2 20



Recode Data for gllamm

gen dor = (tp*tn)/(fp*fn)
gen ldor = ln(dor)
gen ldorvar = (1/fn)+(1/tn)+(1/fp)+(1/tp)
gen ldorse = sqrt((1/fn)+(1/tn)+(1/fp)+(1/tp))
tempvar n1 n2 ESS zero thetai sethetai
gen ‘n1’ = tp + fn
gen ‘n2 ’= tn + fp
gen ‘ESS’ =(4 * ‘n1’ * ‘n2’)/(‘n1’ + ‘n2’)
gen ‘thetai’=(tp * tn)/(fp * fn)
replace ‘thetai’=log(‘thetai’)
gen ‘sethetai’=sqrt(‘ESS’)
gen size =1/‘sethetai’



Recode Data for gllamm

gen ttruth1 = tn /* number truly disease-free */
gen ttruth2 = tp /* number truly diseased */
gen ttruth3 = ‘thetai’
gen num1 = tn+fp /* total disease-free */
gen num2 = tp+fn /* total diseased */
gen num3 = 1
reshape long num ttruth, i(study) j(dtruth) string
qui tabulate dtruth, generate(disgrp)
eq disgrp1: disgrp1
eq disgrp2: disgrp2
eq disgrp3: disgrp3
gen gvar = .
replace gvar = 1 if dtruth == "1"
replace gvar = 2 if dtruth == "2"
replace gvar = 3 if dtruth == "3"
forvalues i=1/3 {

g size_‘i’ = disgrp‘i’* size
}

}



Bivariate Binomial Mixed Model

gllamm ttruth disgrp1 disgrp2 if dtruth !="3", nocons ///
i(study) nrf(2) eqs(disgrp1 disgrp2) ///
f(bin) l(logit) denom(num) ip(m) adapt

Table: Estimation results

Variable Coefficient (Std. Err.)

Fixed Effects
logitsen 3.084 (0.260)
logitspe 0.925 (0.197)

Random-Effects
logitsen 1.144 (0.232)
logitspe 1.109 (0.174)
Correlation -0.319 (0.256)



Bivariate Binomial Mixed Model

Table: Summary estimates

Variable Coefficient (Std. Err.)
sens 0.716 (0.040)
spec 0.956 (0.011)
ldor 4.009 (0.305)
lrp 16.362 (4.047)
lrn 0.297 (0.042)



Forest Plot
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No bias Uncorrelated Random-Effects

gllamm ttruth disgrp1 disgrp2 disgrp3, nocons nocor ///
i(study) nrf(2) eqs(disgrp1 disgrp2) f(bin bin gauss) ///
l(logit logit id) denom(num) ip(m) adapt fv(gvar) lv(gvar)

Table: Estimation results

Variable Coefficient (Std. Err.)

Fixed effects
logitsen 3.119 (0.265)
logitspe 0.921 (0.193)
logdor 3.694 (0.211)

Random effects
logitsen 1.196 (0.246)
logitspe 1.143 (0.173)



No bias Uncorrelated Random-Effects

Table: Summary estimates

Variable Coefficient (Std. Err.)
sens 0.715 (0.039)
spec 0.958 (0.011)
ldor 3.694 (0.211)
lrp 16.888 (4.384)
lrn 0.297 (0.041)



Bias Correlated Random-Effects

gllamm ttruth disgrp1 disgrp2 disgrp3 size_3, nocons ///
i(study) nrf(2) eqs(disgrp1 disgrp2) f(bin bin gauss) ///
l(logit logit id) denom(num) ip(m) adapt fv(gvar) lv(gvar)

Table: Estimation results

Variable Coefficient (Std. Err.)

Fixed Effects
logitsen 3.084 (0.260)
logitspe 0.925 (0.197)
logdor 4.324 (0.543)
bias -3.801 (3.032)

Random-effects
logitsens 1.144 (0.232)
logitspe 1.109 (0.174)
Correlation -0.319 (0.256)
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Table: Summary estimates

Variable Coefficient (Std. Err.)
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spec 0.956 (0.011)
ldor 4.324 (0.543)
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lrn 0.297 (0.042)
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Bias Uncorrelated Random-Effects

Table: Summary estimates

Variable Coefficient (Std. Err.)
sens 0.715 (0.039)
spec 0.958 (0.011)
ldor 4.324 (0.543)
lrp 16.888 (4.384)
lrn 0.297 (0.041)



Comparative Results

Table: Fit and Complexity Measures

Model nparm Deviance BIC
No Bias 7 548.42 582.44
Bias Correlated Random-effects 8 548.42 587.30
Bias Uncorrelated Random-effects 7 548.37 582.39

Table: Sensitivity and Specificity

Model Sens Spec
No Bias 0.716 (0.638 - 0.795) 0.956 (0.935 - 0.978)
Bias Correlated RE 0.716 (0.638 - 0.795) 0.956 (0.935 - 0.978)
Bias Uncorrelated RE 0.715 (0.638 - 0.792) 0.958 (0.937 - 0.979)



Prediction and Diagnostics

May use gllapred for empirical bayes predictions, residual analysis, influence analysis, normality testing
etc
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Conclusions

1 The preferred model is the Bias Uncorrelated Random-effects
Model

2 If interest is in diagnostic performance only, then the Bivariate
binomial mixed and modified bivariate Dale models are
equivalent.

3 The modified bivariate Dale models may be extended further to
include study-level covariates to assess impact on summary test
performance jointly or separately.
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