Likelihood Ratio Tests for Multiply Imputed Datasets: Introducing milrtest

Rose Anne Medeiros rosem@ats.ucla.edu

Statistical Consulting Group Academic Technology Services University of California, Los Angeles

2008 Fall North American Stata Users Group meeting

Medeiros LR tests for MI datasets

< 🗇 > < 🖻 > .

-∃=->

Introduction

- Analyzing multiply imputed (MI) datasets typically involves estimating the desired model on each of the *m* imputed datasets.
- The final coefficient estimates are based on the mean of the parameter estimates across the *m* imputed datasets.
- The final estimates of the standard errors incorporate both the standard errors from the individual analyses, and the variance of the standard errors across the *m* imputed datasets.

.≣⇒

- Estimates of the s.e. allow for hypothesis tests for individual coefficients, however, testing nested models is somewhat more difficult.
- Several variants of the Wald test exist (see Schafer 1997, and Li, Raghunathan & Rubin 1991).
- The classic likelihood ratio (LR) test cannot be implemented as is because the final estimates do not come directly from a single model, and hence it is unclear what the proper value of the likelihood is for a given model.
- A variant of the LR test is described by Meng and Rubin (1992).

・ 同 ト ・ ヨ ト ・ ヨ ト …

In Stata

- In Stata M.I. datasets can be analyzed using the user-written package mim (Carlin, Calati & Royston 2008).
- mim includes the multiparameter (Wald) test from Li, Raghunathan and Rubin (1991).
- The program presented here, milrtest, adds to the available tests by implementing the LR test of Meng and Rubin (1992).

▲ 同 ▶ ▲ 臣 ▶ .

Review and Notation

A likelihood ratio test compares a full model (h_1) with a restricted model where some parameters are constrained to some value (h_0) , often zero. The log likelihoods for the two models are compared to asses fit.

The likelihood ratio test statistic:

$$d'=2(\ell\ell_1-\ell\ell_0)$$

Coefficient estimates based on the *m* MI datasets (Little & Rubin 2002):

$$\bar{\theta} = \frac{1}{m} \sum_{i=1}^{m} \hat{\theta}_i$$

< 回 > < 回 > .

- For each of the *m* imputed datasets:
 - Run the *h*₁ model.
 - Run the *h*₀ model.
 - Calculate d' (LR test).
- **2** From the *m* repetitions of the h_0 model, calculate $\bar{\theta}_0$.
- Solution From the *m* repetitions of the h_1 model, calculate $\bar{\theta}_1$.

・ 戸 ・ ・ 三 ・ ・

프 🕨 🗉 프

For each of the *m* imputed datasets:

- Calculate the likelihood for h_1 with the parameters constrained to $\bar{\theta}_1$.
- Calculate the likelihood for h_0 with the parameters constrained to $\bar{\theta}_0$.
- Calculate the likelihood ratio test *d*_L, using the above likelihoods.
- Solution Calculate the mean of d', $\bar{d'}_m$ (i.e. the LR test statistics from the unconstrained models).
- Calculate the mean of d_L , \bar{d}_L (i.e. the LR test statistic from the constrained models).
- Calculate the test statistic and degrees of freedom.

(日)

The Test Statistic

$$D_L = \frac{\bar{d_L}}{k(1+r_L)}$$

where:

$$k = df_1 - df_0$$

and

$$r_L = \frac{(m+1)}{k(m-1)}(\bar{d}'_M - \bar{d}_L)$$

<ロト <回 > < 注 > < 注 > 、

∃ 𝒫𝔄𝔅

combine D_L and r_L :

$$D_L = \frac{\bar{d}_L}{k + \frac{m+1}{m-1}(\bar{d}'_M - \bar{d}_L)}$$

Medeiros LR tests for MI datasets

 $w(r_L) = \begin{cases} 4 + (\nu - 4)\{1 + (1 - 2\nu^{-1})r_L^{-1}\}^2 \\ \frac{1}{2}\nu(1 + \frac{1}{\nu})(1 + r_L^{-1})^2 \end{cases}$

$\nu > 4$ otherwise.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

where:

Degrees of freedom

 $D_L \sim F(k, w(r_L))$, where:

 $\nu = k(m-1)$

and

$$r_L = \frac{m+1}{k(m-1)}(\bar{d}'_M - \bar{d}_L)$$

milrtest test_varlist

- *test_varlist* should contain the variables to be restricted in the null model.
- Must be run after a mim regression command. The model run should be the alternative (i.e. unrestricted) model.
- Currently only available after regress, logit, and ologit.
- milrtest inherits sample restrictions from mim.
- $m \ge 4$ required.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

An Example

- Uses a subset of data from a study of college students' romantic relationships (n=2386).
- The percent of missing values on each variable ranges from less than 1% to 9%, with most variables missing around 8% to 9% of values.
- The variables engaged, married, and cohabiting are dummy variables for relationship status, dating is the reference group.

The models:

```
h_1: reg distress rc01 rc02 age engaged married cohabiting h_0: reg distress rc01 rc02 age
```

ヘロト ヘ戸ト ヘヨト ヘヨト

mim: reg distress rc01 rc02 age engaged married cohabiting

Multiple-imputation estimates (regress) Linear regression

Imputations = 5 Minimum obs = 2385 Minimum dof = 108.8

distress	l	Coef.	Std. Err.	t	P> t	[95% Con	f. Int.]	MI.df
rc01	1	-1.38278	.139585	-9.91	0.000	-1.65679	-1.10878	781.4
rc02		-1.16774	.13375	-8.73	0.000	-1.43086	904618	326.0
age	1	.065342	.019917	3.28	0.001	.026014	.104669	163.4
engaged		470156	.29352	-1.60	0.111	-1.0504	.110085	141.8
married	1	142893	.337372	-0.42	0.673	811571	.525784	108.8
cohabiting		.656153	.536409	1.22	0.222	396464	1.70877	1000.0
_cons	L	21.2969	.569379	37.40	0.000	20.1755	22.4184	247.2

```
Introduction
Computations
The Program
```

```
milrtest engaged married cohabiting
```

```
Test statistic: F( 3, 415.116) = 1.557
Prob > F 0.1993
```

quietly: mim: reg distress rc01 rc02 age engaged married cohabiting mim: testparm engaged married cohabiting

```
(1) engaged = 0
```

```
(2) married = 0
```

(3) cohabiting = 0

```
F( 3, 431.9) = 1.56
Prob > F = 0.1990
```

(ロ) (同) (目) (日) (日) (の)

A cautionary tale

Using the naive approach and averaging the likelihood ratio tests across the *m* imputed datasets:

$$\chi^2 = 5.5718, df = 3$$

p ≤ .1344

Which is far lower than the $p \le 0.2$ obtained from both the Wald and the LR tests.

・ 同 ト ・ ヨ ト ・ ヨ ト

æ.

The version of the Wald test implemented in mim is known to be unstable at low values of *m*. So the question is, how does the LR test implemented here compare? Using the same data:

- MI datasets were created with $4 \le m \le 20$.
- The alternative (versus null) model above was tested using the LR and Wald tests with each of the 17 datasets.

- ⊒ →

A more in-depth comparison

Using data from the study described above:

- Started with a subset of those cases with complete data on the necessary variables (n=2150).
- Compared the null and alternative models above using the standard LR and Wald tests.
- Created a single dataset with data missing completely at random. Percent missing for each variable ranged from less than 1% to about 30%, with a mean of about 15% missing.
- Imputed the missing values 100 times with m = 5 and m = 10.
- Compared the null and alternative models from above using the milrtest and mim: testparm, saving the results.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

イロト 不得 とくほ とくほとう

æ

Returned Arguments

scalars:

r(d_m)	Mean of likelihood ratio chi-squares for h1 vs h0 in unconstrained models
r(d_L)	Mean of likelihood ratio chi-squares for h1 vs h0 in constrained models
r(p)	p value of final statistic
r(df_d)	denominator degrees of freedom
r(df_n)	numerator degrees of freedom
r(test_stat)	F statistic
r(m)	number of imputed datasets used in estimation
r(h0_c_ <i>m</i>)	LL of constrained model under h0
r(h1_c_ <i>m</i>)	LL of constrained model under h1
r(h0_uc_ <i>m</i>)	LL of unconstrained model under h0
r(h1_uc_ <i>m</i>)	LL of unconstrained model under h1

<ロト <回 > < 注 > < 注 > 、

macros:

r(cmd)	Name of the estimation command
r(h0_model)	Model under the null hypothesis
r(h1_model)	Model under the alternative hypothesis

matrices:

r(h0_coefs)	Coefficient estimates for null model
r(h1_coefs)	Coefficient estimates for alternative model

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Programming notes

- The likelihoods for the constrained models are calculated using Mata.
- Currently these Mata functions are embedded in the appropriate .ado file.

ヘロト ヘアト ヘビト ヘビト

milrtest can be downloaded from the ATS website, http://www.ats.ucla.edu/stat/stata/ado/analysis/milrtest.pkg

ヘロン ヘアン ヘビン ヘビン

∃ <2 <</p>

References

Allison, P. D. (2001) Missing Data. Sage University Papers Series on Quantitative Applications in the Social Sciences, 07-136. Thousand Oaks, CA: Sage.

Carlin, J. B., J. C. Calati, & P. Royson (2008) A new framework for managing and analyzing multiply imputed data in Stata. The Stata Journal 8(1): 49-67.

Carlin, J.B., N. Li, P. Greenwood, & C. Coffey (2003) Tools for analyzing multiple imputed datasets. The Stata Journal 3(3): 226-244.

Li, K.H., T.E. Raghunathan, & D.B. Rubin (1991) Large-sample significance levels from multiply imputed data using moment-based statistics and an *F* reference distribution. Journal of the American Statistical Association 86(416): 1065-1073.

イロト イポト イヨト イヨト

Little, R. J. A., & D. B. Rubin (2002) Statistical analysis with missing data. Hoboken, N.J: Wiley.

Meng, X., & D. B. Rubin. (1992) Performing likelihood ratio tests with multiply-imputed data sets. Biometrika 79: 103-111.

Schafer, J.L. (1997) Analysis of Incomplete Multivariate Data. Monographs on Statistics and Applied Probability 72. New York, NY: Chapman & Hall/CRC.

イロト 不得 とくほ とくほとう

æ