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Résumé

Nous étudions le rôle joué par les asymétries d’information sur la volatilité
de marché dans un cadre linéaire où le prix est déterminé par les anticipa-
tions sur ce prix. L’unique équilibre à anticipations rationnelles est dit sta-
ble lorsqu’il est aussi l’unique solution rationalisable. Il est connu dans la
littérature que la stabilité s’obtient lorsque la sensibilité du prix aux anticipa-
tions de prix est plus petite que 1, lorsque cette sensitibilité est connaissance
commune. Nous relâchons cette hypothèse de connaissance commune de la
sensibilité du prix aux anticipations de prix. L’équilibre est instable lorsque
beaucoup d’agents connaissent la véritable sensibilité, et que parmi le petit
nombre d’agents qui ne la connaissent pas, certains pensent qu’elle peut être
plus grande que 1.

abstract

We study how asymmetric information affects market volatility in a linear
setup where the outcome is determined by forecasts about this same outcome.
The unique rational expectations equilibrium will be stable when it is the only
rationalizable solution. It has been established in the literature that stability
is obtained when the sensitivity of the outcome to agents’ forecasts is less
than 1, provided that this sensitivity is common knowledge. Relaxing this
common knowledge assumption, instability is obtained when the proportion
of agents who a priori know the sensitivity is large, and the uninformed
agents believe it is possible that the sensitivity is greater than 1.

JEL classification numbers: C62, D82, D84.

Mots-clés : Information asymétrique, connaissance commune, apprentis-
sage divinatoire, rationalisabilité, anticipations rationnelles, volatilité.

Keywords: Asymmetric information, common knowledge, eductive learn-
ing, rational expectations, rationalizability, volatility.
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1 Introduction

One puzzle in the theory of economic fluctuations concerns the high degree
of market volatility. Market volatility appears to be partially disconnected
from economic fundamentals and is often found to be excessive, especially in
financial markets, including stock and currency markets, and in agricultural
or energy markets. Much effort has been put into understanding the causes
of this abnormal volatility. For instance, a recent avenue of study argues
that our lack of comprehension of business cycle fluctuations may be due to
shocks observed by economic agents, e.g., news shocks about the true under-
lying economic fundamentals or forecasts shocks.1 This paper examines how
market volatility is related to the way in which the news is spread through-
out the economy. It shows that a departure, even a very small one, from a
situation in which everyone is aware of the true underlying economic funda-
mentals is likely to generate instability by favoring expectations coordination
failures.

Coordination problems typically arise when an agent’s decision depends
on his forecast regarding some aggregate outcome, which itself is determined
by the decisions of all economic agents. In this configuration, the market
exhibits a beauty contest in which every agent tries to predict the behavior
of others. This self-referential aspect is relevant in financial markets. The
attempt to predict the behavior of others is crucial in the model of currency
attacks analyzed by Morris and Shin (1998), in which every trader decides
whether to attack the currency, and the payoff for attacking depends on the
proportion of traders who decide to attack. Similarly, in the agricultural
market studied by Guesnerie (1992), every farmer chooses his level of corn
production before knowing the market clearing price of corn, and this price
in turn depends on the aggregate supply produced by all the farmers. A
key aspect of the beauty contest component is that agents face strategic un-
certainty: they are a priori uncertain about the behavior of others. The
literature has suggested circumstances in which agents can succeed in guess-
ing others’ behavior. A simple and general lesson illustrated in this area is

1Business cycle models with news shocks stress amplification mechanisms through
which news disclosures imply volatility (Beaudry and Portier, 2006; Beaudry and Portier
2007; Jaimovich and Rebelo, 2009). A voluminous literature studies how announcements
influence exchange rate volatility (Andersen, Bollerslev and Diebold, 2010), macroeco-
nomic volatility (DeGennaro and Shrieves, 1997; Jansen and Haan, 2007) and the following
correction (De Bondt and Thaler, 1987).
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the crucial role played by a single parameter: the sensitivity of the actual ag-
gregate outcome (e.g., the proportion of agents who attack or the aggregate
production of corn) to agents’ beliefs about it. A low ‘sensitivity to beliefs’
makes it more likely that agents will correctly predict others’ behavior. When
the sensitivity becomes high enough, correct prediction is no longer likely.
With high sensitivity, strategic uncertainty persists, and market volatility
results from coordination failures.

The sensitivity to beliefs is part of economic fundamentals. In the corn
market, this sensitivity depends on the price elasticities of aggregate supply
and demand. All coordination issues would vanish in the polar case where
there is an inelastic supply. In such a case, the aggregate supply would
be unrelated to price forecasts, so each individual farmer actually would
not need to predict the behavior of the other farmers. Through continuity,
coordination issues will be solved when the price elasticity of supply is low
in comparison to the price elasticity of demand. In the currency attacks
model, the sensitivity to beliefs relies on the precision and correlation of
private signals received by traders about foreign exchange reserves. The
sensitivity is low when private signals are strongly correlated; if these signals
are perfectly correlated, traders are able to deduce the signals received by
others based upon their own signal. Information may then remain imperfect,
but it is no longer asymmetric.

In Guesnerie (1992), Morris and Shin (1998, 2002), and the subsequent
literature,2 the sensitivity to beliefs is assumed to be common knowledge.
The main innovation of the present paper is to relax this assumption. It
shows that expectations coordination fails as soon as some agents accept the
possibility that the sensitivity to beliefs is large in some state of nature. If,
as seems plausible, this requirement is met in an uncertain world, instability
resulting from the inability to pin down expectational behavior becomes the
rule, rather than the exception.

When one relaxes common knowledge assumptions about economic fun-
damentals, both strategic uncertainty and fundamental uncertainty are sig-
nificant. The interplay between these two types of uncertainty is usually
captured by the Bayesian Nash equilibrium. In such an equilibrium, an
agent generally ignores the actions taken by others, but all the agents know
how private information about fundamentals relates to individual decisions.

2Classical references include Angeletos and Pavan (2004, 2007) and Hellwig (2005). See
also Cornand and Heinemann (2010).
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This scenario implies that strategic uncertainty would vanish in the absence
of private information. For this reason, it is difficult to ascertain the specific
role played by strategic uncertainty. The role of strategic uncertainty be-
comes clearer in the context of the weaker solution concept of rationalizable
solutions. By definition, the set of rationalizable expectations (strategies)
comprises all individual expectations that can be justified whenever expec-
tations of others belong to the set. The set of rationalizable solutions is
the largest self-fulfilling set of expectations, and although it comprises the
Bayesian Nash equilibrium, it may not reduce to it. In the absence of such
a reduction, some uncertainty remains about agents’ behavior. Knowing the
private information of an agent does not a priori allow other agents to infer
his behavior. Considering rationalizable solutions instead of the Bayesian
Nash equilibrium makes strategic uncertainty possible even in the absence of
fundamental uncertainty.

When all agents know the true level of sensitivity to beliefs, a low sensi-
tivity ensures that the set of rationalizable solutions reduces to the Bayesian
Nash equilibrium, both in the eductive reasoning advocated by Guesnerie
(1992) and in the global game approach used by Morris and Shin (1998).
When some agents are unaware of the true sensitivity, all the possible val-
ues of the sensitivity are significant to the elimination of non-best response
strategies. This reflects a contagion-like argument: what happens in a given
state of nature is influenced by all the other states. If an agent ignores the
true state, then obviously, he cannot condition his expectations to the actual
state and must, therefore, form an expectation about the behavior of others
in any possible state of nature. Other agents, to understand the behavior of
any uninformed agents, must determine how they, themselves, would behave
in every possible state of nature, even if they know the true one. Everyone
therefore accounts for all the states to infer the behavior of others.

In our benchmark framework, the market outcome is determined by the
expectations formed about it. It is a reduced-form model intended to focus
on the beauty contest component. There is a linear relation between the
market outcome and agents’ expectations. Its slope measures the sensitivity
to beliefs, and unlike the models in the earlier literature, it differs across
states of nature. The linearity assumption implies that, generically, there
is a unique Bayesian Nash equilibrium. This equilibrium coincides with the
unique rational expectations equilibrium of the economy. Information about
the sensitivity to beliefs is possibly asymmetric; some agents may be per-
fectly informed, whereas the others have no information. A change in the
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proportion of informed agents is used as a proxy for the overall precision of
information. It provides insights into the effects of public macroeconomic
announcements on stability: should a Bank with a stabilization purpose be
transparent and announce its policy rule, or should it conceal information
about economic fundamentals from uninformed agents ? If information is
released, should the Bank prefer a partial revelation to only some of the un-
informed, i.e., maintain privileged information, or identically inform all the
agents ?

This paper highlights two different effects of changes to the information
structure. The first one considers the introduction of a few uninformed agents
into a market where all the agents previously had been informed. The paper
demonstrates that this change can never narrow the set of rationalizable
solutions. In this sense, it is necessarily ‘destabilizing.’ The typical situation
is one where the set of rationalizable solutions initially only consists of the
Bayesian Nash equilibrium; whereas, there is a continuum of rationalizable
solutions once the introduction of a few uninformed agents occurs. This
discontinuity when one departs from the symmetric perfect information case
is a straightforward consequence of the contagion property, which is not be
effective in the initial situation but becomes so in the presence of uninformed
agents. This discontinuity is obtained as soon as the sensitivity to beliefs is
not common knowledge and some agents believe that the sensitivity may be
high.

This property is similar to the instability results derived by studies in
the adaptive learning literature. For instance, according to the ‘uncertainty
principle’ advocated by Grandmont (1998), adaptive learning dynamics di-
verge from rational expectations equilibria when agents are uncertain about
the stability of the system, and are ready to extrapolate a large range of
regularities, including divergent trends. This principle may explain why the
reaction of the economy to news sometimes appears to be disproportionate
to the news content (Cutler, Poterba and Summers, 1989; Allen and Gale,
2007). This property is also reminiscent of Morris and Shin (1998): the the-
oretical insights obtained in the symmetric perfect information case are not
robust when there are small changes in the structure of information available
to agents. In Morris and Shin (1998), the discontinuity refers to the num-
ber of equilibria. In our linear setup, there is always a unique equilibrium,
and the discontinuity refers to the stability property of this equilibrium, i.e.,
whether it is the unique rationalizable solution. From a policy viewpoint, it is
perturbing point that weaker common knowledge assumptions yield a unique

6
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equilibrium in Morris and Shin (1998); whereas, they yield a multiplicity of
rationalizable solutions in our setup. The loss of common knowledge about a
low sensitivity to beliefs makes a unique equilibrium a less plausible solution.

The second result more specifically considers the role played by unin-
formed agents in the process of elimination of dominated expectations. In an
initial situation where there are uninformed agents, this paper considers how
the disclosure of the true sensitivity to only some of these agents, so that
there are still uninformed agents in the final situation, affects the set of ra-
tionalizable outcomes. This paper shows that an increase in the proportion
of informed agents cannot yield a narrower set of rationalizable solutions.
Indeed, this set only comprises the Bayesian Nash equilibrium if and only
if the proportion of informed agents is below some threshold proportion. In
the presence of asymmetric information, a smaller proportion of informed
agents is ‘stabilizing.’ This conclusion hinges on the inertia of the behavior
of an uninformed agent. When such an agent expects others to change their
behavior in some state of nature, his reaction to this expectation will be
dampened because he is uncertain whether this state will occur. This inertia
enables other agents to more easily understand his behavior. Consequently,
accurate predictions are more likely.

This second result conforms to much of the recent literature concerned
with macroeconomic stabilization issues (Woodford, 2003; Hellwig, 2008; and
Nimark, 2008). These papers show that informational asymmetries may
imply a greater persistence of equilibrium fluctuations. In the presence of
informational asymmetries, an agent is not able to assess exactly how a shock
to fundamentals influences others’ decisions. Thus, as far as his optimal
decision depends on others, his Bayesian Nash equilibrium behavior implies
a slow reaction to his private information. Our paper shows that this logic
extends to out-of equilibrium behavior. It also matters in the process of
elimination of dominated strategies.

The paper is organized as follows. The benchmark setup is presented in
Section 2. It encompasses Guesnerie (1992), Morris and Shin (2002), and
a linear (local) version of Morris and Shin (1998). The process of iterated
elimination of dominated strategies in the case of complete information is
briefly described in Section 3. In Section 4, the analysis is extended to the
case of asymmetric information, and the main results are given. Section 5
discusses possible extensions of the work to informational efficiency, higher
order uncertainty, and extraneous uncertainty of the sunspot type.

7
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2 The framework

We consider a stylized model in which agents face a beauty contest issue.
There is a continuum of infinitesimal agents i ∈ [0, 1] who simultaneously
form forecasts (pei ) about the ‘price.’ These forecasts then determine the
actual price. The uncertainty about fundamentals is represented by Ω states
of nature indexed by ω, ω = 1, . . . ,Ω. In state ω, the actual price p (ω) is
governed by the linear temporary equilibrium relation

p(ω) = φ (ω)

∫ 1

0

peidi+ η (ω) . (1)

Fundamentals in state ω are summarized by a pair (φ (ω) , η (ω)). The real
number φ (ω) is the sensitivity to beliefs (it measures the sensitivity of the
actual price to agents’ forecasts) and η (ω) is a scale factor. This is the
framework used by Morris and Shin (2002), where φ(ω) = φ ∈ (0, 1). In
the sequel, we assume that the model exhibits strategic complementarity,
i.e., φ(ω) > 0 for every ω. This is primarily a matter of presentation. Our
analysis applies in the presence of strategic substitutability, i.e., φ(ω) < 0
for every ω, as in Guesnerie (1992). This analysis would not extend to the
case where the signs of the sensitivity to beliefs differ across states of nature;
however, this may not be the most economically relevant configuration.

Example 1. The Muth model (Guesnerie, 1992). There is a continuum of
farmers i ∈ [0, 1] who produce corn. Each farmer chooses his crop one period
before observing the corn price. The cost of producing q units of corn is q2/σ
to each farmer, with σ > 0. Thus, when farmer i expects the price pei , his
expected profit is peiq−q2/σ. Profit maximization yields q = σpei . The actual
price clears the market. The aggregate demand is b− ap. Aggregate supply
equals aggregate demand when

σ

∫
peidi = −ap+ b,

which fits (1), with φ(ω) = φ = −σ/a. In this example, the sensitivity is the
same in every state. The sensitivity would vary across states of nature with
uncertain aggregate demand, e.g., b(ω)− a(ω)p in state ω (a(ω), b(ω) > 0).

Example 2. Investment game. This setup is similar to the currency attack
model (Morris and Shin, 1998). There is a continuum of traders i ∈ [0, 1].

8
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Each one must decide whether he will invest or not. When he invests, his
payoff is θ + ` − 1, where θ is an unknown parameter, which stands for the
intrinsic value of the investment, ` is the proportion of traders who invest,
and the investment cost is 1. When trader i receives a private signal xi on
θ, his expectation E(θ | xi) is assumed to be equal to xi. In a ‘switching’
strategy, an agent i invests if and only if his private signal is above some cutoff
point ki. Let F (kj | xi) be the probability that another agent j receives a
signal lower than kj given that agent i has received the signal xi. Agent i
believes that agent j invests with probability 1− F (kj | xi). The proportion
of investors expected by agent i is therefore

1−
∫ 1

0

F (kj | xi)dj.

If agent i does not invest, his payoff is normalized to 0. Thus, the ex ante
payoff of agent i is ∫ +∞

ki

(
x−

∫ 1

0

F (kj | x)dj

)
dF (x) ,

where F (x) stands for the unconditional distribution of private signals. The
optimal (interior) threshold of agent i satisfies

ki −
∫ 1

0

F (kj | ki) dj = 0.

This equation represents his best response function to a profile (kj) of cutoffs
chosen by all the other agents. The function is linear when private signals are
uniformly distributed. More generally, in an arbitrarily small neighborhood
of a symmetric equilibrium (where ki = kj = k∗),

ki − k∗ =
F ′kj(k

∗ | k∗)
1− F ′ki(k∗ | k∗)

∫ 1

0

(kj − k∗)dj, (2)

where F ′kj ≥ 0 and F ′ki are the partial derivatives of F (kj | ki). Equation (2)

fits (1) with φ(ω) = φ. This parameter is positive whenever private signals
are positively correlated. It can be either less than or greater than 1. With
the Gaussian specification used by Morris and Shin (2000),

F ′ki(kj | ki) = −F ′kj(kj | ki)
cov(ki, kj)

var(kj)
.

9
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Hence, the sensitivity to beliefs is greater (resp. lower) than 1 when the
ratio cov(ki, kj)/var(kj) is small (resp. large) enough, i.e., private signals are
weakly (resp. strongly) correlated. In Morris and Shin’s setup, the sensitivity
to beliefs is constant. However, it would vary if the distributions F (·, ω) of
private signals were different across states of nature, or in the case of a
random population size of potential investors. Such an example is detailed
in the appendix.

Remark 1. These examples implicitly assume that all the agents involved
are identical, in the sense that the influence of an agent on the actual price
is the same for every agent (φ (ω) does not depend on i). This assumption
is made w.l.o.g. as long as the influence of an agent on the price is not
correlated with his information and his expectations.

3 Complete information

In (1), the individual price forecasts implicitly depend on agents’ information.
This section focuses on the case in which it is commonly known that the
state of nature is ω. This configuration is examined by Guesnerie (1992)
and Morris and Shin (1998). Price forecasts are made conditionally on ω,
pei = pei (ω) in (1). A rational expectations equilibrium (REE) is a price
p∗(ω) such that pei (ω) = p∗(ω) for all i, that is, a price p∗(ω) such that
p∗(ω) = φ (ω) p∗(ω) + η (ω). There is a unique REE as soon as φ (ω) 6= 1.

The REE can be viewed as the Nash equilibrium of a strategic ‘guessing’
game in which the strategy of agent j is a forecast pej(ω). Each agent’s
objective is to minimize his squared forecast error (p(ω)− pej(ω))2, and p(ω)
is determined by (1). Indeed, in this game, the best-response forecast of
agent j to a profile (pei (ω)) of others’ forecasts is

pej(ω) = φ (ω)

∫ 1

0

peidi (ω) + η (ω) . (3)

Through this interpretation, every agent expects p∗(ω) because each believes
that all the others expect p∗(ω). This (second order) belief is justified by
higher order beliefs such that all the agents believe that all the rest expect
p∗(ω). The price p∗(ω) is the only one consistent with the common knowledge
(CK) of every agent expecting it.

10

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2011.61

ha
ls

hs
-0

06
39

81
3,

 v
er

si
on

 1
 - 

10
 N

ov
 2

01
1



Following Guesnerie (1992), this justification suggests an assessment of
the REE relying on a weaker assumption than CK of pei (ω) = p∗(ω) for all
i. Assume instead that it is CK that the actual price p(ω) belongs to some
set P 0 =

[
p0

inf , p
0
sup

]
which comprises p∗(ω) but does not necessarily reduce

to this price. From this assumption, it is CK that pei (ω) ∈ P 0 for all i. Then
appealing to (1), all the agents can infer that the actual price will be in the
set P 1(ω) = Rω(P 0) where the map Rω is defined by

Rω (P ) ≡ [φ(ω)P + η(ω)] ∩ P,

where P is any subset of prices. The actual price is determined by (1),
provided that it is in P 0. Otherwise, it is the appropriate bound of P 0,
either p0

inf (if the price given by (1) is less than p0
inf) or p0

sup (if the price is
greater than p0

inf).
One defines a sequence of sets P τ (ω) along the same lines by P τ (ω) =

Rω(P τ−1 (ω)). It follows that if it is CK that p(ω) ∈ P τ−1(ω), then it is CK
that p(ω) ∈ P τ (ω) = Rω(P τ−1(ω)). Then, the set of prices consistent with
the common knowledge assumptions is the limit set

P∞ (ω) = ∩τ≥0P
τ (ω).

This limit set is properly defined since the sequence P τ (ω) is decreasing.
The limit set is the set of rationalizable price forecasts of the ‘guessing’ game
(where forecasts are a priori restricted to P 0).

The equilibrium is ‘stable’ when P∞ (ω) = {p∗(ω)}. Otherwise, the REE
is ‘unstable.’ Here, every price in P 0 is rationalizable when the REE is
unstable. A necessary and sufficient condition for stability has been given by
Guesnerie (1992).

Proposition 1. The REE is stable if and only if φ (ω) < 1.

This proposition provides a benchmark for our analysis of the asymmetric
information case. Stability is obtained when the economic system is not too
sensitive to forecasts in (1), or equivalently agents’ forecasts are not too
sensitive to others’ forecasts in (3).

11
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4 Imperfect asymmetric information

We now assume that there are only α (0 ≤ α < 1) ‘informed’ agents who
observe the underlying state of nature ω before choosing their price forecasts.
The (1− α) remaining agents have no information about the true state of
nature at that time. These ‘uninformed’ agents have common prior beliefs:
they all believe that state ω occurs with probability π(ω). This homogeneity
assumption will be relaxed in Section 5.2. Here, all the agents, both informed
and uninformed agents, try to correctly predict the actual price. The REE
is said to be ‘stable’ when they succeed in predicting the price; otherwise, it
is ‘unstable.’

Unlike the complete information case, the presence of uninformed agents
implies that the stability of the REE necessarily involves all the states, not
only the actual one. Indeed, uninformed agents always have to determine
the prices in all possible states. The price in a given state ω depends on the
expectations of the prices in any state, not only on the expectations of the
price in state ω. It follows that the price in state ω is an equilibrium price
only when agents correctly predict the price in any state, not only the price
in state ω.

Following this argument, a REE is a vector of (p∗(1), . . . , p∗(Ω)) such that

p∗ (ω) = φ (ω)

(
αp∗ (ω) + (1− α)

∑
w

π(w)p∗(w)

)
+ η (ω) (4)

for any ω. The REE coincides with the Nash equilibrium of an amended
‘guessing’ game in which agents try to minimize their own forecast errors.
This Bayesian game is as follows. First, the true state ω is observed only by
the informed agents i ∈ [0, α]. Then, all the agents simultaneously choose
their forecasts. The strategy of agent i is a price forecast conditional on
his information. If i is informed, his strategy is a vector of price forecasts
(pei (1), ..., pei (Ω)), where pei (ω) is the price expected by i to arise in state ω.
If i is uninformed, then his strategy merely consists of a single price forecast
pei independent of ω. The aggregate price forecast in state ω is therefore∫ α

0

pei (ω) di+

∫ 1

α

peidi.

Finally, the actual price p(ω) is determined by the aggregate price forecast

12
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according to the map

p(ω) = φ (ω)

(∫ α

0

pei (ω) di+

∫ 1

α

peidi

)
+ η (ω) . (5)

4.1 Stability of the equilibrium

Assume CK that the price a priori belongs to some interval P 0, which in-
cludes the equilibrium prices p∗(ω) for every ω. Every agent thus knows that
all the other agents expect the price to be in P 0, and, consequently, each one
understands that the aggregate price forecast is in P 0 in any state of nature.
Hence, every agent concludes that the price in state ω belongs to the set
P 1(ω) = Rω (P 0), which is included in P 0 and may coincide with P 0. When
P 1(ω)  P 0, agents have succeeded in eliminating some price forecasts.

Iterating this process yields the CK restriction that the price in state ω is
in some set P τ−1 (ω) after τ − 1 steps. At step τ , every agent knows that all
the others expect the price in state ω to be in P τ−1 (ω). Every agent under-
stands that the price forecast in state ω of an informed agent is in P τ−1 (ω),
and that the price forecast of an uninformed agent is in

∑
w π(w)P τ−1 (w).

All agents conclude that the price in state ω belongs to

P τ (ω) = Rω

(
αP τ−1(ω) + (1− α)

∑
w

π(w)P τ−1(w)

)
. (6)

The relation (6) defines a sequence of intervals (P τ (ω), τ ≥ 0) for every ω.
These sequences are decreasing and converge to limit sets P∞ (ω). The REE
is ‘stable’ whenever P∞ (ω) = {p∗(ω)} for every ω. Otherwise, it is ‘unstable.’

Remark 2. As in Section 3, this definition has a game-theoretical counter-
part in terms of rationalizable solutions (Bernheim 1984, Pearce 1984). At
step τ , if the strategy set is restricted to ×ωP τ−1 (ω) for an informed agent,
and to

∑
w π (w)P τ−1 (w) for an uninformed agent, then the best-response of

agent i is a strategy in×ωP τ (ω) when he is informed, and in
∑

w π (w)P τ (w)
when he is uninformed. The limit sets P∞ (ω) are the rationalizable price
forecasts of the ‘guessing’ game: P∞ (1)×· · ·×P∞ (Ω) is the set of rational-
izable price forecasts of an informed agent, and

∑
w π (w)P∞ (w) is the set of

rationalizable price forecasts of an uninformed one. Stability of the REE is
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equivalent to the uniqueness of the rationalizable price forecast, which then
reduces to the REE prices.

The following result presents the properties of the set of rationalizable
prices when the REE is unstable.

Proposition 2. Consider an unstable REE.

1. For every ω, {p∗ (ω)}  P∞ (ω): for every ω, the set P∞ (ω) of ratio-
nalizable prices in state ω includes but differs from {p∗ (ω)}.

2. For every ω such that αφ (ω) > 1, P∞ (ω) = P 0.

3. For every ω such that φ (ω) < 1, P∞ (ω)  P 0, and P∞ (ω) decreases
in P 0: if P 0  P̃ 0, then the limit sets P∞ (ω) and P̃∞ (ω) associated
with the initial restrictions P 0 and P̃ 0 are such that P∞ (ω)  P̃∞ (ω).

The first item of this Proposition is a formal statement of the ‘contagion’
property. It shows that no price p∗ (ω) can be guessed in the case of REE
instability, even in a state ω where φ (ω) < 1. Indeed, uninformed agents
cannot select a single price forecast when the REE is unstable. This situation
implies that, in every state, agents cannot settle upon the aggregate price
forecast. Therefore, the actual price, which is determined by the aggregate
price forecast, cannot be uniquely determined.

When the equilibrium is unstable, some ‘coordination’ volatility occurs in
all the states at the outcome of the process of elimination of non-best response
strategies. The magnitude of this volatility can be measured in state ω by
the size of the interval P∞ (ω) of rationalizable prices. Volatility is dampened
when P∞ (ω) is a narrow interval around the REE price p∗ (ω). The second
and the third items of Proposition 2 characterize how the residual volatility
depends on economic fundamentals. They show that a low sensitivity to
beliefs φ (ω) plays a role reminiscent of that in the complete information
case. A low sensitivity favors a narrow set P∞ (ω) of rationalizable prices
in state ω. In the contrary case, in a state where φ (ω) is large enough,
the iterative process (6) provides no additional information: P∞ (ω) = P 0.
These two items also show how the magnitude of this volatility depends on
the initial assumption made about the relevant prices: a narrower prior set

14
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P 0 yields a narrower set P∞ (ω) of rationalizable prices at the outcome of
(6).

Thus far, we have focused on the description of an unstable REE. The
next result yields conditions for stability of the REE.

Proposition 3. Assume that φ (ω) > 0 for any ω. Let 0 ≤ α ≤ 1.

1. If αφ (ω) > 1 for some ω, then the REE is unstable.

2. If αφ (ω) < 1 for every ω, then the REE is stable if and only if

Ω∑
w=1

π (w)
(1− α)φ (w)

1− αφ (w)
< 1. (7)

The system (6) is a first-order linear recursive system. The REE is stable
if and only if the spectral radius of the square matrix governing the dynamics
(6) is less than 1. This yields the conditions given in Proposition 3.

The first item of this Proposition states that the REE is stable in (6) only
if αφ (ω) < 1 for every ω. This inequality would also govern stability of the
REE in state ω in a complete information setup involving α informed agents
only. This fact suggests one should interpret this inequality by referring to a
virtual restricted coordination problem, which abstracts from the difficulties
caused by uninformed agents. Namely, if informed agents know that the
forecast of uninformed agents is fixed at p̄∗ ≡

∑
w π(w)p∗(w), then the actual

price in state ω is

p(ω) = φ(ω)

∫ α

0

pei (ω)di+ η̃ (ω)

where η̃ (ω) = (1− α)φ(ω)p̄∗+η (ω). This virtual restricted setup is formally
equivalent to the complete information case discussed in the previous section
(with a mass α of agents only). Hence, by Proposition 1, the REE is unstable
when αφ(ω) > 1. In this configuration, informed agents cannot correctly
predict the price in state ω, even though, they know that uninformed agents
expect the REE prices. It follows that in the true unrestricted setup, no
agent (neither informed nor uninformed) succeeds in predicting the price in
such a state.

15
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The second item can be interpreted as a stability condition of a virtual
restricted problem as well, which abstracts from the difficulties caused by the
informed agents. Namely, if informed agents correctly guess the price, then
the actual price is

p(ω) = φ(ω)

(
αp(ω) +

∫ 1

1−α
p̄eidi

)
+ η(ω),

and the actual average price is

Ω∑
w=1

π (w) p(w) =

(
Ω∑
w=1

π (w)
φ (w)

1− αφ (w)

)∫ 1

1−α
p̄eidi+ η̂(ω),

where

η̂(ω) =
Ω∑
w=1

π (w)
η (w)

1− αφ (w)
.

Again this virtual restricted setup is formally equivalent to the complete
information case with a mass 1− α of agents. By Proposition 1, stability is
given by (7).

4.2 Stability and precision of information

In Proposition 3, the effects of the level of the sensitivity to beliefs on the
stability of the REE are qualitatively similar to those obtained under com-
plete information. A rise in φ (ω) is necessarily destabilizing: both αφ(ω) in
the first item of Proposition 3 and the LHS of inequality (7) in the second
item are increasing in any φ (ω).

A novel feature, however, concerns the dispersion of the sensitivity to
beliefs. Because the left-hand side (LHS) of (7) is a convex function of φ (ω),
a mean-preserving spread of the distribution of φ (ω) increases this LHS. A
more dispersed distribution of φ (ω) makes an unstable REE more likely. In-
tuitively, the information of informed agents improves when the dispersion
of sensitivity rises. This property, therefore, suggests that more precise in-
formation will be detrimental to stability. This intuition is confirmed by the
following Corollary to Proposition 3.

Corollary 4. Let φ (ω) > 0 for all ω. Let also α < 1. Then, there is a
unique threshold proportion α∗, 0 ≤ α∗ ≤ 1, of informed agents such that
stability of the REE is obtained if and only if α < α∗. In addition,
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1. if φ (ω) < 1 for any ω, then α∗ = 1,

2. if there is ω with φ (ω) > 1 and if φ̄ =
∑
π(w)φ (w) < 1, then 0 <

α∗ < 1,

3. if φ̄ > 1, then α∗ = 0.

The REE is stable if and only α < α∗, i.e., the proportion of informed
agents is low enough. Information revealed to some uninformed agents can
only destabilize the REE. The sensitivity of the price to the forecasts of
the α informed agents is related to φ (ω), and the sensitivity of the price
to the forecasts of the (1− α) uninformed agents is related to φ̄. It follows
that the presence of informed agents is destabilizing in a state ω such that
φ (ω) > φ̄. As there is necessarily one such state, the presence of many
informed agents tends to make the REE less stable. An intuition in line with
Proposition 1 stems from the sensitivity of individual forecasts to others’
behavior. When an uninformed agent expects the aggregate price forecast
to change in some state, the adjustment in his own price forecast will be
weighted by the probability of that state occurring. For this reason, his
forecasting behavior is less sensitive to others’ forecasts than the behavior of
an informed agent. The uninformed agent’s behavior is consequently easier
to predict, which favors stability.

4.3 A discontinuity property

A version of the ‘uncertainty principle’ (Grandmont, 1998) directly follows
from Proposition 3.

Corollary 5. ‘Uncertainty principle.’ For α close enough to 1, the REE is
unstable if there is at least one state ω′ such that φ (ω′) > 1.

Assume that the true underlying state ω is such that φ(ω) < 1. Un-
der complete information, the REE is stable. Introducing a few uninformed
agents yields a sudden change in the stability of the REE. As far as there
is a state ω′ such that φ(ω′) > 1, the REE becomes unstable, and we are
back to the characterization of rationalizable prices given in Proposition 2.

17
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This discontinuity follows from the contagion argument, which does not op-
erate under complete information but is of importance in the presence of
uninformed agents. The fact that there is a state in which agents would not
succeed in predicting the correct price in the absence of uninformed agents
implies that uninformed agents fail to single out one price forecast. This
prevents stability.

In order to grasp some intuition, let us start from the restriction that
prices in state ω′ are in the set P 0. Assume also that η(ω′) = 0. Since most
of the agents are informed, one can neglect the forecasts of the uninformed
agents: the aggregate price forecast in (5) is in P 0. Since φ(ω′) > 1, P 0 is
included into the set of prices φ(ω′)P 0 given by (5). This shows that agents
cannot eliminate prices from P 0 by using (5). The uninformed therefore
expect any price in P 0 to arise in state ω′. By contagion, the REE is unstable.

Corollary 5 is reminiscent of the ‘uncertainty principle’ advocated by
Grandmont (1998). According to this principle, adaptive learning dynamics
diverge when agents are ready to use a large range of regularities, including
divergent trends. In our setup, if uninformed agents believe it is possible that
the true state may be a state in which the REE would be unstable under
complete information, then the REE is unstable.

The discontinuity is also reminiscent of Morris and Shin’s (1998) insights,
in the sense that small informational asymmetries yield large qualitative
changes. In Morris and Shin (1998), this change concerns the number of
equilibria: asymmetric information implies a unique REE. In our setup, this
change concerns the number of rationalizable solutions: informational asym-
metry creates a multiplicity of rationalizable solutions, whereas there is al-
ways a unique REE.

Our model generalizes Morris and Shin (2002), which is restricted to the
situation where φ(ω) = φ ∈ [0, 1). This is also the case in the local (linear)
version of Morris and Shin (1998) described in Example 2. By Proposition
3, the REE is then always stable. However, the sensitivity φ can be made
greater than 1 if the distribution of private signals is well chosen; in par-
ticular, private signals need to be weakly correlated. Our setup relaxes the
CK assumption of φ by introducing uncertainty to, e.g., the distribution of
private signals or to the size of the population of agents who may attack
the currency. In this extended setup, Proposition 3 applies: informational
asymmetry on ω sometimes creates multiple rationalizable solutions and REE
instability.

18
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It may be surprising that the likelihood of the occurrence of states in
which the sensitivity to beliefs is greater than 1 does not matter in Corollary
5. Instability of the REE is obtained even if these states occur with a low
probability. The likelihood of the occurrence of these states in fact influences
rationalizable prices. Our next result qualifies Corollary 5.

Proposition 6. Consider an unstable REE. Assume that π (ω) tend to 0 for
every ω such that φ (ω) > 1.

1. For all ω such that P∞ (ω)  P 0, P∞ (ω) converges towards {p∗ (ω)}.

2. For all other states, P∞ (ω) is P 0.

Assume that the true underlying state is ω such that φ(ω) < 1. The
REE is stable under complete information but loses its stability under the
conditions given in Corollary 5. Nevertheless, if the probability of occurrence
of all ‘unstable’ states (states with φ (w) < 1) is small, the interval of possible
prices P∞ (ω) only comprises prices close to the equilibrium price p∗(ω).
Volatility is therefore contained.

Figure 1 summarizes all our results in a two-state case, with φ(1) < 1 <
φ(2). The equilibrium price p1 is normalized to 0 in state 1. The black
increasing curve depicts the relation between α and the equilibrium price p2

in state 2. By Proposition 1, when all the agents are informed (α = 1), the
price p1 is the only rationalizable price in state 1 while all prices in P0 are
rationalizable in state 2. By Proposition 3, the equilibrium (p1, p2) is unstable
for α large enough (α > α∗). It is supposed in the figure that 0 < α∗ < 1
(Corollary 4). By Proposition 2 the set of rationalizable prices in state 2 is
P0. The red dashed lines pinf

1 (α) and psup
1 (α) represent the boundaries of the

set of rationalizable prices in state 1 for α > α∗. There is a discontinuity
in the set of rationalizable prices in both states when α passes below the
threshold α∗: for α just above α∗, uninformed agents expect any price in P0

to arise in state 2, and for all α < α∗ the rationalizable prices reduce to the
equilibrium prices in every state.
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

P0

p1

p2

p1
inf 

p1
sup

Figure 1: Information structure and rationalizable prices in a two-state case
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5 Discussion and extensions

5.1 Informational efficiency of the price

The rational expectations literature emphasizes the idea that the equilibrium
price, once made public, reveals the underlying state of nature, provided
that REE prices differ across states. This is the property of ‘informational
efficiency.’ This concept easily generalizes to rationalizable prices: a price p
reveals the state ω whenever p ∈ P∞(ω) and p /∈ P∞(ω′) for any ω′ 6= ω.
Informational efficiency of the price is obtained whenever any rationalizable
price reveals the state, that is, P∞(ω) and P∞(ω′) do not intersect for any
ω′ 6= ω.

Proposition 7. Assume that the REE prices differ across states. Informa-
tional efficiency is obtained if and only if the REE is stable.

The argument is straightforward. When the REE is stable, the sets
P∞(ω) reduce to the REE prices and reveal the state. When the REE
is unstable, it follows from Proposition 2 that there is a state ω0 with
P∞(ω0) = P 0. As every P∞(ω) is included in P 0, informational efficiency
cannot be obtained.

Some rationalizable prices may, nevertheless, be fully revealing when the
REE is unstable. Such prices exist only if there is a unique state ω0 with
P∞(ω0) = P 0. Indeed, in this configuration, every price in P 0, but not in
any P∞(ω) for all ω 6= ω0, reveals ω0. No other fully revealing price exists.
In particular, no price reveals a state ω with φ (ω) < 1.

Interpreting this result suggests that, when the REE is unstable, informa-
tional asymmetry should persist over time if the actual state ω is such that
φ (ω) < 1. Indeed, as the price cannot reveal ω, there is no way uninformed
agents can learn what is the actual state. Therefore, instability should persist
over time, and there is no reason why the price should be equal to its equilib-
rium value. This scenario contrasts with what would happen if ω were CK,
as the REE price is stable in this complete information case. In summation,
the initial belief that φ (ω) > 1 with positive probability creates instability,
and such a belief can never be rejected by public observation.

When the REE is unstable, and the actual state is such that φ (ω) > 1,
agents may sometimes discover the true state of nature by using information
revealed through price, but of course, this never implies stability of the REE.
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5.2 Higher order uncertainty

Thus far, uninformed agents had used a common prior distribution of states,
and this fact was CK. It may appear difficult to justify this assumption in
a framework that otherwise stipulates a high level of ignorance. We now
consider a case where every agent is uncertain about the distribution of the
states of nature used by others. Let (πi(ω)) be the distribution used by an
uninformed agent i. The aggregate forecast becomes∫ α

0

pei (ω) +

∫ 1

α

(
Ω∑
w=1

πi (w) pei (w)

)
di.

We define stability in this extended framework as we have done previously.
For every ω, we define iteratively a sequence of sets of prices P τ (ω). For
every ω, P 0(ω) is simply P 0, and P τ (ω) is defined using the sets P τ−1(ω)
as follows. Consider that all the individual price forecasts pei (w) belong to
P τ−1(w) =

[
pτ−1

inf (w), pτ−1
sup (w)

]
for every w. The aggregate price forecast in

state ω then lies in[
αpτinf(ω) + (1− α) inf

w
pτinf(w), αpτsup(ω) + (1− α) sup

w
pτsup(w)

]
.

Making a more precise statement requires some knowledge about the prior
distributions πi used by uninformed agents. We assume that no agent has
such knowledge. In particular, all the probability distributions (πi(ω) can be
used by uninformed agents. It follows that every agent only knows that the
price in state ω lies in an interval P τ (ω) =

[
pτinf(ω), pτsup(ω)

]
where pτinf(ω) is

the price associated with the smallest possible aggregate forecast:

pτinf(ω) ≡ φ(ω)
(
αpτ−1

inf (ω) + (1− α) inf
w
pτ−1

inf (w)
)

+ η(ω), (8)

and pτsup(ω) is the price associated with the largest possible aggregate fore-
cast:

pτsup(ω) ≡ φ(ω)

(
αpτ−1

sup (ω) + (1− α) sup
w
pτ−1

sup (w)

)
+ η(ω). (9)

The sequence P τ (ω) converges to a limit set P∞(ω) =
[
p∞inf(ω), p∞sup(ω)

]
for

every ω, where the values p∞inf(ω) and p∞sup(ω) are fixed points of (8) and
(9). It is not possible for P∞(ω) to reduce to a single price. This means
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that higher order uncertainty prevents agents from discovering the REE.
Agents may at most discover an interval of possible prices P∞(ω)  P 0 in
every state ω. A rise in the proportion of informed agents has two types of
effects. First, it influences the convergence of the process of elimination of
dominated strategies. Second, it affects the size of the intervals of possible
prices in case of stability, that is, whenever P∞(ω)  P 0 in every state ω.
In light of Proposition 3 and Corollary 4, more precise information may not
only destabilize the learning process but may also narrow the set of possible
solutions in case of stability.

5.3 Sunspots and stability

Consider, finally, a stochastic sunspot variable that can take Σ values (S =
1, . . . ,Σ), not correlated with fundamentals. Assume that its actual value
is not known when agents form their forecasts. Every agent i observes a
private signal si = 1, . . . ,Σ imperfectly correlated with S. Conditionally
based on S, private signals are independently and identically distributed
across agents, and the probability Pr(si | S) that i observes si in sunspot
event S is independent of i. Thus, in sunspot event S, there are Pr(s | S)
agents who observe the signal s (s = 1, . . . ,Σ).

Suppose that all the agents expect the price pe(ω, S) to arise if the state of
fundamentals is ω and the sunspot is S. In state (ω, S), there are αPr(s | S)
informed agents whose price forecast is

Σ∑
S′=1

Pr(S ′ | s)pe(ω, S ′)

for any s. There are also (1− α) Pr(s | S) uninformed agents who expect

Σ∑
S′=1

Pr(S ′ | s)
Ω∑
w=1

π (w) pe (w, S ′) .

Let

µ(S ′|S) =
Σ∑
s=1

Pr(s | S) Pr(S ′ | s)

be the average probability (across agents) of sunspot S ′ if the actual sunspot

23

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2011.61

ha
ls

hs
-0

06
39

81
3,

 v
er

si
on

 1
 - 

10
 N

ov
 2

01
1



is S. The aggregate price forecast P e(ω, S) is expressed as

Σ∑
S′=1

µ(S ′|S)

[
αpe(ω, S ′) + (1− α)

Ω∑
w=1

π (w) pe (w, S ′)

]
, (10)

and the actual price p(ω, S), determined by (1) in state (ω, S), is such that

p(ω, S) = φ (ω)P e(ω, S) + η (ω) . (11)

A REE is a vector of ΩΣ prices (p∗(1, 1), . . . , p∗(Ω,Σ)) such that pe (ω, S) =
p (ω, S) = p∗(ω, S) for every (ω, S) in (10) and (11). The ‘fundamental’ REE
is obtained when p∗(ω, S) is independent of S. Otherwise, sunspots matter
and the REE is a ’sunspot’ equilibrium.

The following result gives conditions for the existence of a sunspot REE.

Proposition 8. There exists a sunspot REE if and only if the fundamental
REE is unstable in (6).

In our linear setup, the stability of the fundamental REE is still ruled by
Proposition 3 and Corollary 4. Hence, both results also give necessary and
sufficient conditions nedded for the sunspot REE to exist. This highlights
another destabilizing effect caused by informed agents: sunspots only matter
when many agents are informed about the true state of nature.

6 Conclusion

This paper emphasizes the difficulty of coordinating expectations when the
sensitivity of the market outcome to agents’ forecasts is not common knowl-
edge. A low value of the true sensitivity is not enough for stability. Instead,
either a low average sensitivity (when there are many uninformed agents), or
even a low sensitivity in every possible state (when there are many informed
agents) are needed.

The intuition sustaining these results is easily illustrated in the case with
two possible states of nature, one with a low sensitivity and the other with
a high sensitivity. Under complete information, the rational expectations
equilibrium is stable in the ”low” state, and unstable in the ”high” one.
Under asymmetric information, stability properties of the prices in the two
states are no longer disconnected, as can be seen in the following two limiting
cases:
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• The case with few informed agents is understood by continuity with the
case with no informed agents. In this latter case, stability is obtained
when the average sensitivity is low. The influence of few informed
agents on the aggregate forecast remains negligible: even in the ”high”
state, where this influence is destabilizing, uniqueness of rationalizable
prices is obtained when the average sensitivity is low.

• In the presence of few uninformed agents, the following contagion ar-
gument creates multiple rationalizable prices in the ”low” state. Since
almost of the agents are informed, multiplicity of rationalizable prices
arises in the ”high” state (as in the complete information case). Unin-
formed agents then fail to predict a unique price in the ”high” state.
This failure implies that the price in the ”low” state (that depends on
uninformed agents’ expectations) cannot be stabilized to its equilibrium
value.

These results may contribute to the debate about the transparency of
economic policy. The disclosure of information may be harmful to stability,
even when this information states that fundamentals should lead to stabil-
ity. A government agency or a central bank revealing that the underlying
sensitivity is low may destabilize the equilibrium if it cannot convince all the
agents to believe its announcement: instability may occur in an intermediate
case between full ignorance and full common knowledge.

7 Appendix

Examples with an uncertain sensitivity to beliefs

Example 1’. The Muth model with an uncertain aggregate demand. Let
the aggregate demand in state ω be b(ω)− a(ω)p. The expected profit of an
informed farmer i is pei (ω)q − q2/σ and his supply is qi(ω) = σpei (ω). The
expected profit of an uninformed farmer is

∑
π(w)pei (w)q− q2/σ, so that his

production is qi = σ
∑
π(w)pei (w). In equilibrium, the actual price p(ω) in

state ω is such that

σ

(∫ α

0

pei (ω)di+

∫ 1

α

∑
π(w)pei (w)di

)
= −a(ω)p(ω) + b(ω).

Example 2’. Investment game with an uncertain size of the population of
investors. Consider the setup of Example 2. Assume now that the size of

25

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2011.61

ha
ls

hs
-0

06
39

81
3,

 v
er

si
on

 1
 - 

10
 N

ov
 2

01
1



the population of investors is n(ω) in state ω, with
∑
π(w)n(w) = 1. An

investor who knows the state of nature ω expects the proportion of agents
who decide to invest to be equal to

n(ω)

 α∫
0

(1− F (kj(ω) | x))dj +

1∫
α

(1− F (kj | x))dj

 .

Thus the best response of an informed agent is to invest if and only if his
private signal is above

ki(ω) = n(ω)

 α∫
0

F (kj(ω) | ki(ω))dj +

1∫
α

F (kj | ki(ω))dj

+ 1− n(ω).

The best response of an uninformed agent is

ki =
∑
w

π(w)n(ω)

 α∫
0

F (kj(ω) | ki(ω))dj +

1∫
α

F (kj | ki(ω))dj

 .

The setup is linear in the case of uniform conditional distribution: given
x, y is uniform on [x− ε, x+ ε]. Indeed, assuming that the thresholds are
close enough to each other, the best response function of the informed agent
rewrites

ki(ω) =
n(ω)

2ε+ n (ω)

 α∫
0

kj (ω) dj +

1∫
α

kjdj

+
2− n(ω)

2ε+ n (ω)
ε.

This coincides with the reduced form (5), with the variable k (ω) replacing
p (ω). It remains to check that the best response of an uninformed agent is
an average of the best responses of informed agents over the states of nature.
Indeed, using the adjusted probabilities

π̂ (ω) = π (ω)
n (ω) + 2ε

1 + 2ε
,

the best response of an uninformed agent writes

ki =
∑
w

π̂ (w) ki (w)− 1

1 + 2ε
.
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This fits our guessing game (the additive constant in the expression of ki can
be seen as part of the constant term η (ω) in (5)).

Proof of Proposition 2

1. Since the equilibrium is unstable, there is a state ω such that {p∗ (ω)}  
P∞ (ω). The set of rationalizable price forecasts of uninformed agents
cannot be reduced to a single element. In any given state the set of
rationalizable prices is determined by the aggregate price forecast in
that state, which depends on the forecasts of uninformed agents. Thus
in any given state the aggregate price forecast cannot reduce to a single
point.

2. Consider the minimum rationalizable prices (p∞inf (ω))ω. For ω such that
αφ (ω) > 1, we show that p∞inf (ω) = p0

inf . To this purpose, we show that,
when everyone expects (p∞inf (ω))ω, we have

p0
inf ≥ αφ (ω) p0

inf + (1− α)φ (ω)
∑

π (w) p∞inf (w) + η (ω) , (12)

which means that p0
inf is the actual price in state ω (that is: p0

inf =
p∞inf (ω)). Recall the fixed point relation characterizing the equilibrium
(p∗ (ω))ω

p∗ (ω) = αφ (ω) p∗ (ω) + (1− α)φ (ω)
∑

π (w) p∗ (w) + η (ω) .

Substracting this equality to (12) gives

∆p (ω) > αφ (ω) ∆p (ω) + (1− α)φ (ω)
∑

π (w) ∆p (w) ,

where ∆p (ω) = p∞inf (ω)− p∗ (ω) ≤ 0. This rewrites

(1− αφ (ω)) ∆p (ω) ≥ (1− α)φ (ω)
∑

π (w) ∆p (w) ,

which holds true as

(1− αφ (ω)) ∆p (ω) ≥ 0 ≥ (1− α)φ (ω)
∑

π (w) ∆p (w) .

The same argument shows that p∞sup (ω) = p0
sup for every ω such that

αφ (ω) > 1.
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3. The third item follows from the first step of the iterative process. By
assumption, the equilibrium price η(ω)/(1− φ(ω)) under complete in-
formation belongs to P 0. From (6), at the first step of the process, we
have:

p1
inf (ω) = max

(
p0

inf , φ (ω) p0
inf + η (ω)

)
.

Since p0
inf < η(ω)/(1− φ(ω) and φ (ω) < 1, we have p1

inf (ω) > p0
inf . By

definition, the map Rω(P ) cannot be increasing with τ . It follows that
p∞inf (ω) ≥ p1

inf (ω) > p0
inf . The same argument shows that

p1
sup (ω) = min

(
p0

sup, φ (ω) p0
sup + η (ω)

)
< p0

sup,

so that p∞sup (ω) ≤ p1
sup (ω) < p0

sup. This shows that P∞(ω) is a strict
subset of P 0.

Proof of Proposition 3

Consider, e.g., the Ω equations in (6) corresponding to the lowest bounds
P τ

inf(ω) of P τ (ω). They can be rewritten in matrix form pτ+1
inf = Mpτinf + η,

where pτinf is the Ω × 1 vector (P τ
inf (1) , . . . , P τ

inf (Ω)), η is the Ω × 1 vector
(η (1) , ..., η (Ω)), and M is the Ω× Ω matrix αΦ + (1− α) ΦΠ (with Φ the
diagonal Ω×Ω matrix whose ωωth entry is φ(ω), and Π the Ω×Ω stochastic
matrix whose ωω′th entry is π(ω′)). The REE is stable if and only if the
spectral radius ρ(M) of M is less than 1. The proof now hinges on the fact
that for any Ω× Ω positive matrix M, and any Ω× 1 vector x = (xω) with
every xω > 0, we have

min
ω

(Mx)ω
xω

≤ ρ(M) ≤ max
ω

(Mx)ω
xω

,

where (Mx)ω stands for the ωth component of the Ω × 1 vector Mx (see
Lemma 3.1.2. in Bapat and Raghavan (1997)). Let

Q (x, ω) =
(Mx)ω
xω

= φ (ω)

[
α + (1− α)

1

xω

Ω∑
w=1

π (w)xw

]
,

for any ω. Assume first that αφ (ω) > 1 for some ω, e.g. ω = Ω. Then,
consider the vector x = (ε, . . . , ε, 1)′ where ε > 0. When ε tends toward 0,
Q (x, ω) tends to (+∞) for every ω < Ω, and Q (x,Ω) ≥ αφ (Ω) > 1. Hence,
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minωQ (x, ω) > 1 for ε small enough, and so ρ(M) > 1: the REE is unstable
if αφ (ω) > 1 for some ω. If, on the contrary, αφ (ω) < 1 for any ω, then
define

E =
Ω∑
w=1

π (w)
(1− α)φ (w)

1− αφ (w)
.

Consider the Ω× 1 positive vector x whose ωth component is

xω =
1

E

(1− α)φ (ω)

1− αφ (ω)
.

If E ≥ 1, then Q (x, ω) > 1 for any ω, so that minωQ (x, ω) ≥ 1, and the
REE is unstable. If, on the contrary, E < 1, then Q (x, ω) < 1 for any ω, so
that maxωQ (x, ω) < 1, and the REE is stable.

Proof of Corollary 4

1. Assume first that φ (ω) < 1 for any ω = 1, . . . ,Ω. Then, αφ (ω) < 1
and (1− α)φ (ω) / (1− αφ (ω)) < 1 for any ω. By Proposition 3, the
REE is stable.

2. Let now infω φ (ω) < 1 < supω φ (ω). If α > 1/ supω φ (ω), the REE is
unstable, by Proposition 3. If α ≤ 1/ supω φ (ω), then αφ (ω) < 1 for
every ω, and the REE is stable if and only if (7) is met. Let

F (α) =
Ω∑
w=1

π (w)
φ (w)

1− αφ (w)
− 1

(1− α)
(13)

Since F (·) is a continuous and increasing function of α on the interval
[0, 1/ supω φ (ω)], with F ′(α) > 0 whatever α is, there is at most one
value α such that F (α) = 0 on this interval. Observe now that F (0) =
φ̄ − 1, and F (α) tends to +∞ when α tends to 1/ supω φ (ω) from
below. If, on the one hand, φ̄ ≥ 1, then F (α) ≥ F (0) > 0 for any
α ∈ [0, 1/ supω φ (ω)], and the stability condition (7) is never satisfied.
If, on the other hand, φ̄ < 1, then there exists a unique solution α∗

(α∗ > 0) to F (α) = 0 in [0, 1/ supω φ (ω)]. The condition F (α) < 0,
i.e. the stability condition (7), is equivalent to α < α∗. Since F (α∗) =
0 implicitly defines α∗ as a function (φ(1), . . . , φ(Ω)), and since F (·)
increases in every φ (ω), α∗ decreases in every φ (ω).
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3. Let φ̄ > 1. We know that F (α) > 0 for any α ∈ [0, 1/ supω φ (ω)]. As
a result, the stability condition (7) is never satisfied.

Proof of Proposition 6

1. Consider a state ω such that P∞ (ω)  P 0. In particular, p∞inf(ω) > p0
inf .

From (6),

p∞inf(ω) = φ (ω)

αp∞inf(ω) + (1− α)
∑

w/φ(w)<1

π(w)p∞inf(w)


+φ (ω) (1− α)

∑
w/φ(w)>1

π(w)p∞inf(w) + η (ω) .

When every π(w) such that φ (w) > 1 tends to 0, the last sum also
tends to 0 since every p∞inf(w) is in a compact set (p∞inf(w) ∈ P0). Hence,
when every π(w) such that φ (w) > 1 tends to 0, the values p∞inf(ω) for
the states ω with φ (ω) < 1 tends to the solution of

p∞inf(ω) = φ (ω)

αp∞inf(ω) + (1− α)
∑

w/φ(w)<1

π(w)p∞inf(w)

+ η (ω) .

This coincides with (4), and thus the limit value of p∞inf(ω) is the REE
price for every ω such that P∞ (ω)  P 0 when every π(w) such that
φ (w) > 1 is close to 0. An analogous argument applies to p∞sup.

2. See Item 2 of Proposition 2.

Proof of Proposition 8

Let us rewrite conditions (11) in matrix form. To this aim, let p(S) be
the Ω×1 vector whose ωth component is p(ω, S), and p be the ΩΣ×1 vector
(p(1), . . . ,p(Σ)). Let S be the Σ×Σ stochastic matrix whose SS ′th entry is
µ(S ′, S). Then, with M defined in Proposition 3, a REE is a vector p such
that

p = (M⊗ S) p + 1Σ ⊗ η, (14)
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where the symbol ⊗ stands for the Kronecker product. Let e(S) be the
Sth eigenvalue of S, with e(S) ∈ [−1, 1] since S is a stochastic matrix. Let
µ(ω) be the ωth eigenvalue of M. Then, the ΩΣ eigenvalues of M ⊗ S are
e(S)µ(ω) for any pair (ω, S). If ρ(M) < 1, then all the eigenvalues of M⊗S
have moduli less than 1, and so M⊗S−I2Ω is invertible and there is a unique
REE. If ρ(M) ≥ 1, there exist stochastic matrices such that e(S) = 1/ρ(M)
for some S. In this case, the matrix M ⊗ S has an eigenvalue equal to 1,
and there are infinitely many p solution to (14), i.e. infinitely many sunspot
REE and the fundamental REE.
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