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Abstract. We describe a simple computing technique for the tourna-
ment choice problem. It rests upon a relational modeling and uses the
BDD-based computer system RelView for the evaluation of the relation-
algebraic expressions that specify the solutions and for the visualization
of the computed results. The Copeland set can immediately be identi-
fied using RelView’s labeling feature. Relation-algebraic specifications
of the Condorcet non-losers, the Schwartz set, the top cycle, the uncov-
ered set, the minimal covering set, the Banks set, and the tournament
equilibrium set are delivered. We present an example of a tournament on
a small set of alternatives, for which the above choice sets are computed
and visualized via RelView. The technique described in this paper is
very flexible and especially appropriate for prototyping and experimenta-
tion, and as such very instructive for educational purposes. It can easily
be applied to other problems of social choice and game theory.

Keywords: tournament, relational algebra, RelView, Copeland set, Condorcet
non-losers, Schwartz set, top cycle, uncovered set, minimal covering set, Banks
set, tournament equilibrium set

1 Introduction

Science is a process for obtaining new insights and building new knowledge in
the form of testable explanations and predictions about the universe. Systematic
experiments are an accepted means for doing science and they become increas-
ingly important as one proceeds in investigations. In natural sciences they are

? Co-operation for this paper has been supported by the European Science Foundation
EUROCORES Programme - LogICCC.

?? Corresponding author, Tel: +33 (0)1 44 07 82 12, Fax: +33 (0)1 44 07 83 01.
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2 Rudolf Berghammer, Agnieszka Rusinowska and Harrie de Swart

used since centuries. Also in social sciences, which apply scientific methods to
study human behavior and social patterns, experimental and empirical methods
are of importance. But in the meantime they have also become important in for-
mal sciences, like mathematics and theoretical computer science, for identifying
properties and patterns, and for testing and especially falsifying conjectures. In
this context, tool support is indispensable. Computer programs are used in nu-
merous scientific fields to calculate results as well as to elucidate the underlying
mathematical principles by means of visualization and animation. Frequently use
is made of general computer algebra systems, like Maple and Mathematica.
But also systems that focus on specific domains of applications are applied.

RelView (cf. [3, 18]) is such a so-called specific purpose computer algebra
system for (heterogeneous) relation algebra in the sense of [22, 23] More pre-
cisely, RelView is a tool for the visualization and manipulation of relations,
for prototyping and relational programming, and as such it appears to be very
useful and appropriate for applications to social choice and game theory. In this
system, computational tasks on relations can be described by short and concise
programs which frequently consist of only a few lines that present the relation-
algebraic expressions of the notions in question. Such programs are easy to alter
in case of slightly changed specifications. Combining this with RelView’s pos-
sibilities for visualization and stepwise execution of programs is suitable for ex-
perimentation and exploration, while avoiding unnecessary expenditure of work.
Another advantage of the system is its implementation of relations via binary
decision diagrams (BDDs) that proved to be superior to many other well-known
implementations, like Boolean matrices, lists of pairs and lists of successor or
predecessor lists. This leads to an amazing computational power, in particular if
the solution of a hard problem requires the enumeration of a huge set of ‘inter-
esting objects’ and a search through it. Applications in this regard can be found,
e.g., in [2, 3, 17, 18].

In [4–6] we have combined relation algebra and RelView to solve some prob-
lems of social choice theory, viz. the formation of stable governments (see [21])
and the determination of the strength and influence of players (see, e.g., [16]).
The first problem is a specific instance of one of the most interesting problems
of social choice theory, viz. the computation of the set of most desirable alter-
natives according to an asymmetric dominance relation on given alternatives.
Since the dominance relation may contain cycles, the concept of a best alterna-
tive that dominates all other alternatives is not applicable in most cases. Even
undominated alternatives need not to exist. To get around these problems, in
the literature so-called choice sets are considered that take over the role of the
best/undominated alternative(s).

In this paper we show how certain choice sets can be computed using relation
algebra and the RelView tool. We restrict our analysis to complete dominance
relations, where each pair of different elements is related. Such relations are
known as tournament relations and the elements of the choice sets are called
tournament winners. But most of our results also hold in case of non-complete
dominance relations or can easily be extended to them. In this paper, we de-
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Computing Tournament Solutions using Relation Algebra and RelView 3

liver relation-algebraic specifications of the following choice sets: Condorcet non-
losers, the Schwartz set, the top cycle, the uncovered set, the minimal covering
set, the Banks set, and the tournament equilibrium set. Moreover, the above
choice sets are visualized via RelView for a tournament on a small set of alterna-
tives to give an impression of the features of RelView in this regard. Computing
the choice sets just mentioned by hand in even this small example would already
be a major task with a high risk of making mistakes. RelView guarantees us
correct solutions, because it directly uses the mathematical relation-algebraic
equations, which have been proved to be correct by formal calculations.

The remainder of the paper is organized as follows. The relation-algebraic
preliminaries are introduced in Section 2. In Section 3 we first describe some
well-known concepts for tournament winners. To give an impression of Rel-
View’s visualization potential with respect to the computation of choice sets, we
then show a series of pictures produced by the tool. The corresponding relation-
algebraic expressions are presented in Section 4. We demonstrate how to calcu-
late them from formal logical problem specifications and how to translate them
into the programming language of the tool. Section 5 sketches some generaliza-
tions and contains some concluding remarks.

2 Relation-algebraic Preliminaries

In this section we provide the relation-algebraic preliminaries as used throughout
this paper. In particular, we focus on the modeling of sets and Cartesian products
which are not commonly used and hence require some detailed explanation. More
details can be found, for example, in [22, 23].

2.1 Fundamentals of Binary Relations

We write R : X↔Y if R is a (binary) relation with source X and target Y ,
i.e., a subset of the Cartesian product X × Y , and [X↔Y ] for the type of all
these relations, i.e., the powerset 2X×Y . We may consider R also as a Boolean
matrix if X and Y are finite. This interpretation is well suited for many purposes
and Boolean matrices are also used as one of the graphical representations of
relations within RelView. Therefore, in this paper we often use Boolean matrix
terminology and notation. In particular, we speak of rows, columns and entries
of relations and write Rx,y instead of 〈x, y〉 ∈ R or xR y.

We will use the following basic operations on relations (cf. [22, 23]): R (com-
plement), R∪S (union), R∩S (intersection), RT (transposition) and R;S (com-
position). Furthermore, we will use the special relations O (empty relation), L
(universal relation), and I (identity relation). Here we overload the symbols, i.e.,
we avoid the binding of types to them. Finally, if R : X↔Y is included in
S : X↔Y we write R ⊆ S and equality of R and S is denoted as R = S.

In order to reduce the use of brackets, it is generally agreed that composition
binds stronger than union and intersection. So, for instance, R∪S;T stands for

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2011.67

ha
ls

hs
-0

06
39

94
2,

 v
er

si
on

 1
 - 

10
 N

ov
 2

01
1



4 Rudolf Berghammer, Agnieszka Rusinowska and Harrie de Swart

R∪(S;T ) and not for (R∪S);T . Similarly, R;S∩T should be read as (R;S)∩T
and not as R; (S ∩ T ).

A relation R : X↔X is asymmetric if R ⊆ RT , irreflexive if R ⊆ I ,
transitive if R;R ⊆ R and complete if I ⊆ R ∪ RT. These are the relation-
algebraic (or point-free) specifications of well-known properties which usually
are defined point-wisely. For instance, I ⊆ R ∪ RT specifies that for all x, y ∈
X, from x 6= y it follows Rx,y or Ry,x, i.e., different elements are related via
R. Asymmetry of R implies its irreflexivity, and in this case completeness is
equivalent to I = R ∪RT.

Finally, we need the transitive closure R+ : X↔X of a relation R : X↔X.
This is the least (with respect to inclusion) transitive relation of type [X↔X]
that contains R. Via the powers of R, inductively defined by R0 := I and Ri+1 :=
R;Ri for all i ∈ N, we can specify R+ by R+ =

⋃
i>0R

i.

2.2 Modeling Sets

Relation algebra offers different ways of modeling sets and subsets. Our first
modeling uses vectors, which are relations v with v = v; L. Since for a vector the
range is irrelevant, we consider in the following mostly vectors v : X↔11 with a
specific singleton set 11 = {⊥} as target and omit in such cases the subscript ⊥,
i.e., we write vx instead of vx,⊥. Such a vector can be considered as a Boolean
matrix with exactly one column, i.e., as a Boolean column vector, and represents
the subset {x ∈ X | vx} of X. A non-empty vector v is a point if v; vT ⊆ I, i.e.,
if it is injective. This means that it represents a singleton subset of its source or
an element from it if we identify a singleton set {x} with the element x. In the
Boolean matrix model, hence, a point v : X↔11 is a Boolean column vector in
which exactly one entry is 1.

As a second way to model sets, we will apply the relation-level equivalents
of the set-theoretic symbol ∈, that is, membership-relations M : X↔ 2X . These
specific relations are defined by demanding for all x ∈ X and Y ∈ 2X that Mx,Y

iff x ∈ Y . A simple Boolean matrix implementation of membership-relations
requires an exponential number of bits. However, in [17] an implementation of
M : X↔ 2X using BDDs is presented, where the number of BDD-vertices is
linear in the size of the base set X. This implementation is part of RelView.

Finally, we will use embeddings for modeling sets. Given an injective function
ı : Y → X (in the usual mathematical sense), we may consider Y as a subset of
X by identifying it with its image under ı. If Y is actually a subset of X and
ı is given as a relation of type [Y ↔X] such that ıy,x iff y = x for all y ∈ Y
and x ∈ X, then the vector ıT; L : X↔11 represents Y as a subset of X in
the sense above. Clearly, the transition in the other direction is also possible,
i.e., the generation of an embedding-relation inj(v) : Y ↔X from the vector
representation v : X↔11 of the subset Y of X such that for all y ∈ Y and x ∈ X
we have inj(v)y,x iff y = x. We only have to remove from the identity relation
I : X↔X all x-rows, where the element x ranges over the set X \ Y .

A combination of embedding-relations with membership-relations allows a
column-wise representation of sets. More specifically, if the vector v : 2X↔11
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Computing Tournament Solutions using Relation Algebra and RelView 5

represents a subset S of 2X in the sense above and we define the relation S :
X↔S by S := M; inj(v)T, then for all x ∈ X and Y ∈ S we have Sx,Y iff
x ∈ Y . This means that the elements of S are represented precisely by the

columns of S. A further consequence is that ST; S : S↔S is the relation-
algebraic specification of set inclusion on S, that is, for all Y, Z ∈ S we have

the relationship (ST; S )Y,Z iff Y ⊆ Z. From this, we obtain that the vector

(ST; S ∩ I ); L : S↔11 represents the subset Smax of the maximal sets of S,
so that the relation

MaxEnum(S) := S; inj( (ST; S ∩ I ); L )T : X↔Smax (1)

is a column-wise representation of the set Smax in the above sense. By trans-
posing the set inclusion relation we get

MinEnum(S) := S; inj( ( S
T

;S ∩ I ); L )T : X↔Smin (2)

as column-wise representation of the set Smin that consists of the minimal sets
of S.

2.3 Modeling Cartesian Products

Given a Cartesian product X×Y of two sets X and Y , there are two projection
functions which decompose a pair u = 〈u1, u2〉 into its first component u1 and its
second component u2. For a relation-algebraic approach it is useful to consider
instead of these functions the corresponding projection relations π : X×Y ↔X
and ρ : X×Y ↔Y such that for all pairs u ∈ X × Y and elements x ∈ X and
y ∈ Y we have πu,x iff u1 = x and ρu,y iff u2 = y. In the remainder of the paper
we always assume pairs u to be of the form 〈u1, u2〉.

The projection relations enable us to describe the well-known pairing oper-
ation of functional programming relation-algebraically in two versions. We only
need one of them. The left pairing [[R,S] : X×Y ↔Z of the relations R : X↔Z
and S : Y ↔Z is given by [[R,S] := (π;R) ∩ (ρ;S), where π : X×Y ↔X and
ρ : X×Y ↔Y are as above. Point-wisely this specification says that [[R,S]u,z iff
Ru1,z and Su2,z, for all z ∈ Z and pairs u ∈ X × Y .

We end this section with a relation-algebraic construction that establishes
a Boolean lattice isomorphism between the two types [X↔Y ] and [X×Y ↔11]
via the projection relations π : X×Y ↔X and ρ : X×Y ↔Y . It is given by
the function vec : [X↔Y ] → [X×Y ↔11], where vec(R) := ((π;R) ∩ ρ); L, and
defines the vector vec(R) : X×Y ↔11 corresponding to the relation R : X↔Y .
Using a point-wise notation, this definition says that for all pairs u ∈ X × Y we
have Ru1,u2

iff vec(R)u.

3 Winners of a Tournament

In our setting a tournament is an asymmetric and complete relation D : A↔A,
where A is a finite set of alternatives. If Dx,y we say that x dominates (or beats)
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6 Rudolf Berghammer, Agnieszka Rusinowska and Harrie de Swart

y. In the social choice literature this is frequently denoted as x � y. Due to this
notation, for a relation R : A↔A and a set X ∈ 2A, an alternative x is said to
be maximal in X with respect to R if for all y ∈ X from Ry,x it follows that
Rx,y. Notice, that this is not the straightforward generalization of the notion
‘maximal’ of order theory to arbitrary relations, although the two definitions
coincide if R is in fact a ‘greater-than’ strict-order relation. However, also social
choice theory uses the common definition of ‘maximal’ for sets (and the dual
notion of ‘minimal’). Given a set S of sets, X ∈ S is maximal in S if X ⊆ Y
implies X = Y , for all Y ∈ S.

3.1 Choice Sets

If the tournament D : A↔A is a transitive relation, it is a complete strict-order
relation and this ensures, since the set A is finite, the existence of a so-called
Condorcet winner that dominates all other elements1. When there is no Con-
dorcet winner, deciding which alternatives are most desirable may be a difficult
task. Different methods have been proposed to compute a set of such alterna-
tives, i.e., a choice set. In what follows we list some prominent examples, well
known from the literature.

• The Copeland set CO(D) (introduced in [10]) consists of the alternatives x
for which the cardinality of the set of elements that are dominated by x is
maximal.
• A Condorcet non-loser is an alternative that dominates at least one other

alternative. These elements form the largest non-trivial choice set, denoted
as CNL(D) in [9].
• The Schwartz set SC(D) (introduced in [24]) is the union of all minimal

subsets X of A such that X 6= ∅ and there is no x ∈ A \X and no y ∈ X
such that x dominates y.

To specify the next important choice set, we first generalize the notion of domi-
nance from alternatives to sets of alternatives and define X ∈ 2A as dominating
set if X 6= ∅ and all x ∈ X dominate all y ∈ A \ X. It is known that the
dominating sets form a chain in the order (2A,⊆).

• The top cycle TC(D) (because of the results of [15, 27] also called Good set
or Smith set) is the unique minimal dominating set.

Also for the specification of the next two choice sets we need new notions. Given
X ∈ 2A and x, y ∈ X, we say that x covers y in X if Dx,y and for all z ∈ X
from Dy,z it follows Dx,z. Furthermore, we say that X ∈ 2A is internally stable
if there is no pair x, y ∈ X such that x covers y in X, and externally stable if for
all x ∈ A \X there exists y ∈ X such that y covers x in X ∪ {x}.
1 In terms of order theory, a transitive tournament D : A↔A is a linear strict-order

relation on A and a Condorcet winner is the greatest element of A, if Dx,y means
that x is greater than y.
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Computing Tournament Solutions using Relation Algebra and RelView 7

• The uncovered set UC(D) (proposed in [14, 19]) consists of the uncovered
alternatives, i.e., all x ∈ A such that no alternative from A covers x in A.
• A covering set is a set that is both internally stable and externally stable. In

[13] it is shown that in tournaments there exists a unique minimal covering
set, denoted as MC(D).

To specify the next choice set, we define X ∈ 2A to be a transitive set if the res-
triction ofD toX is transitive, i.e.,Dx,y andDy,z impliesDx,z, for all x, y, z ∈ X.

• The choice set BA(D), proposed in [1] and nowadays called Banks set, con-
sists of the maximal elements with respect to D of the maximal transitive
subsets of A. The latter sets are called Banks trajectories.

Also for the specification of our last choice set we need auxiliary notions. Given
X ∈ 2A and y ∈ A, we denote by DX,y the set of all alternatives from X which
dominate y and by D|DX,y : A↔A the restriction of D to this set.

• For each X ∈ 2A the tournament equilibrium set TEQX(D) of [25] is recur-
sively defined by TEQX(D) = MTCX(T ), where MTCX(T ) consists of the

maximal elements of X with respect to the asymmetric part T+ ∩ (T+)T of
the transitive closure T+ and the underlying relation T : A↔A is defined
by Tx,y iff x ∈ TEQDX,y (D|DX,y ) and y ∈ X, for all x, y ∈ A.

The subset TEQA(D) of A is called the tournament equilibrium set of D and T
is the corresponding TEQ-relation. Notice, that the recursive specification of T
terminates due to the finiteness of A. The termination case is X = ∅ and here
T equals the empty relation.

3.2 Visualization via RelView

To demonstrate the visualization potential of RelView, we consider a small
example, viz. the tournament D : A↔A on the set A := {1, . . . , 10} that in the
so-called relation window of RelView is depicted as follows:

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

In this RelView matrix a black square means a 1-entry and a white square
means a 0-entry. So, for instance, the first row shows that alternative 1 domi-
nates all alternatives except 1, 5 and 10 and the last column shows that alterna-
tive 10 is dominated by all alternatives except 1 and 10. From the arrangement
of the black squares in the matrix it immediately becomes clear that D is com-
plete, asymmetric and irreflexive. The next picture shows the representation of
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8 Rudolf Berghammer, Agnieszka Rusinowska and Harrie de Swart

the tournament D as directed graph, again produced by RelView using an
implemented algorithm that draws the vertices of the graph on a circle.

The next eight pictures show eight RelView vectors which represent eight
subsets of the set A. These subsets are, from left to right, the Copeland set,
the Condorcet non-losers, the Schwartz set, the top cycle, the uncovered set,
the minimal covering set, the Banks set and the tournament equilibrium set.
For instance, from the first four vectors we obtain that CO(D) = {1, 4} and
CNL(D) = SC(D) = TC(D) = A.

1

2

3

4

5

6

7

8

9

10

1

1

2

3

4

5

6

7

8

9

10

1

1

2

3

4

5

6

7

8

9

10

1

1

2

3

4

5

6

7

8

9

10

1

1

2

3

4

5

6

7

8

9

10

1

1

2

3

4

5

6

7

8

9

10

1

1

2

3

4

5

6

7

8

9

10

1

1

2

3

4

5

6

7

8

9

10

1

CO(D) CNL(D) SC(D) TC(D) UC(D) MC(D) BA(D) TEQA(D)

The subsequent picture shows again the tournament D as a directed graph.
To visualize the uncovered set, in the graph an edge from x to y is drawn boldface
iff x covers y in A. Then the initial vertices of this subgraph, drawn in black,
precisely correspond to the elements of the uncovered set UC(D).

With regard to covering sets, RelView computed the following column-wise
representation of the 44 internally stable subsets of A.
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Computing Tournament Solutions using Relation Algebra and RelView 9

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

As column-wise representation of the externally stable subsets of A we obtained
the following 10× 28 RelView matrix.

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

The only column that both matrices have in common (as last and as first column,
respectively) is the above vector representing the minimal (and only) covering
set MC(D) of the tournament D.

Concerning the Banks set BA(D), the RelView tool computed 338 transitive
subsets of A, where exactly 18 of them are maximal. The left one of the following
two RelView matrices shows the column-wise representation of the 18 Banks
trajectories, and the 18 columns of the RelView matrix on the right are the
representations of the corresponding maximal elements with respect to D as
points. The union of the 18 points yields the Banks set’s vector representation.

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

We close the series of pictures with the following two directed graphs, again
produced by the RelView tool.
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10 Rudolf Berghammer, Agnieszka Rusinowska and Harrie de Swart

Each of these directed graphs represents once more the tournament D, with cer-
tain vertices and edges again being marked as in the above graph that visualizes
the cover relationships and the uncovered set. In the directed graph on the left
the vertices of the first Banks trajectory of the above column-wise representa-
tion are drawn black, with the maximal element of the trajectory with respect
to D highlighted furthermore as square. In order that the transitivity of the
trajectory becomes easily identifiable, the restriction of D to it is additionally
emphasized by boldface edges. In the graph on the right the black edges desig-
nate the tournament equilibrium set TEQA(D) and the boldface edges describe
the TEQ-relation T .

4 Relation-algebraic Specifications of Choice Sets

If RelView depicts a relation as a Boolean matrix, then it is able to mark
its rows and columns for explanatory purposes. So far, we have only shown
consecutive row and/or column numbers. But also the numbers of 1-entries can
be attached as labels. This immediately allows to identify the Copeland set with
the help of the system. It is also easy to compute the vector representation of the
Copeland set by a small RelView program that uses the pre-defined operations
for the comparison of relations with regard to the number of their 1-entries.

In this section we show how the remaining choice sets of Section 3 can be
specified by relation-algebraic expressions. To illustrate how easy then the trans-
lation into RelView code is, we demonstrate this for the specification of the
Schwartz set. For the remainder of this section, let D : A↔A be a fixed tour-
nament.

4.1 Condorcet Non-losers

Given a relation R : X↔Y , the vector R; L : X↔11 is called the domain of R,
since it represents the set of those elements x ∈ X that are in relationship Rx,y

to at least one element y ∈ X. Since D is irreflexive, Dx,y implies x 6= y. In view
of the definition of a Condorcet non-loser this immediately leads to

cnl(D) := D; L : A↔11 (3)

as relation-algebraic specification of the set CNL(D), where L is the universal
vector of type [A↔11].

4.2 The Schwartz Set

In [11] it is shown that an alternative x ∈ A is in the Schwartz set SC(D) iff it

is a maximal element of A with respect to the asymmetric part D+ ∩ (D+)T of
D+. Having a relation-algebraic specification max(R, v) : A↔11 at hand, that
yields for R : A↔A and v : A↔11 the vector representation of the maximal
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Computing Tournament Solutions using Relation Algebra and RelView 11

elements with respect to R of the set v represents, from this characterization we
immediately get

schwartzSet(D) := max(D+ ∩ (D+)T , L) : A↔11 (4)

as vector representation of the Schwartz set SC(D) of D. In (4) the universal
vector L : A↔11 represents the entire set A. It remains to realize max(R, v)
for given R : A↔A and v : A↔11. To solve this task, we assume that v rep-
resents the set X ∈ 2A. We start with a formal logical definition of ‘maximal’
and then use well-known correspondences between relation-algebraic and logical
constructions.

x maximal in X w.r.t. R ⇐⇒ x ∈ X ∧ ∀ y : y ∈ X ∧Ry,x → Rx,y

⇐⇒ vx ∧ ∀ y : vy ∧Ry,x → Rx,y

⇐⇒ vx ∧ ¬∃ y : RT
x,y ∧ R x,y ∧ vy

⇐⇒ (v ∩ (RT ∩ R ); v )x

This yields the relation-algebraic specification

max(R, v) := v ∩ (RT ∩ R ); v : A↔11 (5)

and we are done. If we translate the above two relation-algebraic specifications
into the programming language of RelView, we obtain the following code, where
the meaning of the RelView operations ‘&’, ‘-’, ‘^’, ‘*’ and ‘Ln1’ directly follows
from a comparison of the specifications and the code.

max(R,v) = v & -((R^ & -R)*v).

schwartzSet(D)

DECL R

BEG R = trans(D)

RETURN max(R & -R^,Ln1(D))

END.

Here max is a relational function and schwartzSet is a relational program.
The difference is that in RelView programs local declarations (of variables,
functions, products) and statements (like assignments and loops) may be used,
whereas RelView functions are defined as common in mathematics. In the pro-
gram schwartzSet the only purpose of the local variable R is to avoid a two-fold
computation of the transitive closure.

Using the technique we will apply later on to compute the choice sets MC(D)
and BA(D), it is also possible to get a column-wise representation of those sets
that are used in Section 3.1 to define the Schwartz set as their union. Of course,
this leads to an algorithm that is much less efficient than the computation by
means of (4). Its advantage is that in combination with RelView it may be used
to visualize the original idea behind the Schwartz set for educational purposes.
This remark also holds for the choice set we consider next.
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12 Rudolf Berghammer, Agnieszka Rusinowska and Harrie de Swart

4.3 The Top Cycle

In [8] the authors prove that the top cycle TC(D) equals the set of maximal
elements of A with respect to the transitive closure of the so-called weak dom-
inance relation of D. The latter relation is defined as DT . If we combine the
description of [8] with the function max specified in (5), we get at once

topCycle(D) := max(DT , L) : A↔11 (6)

as vector representation of the top cycle TC(D), where in (6) again L : A↔11
is the universal vector that represents the entire set A.

4.4 The Uncovered Set

To obtain a relation-algebraic specification of the uncovered set UC(D), we first
develop a relation C : A↔A that describes the cover-relationships on the entire
set A. Starting with the logical specification of the notion in question, for all
x, y ∈ A we get for the covering relation C that

Cx,y ⇐⇒ Dx,y ∧ ∀ z : Dy,z → Dx,z

⇐⇒ Dx,y ∧ ¬∃z : Dy,z ∧ D x,z

⇐⇒ (D ∩ D ;DT )x,y

where the quantified variable z ranges over A. This shows C = D ∩ D ;DT . A
similar calculation proves that, for x ∈ A given, there is no y ∈ A with Cy,x iff

(CT; L )x, where L : A↔11. Hence, CT; L : A↔11 represents the set UC(D) and
unfolding C in this expression followed by simple transformations concerning
transposition leads to

uncovSet(D) := DT ∩ D; DT ; L : A↔11 (7)

as relation-algebraic specification of a vector that represents the uncovered set
UC(D) of D.

4.5 The Minimal Covering Set

We start the development of a relation-algebraic specification of the set MC(D)
with the calculation of a vector that represents the set of internally stable sets.
A formalization of X ∈ 2A to be internally stable in first-order logic requires
more than three variables. Since pure relation algebra in the sense of Section 2.1
can express exactly those first-order logic formulae which contain at most two
free variables and in which at most three variables occur (see [28]), projection
relations or equivalent notions (like pairing operations) have to be used. To reach
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Computing Tournament Solutions using Relation Algebra and RelView 13

our goal, we calculate as given below, where M : A↔ 2A is the membership-
relation, x, y and z range over A and u ranges over A×A.

X internally stable

⇐⇒ ¬∃x, y : x ∈ X ∧ y ∈ X ∧Dx,y ∧ ∀ z : z ∈ X ∧Dy,z → Dx,z

⇐⇒ ¬∃u : u1 ∈ X ∧ u2 ∈ X ∧Du1,u2
∧ ∀ z : z ∈ X ∧Du2,z → Du1,z

⇐⇒ ¬∃u : Mu1,X ∧Mu2,X ∧ vec(D)u ∧ ¬∃ z : Mz,X ∧Du2,z ∧ D u1,z

⇐⇒ ¬∃u : vec(D)u ∧ [[M,M]u,X ∧ ¬∃ z : [[D ,D]u,z ∧Mz,X

⇐⇒ ¬∃u : vec(D)u ∧ [[M,M]u,X ∧ ( [[D ,D];M )u,X

⇐⇒ ¬∃u : vec(D)u ∧ ([[M,M] ∩ [[D ,D];M )u,X

⇐⇒ ( vec(D)T; ([[M,M] ∩ [[D ,D];M )
T

)X

From this equivalence we obtain the vector we are looking for as follows.

instabSets(D) := vec(D)T; ([[M,M] ∩ [[D ,D];M )
T

: 2A↔11

Next, we treat the externally stable sets in the same manner using M, x, y, z and
u as above. Because of the ∀ ∃∀ -structure of the initial logical specification of
‘externally stable’, the derivation and the resulting relation-algebraic expression
are a bit more complex than in the above case. We start with an auxiliary
calculation. Its first step is a consequence of the irreflexivity of the tournament
D and the type of the universal relation L introduced in the fifth step is [11↔A].

∃ y : y ∈ X ∧Dy,x ∧ ∀ z : z ∈ X ∪ {x} ∧Dx,z → Dy,z

⇐⇒ ∃ y : y ∈ X ∧Dy,x ∧ ∀ z : z ∈ X ∧Dx,z → Dy,z

⇐⇒ ∃u : u1 ∈ X ∧ u2 = x ∧Du1,u2 ∧ ∀ z : z ∈ X ∧Du2,z → Du1,z

⇐⇒ ∃u : u2 = x ∧Du1,u2
∧ u1 ∈ X ∧ ¬∃ z : D u1,z ∧Du2,z ∧ z ∈ X

⇐⇒ ∃u : ρu,x ∧ vec(D)u ∧ (π;M)u,X ∧ ¬∃ z : [[D ,D]u,z ∧Mz,X

⇐⇒ ∃u : (ρ ∩ vec(D); L)u,x ∧ (π;M)u,X ∧ ( [[D ,D];M )u,X

⇐⇒ ∃u : (ρ ∩ vec(D); L)Tx,u ∧ (π;M ∩ [[D ,D];M )u,X

⇐⇒ ((ρ ∩ vec(D); L)T; (π;M ∩ [[D ,D];M ))x,X

This yields, again with L being of type [11↔A]:

X externally stable

⇐⇒ ∀x : x /∈ X → ∃ y : y ∈ X ∧Dy,x ∧ ∀ z : z ∈ X ∪ {x} ∧Dx,z → Dy,z

⇐⇒ ∀x : M x,X → ((ρ ∩ vec(D); L)T; (π;M ∩ [[D ,D];M ))x,X

⇐⇒ ¬∃x : M x,X ∧ ( (ρ ∩ vec(D); L)T; (π;M ∩ [[D ,D];M ) )x,X

⇐⇒ ¬∃x : L⊥,x ∧ (M ∩ (ρ ∩ vec(D); L)T; (π;M ∩ [[D ,D];M ) )x,X

⇐⇒ ( L; M ∪ (ρ ∩ vec(D); L)T; (π;M ∩ [[D ,D];M )
T

)X
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14 Rudolf Berghammer, Agnieszka Rusinowska and Harrie de Swart

As a consequence of this equivalence we get the following relation-algebraic spec-
ification of a vector that represents the set of externally stable sets.

exstabSets(D) := L; M ∪ (ρ ∩ vec(D); L)T; (π;M ∩ [[D ,D];M )
T

: 2A↔11

The intersection of the two relation-algebraic specifications we just have de-
veloped represents the set C(D) of all covering sets of D. In the next step we
apply the technique of Section 2.2 to obtain from this intersection a relation that
column-wisely represents C(D). Here is the result.

CovSets(D) := M; inj(instabSets(D) ∩ exstabSets(D))T : A↔C(D)

From Section 2.2 we also know that an application of the function MinEnum of
(2) selects from the relation CovSets(D) those columns which represent minimal
covering sets. In tournaments there is precisely one minimal covering set and
this is the reason for the target 11 of the relation-algebraic specification

mincovSet(D) := MinEnum(CovSets(D)) : A↔11 (8)

of a vector that represents the minimal covering set MC(D) of D.

4.6 The Banks Set

The first step towards a relation-algebraic specification of BA(D) is the develop-
ment of a vector that represents the set T(D) of transitive sets of 2A with respect
to D. We assume X ∈ 2A and calculate as given below, where M : A↔ 2A is the
membership-relation, x, y and z range over A and u ranges over A×A.

X transitive

⇐⇒ ∀x, y, z : x ∈ X ∧ y ∈ X ∧ z ∈ X ∧Dx,y ∧Dy,z → Dx,z

⇐⇒ ¬∃x, y, z : x ∈ X ∧ y ∈ X ∧ z ∈ X ∧Dx,y ∧Dy,z ∧ D x,z

⇐⇒ ¬∃u, z : u1 ∈ X ∧ u2 ∈ X ∧ z ∈ X ∧Du1,u2
∧Du2,z ∧ D u1,z

⇐⇒ ¬∃u : Mu1,X ∧Mu2,X ∧ vec(D)u ∧ ∃ z : Mz,X ∧ D u1,z ∧Du2,z

⇐⇒ ¬∃u : [[M,M]u,X ∧ vec(D)u ∧ ∃ z : [[D ,D]u,z ∧Mz,X

⇐⇒ ¬∃u : vec(D)u ∧ [[M,M]u,X ∧ ([[D ,D];M)u,X

⇐⇒ ( vec(D)T; ([[M,M] ∩ [[D ,D];M)
T

)X

As a consequence we get as desired vector representation of the set T(D) the
following one.

transSets(D) := vec(D)T; ([[M,M] ∩ [[D ,D];M)
T

: 2A↔11

Next, we apply again the results of Section 2.2 to obtain from this vector, first,
the column-wise representation

TransSets(D) := M; inj(transSets(D))T : A↔T(D).
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Computing Tournament Solutions using Relation Algebra and RelView 15

of the set T(D) and, afterwards, by means of the function MaxEnum of (1) the
column-wise representation

BanksTraj(D) := MaxEnum(TransSets(D)) : A↔T(D)max

of the set T(D)max of the maximal sets of T(D). Each column of the relation
BanksTraj(D) represents precisely one Banks trajectory. Let B be an abbre-
viation for BanksTraj(D). Since the restriction of D to each Banks trajectory
X is a strict-order relation, an alternative x is maximal in X with respect to
D iff x ∈ X and there is no y ∈ X with Dy,x. Notice, that x ∈ X and Bx,X

are equivalent and the same holds for y ∈ X and By,X . With the help of these
properties we get therefore for all x ∈ A that

x ∈ BA(D) ⇐⇒ ∃X : Bx,X ∧ ¬∃ y : By,X ∧Dy,x

⇐⇒ ∃X : Bx,X ∧ (DT;B )x,X ∧ LX

⇐⇒ ((B ∩ DT;B ); L)x.

In this calculation L : T(D)max↔11 is the universal vector that represents the
set of Banks trajectories, X ranges over T(D)max and y ranges over A. The
relation-algebraic specification

banksSet(D) := (B ∩ DT;B ); L, where B := BanksTraj(D) (9)

of the vector representation of the Banks set BA(D) of D is an immediate
consequence of the latter calculation.

4.7 The Tournament Equilibrium Set

Finally, we demonstrate how to specify the tournament equilibrium set with
relation-algebraic means in such a way that this yields a recursive algorithm for
computing this choice set. Decisive for its definition is the relation T : A↔A
such that, given X ∈ 2A, it holds that

Tx,y ⇐⇒ x ∈ TEQDX,y (D|DX,y ) ∧ y ∈ X

for all x, y ∈ A; see Section 3.1. A little reflection shows that this point-wise
specification is equivalent to the point-free equation

T =
⋃
y∈X

TEQDX,y (D|DX,y )× {y}.

The relation T depends on the relation D and the set X. To make this fact
explicit, we use the functional notation T (D,X) instead of the simple T . In a
similar manner we write TEQ(D|DX,y , DX,y) instead of TEQDX,y (D|DX,y ). As
result of these functional notations we get T and TEQ as functions

T : [A↔A]× 2A → [A↔A] TEQ : [A↔A]× 2A → 2A

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2011.67

ha
ls

hs
-0

06
39

94
2,

 v
er

si
on

 1
 - 

10
 N

ov
 2

01
1



16 Rudolf Berghammer, Agnieszka Rusinowska and Harrie de Swart

which fulfill for all D : A↔A and X ∈ 2A the recursive equation

T (D,X) =
⋃
y∈X

TEQ(D|DX,y , DX,y)× {y}.

The computation of the tournament equilibrium set of D starts with the call
T (D,A). As a consequence, during the entire evaluation process the first argu-
ment of T is the restriction of the tournament D to the second argument of T .
Since A is assumed to be finite, eventually both arguments become empty and
we get T (O, ∅) = O in this termination case.

To obtain versions of the functions T and TEQ that completely work on
relations, we model their second arguments and the results of TEQ via vectors,
i.e., we consider the variant

TeqRel : [A↔A]× [A↔11]→ [A↔A]

of the function T and the variant

teqSet : [A↔A]× [A↔11]→ [A↔11]

of the function TEQ. Then the set TEQ(D,A) ∈ 2A corresponds to the vector
teqSet(D, L) : A↔11, where L : A↔11, and hence, the latter represents the
tournament equilibrium set of D as desired.

If we assume v : A↔11 to be the vector representation of X ∈ 2A, then the
relation-algebraic version of the equation TEQX(D) = MTCX(T ) of Section 3.1
looks as follows, where the function max is as defined in (5).

teqSet(D, v) = max(R ∩ RT , v), where R := TeqRel(D, v)+. (10)

The empty set is represented by the empty vector. As a consequence, the termi-
nation case T (O, ∅) = O of the function T translates into

TeqRel(O,O) = O. (11)

To solve the entire task, what remains is the translation of the above recursive
equation into the language of relation algebra. To this end, assume again X ∈ 2A

to be represented by v : A↔11. Then every element y of X corresponds to a
point p such that p ⊆ v. Using this fact, TeqRel(D, v) =

⋃
p teqSet(D

′, w); pT is
the relation-algebraic version of the recursive equation, provided p ranges over
all points contained in v, the vector w : A↔11 represents the set {x ∈ X | Dx,y},
where y is represented by p, and D′ : A↔A is the restriction of D to this set. It is
easy to verify that w = D; p∩v. In Boolean matrix terminology the restriction of
D to the set w represents is obtained by “zeroing out” in D all 1-entries outside
the square w;wT, i.e., by changing them to 0. This leads to D′ = D ∩ w;wT, so
that, finally, the relation-algebraic version of the recursive equation is

TeqRel(D, v) =
⋃
p

teqSet(D ∩ w;wT, w); pT, where w := D; p ∩ v. (12)

In the programming language of RelView the big union of (12) can easily be
implemented via a while-loop through all points contained in the vector v; this
leads to a cascade-like recursion.
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Computing Tournament Solutions using Relation Algebra and RelView 17

5 Conclusion

We have presented the relation-algebraic approach to the tournament choice
problem. The relation-algebraic specifications of several choice sets, well-known
in the literature on social choice theory, have been delivered. All that happened
in a formal and goal-directed way. This drastically reduces the danger of making
errors. Another clear advantage of this technique is the support by the Rel-
View system, which evaluates the relation-algebraic expressions and visualizes
the computed results in a very efficient and elegant way. Notice, that even for our
simple example of Section 3.2 it would be very hard to compute the considered
choice sets by hand, with a high chance of making mistakes. Another interesting
property of RelView is that it allows randomly to generate tournaments, even
with specific properties. For experiments it is also very important that RelView
allows to test the validity of arbitrary Boolean combinations of relation-algebraic
inclusion. Since, for R,S : X↔Y given, we have

R ⊆ S ⇐⇒ L; (R ∩ S ); L = L ¬(R ⊆ S) ⇐⇒ L; (R ∩ S ); L = O

(cf. the Tarski rule in [22]) and since the Boolean operations ∪, ∩ and on
[11↔11] correspond to the logical connectives ∨, ∧ and ¬, each such formula
can immediately be translated into an expression that only has the relations
O : 11↔11 and L : 11↔11 as possible values and the formula is true (false) iff the
expression has the universal relation (empty relation) as its value.

As already mentioned, the relation-algebraic approach can easily be applied
to other social choice problems. In particular, we could use relation algebra and
next RelView to compute and experiment with other choice sets mentioned in
the literature, e.g., in [12]. Examples are von Neumann-Morgenstern stable sets,
maximal sets, undominated sets, dominant sets and ultimate uncovered sets. All
these solutions can easily be specified relation-algebraically.

There is no consistent definition of covering in the social choice literature; see
e.g., [12, 20] where a lot of examples and corresponding references are given. The
notion of covering we have used in Section 3.1 is downward covering in the sense
of [7]. In [7] also upward covering and bidirectional covering are investigated2.
On tournaments all three variants coincide, but on non-complete asymmetric
dominance relations they may be different. Changing from downward covering
to the other variants using relation-algebra requires only marginal modifica-
tions of the relation-algebraic specifications and, consequently, of the RelView
programs obtained from them. For example, the uncovered set with respect to
upwards covering is obtained by replacing in the relation-algebraic specification

(7) the left residual D; DT by the right residual DT; D . If in (7) instead of

the left residual the intersection D; DT ∩ DT; D of both residuals is used, the
uncovered set with respect to bidirectional covering is represented.

2 Alternative x upward covers alternative y in X if Dx,y and for all z ∈ X from Dz,x

it follows Dz,y, and x bidirectional covers y in X if Dx,y and for all z ∈ X from Dy,z

it follows Dx,z and from Dz,x it follows Dz,y.
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18 Rudolf Berghammer, Agnieszka Rusinowska and Harrie de Swart

In the case of covering sets the changes are of a similar type. E.g., to com-
pute minimal covering sets with respect to upward covering using (8), in the
auxiliary specifications instabSets(D) and exstabSets(D) of Section 4.5 only the

left pairing [[D ,D] has to be changed into [[DT, D
T

]. A replacement of [[D ,D]

by [[D ,D] ∪ [[DT, D
T

] in instabSets(D) and exstabSets(D) computes minimal
covering sets with respect to bidirectional covering. Notice, however, that for
non-complete asymmetric dominance relations uniqueness of a minimal covering
set is not guaranteed for upward covering and downward covering; only in the
bidirectional case there is always a unique minimal covering set (cf. [7]).

To give a last example of the flexibility of the approach, we consider once
more the specification of the Banks set. For asymmetric dominance relations
(so-called weak tournaments) in [12] four variants are discussed. The notion
we have introduced in Section 3.1 corresponds to the third variant of [12]. It
is not hard to modify the specification of Section 4.6 to obtain also the other
variants. E.g., the second variant of [12] considers instead of transitive subsets
those subsets X ∈ 2A for which the restriction of D to X is negatively transitive.
Since the latter means that D is transitive, a relation-algebraic specification
of the second variant is obtained if in (9) the definition B := BanksTraj(D) is
replaced by B := BanksTraj(D ). The first variant of [12] works with transitive
and total subsets. This only demands for a relation-algebraic specification of
total sets, which is even more easy to calculate than BanksTraj(D), since

∀x : x ∈ X → (∀ y : y ∈ X → (Dx,y ∨Dy,x))

can be expressed in pure relation algebra because of the criterion mentioned in
Section 4.5.

An important choice set we have not mentioned so far is the Slater set, intro-
duced in [26]. It consists of all undominated elements of those linear strict-order
relations (called Slater orders) that share as many pairs with the given tour-
nament as possible. We have developed a relation-algebraic specification of the
Slater set by, first, relation-algebraically specifying all linear strict-order rela-
tions as a vector of type [A↔A]↔11 and, next, combining this with a relation-
algebraic specification of set intersection and the size-comparison relation on 2A

that relates X and Y iff |X| ≤ |Y |. But the result is rather inefficient and only
works in the case of very small sets of alternatives. At best it can be used for
educational purposes.

As already mentioned in the introduction, RelView is an ideal tool for ex-
perimentation and exploration. In spite of the fact that it implements relations
very efficiently, it cannot compete with special algorithms tailored for hard prob-
lems of social choice theory. Presently, we therefore mainly use the system to
refine the specifications we have developed and to investigate and explore fur-
ther concepts of social choice theory and related notions. But we also develop
RelView further to make it more applicable by expanding its interface in such
a way that it is possible to outsource program logic into small problem-specific
plug-ins. By specific plug-ins based on known algorithms from the social choice
literature, we hope in the future to be able to deal also with large problems
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Computing Tournament Solutions using Relation Algebra and RelView 19

which cannot be solved with the present version of the tool, thereby keeping up
the advantages of the system.

Acknowledgement. We gratefully acknowledge valuable discussions with B.
Langfeld and F. Brandt.
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