
MPRA
Munich Personal RePEc Archive

Aggregation of Malmquist Productivity
Indexes

Zelenyuk, Valentin

Institut De Statistique, Universit´E Catholique De Louvain

May 2005

Online at http://mpra.ub.uni-muenchen.de/34689/

MPRA Paper No. 34689, posted 14. November 2011 / 03:15

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6489572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/34689/
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Abstract

In this paper we extend the work of Färe and Zelenyuk (2003) to find a theoretically justified method of

aggregating Malmquist Productivity Indexes over individual decision making units (firms, countries,

etc.) into a group Malmquist Productivity Index.  We also consider the aggregation of decomposed

parts of the Malmquist Productivity Index to obtain a decomposition of the Malmquist Productivity

Index for a particular group.
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 1. Introduction

One of the most popular approaches to measuring productivity changes is based on using Malmquist

Productivity Indexes�a method originated by Caves et al. (1982).  Virtually any empirical study that

uses this approach, at some point, reports averages of the productivity indexes they estimate�to

represent the overall tendency in productivity changes, make inference, etc.  Most of the time, the

equally-weighted geometric mean is used for this purpose.  Recent developments on aggregation in a closely

related field�efficiency analysis�have emphasized the importance of using weights in the aggregation

of indexes.  The purpose of this is to account for the relative importance of each observation whose

efficiency score is entering into the average (Färe and Zelenyuk, 2003).  It is quite natural to look at this

same issue in the context of productivity indexes, as we do in this paper.

The rest of the paper is structured as follows.  Section 2 outlines the key definitions for the

individual (disaggregated) case, while Section 3 does this for the group (aggregated) case.  The main

aggregation result is given in Section 4, and the resulting aggregate productivity index is then compared,

in Section 5, to the commonly used geometric average.  Section 6 demonstrates how the same

aggregation principle can be applied to the context of decompositions of productivity indexes into

different sources of change (e.g., efficiency and technology change).  Finally, Section 7 lists some

possible extensions for further research as well as concludes this study.

2. Characterization of Technologies and Measurement of Productivity Changes

For each DMU (decision making unit: plant, firm, country, etc.) k (k = 1, 2,� , n), let

Nk
N

kk xxx +ℜ∈= )',...,( ,1, τττ   be a vector of N inputs that DMU k uses in period τ (for our case, τ = s, t) to

produce a vector of M outputs, denoted by Mk
M

kk yyy +ℜ∈= )',...,( ,1, τττ .  We assume the technology of

DMU k in a period τ is characterized by the output set

}:{)( NkMkk xfromproducibleisyyxP ++ ℜ∈ℜ∈≡τ . (2.1)
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Throughout, we assume the technology in any period τ satisfies the usual regularity axioms of

production theory.1 Thus we can use the output oriented Shephard�s (1970) distance function

}{: 1 ∞∪ℜ→ℜ×ℜ +++
MNkDτ , defined as

)}(/:inf{),( kkkkkk xPyyxD ττ θθ ∈≡ , (2.2)

to obtain a complete (primal) characterization of the technology of DMU k in period τ, in the sense that

)(1),( kkkkkk xPyyxD ττ ∈⇔≤ . (2.3)

This function is also a convenient criterion for measuring the relative distance from any input-output

combination of some DMU k towards the frontier of the technology set.  In particular, if we let the

technology frontier of )( kk xPτ , Nkx +ℜ∈  be defined (for period τ ) as

)},1(),(),(:{)( +∞∈∀∉∈ℜ∈=∂ + λλ τττ
kkkkMkk xPyxPyyxP ,

then,
0),(),(1),(0 ≠∂∉∈⇔<< kkkkkkkkkk yxPyxPyyxD τττ ,

)(:0),(1),( kkkkkkkkk xPyxPyyxD τττ λλ ∈>∃∉⇔> ,

)(1),( kkkkkk xPyyxD ττ ∂∈⇔=  ,
and

00),( =⇔= kkkk yyxDτ .

These (and other2) properties have made the function (2.2) very popular in efficiency analysis, where it

can be used to define the Farrell (1957) technical efficiency measure of DMU k (in period τ) as

),(/1),( kkkkkk yxDyxTE ττ = ,

An alternative (dual) characterization of )( kk
s xP  can be given via the revenue function,

                                                          
1 We assume all the output sets satisfy free disposability of outputs, i.e., okko yyxPyxPy ≤∀∈⇒∈ ),()( ττ  and are

compact (for all Nx +ℜ∈ ). We also assume MN
k yPy 00 ≥∀∉ ),(τ   (�no free lunch�) and  )(xP k

M τ∈0 ,
Nx +ℜ∈  (�producing nothing is possible�).  See Färe and Primont (1995) for details.

2 For the list of properties of the distance function and proofs, see Shephard (1970) and Russell (1990, 1997).
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)}(:{max),( kk
y

kk xPyyppxR ττ ∈≡ , (2.4)

where M
Mppp +ℜ∈= ),...,( 1  denotes the vector of output prices.3 Assuming 0≠kpy , the revenue

function can be used to define the measure of revenue efficiency of DMU k in period τ, as

kkkkkk pypxRpyxRE /),(),,( ττ ≡ . (2.5)

The revenue function is dual to the distance function ),( kkk yxDτ , in the sense that 4

}),(/{sup),( pxRpyyxD kkk
p

kkk
ττ = . (2.6)

This expression implies that the revenue efficiency measure is an upper bound to the technical

efficiency measure, i.e.,

),(/1/),( kkkkkk yxDyppxR ττ ≥ . (2.7)

This statement, also known as Mahler�s inequality, is often used to define, in a residual fashion, the

measure of allocative efficiency of DMU k (for period τ)

 ),(),,(),,( kkkkkkkkk yxDpyxREpyxAE τττ ×≡ , (2.8)

The idea of decomposition (2.8) goes back at least to Farrell (1957) and will prove very useful in

deriving our aggregation results.

Let us now turn to the measurement of productivity changes from one period (s) to another

period (t).  The Shephard�s distance function, defined above, is often used for defining Malmquist

productivity indexes. This concept was first introduced by Caves et al. (1982), who suggested two

indexes that differ with respect to the reference technology they are measured to.  In general, such two

                                                          
3 For the purpose of obtaining the desired aggregation results we have made a necessary assumption that all firms face
the same output prices.
4 To achieve this result, convexity of the output sets is needed, in addition to other regularity axioms mentioned above;
see Färe and Primont (1995) for details.
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indexes are not equal, and a common practice is to avoid arbitrariness of choice by taking the geometric

mean to define the (output oriented) Malmquist Productivity Index (further MPI) as

2/1

),(
),(

),(
),(

),,,( 







×≡ k

s
k
s

k
t

k
t

k
t

k
t

k
s

k
s

k
s

k
t

k
t

k
sk

t
k
s

k
t

k
s

k

yxD
yxD

yxD
yxD

xxyyM . (2.9)

Note that now we have time subscripts for the output and input vectors.  This indicates that we now

look at specific values of the Shephard�s distance functions, evaluated at the actual input-output

allocations, ),( kk yx ττ , for particular DMU k (k=1,�,n), in the particular period τ (τ = s, t).

If we take the revenue efficiency measure (2.5) and recall its dual relationship to the distance

function via (2.6) or (2.7), we can define the revenue (or dual) analog of the MPI as

2/11
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kk

pyxRE
pyxRE

pyxRE
pyxRE

xxyyppRMRM , (2.10)

which can also be decomposed (analogously to (2.8), but for the context of productivity indexes) as

)()()( ⋅×⋅≡⋅ kkk AMMRM , (2.11)

where )(⋅kM  is given in (2.9), and

2/11
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kk

pyxAE
pyxAE

pyxAE
pyxAE

xxyyppAMAM . (2.12)

In the next section we define the group analogs of these individual indexes.

3.  Group Efficiency and Productivity Measures

We will denote the input and output allocation among DMUs within the group, respectively, by

),...,( 1 nxxX τττ =  and ),...,( 1 nyyY τττ = , we will also denote the sum of output vectors over all DMUs in

the group with ∑ =
=

n

k
kyY

1 ττ  (τ = s, t.).
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A critical step is to define a group technology�the aggregate technology of all DMUs within the

group.  In the context we have chosen�output orientation (i.e., consideration of output changes given fixed

levels of inputs)�a natural way to define the group technology is to assume the additive structure of

aggregation of the output sets (Färe and Zelenyuk, 2003), i.e.,

∑
=

≡
n

k

kk xPXP
1

)()( ττ , τ = s, t. (3.1)

Thus, the output set of a group of DMUs, )(XPτ , is the sum of the individual output sets of all DMUs in

this group.  The properties of this group technology depend on the properties of technologies of each

DMU in the group.  In particular, )(XPτ  inherits the regularity conditions we assumed above and is

convex if the individual output sets are convex.

Given the group technology (3.1), the group revenue function can be defined as

)}(:{max),( XPypypXR y ττ ∈≡ ,   τ = s, t. (3.2)

which is a group analog to (2.4) and the group analog of (2.5) can be defined as

YppXRpYXRE /),(),,( ττ ≡ ,   τ = s, t. (3.3)

In the context of measuring productivity changes between period s and t, we can now define the group

or aggregate analog of (2.10) as

2/11
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pYXRE

pYXRE

pYXRE

pYXRE
XXYYppRM , (3.4)

where, again, the time subscripts indicate that we now look at the specific values of efficiency measures

realized in particular periods τ (τ = s, t).

Our goal is to find an aggregation function (especially the aggregation weights) )(⋅Rf  that would

relate (3.4) to the individual measures (2.10) or its components given by (2.5), for all k, i.e., establish
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))(),...,((),,,,,( 1 ⋅⋅= n
Rtststs REREfXXYYppRM ττ ,  τ = s, t. (3.5)

so that, preferably, we maintain the decomposition (2.11) at the aggregate level.  Formally, we want

)()(),,,,,( ⋅×⋅= AMMXXYYppRM tststs . (3.6)

where, again we need to find some aggregation functions )(),( ⋅⋅ AT ff , so that the aggregate primal MPI

can be obtained from the individual analogs (2.9) or its components given by (2.2), i.e.,

))(),...,((),,,()( 1 ⋅⋅≡≡⋅ n
Ttsts DDfXXYYMM ττ ,  τ = s, t. (3.7)

Further, the aggregate allocative MPI can be obtained from (2.12) or its components, given by (2.8), i.e.,

))(),...,((),,,()( 1 ⋅⋅≡≡⋅ n
Atsts AEAEfXXYYAMAM ττ ,  τ = s, t. (3.8)

In the next section we will find such functions.

4.  Aggregation Results for the Malmquist Productivity Indexes

The fundamental result for our study is an intertemporal extension of the result derived by Färe and

Zelenyuk (2003).  Specifically, it says

  ∑ =
=

n

k
kk pxRpXR

1
),(),( ττ ,       MNk pnkx ++ ℜ∈=∀ℜ∈ ,,...,1, ,    τ = s, t. (4.1)

The economic intuition of this theorem is straightforward. The sum of the revenues of individual

revenue-maximizing DMUs in a given group is the same as the revenue obtained by a revenue-

maximizing union of these DMUs (e.g., an industry or its sub-groups, regions such as APEC, EU,

NAFTA, etc.) whose technology is defined in (3.1) and assuming that the output price vector is the

same for all DMUs. 5 (The proof of this result is essentially the same as the proof of Färe and Zelenyuk

(2003) and therefore is skipped for the sake of brevity).  Considering the context of measuring

productivity changes between periods s and t, using (4.1), we obtain the key expression for our study
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∑ =
⋅=

n

k
k
jj

k
j

k
j

k
jjj SpyxREpYXRE

1
),,(),,( ττ , j, τ = s, t. (4.2)

where
jj

k
jj

k
j YpypS /≡ ,  k = 1, �, n; j = s, t. (4.3)

Moreover, after a little more of algebra, we obtain the desired decomposition,

)()(),,( jAEjTEpYXRE jjj τττ ×= , j, τ = s, t (4.4)
where

k
j

n

k
k
j

k
j

k SyxDjTE ⋅≡∑ =
−

1
1)],([)( ττ , j, τ = s, t. (4.5)

k
jae

n

k j
k
j

k
j

k SpyxAEjAE ,1
),,()( ⋅≡∑ = ττ , j, τ = s, t. (4.6)

and
( )

( )∑ =

≡ n

k
k
j

k
j

kk
jj

k
j

k
j

kk
jjk

jae
yxDyp

yxDyp
S

1

,
),(/

),(/

τ

τ , k = 1, �, n ; j, τ = s, t. (4.7)

Remark 1. The proposed weights of aggregation for obtaining the group measures are not ad hoc

but are derived from economic principles (agents� optimization behavior).  Incidentally, the weights are

also quite intuitive and perhaps resemble what common sense would suggest. They account for the

importance of the technical and revenue efficiency scores of DMUs via the share of the value of total

output of these DMUs in the group.  The weights for aggregating allocative efficiency are similar, but

the technically efficient output is used instead of the actual one. This is also what one might logically

expect.  It is also worth noting that in a single output case, the weights clearly reduce to the output

shares�exactly the weights proposed by Farrell (1957) while envisioning his concept of the Structural

Efficiency of an Industry.  Such context of a single output is not uncommon in practice.  In cross-

country efficiency and productivity analysis, for example, researchers often proxy all outputs with one

aggregate output, e.g., GDP, in which case the weights would be the GDP-shares (e.g., see Henderson

and Zelenyuk, 2004).

                                                                                                                                                                                                
5 This theorem is a revenue analog to the Koopmans (1957) theorem of aggregation of the profit functions. The
cost analog is proven in Färe, Grosskopf and Zelenyuk (2002a).
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Remark 2.  Interestingly, a similar weighting scheme has been suggested by Domar (1961)�for

the context of aggregation across industries, however they were obtained under different (more

restrictive) assumptions and using a different derivation method than ours.

Remark 3. The weights of aggregation depend on prices.  This shall not be surprising given the

fact that for the derivation of these weights (and the aggregation function) an economic criterion was

used�revenue optimization.�and, loosely speaking, �the quintessence of economics is in prices.�

Importantly, the prices are required to be the same for all DMUs (firms, countries, etc). On the one

hand, this type of �Law of One Price� assumption is seldom true in reality (at least some statistical

noise might be present) and in fact has received a considerable attention and critique in the recent

literature (e.g., see Cherchye et al. (2004) and references therein).  On the other hand, such an

assumption is consistent with many standard economic models of perfect competition, Cournot-type

oligopoly, monopolistic competition, etc.  In any case, to our knowledge, the scheme (4.2)-(4.4) is so far

the only positive aggregation result and the �Law of One Price� assumption is a necessary condition for it

to hold, but we hope future research would relax this assumption.  Meanwhile, for an empirical

researcher, this assumption might be a simplifying one that gives a way of summarizing a large number

of obtained efficiency (and, as later will be shown, productivity) scores into one number representing an

entire economic system (or its sample), so that the economic importance of each unit in this system is

accounted for with a theoretically justified and an intuitive weight.  For within industry studies one

could use, for example, the average prices, which are often publicly available.  For cross-country

analysis, for example, the world prices might be used.

Remark 4. If price information is unavailable then an empirical researcher might have to call for

some additional estimation or/and simplifications.  For example, one could resort to (estimated)

shadow prices for the entire system (or take an average of individual shadow prices).  Alternatively,

researchers might be willing to accept an additional standardization, e.g., of the type proposed by Färe
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and Zelenyuk (2003), for making the weights derived above price-independent, while still preserving the

aggregation structure based on economic optimization criterion.  Specifically, one may assume that

mjM

m mjmj

mjmj a
Yp

Yp
,

1 ,,

,, =
∑ =

, m = 1, � , M; j = s, t, (4.8)

where ∑ =
≡

n

k
k

mjmj yY
1 ,, , and mja ,  (m = 1, � , M) are assumed to be known (or estimated) constants

between zero and unity, so that 1
1 , =∑ =

M

m mja .  In words, expression (4.8) says that (in period j ) the

share of the industry revenue from output m in the industry total revenue is equal to some constant mja , .

In practice, such aggregate information on the value shares of each output in an industry, mja , , is often

available from industry surveys, governmental reports or previous studies. 6  Imposing (4.8) onto the

weights for aggregating technical (and revenue) efficiencies yields price independent weights,

∑
=

=
M

m

k
mjmj

k
j aS

1
,,

~ ϖ , k = 1, � , n; j = s, t. (4.9)

where mj
k

mj
k

mj Yy ,,, /=ϖ  is the share of kth DMU in the group in terms of the mth-output (in period j).
The corresponding price-independent weights for aggregating allocative efficiencies would then be

∑ =

= K

k
k
j

k
j

kk
j

k
j

k
j

kk
jk

aej
yxDS

yxDS
S

1

,
),(/

),(/~

τ

τ , k = 1, �, n; j = s, t. (4.10)

Remark 5. It is not the first time that �positive� aggregation results in economics require some

additional, often strong and perhaps undesirable assumptions (e.g., recall assumptions needed for

aggregation of demands over consumers or over goods).  In fact, in a more general context of

aggregating efficiencies, Blackorby and Russell (1999) have proved impossibility results for their general

case and the need of quite strong assumptions on technology in special cases. 7

                                                          
6 If such information is unavailable, one might accept a more restrictive assumption: mja ,  is the same constant
for all m (as in Färe and Zelenyuk (2003)).
7 Our result does not contradict result of Blackorby and Russell (1999).  Realizing that aggregation across all
points in the technology set does not lead to a positive result, Färe and Zelenyuk (2003) established aggregation
result for optimal points and use Mahler�s inequality to obtain the aggregation result for the other points.
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Application of (3.4), (4.2) and (4.3) immediately gives us the desired aggregation result (a

solution to (3.5)) for the Malmquist Productivity Index, namely

=),,,,,( tststs XXYYppRM
2/11
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and thus the desired decomposition for the aggregate level is

)()(),,,,,( ⋅×⋅= AMMXXYYppRM tststs , (4.12)

with the solutions to (3.7) and (3.8) given, respectively, by

2/11
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where the four components inside (4.13) are given in (4.5), and
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where the four components inside (4.14) are given in (4.6).

The theoretical and practical importance of these results is that we have obtained a way of

aggregating the Malmquist Productivity Indexes�from the individual scores into group score.

Importantly, in this approach, the aggregation function and, most importantly, the weights of

aggregation are not ad hoc, but derived from economic principles (optimization) in such a way that the

decomposition defined on the individual level is preserved at the group level.

We also would like to emphasize that we do not claim that the equally-weighted mean is useless

for the context of Malmquist Productivity Indexes (or efficiency scores).  On the opposite, we believe it

should be used as a complementary descriptive statistic�as an estimator of the first moment of the
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distribution of the MPI (or efficiency scores), if it exists.  We argue however, that it must be supported

and compared with the average that accounts for some economic weight of each observation.

Our derivations were performed for the output orientation case.  Similar developments are

easily transferred for input orientation, where cost minimization would be used as a criterion to derive

the weights for input oriented indexes.  This would be an intertemporal extension of Färe, Grosskopf

and Zelenyuk (2002a).  Similar analysis can also be done for aggregation of the productivity indexes

defined in terms of the directional distance functions (this would be an intertemporal extension of the

results found in Färe, Grosskopf and Zelenyuk (2002a, 2002b)).

5.  Geometric vs. Harmonic Averaging of Malmquist Productivity Indexes

As was mentioned above, in practice, to summarize a large number of estimated Malmquist productivity

indexes in a single number, researchers often resorted to equally-weighted averages of the individual

estimates.  Moreover, the aggregation function was the geometric average�a tradition that started at least

with the seminal paper of Färe et al. (1994), and was motivated by the multiplicative nature of the index

(see their footnote 19 on p. 78; also see Färe and Zelenyuk, 2002, for related formal discussions).  In the

previous section, our derivations have given us both: the system of weight and in the aggregation

function.  Clearly, the weights might be critically important for drawing both quantitative and qualitative

conclusions.  The question of functional form of aggregation is not that clear at this stage.

The goal of this section is to investigate the relationship (or/and the difference) between the

aggregate efficiency measure based on the geometric aggregation and the harmonic one that we have

derived above, assuming both use the same system of weights.  To establish the relationship between

these two aggregation approaches, we first use (4.5) to rewrite )(⋅M  in (4.13) in terms of the four

components of harmonic aggregations of scores from individual distance functions,
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In general, the geometric analogue of  (5.1) is defined (for some weights k
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(The aggregation that is commonly used in practice is a special case of (5.2) that assumes equal weights

across all k.) Clearly, the formulation in (5.1) yields, in general, different values than those from (5.2),

and there is no exact general relationship between them.  However, if we look at the first-order

approximation of 
k
tSk

t
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s SyxD  around unity�which is a

natural point around which an approximation of productivity and efficiency indexes can be done (see

Färe and Zelenyuk, 2002), then they both are equal to ∑ =
⋅

n

k
k
t

k
t

k
t

k
s SyxD

1
),( .  This leads us to a desired

relationship implying that

),,,(),,,( tsts
G

tsts XXYYMXXYYM ≅ , for ),(),( k
s

k
t

k
s

k
t SSWW = . (5.3)

In other words, expression (5.3) establishes the first-order-approximation relationship between the harmonic

aggregate Malmquist Productivity Index we have derived in previous sections and the commonly used

geometric aggregate of individual MPI�s�given that both aggregations use the same system of weights.

Thus, for a researcher who prefers the geometric aggregation (e.g., for multiplicativity reasons) this

relationship allows justifying the choice of weights of aggregation�the weights derived from economic

optimization that attempt accounting for economic importance of each DMU in the sample.



13

A natural question is how different the results of the geometric and harmonic aggregations

would be in practice.  To get some feeling on this, we provide some of the typical results of Monte

Carlo experiments we had.  Here we present only 7 scenarios, with n = 100, and with 1000 replications

in each Monte Carlo experiment.  The basic scenario assumes that the scores of Malmquist productivity

indexes are distributed uniformly between 0.5 and 1.5.  This allows for quite some variation in the

scores: the range is 100 percentage points of productivity change, and standard deviation is about 29

percentage points of productivity change, which is more than what is often observed in empirical

studies analyzing short-run changes in productivity.  The other scenarios consider uniform distributions

for ranges of (0.3, 1.7), (0.1,1), (1, 2.5), (0.5,1), (1,1.5), (0.75,1.25).  The (non-equal) weighting scheme is

the same for both types of aggregation and for each scenario was generated from the uniform

distribution on (0,1) and then normalized to sum to one.

Table 1.  Difference between the Geometric and Harmonic Aggregations of
MPI:  Monte Carlo Results for Four Simulated Scenarios

Ranges of
Uniform Bd

B

b b /)(
1

2∑ =
Bd

B

b b /||
1∑ =

}{min bb
d }{max bb

d

(0.5, 1.5)

(0.3, 1.7)

(0.1, 1)

(1, 2.5)

(0.5, 1)

(1, 1.5)

(0.75, 1.25)

0.0452

0.0989

0.0839

0.0562

0.0143

0.0084

0.0105

0.0450

0.0983

0.0833

0.0559

0.0142

0.0083

0.0105

-0.0613

-0.1374

-0.1181

-0.0743

-0.0191

-0.0108

-0.0142

-0.0320

-0.0622

-0.0508

-0.0405

-0.0094

-0.0056

-0.0072

Notes: db = difference between the Harmonic and Geometric aggregations of simulated
values for distance functions in Monte Carlo replication b (b =1,�, B = 1000); n = 100.
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Results in Table 1 suggest that, as expected, the geometric aggregation always gives an upward

biased aggregate productivity score relative to the harmonic aggregation (assuming the same weighting

scheme for the two aggregations).   The difference however is not very large.  Even when the range of

the distribution of productivity changes is 100 percentage points�the square root of the mean square

difference (SRMSD) of the two aggregate indexes is 4.5 percentage points (with the maximum being

6.1), over 1000 replications.  When the range is 50 percentage points, then only about 1 percentage

point of the SRMSD is observed.  For scenarios where the mean is not unity (i.e., zero change, around

which we approximate), but is within 25 percentage points of it, then the SRMSD is still only about 1

percentage point.

A practical conclusion we can draw from this subsection is that the proposed harmonic-type

and geometric-type aggregations of the productivity indexes, whose first-order approximations are

equivalent under the same weighting scheme, give very similar aggregate scores for distributions with a

quite wide spread of individual scores.  This may justify the use of geometric aggregations, if preferred.

However we suggest using the economically justified weighting scheme derived above�which clearly

may give very different results from the commonly used equally-weighted aggregation.

6.  Decomposition into the Aggregate Technical and Aggregate Efficiency Changes

The aggregation results derived in sections 4 and 5 above can easily be extended to the aggregation of

components of various conceptual decompositions of Malmquist Productivity Indexes (see for example

Balk (2004) for a recent survey).  Here, for the sake of brevity, we limit ourselves to only one of the

most popular decompositions suggested by Färe et al. (1994), defined as

)()()( ⋅×⋅≡⋅ kkk TECHEFCHM , (6.1)

where change in efficiency is measured by
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and technological change is measured by
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We now want our group analogs to be obtainable from aggregating the corresponding individual

measures (6.2) and (6.3) or its components, given by (2.2), via some function )(⋅Ef , and )(⋅TCf .  Given

our developments above, a natural choice would be to set
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Similar to the previous section, the first order approximation relationship exist between the harmonic-

type aggregations (6.4) and (6.5) and their geometric analogues.

This completes our brief outline of the main results that can be used by practitioners for

summarizing their estimation results of individual Malmquist Productivity Indexes into group (or

aggregate) Malmquist Productivity Indexes which attempt accounting for the economic importance of

each observation in the sample via a theoretically justified weighting scheme.
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7. Conclusion

In this paper we have extended the work of Färe and Zelenyuk (2003) to obtain a theoretically justified

method for aggregating Malmquist Productivity Indexes and their decompositions.  We do not suggest

that the new aggregate measures and their aggregate components of decompositions must replace the

commonly used equally-weighted analogs.  Instead, we suggest that they shed important additional light

in the analysis of productivity changes�since they attempt accounting for an economic importance of

each observation in the sample�not in an ad hoc way, but using weights derived from economic

optimization criterion.  Also noteworthy is that the same aggregation principle can be applied to obtain

aggregation results for other indexes that are based on revenue, cost, profit, directional and Shephard�s

distance functions (for example, for aggregation of price indexes and Malmquist quantity indexes,

Hicks-Moorsteen indexes, etc).

A natural further extension would be to develop methods of statistical inference on the group

(and sub-groups) Malmquist (and other) productivity indexes, which can be done, for example, by

merging the ideas of Simar and Wilson (1999) with Simar and Zelenyuk (2003).



17

References

Blackorby, C., and R. Russell (1999), �Aggregation of Efficiency Indices�, Journal of Productivity Analysis 12:1, 5-20.

Caves, D., L. Christensen and W. E. Diewert (1982) �The Economic Theory of Index Numbers and the
Measurement of Input, Output, and Productivity,� Econometrica 50:6, 1393-1414.

Kuosmanen, T., L. Cherchye, and T. Sipiläinen (2004) �The Law of One Price in Data Envelopment Analysis:
Restricting Weight Flexibility Across Firms,� paper presented at NAPW2004 (Toronto, Canada), forthcoming
in European Journal of Operational Research.

Balk, B., (2004) �The Many Decompositions of Productivity Change,� paper presented at NAPW2004 (Toronto,
Canada).

Domar, E. (1961), �On the Measurement of Technological Change,� The Economic Journal 71:284, pp.709-729.

Färe, R., S. Grosskopf, M. Norris and Z. Zhang (1994), �Productivity Growth, Technical Progress, and
Efficiency Change in Industrialized Countries,� American Economic Review, 84:1, 66-83.

Färe, R., S. Grosskopf and V. Zelenyuk (2002a) "Aggregation of Cost Efficiency Indicators and Indexes Across
Firms�,  forthcoming in Academia Economic Papers.

Färe, R., S. Grosskopf and V. Zelenyuk (2002b) "Aggregation of the Nerlovian Profit Indicator," Mimeo
(submitted).

Färe, R., and D. Primont (1995) Multi-Output Production and Duality: Theory and Applications,  Kluwer Academic
Publishers, Boston.

Färe, R. and V. Zelenyuk (2003),  �On Aggregate Farrell Efficiency Scores,� European Journal of Operational Research
146:3, 615-620.

Färe, R. and V. Zelenyuk (2002), "Averaging Farrell Scores," Mimeo (submitted).

Farrell, M.J. (1957), �The Measurement of Productive Efficiency,� Journal of Royal Statistical Society, Series A,
General, 120, part 3,  253-281.

Henderson, D. and V. Zelenyuk (2003) �Testing for Catching-up: Statistical Analysis of DEA Efficiency
Estimates,� Disc.Paper 0431 of Institute of Statistics, University Catholique de Louvain.

Koopmans, T.C. (1957),  Three Essays on the State of Economic Analysis, New York: McGraw-Hill.

Russell, R.R., (1990), �Continuity of Measures of Technical Efficiency,�  Journal of Economic Theory 51,  255-267.

Russell, R.R., (1997),  �Distance Functions in Consumer and Producer Theory,� in Index Number Theory: Essays in
Honor of Sten Malmquist, Kluwer Academic Publishers, 7-90.

Shephard, R. (1970), Theory of Cost and Production Functions, Princeton: Princeton University Press.

Simar, L. and P. Wilson (1999), � Estimating and Bootstrapping Malmquist Indexes,� European Journal of
Operational Research 115, 459-471.

Simar, L. and V. Zelenyuk (2003), �Statistical Inference for Aggregates of Farrell-type Efficiencies,� Discussion
Papers (0324) of Institute of Statistics, University Catholique de Louvain, Belgium.


