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SIMPLE AND EXTENDED KALMAN FILTERS:  

AN APPLICATION TO TERM STRUCTURES OF COMMODITY PRICES 

ABSTRACT: This article presents and compares two different Kalman filters. These 

methods provide a very interesting way to cope with the presence of non-observable 

variables, which is a frequent problem in finance. They are also very fast even for large 

data sets. The first filter presented, which corresponds to the simplest version of a 

Kalman filter, can be used solely for linear models. The second filter – the extended one – 

is a generalization of the first that can deal with non-linear models. However, it also 

introduces an approximation into the analysis, whose possible influence must be 

evaluated. The principles of the method and its advantages are first presented. We then 

explain why it is interesting in the case of term structure models of commodity prices. 

Choosing a well-known term structure model, practical implementation problems are 

discussed and tested. Finally, in order to appreciate the impact of the approximation 

introduced for non-linear models, the two filters are compared. 

I. THE KALMAN FILTERS: A BRIEF INTRODUCTION1  

The main principle of the Kalman filters is to use temporal series of observable 

variables in order to reconstitute the values of non-observable variables. In finance, the 

problem of non-observable variables arises for example with term structure models of 

interest rates, term structure models of commodity prices and with market portfolios in 

the capital asset pricing model. When associated with an optimization procedure, the 

Kalman filter provides a way to estimate the model parameters. Finally and most 

importantly, because it is very fast, the method is also interesting for large data sets.  
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There are different versions of Kalman filters2. The simple one is also the most 

famous and it is quite frequently used in finance nowadays3. Nevertheless, it is not 

suitable for nonlinear models. In that case, an extended filter can be used. However, the 

latter relies on an approximation, whose possible influence on the model performances 

needs to be assessed. Apart from this distinction, the two filters rely on the same 

principles.  

The Kalman filter is an iterative process. The model has to be expressed in a 

state-space form characterized by a transition equation and a measurement equation4. This 

transition equation describes the dynamics of the state variables α~ , for which there are no 

empirical data. During the first step of the iteration – the prediction phase – this equation 

is used to compute the values of the non-observable variables at time t, conditionally on 

the information available at time (t-1). The predicted values 1/
~

−ttα  are then substituted 

into the measurement equation to determine the value of the measures ty~ . The 

measurement equation represents the relationship linking the observable variables y~  with 

the non-observable α~ . In the second iteration step – or innovation phase – the innovation 

vt, which is the difference, at t, between the measure ty~  and the empirical data yt is 

calculated. The innovation is used, in the third iteration step – or updating phase – to 

obtain the value of tα~  conditionally on the information available at t. Once this 

calculation has been made, tα~  is used to begin a new iteration. Thus, the Kalman filter 

makes it possible to evaluate the non-observable variables α~ , and it updates their value 

in each step using the new information.  

This brief presentation explains why the Kalman filter is a very fast method. 

Indeed, to reconstitute the temporal series of the non-observable variables, only two 

elements are necessary: the transition equation and the innovation v. Because there is an 

updating phase in the iteration, very little information is needed. 
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The remainder of the paper is organized as follows. Section II presents the term 

structure models of commodity prices and explains why their use necessitates resorting to 

the Kalman filters. Section III explains how to apply the simple and the extended Kalman 

filters to a well-known model developed by Schwartz in 1997. Relying on the model 

performances, section IV compares the two filters and discusses some practical 

implementation problems. Section V concludes. 

II. THE TERM STRUCTURE MODELS OF COMMODITY PRICES 

In this section, after describing some general features characterizing the term 

structure models of commodity prices, we present the model used for the comparison 

between the simple and the extended Kalman filters: Schwartz’s model.  

General presentation  

The term structure of commodity futures prices describes the relationships 

between the spot price and futures prices for different delivery dates. So it synthesizes all 

the information available in the market. Several term structure models have been 

proposed in the literature. Their objective is firstly to reproduce the observed futures 

prices as accurately as possible, and secondly to extend the curve for very long maturities, 

even for delivery dates which are not available in the market. 

Term structure models borrow from the contingent claim analysis developed in a 

partial equilibrium framework for options and interest rates models. Relying on arbitrage 

reasoning, the development of a term structure model of commodity prices follows three 

successive steps: identification of the state variables, specification of their dynamics and 

extraction of the futures prices values from a differential valuation equation. 

When only one state variable is used to explain the futures prices behaviour, as is 

the case, for example, in Brennan and Schwartz’s model (1985), this single factor is the 

spot price. Recognizing the limits of such a formulation, several models based upon two 
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state variables have been proposed (Schwartz, 1997; Hilliard and Reis, 1998; Lautier, 

2000). In that case, the second factor is the convenience yield, which can be briefly 

defined as the comfort associated with the possession of physical stocks (Brennan, 1958). 

The introduction of a second state variable allows for richer shapes of curves and 

volatility structures. This improvement is however costly because the models are 

naturally more complicated. The difficulty arises from the increasing number of 

parameters and from the non-observable nature of the state variables. In fact, there are 

usually no empirical data for these two variables because there is generally a lack of 

reliable time series for the spot price5, and convenience yield is not a traded asset. 

Therefore, there is a need for a method like the Kalman filter.  

Schwartz’s model  

Schwartz’s model (1997) is a well-known term structure model of commodity 

prices. Three reasons lead to choose it. Firstly, it performs well. Secondly, it has an 

analytical solution, which simplifies the application of the Kalman filters. Thirdly, it 

allows for the use of a simple Kalman filter, provided some precautions are taken.  

Schwartz’s model supposes that the spot price S and the convenience yield C can 

explain the behavior of the futures prices F. The dynamics of these state variables is:  

( )[ ]⎩
⎨
⎧

+−=
+−=

CC

SS

dzdtCkdC
SdzSdtCdS

σα
σµ  )(

 

with:            κ, σS, σC >0 

where:  - µ is the drift of the spot price, 

- Sσ  is the volatility of the spot price,  

- dzS is an increment to a standard Brownian motion associated with S, 

- α is the long run mean of the convenience yield, 

- κ is the speed of adjustment of the convenience yield,  

- Cσ  is the convenience yield volatility, 

- dzC is an increment to a standard Brownian motion associated with C.  
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As the storage theory showed, the two state variables are correlated because both 

the spot price and the convenience yield are an inverse function of the inventory levels. 

Nevertheless, as Gibson and Schwartz (1990) demonstrated, the correlation between these 

two variables is not perfect:  

   [ ] dtdzdzE CS ρ=×  

where ρ is the correlation between the two Brownian motions associated with S and C. 

The convenience yield is mean reverting and is involved in the spot price 

dynamics. Mean reversion relies on the hypothesis that there is a level of stocks which 

satisfies the needs of industry under normal conditions. The behaviour of the operators in 

the physical market guarantees the existence of this normal level of stocks. When the 

convenience yield is low, the stocks are abundant and the operators sustain a high storage 

cost compared with the benefits related to holding the raw materials. So, if they are 

rational, they try to reduce these surplus stocks. Conversely, when the stocks are rare, the 

operators tend to reconstitute them.  

The solution of the term structure model can be expressed in a risk neutral 

framework, using a Feynman-Kac solution. Therefore, the value of the futures prices can 

be written as: 

( ) ( )[ ]TSETtF Qλ=,  

where F(t,T) is the futures price at t for delivery at T, and Qλ  denotes the risk neutral 

probability6, which is dependent of an unknown value λ. The latter is the market price of 

convenience yield risk. The solution is:  
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where : - r is the risk free interest rate, assumed constant,  

- τ = T - t is the maturity of the futures contract. 

To assess the model’s performances, we first need the optimal values of the 

parameters, which can then be used to compute the estimated futures prices and to 

compare them with empirical data.  

III. APPLYING THE KALMAN FILTERS  

In this section, the way to transform Schwartz’s model into a state-space model is 

explained, for the simple and for the extended filters. Then, implementation problems are 

discussed.  

Simple filter  

The simple filter is suited for linear models. To apply it, the solution of 

Schwartz’s model must be expressed on a linear form:  

( ) ( ) ( )τ
κ

κτ

BetCtSTtCSF +
−

×−=
−1)()(ln),,,(ln  

Letting G = ln(S), we also have7:  

( )[ ]⎪⎩

⎪
⎨

⎧

+−=

+−−=
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σσµ )
2
1( 2

 

The state-space form of the model is the following. The transition equation is the 

expression, in discrete time, of the state variables dynamics. Using the same notation as 

before, this equation is:  
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where:  

-  N is the number of maturities used for the estimation, 
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- ∆t is the period separating 2 observation dates, 
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- R is the identity matrix, (2 × 2), 

- ηt are errors that are uncorrelated with the previous values of the state variables, and 

have no serial correlation :  

  E[ηt] = 0, and   ⎥
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The measurement equation comes directly from the model pricing formula, which 

must also be discretized:  
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where :  

- the ith line of the N dimensional vector of the observable variables 1/
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- [ ]iHZ −=    ,1  is the ith line of the Z matrix, which is (N×2), with i = 1,...,N and 

where: 
κ

κτ ieHi

−−
=

1  

- εt is a white noise vector, (N×1), with no serial correlation:  

E[εt] = 0 and H = Var[εt].  (N × N) 
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In continuous time, the pricing equation of a term structure model does not 

involve any error term ε. The use of a Kalman filter leads to the introduction of this term, 

which is difficult to estimate. This term can be interpreted as follows. Firstly, it stands for 

market imperfections and arbitrage opportunities. Secondly, as the Kalman filter is a kind 

of inverse process, which is often unstable, it can be considered as a regularization term. 

Its addition leads to a distribution for y% , which is the initial one, convoluted with a 

Gaussian kernel.  

Extended filter  

In an extended filter, the previous system matrices Z, T and R are replaced with 

non-linear functions depending on the state variables. So there is no need to linearize 

Schwartz’s model. The transition equation becomes: 
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The measurement equation becomes:  

( ) ttttttt CSZy ε+= −−− 1/1/1/
~,~~  

where: ( )1/1/
~,~

−− tttt CSZ  is an N dimensional vector, whose ith line is (i = 1,..., N): 

( )[ ])(~exp~
1/1/ ittitt BCHS τ+−× −−  
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In the extended filter, as the transition and measurement equations are non-linear, 

there is no analytical formula for the conditional expectations. Therefore, the latter must 

be approximated. This approximation does not appear in the simple filter.  

Implementation problems  

 Some difficulties must be overcome when using Kalman filters. First, some 

choices must be made to start the iterative process. Second, if the model has been 

expressed as the logarithm for the simple Kalman filter, some precautions must be taken. 

Third, the covariance matrix H influences the performances. 

Starting the iterative process 

To start the iterative process, initial values of the non-observable variables and of 

their covariance matrix are needed.  

For the term structure models of commodity prices, the non-observable state 

variables are usually the spot price and the convenience yield. The nearest futures price is 

generally used as the spot price S, and the convenience yield C can be computed from the 

solution of Brennan and Schwartz’s model (1985). This solution requires the use of two 

observed futures prices, for delivery at T1 and at T2:  

( ) ( )
21

21 ),,(ln),,(ln)(
TT

TtSFTtSFrtC
−
−

−=  

where T1 is the nearest delivery, and T2 is the next one.  

The covariance matrix associated with the state variables must also be initialized. 

We choose a diagonal matrix with the spot price and the convenience yield variances on 

the diagonal. These variances were computed from the 30 first dates in the estimation 

period.  

Analyzing the results of the simple filter 

When the model is expressed in its logarithmic form in the case of the simple filter, 

some precautions must be taken to measure the model’s performances, because the 

innovations are computed with logarithms. A difficulty arises when the estimated and 
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empirical data are rebuilt. The relationship linking the estimations logarithm 1/
~

−tty  with 

the observations logarithm yt is the following:  

Ryy ttt σ+= −1/
~  

where σ is the standard error of the innovations and R is a gaussian residue. To be more 

precise, when the estimated logarithm is used to obtain the estimates themselves, the 

relationship between yt  and 1/
~

−tty  becomes : 

Ryy eee ttt σ×= −1/
~

 

The expectation is then8 :  

[ ] [ ] 2~
2

1/

σ

eeEeE ttt yy ×= −  

Therefore, a corrective term should be added to the estimations exponential. From 

a theoretical point of view, this is quite difficult, because the innovations variance is 

modified as soon as the parameters change. We nevertheless performed empirical tests, in 

order to measure this bias.  

Measuring the performances  

 Another important choice must be made before initiating the iteration process, 

concerning the error covariance matrix H. This matrix is important because it is added to 

the innovations covariance matrix during the innovation phase. In the simple Kalman 

filter, the relationship between the innovations matrix Ft and the system matrix H is:  

HZZPF ttt += − '1/  

where Pt/t-1 is the covariance matrix of the non-observable variables and Z is a system 

matrix included in the measurement equation.  

 During the next iteration phase, the inverse of the innovations matrix is used to 

update the non-observable variables and their covariance matrix:  
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⎪
⎨
⎧
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 So, the matrix H has an influence on the updated values of the non-observable 

variables. If its terms are too high, the model performances will be poor. Most of the 

time, this matrix is estimated relying on the variances and the covariance of the 

estimations database. We used this method in this article and we show how strongly this 

choice affects the empirical results.  

IV. COMPARISON BETWEEN THE TWO FILTERS 

 Comparing the performances of Schwartz’s model measured with the two filters 

makes it possible to assess the influence of the linearization on the results. In this section, 

the empirical data are first presented. Then the performance criteria are presented. 

Finally, the results are delivered and commented.  

Data 

 The data used for the empirical study are daily crude oil settlement prices for the 

West Texas Intermediate (WTI) futures contracts negotiated on the New York Mercantile 

Exchange (Nymex) from 09/25/1995 to 01/14/2002. They have been arranged so that the 

first futures price maturity τ1 is the one month maturity, and that the second futures price 

corresponds to the two months maturity τ2, ... Keeping the first observation of each group 

of five, this daily data were transformed into weekly data. Four series of futures prices9 

corresponding to maturities of one, three, six and nine were used to estimate the 

parameters, and to measure the model’s performance.  

 The interest rates are T-bill rates for a three months maturity. As they are 

supposed to be constant in the model, we used the mean of all the observations between 

1995 and 2002.  

Performances criteria 

 Two criteria were used to measure the model performances: the mean pricing 

error (MPE) and the root mean squared errors (RMSE).  
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The MPE is defined as follows: 

( ) ( )( )∑
=

−=
N

n

nFnF
N

MPE
1

,,~1 ττ  

where N is the number of observations, ( )τ,~ nF  is the estimated futures price for maturity 

τ at the date n, and ( )τ,nF  is the observed futures price. The MPE is expressed in US 

dollars. It measures the estimation bias for one given maturity. If the estimation is good, 

the MPE should be very close to zero.  

 Using the same notation, the RMSE, expressed in US dollars, is, for a given 

maturity τ:  

( ) ( )( )∑
=

−=
N

n

nFnF
N

RMSE
1

2
,,~1 ττ  

When there is no bias, the RMSE can be considered as an empirical variance. It measures 

the estimation stability. This second criterion is considered as more representative 

because price errors can offset themselves and the MPE can be low even if there are 

strong deviations.  

Empirical results 

The estimation periods used to obtain the parameters are for the following 

periods: 09/25/95-05/11/98 and 05/18/98-10/15/01. After comparing the optimal 

parameters obtained with the two filters, we measure the model’s ability to represent the 

prices curves on the learning database and on an expanded one. Finally, the sensitivity of 

the results to the error covariance matrix are examined.  

Optimal parameters 

The optimal parameters were estimated with the simple and the extended filters10. 

The results obtained for the two periods are represented in Tables 1 and 2. They lead to 

two remarks. Firstly, the parameters values change with the estimation period. This was 

observed in several earlier studies. Considering that the parameters are constant is rather 
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restrictive but it significantly reduces the complexity of the analysis. Secondly, the 

optimal parameters obtained with the two filters are different. During the first period, the 

optimal parameters obtained with the extended filter are usually higher than those 

associated with the simple filter. The principal differences concern the risk premium λ 

and the long run mean α . For the second period, the differences are lower, and the most 

important ones concern the volatilities of the state variables.  

These differences show that the linearization has had a significant influence on 

the parameters. Nevertheless, the latter have always the same order size that those 

obtained by Schwartz in 1997 on the crude oil market and on different periods. 

The model performances  

A simple graphical analysis is first used to comment the model performances 

obtained with the two filters. Then the MPE and RMSE criteria are used to compare 

them. The results associated with the simple filter are also corrected for the logarithm. 

Lastly the innovations obtained with the two filters are compared.  

Figure 1 represents the one-month futures prices observed during 1998-2001 and 

compares them with the futures prices estimated with the two filters. This graphic shows 

that firstly, the two filters, especially the simple one, attenuate the range of price 

fluctuations. We observed this phenomenon for the two study periods and for every 

maturity. Secondly, the Kalman filters can be used with extremely volatile data. During 

1998-2001, the crude oil prices ranged from USD 11 per barrel to USD 37!  

Tables 3 and 4 give the performances of Schwartz’s model, measured by the 

MPE and the RMSE criteria. Three conclusions can be drawn from these results. Firstly, 

the model is able to reproduce the prices curve quite precisely. The average MPE is 

always less than 18 cents per barrel and the RMSE is quite low, especially for the shorter 

period (1995-1998). Secondly, if the RMSE is the relevant criterion, then the simple filter 

is always more precise than the extended one. Thirdly, these measures always decrease 
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with maturity, which is consistent with Schwartz’s results on others periods. 

Nevertheless, Schwartz worked with longer maturities, and showed that the root mean 

squared error increases again for deliveries after 15 months.  

To be rigorous, the model performances associated with the simple Kalman filter 

should be corrected when the model in expressed in terms of logarithms. Table 5 

compares the performances obtained with and without correction. The results show that 

the correction slightly improves the performances. Therefore, in our case, the bias 

associated with the logarithm as a minor influence on the results, probably because the 

variance of the residuals is small for reasonable parameters values. 

Finally, Figure 2 represents the behavior of the innovations for the one-month 

maturity and for the second study period. It shows that for both filters, the innovations 

tend to return to zero. The same observation can be made for the others maturities, 

likewise for both periods. The figure also shows that even if the MPE are low for the two 

filters, the pricing errors can be rather important at certain dates.  

The performances analysis shows that there is clearly an impact of the 

linearization introduced in the extended filter. However, the most important is that, even 

if this impact is negative, the model’s ability to represent the prices curve is still good 

with an extended filter. 

Expanding the database 

The parameter estimates vary with the estimation periods. Hence, one question 

arises: how often is it necessary to recalculate the parameters? In order to answer that 

question, we used the parameters previously estimated to measure the model 

performances on an expanded database. We carried out these tests on two intervals of 

three months located in the prolongation of the estimation periods, namely 05/18/98 -

 08/17/98 and 10/21/01 - 01/14/02. Tables 6 and 7 present our results. Two conclusions 

can be drawn.  
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Firstly, in 1998, the model is more precise with the extended filter. However, in 

2001-2002, the simple filter gives again the best performances. Secondly, the model 

performances decrease strongly when the database is expanded. The RMSE and the MPE 

rise dramatically for the two periods. This phenomenon is particularly pronounced when 

the futures prices are volatile, during 2001-2002, and it will probably be even more 

marked as the database is increased. So, there is a strong incentive to recalculate the 

optimal parameters each time the model is used. This is not a major drawback, at least 

when there is an analytical solution for the model, because the estimation process is very 

fast. 

Simulations 

The last results presented are simulations showing how the choice of the system 

matrix H, which represents the errors in the measurement equation, affects the model 

performances. The first results presented in Table 8 (observations) are obtained with a 

matrix whose components are the variances and the covariance of the observations. This 

method is the most frequently used. The other performances (simulations) are carried out 

with artificially lowered matrices: in simulations 1 to 4, H was multiplied by (1/2), (1/16), 

(1/160), and (1/1600). For these tests, we retained the period 1998-2001 because it is 

characterized by especially volatile data. 

 Table 8 illustrates that, when the matrix components are lowered, the model 

performances improve strongly: from the initial performances to the fourth simulation, 

the RMSE is almost divided by two. However, comparing the third and the fourth 

simulation also shows that there is a limit to the improvement. Figure 3 summarizes the 

main results of these simulations.  

V. CONCLUSION 
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Kalman filters are powerful tools suitable for use in many fields in finance, 

because they are fast even for large data sets and they can handle unobservable variables. 

Moreover, they can be used for linear as well as non-linear models, even if the models 

have no analytical solutions.  

The main conclusions of this article are the following. Firstly, the approximation 

introduced in the extended Kalman filter due to linearizing the model, clearly influences 

the model performances: the extended filter generally leads to less precise estimates than 

the simple one. Nevertheless, as the difference between the two filters is quite small, the 

extended filter is still acceptable in our case. So, the approximation is not a real problem 

until the model becomes highly nonlinear. Secondly, the system matrix containing the 

errors of the measurement equation affects the model performances and can be used to 

obtain more precise results. Thirdly, as far as the term structure models of commodity 

prices are concerned, the parameters are not constant in time and should be recomputed 

regularly. This can become a problem if the model has no analytical solution, because of 

the computing time.  

In order to improve the use of the Kalman filters, some further studies could be 

considered. For example, in the matrix representing the errors in the measurement 

equation (which is most of the time estimated with variances and covariance), we could 

also try to use variograms. This tool borrowed from geostatistics are used to describe 

spatial or temporal correlation11. More precisely, a variogram models the variation of the 

correlations between a pair of points of the same variable as a function of the spatial or 

temporal distance. Another improvement could be done concerning the analysis of the 

bias associated with the logarithms in the simple Kalman filter. To reduce this bias, 

variance minimization could be included in the iterative process used to estimate the 

optimal parameters. Lastly, to face the problem of time varying parameters in term 

structure models of commodity prices, one could study the sensitivity of the estimated 

futures prices to the parameters.  
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Figure 1. Estimated and observed futures prices for the one-month’s maturity, 1998-2001 
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Figure 2. Innovations, 1998-2001 
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Figure 3. One-month’s futures prices observed and estimated, 1998 - 2001 
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Table 1. Optimal parameters, 1995-1998 

 Simple filter Extended filter 

 Parameters Gradients Parameters Gradients 

Drift : µ 0.142741 0.001629 0.192335 0.000083 

Speed of adjustment : κ 1.969842 -0.000265 2.023929 0.000114 

Spot price volatility : σS 0.241347 0.000177 0.228553 0.000339 

Long run mean : α 0.098906 0.001271 0.149024 0.001422 

Convenience yield volatility : σC 0.400676 -0.001242 0.383852 0.000053 

Correlation coefficient : ρ 0.967136 -0.000031 0.973072 -0.000001 

Risk premium : λ 0.088951 -0.001609 0.185988 -0.000883 
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Table 2. Optimal parameters, 1998-2001 

 Simple filter Extended filter 

 Parameters Gradients Parameters Gradients 

Drift : µ 0.379926 0.000497 0.352014 -0.001178 

Speed of adjustment : κ 1.59171 -0.003631 1.258133 0.000628 

Spot price volatility : σS 0.263525 -0.000448 0.320235 -0.000338 

Long run mean : α 0.252260 -0.012867 0.232547 0.004723 

Convenience yield volatility : σC 0.237071 -0.000602 0.288427 -0.001070 

Correlation coefficient : ρ 0.938487 -0.001533 0.969985 0.000008 

Risk premium : λ 0.177159 0.009272 0.181955 -0.002426 
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Table 3. The model’s performances with the simple and the extended filters, 1995-

1998 

 Simple filter Extended filter 

Maturity MPE RMSE MPE RMSE 

1 month -0.063 1.2769 0.0775 1.3972 

3 months 0.1064 1.1804 0.2145 1.3011 

6 months 0.1453 1.0142 0.2235 1.0861 

9 months 0.1419 0.8468 0.2029 0.8812 

Average 0.0827 1.0796 0.1796 1.1664 

Unit: USD/b. 
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Table 4. The model’s performances with the simple and the extended filters, 1998-

2001 

 Simple filter Extended filter 

Maturity MPE RMSE MPE RMSE 

1 month -0.060423 2.319730 0.09793 2.294503 

3 months -0.107783 1.989428 0.057327 2.120727 

6 months -0.054536 1.715223 0.109584 1.877654 

9 months -0.007316 1.567467 0.141204 1.695222 

Average -0.057514 1.897962 0.101511 1.997027 

Unit: USD/b. 
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Table 5. The simple filter with and without corrections for the logarithm, 1998-2001 

 Simple filter Simple filter corrected 

Maturity MPE RMSE MPE RMSE 

1 month -0.060423 2.319730 0.065644 2.314178 

3 months -0.107783 1.989428 0.006419 1.981453 

6 months -0.054536 1.715223 0.026010 1.709931 

9 months -0.007316 1.567467 0.061301 1.564854 

Average -0.057514 1.897962 0.036637 1.892604 

Unit: USD/b. 
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Table 6. The performances with a 3 months’ extrapolation, 1998 

 Simple filter Extended filter 

Maturity MPE RMSE MPE RMSE 

1 month 2.0138 2.2012 1.7392 1.8834 

3 months 1.3296 1.3749 1.2448 1.3084 

6 months 0.6512 0.755 0.7563 0.8691 

9 months 0.2710 0.5442 0.4883 0.6540 

Average 1.0664 1.2188 1.0572 1.1787 

Unit: USD/b. 

 

 



 29

 

 

 

 

Table 7. The performances with a 3 months’ extrapolation, 2001-2002 

 Simple filter Extended filter 

Maturity MPE RMSE MPE RMSE 

1 month -0.710678 3.371702 -3.243584 3.837790 

3 months -0.379108 2.972144 -2.920091 3.408698 

6 months 0.155104 2.500216 -2.247877 2.649836 

9 months 0.385290 2.164323 -1.767425 2.123121 

Average -0.137348 2.750296 -2.544744 3.004861 

Unit: USD/b. 
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Table 8. Simulations with different system matrices 

 1 month 3 months 6 months 9 months Average 

Observations 

MPE 

RMSE 

 

0.0979 

2.2945 

 

0.0573 

2.1207 

 

0.1096 

1.8777 

 

0.1412 

1.6952 

 

0.1015 

1.9970 

Simulation 1 

MPE 

RMSE 

 

0.0013 

1.8356 

 

0.0935 

1.5405 

 

0.1501 

1.2478 

 

1.6506 

2.6602 

 

0.4739 

1.8210 

Simulation 2 

MPE 

RMSE 

 

0.0073 

1.4759 

 

0.0152 

1.1686 

 

0.0612 

0.9386 

 

0.0137 

0.8317 

 

0.0244 

1.1037 

Simulation 3 

MPE 

RMSE 

 

0.0035 

1.3812 

 

-0.003 

1.0950 

 

0.0383 

0.8647 

 

0.0005 

0.7499 

 

0.0105 

1.0227 

Simulation 4 

MPE 

RMSE 

 

0.0131 

1.3602 

 

0.0067 

1.0919 

 

0.0415 

0.8697 

 

0.0075 

0.7591 

 

0.0172 

1.0202 

Unit: USD/b. 

 

 

 



 31

APPENDIX: THE SIMPLE AND THE EXTENDED KALMAN FILTERS 

 

This appendix presents the simple and the extended Kalman filters, and explains 

how to estimate the model parameters.  

1. The simple Kalman filter12 

The state-space form model, in the simple filter, is characterized by the following 

equations:  

• Transition equation:    tttt RcT ηαα ++= −− 11/  

where αt is the m-dimensional vector of non-observable variables at t, also called state 

vector, T is a matrix (m × m), c is an m-dimensional vector, and R is (m × m) 

• Measurement equation:  ttttt dZy εα ++= −− 1/1/  

where 1/ −tty  is an N-dimensional temporal series, Z is a (N×m) matrix, and d is an m-

dimensional vector.  

tη and tε are white noises whose dimensions are respectively m and N. They are 

supposed to be normally distributed, with zero mean and with Q and H as covariance 

matrices:    [ ] 0=tE η , [ ] QVar t =η  

[ ] 0=tE ε , [ ] HVar t =ε  

The initial value of the system is supposed to be normal, with mean and variance:  

[ ] 00
~αα =E , [ ] 00 PVar =α  

If tα~ is a non biased estimator of αt, conditionally on the information available at 

t, then:      [ ] 0~ =− tttE αα  

As a consequence, the following expression13 defines the covariance matrix Pt : 

( )( )[ ]'~~
tttttt EP αααα −−=  

During one iteration, three steps are successively tackled: prediction, innovation 

and updating.  
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• Prediction :     
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where 1/
~

−ttα  and Pt / t-1 are the best estimators of αt/t-1 and Pt/t-1 , conditionally on the 

information available at (t-1). 

• Innovation :    
⎪
⎩
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−−

HZZPF
yyv
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where 1/
~

−tty  is the estimator of the observation yt conditionally on the information 

available at (t-1), and vt is the innovation process, with Ft as a covariance matrix.  

• Updating :     
⎪⎩

⎪
⎨
⎧

−=

+=

−
−

−

−
−−

1/
1

1/

1
1/1/

)'(

'~~

tttttt

ttttttt

PZFZPIP

vFZPαα
 

 The matrices T, c, R, Z, d, Q, and H are not time dependent in the simplest case 

that we consider in this article. They are the system matrices associated with the state-

space model.  

2. The extended Kalman filter14 

When the model is non-linear, it is generally impossible to obtain an optimal 

estimator for the non-observable variables. The simplest way to handle non-linearity is to 

linearize the equations. This is the idea behind the extended Kaman filter. However, 

because of this linearization at each step, it may happen that the approximate solution 

diverges on the long run.  

 In the non-linear case, the measurement and transition equations of the state-

space form model are the following:  

• Transition equation:    ttttt RT ηααα )()( 111/ −−− +=  

where αt/t-1 is the m-dimensional state vector at t, )( 1−tT α  and )( 1−ttR α  are non linear 

functions, from Rm to Rm, depending on the values of the state variables at (t-1).  

• Measurement equation:   ttttt Zy εα += −− )( 1/1/  
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where 1/ −tty represents an N dimensional temporal series, and )( 1/ −ttZ α  is a non-linear 

function, from RN to RN,  of the non-observable variables. 

As was the case in the simple filter, the two processes εt and ηt are supposed to be 

normally distributed, with zero mean, with H and Q as covariance matrices, and Pt is the 

covariance matrix associated with tα~ . 

• Linearization:  

If the functions )( 1/ −ttZ α  et )( 1−tT α  are smooth enough, it is possible to 

compute their first order development around respectively 1/
~

−ttα and 1
~

−tα , where 1/
~

−ttα  is 

the expectation of tα~ , conditionally on the information available at (t-1), and 1
~

−tα  is the 

value obtained for the state variable in (t-1), at the end of the updating phase. The state-

space linearized model is then:  

⎪⎩

⎪
⎨
⎧

+≈

+≈

−−

−−

ttttt

tttt

Zy

RT

εα

ηαα

1/1/

11/

ˆ

ˆˆ
 

where : 
1/1/

~
'

1/

1/ )(ˆ

−− =−

−=
tttt

tt

ttZZ
ααδα

αδ ,  
11

~
'

1

1)(ˆ

−− =−

−=
tt

t

tTT
ααδα

αδ ,  )()~(ˆ
11 −− ≈= tt RRR αα  

In the extended version, the three iteration steps are the following:  

• Prediction:     
⎪⎩

⎪
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11/
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where 1/
~

−ttα and Pt/t-1 are the estimators for αt/t-1 and Pt/t-1, conditionally on the 

information available at (t-1).  

• Innovation:     
⎪
⎩

⎪
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where 1/
~

−tty is the estimation of the observation yt, conditionally on the information 

available at (t-1), and vt is the innovation process with Ft as a covariance matrix.  
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• Updating:    ( )⎪⎩

⎪
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 In the most simple case, the functions )( 1/ −ttZ α , )( 1−tT α , and )( 1−tR α , just as 

the covariance matrices H and Q, are not time dependent. )( 1/ −ttZ α , )( 1−tT α  and 

)( 1−tR α  are the system functions. H and Q are the system matrices.  

3. The parameters estimation 

Suppose that the non-observable variables and the errors are normally distributed. 

Then we can use the maximum likelihood to estimate the model parameters, which are 

supposed to be constant. We have therefore to maximize the likelihood, or equivalently to 

minimize its logarithm. This implies that we must compute the likelihood for many 

parameters values. For that purpose, we used each time the Kalman filter with the current 

value of the parameters, and we computed, at each iteration, the logarithm of the 

likelihood function for the innovation vt :  

tttt vFvdFntl ××−−Π×⎟
⎠
⎞

⎜
⎝
⎛−= −1'

2
1)ln(

2
1)2ln(

2
)(log  

where Ft is the covariance matrix associated with the innovation vt, and dFt its 

determinant15. In our case, the measurement equation admits continuous partial 

derivatives of first and second order on the parameters. Therefore, we can use a more 

powerful minimization method. Once the optimal parameters have been obtained, the 

Kalman filter is used, for the last time, to reconstitute the non-observable variables and 

the measure y~ . 
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1 A more precise presentation of the filters and of the parameters estimation procedure can be found in the 

appendix.  
2 For a brief presentation of more complex non-linear filters or non Gaussian methods see for example 

Javaheri et al. (2003).  
3 See for example Schwartz (1997) or Babbs and Nowman (1999).  
4 There is more than one state-space form for certain models. Then, because some of them are more stable 

than the others, the choice of one specific representation is important.  
5 This is especially true for the American crude oil market, as Horsnell and Mabro (1993) explained it.  
6 In the case of term structure models of commodity prices, certain conditions must be respected in order to 

obtain a unique risk-neutral probability. For more details on that remark, see for example Lautier (2000).  
7 In this article, we used the historical probability for the state variables dynamics. However, the futures price 

being expressed in a risk-neutral framework, it is possible to use this probability for the state variables. This 

method reduces the number of parameters: the drift µ and the risk premium λ disappear. It also induces a loss 

of information, because we must directly estimate the parameter α) .  



8 1/
~

−ttye and Reσ  are not correlated. 
9 Thus N = 4 in our case. 

 

10 Optimizations have been made with a precision of 1e-5 on the gradients. For the two filters and the two 

periods, we used the same parameters values to initiate the optimization. These values are: µ = 0.1; κ = 0.5 ; 

σS = 0.3 ; α = 0.1 ; σC = 0.4 ; ρ = 0.5 ; λ = 0.1. 
11 They were already used in finance, in another context, by Fouque, Papanicolaou and Sircar (2000). 
12 Harvey (1989) inspired this presentation.  
13 ( ) '~

tt αα − is the transposed matrix of ( )tt αα −~ . 

 

14 Harvey (1989) and Anderson and Moore (1979) inspired this presentation.  

 

15 The value of logl(t) is corrected when dFt is equal to zero.  


