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Abstract

This paper studies the extent to which diffusion approximations provide
a reliable guide to equilibrium selection results in finite games. It is shown
that they do for a class of finite games with weak learning provided that
limits are taken in a certain order. The paper also shows that making
mutation rates small does not in general select a unique equilibrium but
making selection strong does.
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1 Introduction

This paper considers stochastic models of equilibrium selection in games. There
has been substantial interest in evolutionary models of equilibrium selection since
the work of Kandori, Mailath and Rob (1993) and Young (1993). This work has
explored the idea that models of evolution with random shocks may help predict
which equilibrium will be played in games with multiple equilibria. Most of this
work has considered models of selection in discrete time. Models of equilibrium
selection in continuous time (see for example Foster and Young (1990) and Fu-
denberg and Harris (1992)) have sometimes given rather different answers and
it is therefore of some interest to understand the relationship between the two
approaches.

The typical approach in the papers inspired by Kandori, Mailath and Rob
(1993) and Young (1993) is to take some model of dynamic adjustment and perturb
it (say by introducing mutations) so that the resulting Markov process has a unique
stationary distribution. The perturbation is then allowed to tend to zero and the
question is which of the equilibria of the unperturbed process does the stationary
distribution converge to. This equilibrium is then taken to be the one selected by
evolution. A notable result of Kandori, Mailath and Rob is that the equilibrium
selected in symmetric 2× 2 co-ordination games is the risk-dominant equilibrium
in the sense of Harsanyi and Selten (1988), under minimal assumptions on the
underlying deterministic dynamic. Ellison (1995) generalises this result. Bergin
and Lipman (1996) discuss its limitations.

The work above considers games with a fixed finite population. Many com-
monly studied dynamics (for example the replicator dynamic) are often studied
using differential equations, that is with a continuum of players. Foster and Young
(1990) and Fudenberg and Harris (1992) consider perturbations of differential
equations by small stochastic noise. In their context, the equilibrium selected
depends rather closely on the chosen dynamic. This contrast with the finite mod-
els is perhaps disturbing. This paper aims to investigate the connection between
finite population and differential equation models.

Some previous papers have considered finite population models when the num-
ber of players is large. If the source of randomness in the model is disturbances at
the individual level and the strength of selection remains fixed regardless of sample
size, then, by the law of large numbers, one would expect uncertainty to average
out at the aggregate level. The sample paths for a large population should there-
fore be well approximated by the solutions to a deterministic differential equation.
This is indeed the case if one considers behaviour over a fixed finite interval of
time. Binmore, Samuelson and Vaughan (1994) and Sandholm (1999), for exam-
ple, provide proofs in an economic context. Ethier and Kurtz (1986) Chapter 11
have a general treatment. Nevertheless this approximation may not be helpful if
one is interested in the stationary distribution, which involves an indefinite time
interval. In particular, the finite process may have a unique stationary distribution
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for each population size but the differential equation may have multiple stationary
points.

This paper pursues a different approach. In the papers considered above, the
learning process at the aggregate level is almost deterministic when the population
size is large. For some models the force of selection or learning may be weak or
slow at the individual level, even though it is important in the aggregate. In these
cases there may be significant randomness even in a large population. To capture
this, this paper considers taking the limit where the strength of selection at the
individual level becomes small as the population size becomes large. The force of
this assumption is not that this is literally so but that selection is weak at the
individual level in comparison to the size of the population. One might draw a
loose analogy with the Poisson approximation to the Binomial, which is applied
when the Binomial probabilities are small in comparison to the sample size.

Under these assumptions the paper shows that a suitably scaled version of
the finite process converges to stochastic differential equation. Moreover, the sta-
tionary distribution of the finite model converges to that of the limiting diffusion
process, and so one can use the latter to study the former. In particular, the equi-
librium selection results derived from the limiting models carry over approximately
to the corresponding finite models in large populations. One can therefore regard
stochastic differential equation or diffusion models as providing information about
finite models in a large population, albeit finite models of a rather different kind
to those usually considered.

This kind of approximation has been much studied in genetics where diffusion
models are commonly used to obtain information about otherwise intractable finite
state models (see for example Ewens (1979) or Karlin and Taylor (1981)). The
assumption that learning is slow may mean that the approximations are more
useful in biological games, in which it is plausible that the force of selection is
weak and random variation is important.

The paper considers two simple models of selection with finite populations in
a 2× 2 symmetric game. The models differ only in that in the first only one agent
changes strategy at a time (according to a Poisson process) while in the second
all agents change strategy simultaneously. The process is similar to that studied
in Binmore and Samuelson (1997): agents become discontented with a certain
probability and imitate the choice of another agent. In addition strategies may
change randomly with a small probability. One can also interpret the model in
terms of offspring. It is shown that as the population size becomes large the model
converges to a diffusion process.

In terms of equilibrium selection in a 2× 2 symmetric coordination game, one
can obtain two kinds of results. If one simply lets the mutation probability tend to
zero then the stationary distribution does not converge to a unique equilibrium of
the game. Rather, the equilibrium distribution puts weight on both pure strategy
equilibria with more weight on the equilibrium with greater ‘fitness’. In other
words, if the mutation rate is very small, the system spends most of its time in the
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neighbourhood of one or other of the equilibria but occasionally switches between
them. Intuitively, this is because the system even in the absence of mutation
is still stochastic on account of individual-level randomness. If mutation allows
the system to escape from one equilibrium, it is therefore relatively easy for the
system to move against the determinstic forces of selection and reach the other
equilibrium.

On the other hand, if one fixes the mutation rate and the force of selection
becomes large (though not so large that the drift is large) then the force of selection
dominates and the equilibrium distribution will in the limit put all its weight on
the equilibrium with greater fitness. Here even if mutation allows the system to
escape from one equilibrium, the deterministic force of selection is so strong that
it is pushed back to the equilibrium with greater mean fitness. As in the work of
Binmore and Samuelson (1997) fitness need not coincide with risk dominance.

It is, however, shown that the results are sensitive to the order in which lim-
its are taken. If one takes the limit as population size becomes large and then
considers the limit as the force of selection becomes strong, then one obtains the
result above. On the other hand if the force of selection becomes strong and then
one allows the population to become large, the risk-dominant equilibrium may be
selected. Some care is therefore needed in the application of these approximations.

The closest paper in the literature to this one is Corradi and Sarin (1996).
They also construct a diffusion approximation from a finite population model.
The main differences are that they consider a different model and that they only
consider the case without mutation. In this case the pure strategy equilibria are
absorbing states of the diffusion model, so this does not have a unique invariant
distribution, which is the focus of this paper.1

Foster and Young (1990) consider adding perturbations to the replicator dy-
namic but do not motivate these particularly well. Fudenberg and Harris (1992)
derive a stochastic model by considering shocks at the aggregate level, in con-
trast to the approach here which considers individual-level randomness. Cabrales
(1996) generalises Fudenberg and Harris’ approach to games with more than two
strategies. Vaughan (1996) gives a simple treatment of some selection models with
diffusion. None of the papers in this paragraph deals with the relationship between
finite and infinite games.

The paper is structured as follows. Section 2 gives an intuitive account of the
ideas behind the diffusion approximation. Section 3 outlines the model. Section
4 gives formal results on convergence to a diffusion process. Section 5 discusses
equilibrium selection. Section 6 considers the order of limits and other variations
on the basic model. Section 7 briefly concludes.

1Their paper was written earlier than this one, although I only learned of it while writing up
these results.
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2 Informal Sketch of the Model

This Section gives an intuitive outline of the main ideas behind the diffusion ap-
proximation. Consider a population of size N playing a symmetric 2 × 2 game,
such as that shown in Figure 1. Suppose that they are randomly matched against
one another. The payoff to playing strategy 1 will depend on the fraction of the
population currently playing it, x. It will be assumed that rather than always
playing a best response players occasionally revise their strategies. Suppose that
individual players switch from playing strategy 1 to playing strategy 2 according
to a Poisson process with rate u(x) and from 2 to 1 with rate v(x). The details
of this process will be specified in the next Section. The total number of players
playing stategy 1 is Nx and so the aggregate rate of switching from 1 to 2 will
be Nxu(x) or Nl(x), where l(x) = xu(x). Similarly players switch from 2 to 1 at
rate Nr(x), where r(x) = (1− x)v(x).

Consider an interval of time of length h. By the properties of Poisson processes,
if h is small then at most one player is likely to change strategy in that time
interval. With probablity about Nl(x)h one player switches from 1 to 2 and so the
number playing stategy 1 falls by 1, or equivalently the fraction of the population
playing 1 falls by 1/N . Similarly with probability about Nr(x)h the fraction of
the population playing 1 falls by 1/N .

It follows that the expected change in the fraction of players playing strategy
1 is about

((r(x)− l(x))h (1)

and the variance of the change is about

(l(x) + r(x))
1

N
h (2)

where in (2) it has been assumed that h2 is small compared to h and so the mean
squared contributes little to the variance.

As N becomes large, the variance of the change becomes negligible and so one
might expected the paths of the process to be well approximated by a determinis-
tic differential equation with slope r(x)− l(x). Binmore, Samuelson and Vaughan
(1994) show that over a fixed finite interval of time this is indeed the case. Ethier
and Kurtz (1986) Chapter 11 provides a general proof. Nevertheless this result is
not entirely satisfactory if one is interested in equilibrium selection. The under-
lying finite process may have a unique stationary distribution but the differential
equation may have multiple stationary points. If the differential equation starts
in a neighbourbood of a (stable) stationary point it will remain in it but the fi-
nite process will always escape from it if enough time elapses. It follows that the
differential equation cannot be used to analyse the long-run behavior, and so the
stationary distribution, of the finite process.

The differential equation approximation is analogous to the Law of Large Num-
bers. By analogy with the Central Limit Theorem one might hope from (2) that
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if one multiplies the deviations of the finite sample process from the determin-
istic path by

√
N , these would converge to a well-defined process and hence the

approximation can be improved. This can be done (see Ethier and Kurtz (1986)
Chapter 11 for a treatment) but it is well-known that this is not accurate enough
for equilibrium selection. Binmore, Samuelson and Vaughan (1995) provide an
example of this in an economic context. Kushner (1982) provides an example in
another context. Sandholm (1999) suggests, however, that it may be useful for
studying the stability of equilibrium points.

This paper pursues another route. Suppose that players switch very slowly
between strategies, that is learning or selection is slow. More precisely suppose
that

l(x) = r(x) +
a(x)

N
(3)

(1) and (2) then become

a(x)

N
h (4)

and, ignoring terms of higher order than 1/N

2
l(x)

N
h (5)

Now both the mean and variance go to zero at the same rate. For large N the
change over any finite interval becomes almost unnoticeable but this can be cured
by looking at the changes over increasingly large time intervals. Putting h = Nτ
then the mean and variance converge to

a(x)τ (6)

and

2l(x)τ (7)

Replacing h by τ can be thought of as redefining time so that 1 unit of time in
the new time scale corresponds to N units of time in the old.

Now intuitively, a diffusion process, X, is a continuous-time process with con-
tinuous sample paths such that

E(Xt+h −Xt|It) = b(Xt)h+ o(h) (8)

E

(
(Xt+h −Xt)

2|It
)

= σ2(Xt)h+ o(h) (9)

It denotes the history of the process up to time t. In other words, b(x) measures
the infinitesimal drift of the process and σ(x) its infinitesimal standard deviation.2

2The notation o(h) means that the term is of smaller order than h, that is when divided by
h it tends to zero as h tends to zero.
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The diffusion processes of interest here can be generated as the solutions of a
stochastic differential equation of the following form

dX = b(X)dt+ σ(X)dW (10)

where W is standard Brownian motion. Karlin and Taylor (1981) or Durrett
(1996) are excellent sources for further information on such processes.3

Comparison of (8) and (9) with (6) and (7) strongly suggests that under the
assumptions above the finite-population process under consideration converges
to a diffusion process as the population becomes large. Moreover the variance
of this process is non-zero and this will guarantee that, unlike the determinstic
approximation first considered, it has a unique stationary distribution and so this
can be used to approximate the stationary distribution of the finite process. Precise
results to this effect will be presented in Section 4.

The assumption that selection effects become weak as population size becomes
large, as set out in (3), may seem peculiar but one can draw a comparison with the
Poisson approximation to the Binomial distribution. To derive the approximation
there one considers the effect of making the probability of success, P , go to zero
as population size becomes large, holding NP constant. Nevertheless in applying
it one does not imagine that P literally depends on population size. Rather it is
assumed that the approximation is likely to be applicable when N is large and P
is small. Similarly here taken literally, the assumption means that the net rate
of switching between strategies at the individual level goes to zero as N becomes
large, holding the aggregate number of switches constant. Again in applying the
approximation it is not imagined that this is literally so. Rather the implication
is that the approximation is likely to be useful when the population size is large
and selection or learning effects are weak at the individual level.

The assumption of re-scaling time may also seem unusual. By itself it is in-
nocuous. The need for it, however, reflects the fact the process moves very slowly
as size of the population becomes large. In particular one may worry that if the
system is not at its stationary distribution initially it may take so long for it to
converge to it that it has little practical relevance — an issue of concern in the
literature on evolutionary selection (see for example Kandori, Mailath and Rob
(1993) and Binmore and Samuelson (1997)). For this reason the results may per-
haps be more relevant in biological games where the evolutionary time-scale may
be very large.

A mathematically equivalent interpretation, which may be more palatable in
an economic context, is that rather than time being rescaled events take place
more rapidly. This has the advantage of more rapid convergence times, though it
implies that the number of events per unit time becomes unbounded as N becomes
large.

3Note that the fact that (10) is driven by Brownian motion, which has Gaussian increments,
does not imply in general that X itself has Gaussian increments. This is approximately true in
a short time interval but the approximation is not in general exact. In particular, the diffusion
processes considered here will remain in the unit interval and so must have bounded increments.
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The same ideas can be applied if time is discrete. Suppose that if a fraction x of
the population is playing strategy 1, the probability a player plays strategy 1 next
period is p(x). The number of players playing strategy 1 next period, if players
choose independently, then follows a Binomial distribution with parameters N and
p(x). The expected change in x is therefore

p(x)− x (11)

and the variance is

p(x) (1− p(x))

N
(12)

If one assumes that

p(x) = x+
a(x)

N
(13)

then to order 1/N the mean change in x becomes

a(x)

N
(14)

and the variance becomes

x(1− x)

N
(15)

One would therefore expect that, if one rescales time as above, the process will
converge to a diffusion process with drift a(x) and variance x(1− x).

The ideas in this Section are made precise in Sections 3 and 4.

3 The Model

This section outlines the basic models of adjustment: one with adjustment by
one player at a time, the other with simultaneous adjustment. The reason for
presenting two separate models is that they are of some intrinsic interest and also
serve to illustrate the fact that, as shown in Section 4, different models may have
rather similar diffusion approximations.

The framework common to both is that there is a symmetric 2× 2 game with
strategies 1 and 2 (see Figure 1) and a finite population of N players. Players
are randomly matched against each other and it is assumed for simplicity that
their payoff depends simply on the proportion of players x playing strategy 1.4

Strictly x for each player should be the proportion of other players playing 1

4Thus implicitly players are matched against each other infinitely rapidly. Kandori, Mailath
and Rob (amongst others) also make this assumption
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(excluding himself) but this does not affect the asymptotics5 and to save notation
this distinction is disregarded. Hence if a proportion x of players play strategy 1
the expected payoff to 1 is

π1(x) = ax+ b(1− x) (16)

and to 2 is

π2(x) = cx+ d(1− x) (17)

There are three cases to be distinguished. If a > c and d > b then the game is
a co-ordination game and there are three Nash equilibria: all players play strategy
1, all play strategy 2 and a mixed-strategy equilibrium.6 If (say) a > d then
the Pareto-dominant equilibrium is all playing strategy 1, but if a − c < d − b
it is commonly suggested that all playing 2 is the more likely outcome. In the
example of Figure 2, if everyone plays strategy 1 then they receive a payoff of 9,
which is better than the payoff of 7 achieved by all playing 2. On the other hand,
playing 1 is quite risky: since the payoff to playing 1 against someone playing 2 is
0, it only requires a small probability of deviation by others (whether by mistake
or whatever) to make switching to 2 attractive. 2 is a rather safer strategy and
requires a larger probability of deviation to induce people to switch to 1. It can
be argued, therefore, that in this case the risk-dominant equilibrium, all playing
2, is more plausible than the Pareto-dominant equilibrium, although Harsanyi and
Selten (1988) themselves do not take this view: ‘The solution that . . . results from
the application of our general concept to this class [2 × 2 games] gives absolute
priority to payoff dominance.’7 Much of the recent work in evolutionary games has
been devoted to seeing whether the prediction that the risk-dominant equilibrium
will be played is borne out in explicit models of evolution.

The remaining cases are less interesting. If a < c and d < b then there is
a unique mixed strategy equilibrium. Regarded as a 2 × 2 game there are also
two asymmetric pure strategy equilibria but these are not relevant here as players
are assumed to follow the same strategy regardless of whether they are chosen to
play row or column. Finally if a > c and b > d then strategy 1 is the dominant-
strategy equilibrium, while if a < c and b < d strategy 2 is the dominant-strategy
equilibrium.

3.1 Overlapping Generations

This model is similar to that developed by Binmore and Samuelson (1997). In a
biological context it can be traced back to Moran (1958). Time is continuous.

5At least so long as Assumption 3 in Section 3 is satisfied.
6In common with other papers, it is assumed that each player player plays a pure strategy.

A mixed-strategy equilibrium corresponds to different players playing different strategies.
7Harsanyi and Selten (1988) p. 90. I am grateful to an anonymous referee for drawing my

attention to this quotation.
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It is assumed that players randomly become dissatisfied with their current
strategies (or in a biological interpretation die). The rate of dissatisfaction depends
on the payoff of the current strategy. More precisely the rate of at which players
switch from strategy 1 is given by a Poisson process with rate λN1 (x), from 2 with
rate λN2 (x). The superscripts on λ (and µ below) reflect possible dependence on
population size, to be discussed below, and are not exponents. Note that from
(16) and (17), x summarises the current payoffs of the two strategies. A player
who becomes dissatisfied randomly chooses another player to imitate and plays
the strategy the latter is playing with probability 1 − µN and plays the opposite
strategy with probability µN . µN reflects the idea of random error or ‘mutation’.

The probability that the number of players playing strategy 1 increases by 1
in an interval of length h if currently j (j < N) players are playing strategy 1 is
therefore, letting x = j/N ,

Nr(x) + o(h) = N(1− x)λN2 (x)h
[
x(1− µN) + (1− x)µN

]
+ o(h) (18)

which is of the form assumed in Section 2. This expression simply reflects the fact
that the number of players playing strategy 1 can only increase if one of the players
playing strategy 2 becomes discontented, which happens at rate N(1 − x)λN2 (x)
on account of the Poisson assumption (since each individual player becomes dis-
contented according to a Poisson process with rate λN2 (x), the total rate of dis-
contentment is also a Poisson process with rate N − j times that). The number
of players playing strategy 1 will increase if either this player samples a player
playing strategy 1 and obeys his recommendation (probability x(1 − µN)) or he
samples a player playing strategy 2 and disobeys his recommendation (probability
(1− x)µN). Strictly this assumes that a player can sample himself but ruling this
out does not affect the asymptotics and simply makes the notation messier. The
final term of smaller order than h simply reflects the fact that under the Poisson
process more than one change in state is very unlikely if the time interval is short.

Similarly the probability that the number of players playing strategy 1 de-
creases if j players (j > 0) in an interval of length h is given by

Nl(x) + o(h) = NxλN1 (x)h
[
(1− x)(1− µN) + xµN

]
+ o(h) (19)

The probability of the number of players playing strategy 1 changing by more
than 1 is of smaller order than h , since events follow a Poisson process, and so is
negligible if h is small.

Under the above assumptions, the model has a unique stationary distribution8

and in the spirit of Kandori, Mailath and Rob (1993) it is of interest to determine
the behaviour of the equilibrium when µN is small. Note that when there is no
mutation both x = 0 and x = 1 are absorbing states.

This structure is similar to that employed by Binmore and Samuelson (1997)9.
It reflects a simple model of satisficing behaviour: players become discontented

8See for example Asmussen (1987) Theorems 4.3 and 4.6 in Chapter II (p. 40–41).
9Unlike theirs, this paper works directly in continuous time
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and experiment by imitation. Note that players do not compare their own payoff
to the payoff enjoyed by the person they are imitating and in this sense are rather
näive. Schlag (1996) considers more sophisticated imitation rules. One could make
the imitation probability reflect payoff differences by making µN a function of x
but this is not pursued here. It seems more interesting to see whether fairly simple
behaviour can yield the equilibrium behaviour predicted by sophisticated models
of play.

The biological interpretation is fairly straightforward. Every so often a mem-
ber of the population dies and one of members is selected randomly to breed to
replace him. The offspring has the same type as his parent but mutates with
probability µN . The assumption of fixed population is perhaps artificial but may
reflect environmental constraints on total population size.

This model could be analysed directly, by using standard techniques for birth-
death chains (see for example Binmore and Samuelson (1997) or Amir and Bern-
inghaus (1996)). It is, however, of interest to compare it to the next model which
cannot be solved directly but has very similar limiting properties.

3.2 Non-overlapping Generations

The second model considered is perhaps easier to motivate in biological terms
rather than learning. It is essentially the well-known Fisher-Wright model in
genetics (see for example Ewens (1979) for a detailed discussion). In contrast to
the previous model, all agents change their strategies at once. This model is fairly
intractable and the diffusion approximation allows a vast simplification.

In this model time is discrete. Again there is a finite number of agents N . At
the end of each period, each player produces a large number of offspring. The
number of offspring depends on the current payoff to the strategy being played.
The relative number produced by an agent of type 1 compared to one of type 2
is denoted sN(x). If strategy 1 is yielding a higher payoff than strategy 2 then
sN(x) exceeds 1. The offspring are of the same type as their parent but there
is a probability µN that they mutate into the opposite type. It follows that the
probability that a randomly selected offspring is of type 1 is

pN(x) =
(1− µN)sN(x)x+ µN(1− x)

sN(x)x+ (1− x)
(20)

Random variation occurs because there is only room for a finite number N of
these offspring in the next generation. The next generation is selected by random
sampling from the offspring, so the probability that there are j players of type 1
in the next generation given that the current fraction is x is

pNj =

(
N

j

)
pN(x)j(1− pN(x))N−j (21)
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As with the previous model this has a unique stationary distribution10 but in this
case it impossible to characterise it directly.

One could give this model a learning interpretation if one assumed that players
learn by imitation and a player is relatively more likely to be chosen for consu-
lation (by a factor sN(x)) if the strategy he is employing the one currently more
successful. The information mechanism underlying this is perhaps less plausible
than a simple biological model.

4 Diffusion Approximations

In this section, the ideas of Section 2 are applied to the models of Section 3. In
the case of overlapping generations, it is assumed that selection and mutation are
weak in the following sense:

Assumption 1 λN1 (x) = 1 + λ1(x)
N

+ o
(

1
N

)
and λN2 (x) = 1 + λ2(x)

N
+ o
(

1
N

)
and

µN = µ
N

+ o
(

1
N

)
.

and for the non-overlapping generations model

Assumption 2 sN(x) = 1 + s(x)
N

+ o
(

1
N

)
and µN = µ

N
+ o
(

1
N

)
.

The force of these assumptions is that the selective advantages of the two
strategies are small at the individual level, so as a result random variation from
the environment is not completely dominated by selective forces. The terms of
order smaller than 1/N (if any) in the selection and mutation terms do not affect
the asymptotics. In finite samples, of course, their form may matter but evaluating
the adequacy of the asymptotic approximations in finite samples is left to future
research.

Let ZN be the number of players playing strategy 1. In the case of overlapping
generations, one considers XN(t) = ZN(Nt)/N . In the case of non-overlapping
generations, XN(t) = ZN([Nt])/N , where [. . . ] denotes the integer part. In other
words, XN is the mean number of players playing strategy 1 and time is measured
so that one unit of time in the new process corresponds to N generations in the old
process. (In the case of overlapping generations, the rate of events per individual
is approximately 1 from Assumption 1, so it takes roughly 1 unit of time in the old
process for a generation to revise their strategies). Note that in the case of non-
overlapping generations, the process is embedded in continuous time by defining
XN to be constant between shifts in strategy.

If one uses Assumption 1 for the overlapping generations process and works to
order 1/N then it is easy to check, using (18) and (19), that (6) becomes

x(1− x)(λ2(x)− λ1(x))τ + µ(1− x)τ − µxτ (22)

10See for example Corollaries 3.5 and 3.6 in Chapter I (p.15–16) in Asmussen (1987).
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and (7) is given by

2x(1− x)τ (23)

It is therefore plausible that the process converges to a diffusion process with mean
and variance given by the above equations (divided by τ).

Similarly, in the case of non-overlapping generations, it follows from Assump-
tion 2 and (20) that (14) becomes

(s(x)x(1− x) + µ(1− x)− µx)
1

N
(24)

and (15) is as before. Again it is therefore to be expected that the process converges
to a diffusion process with mean given by (24) divided by 1/N and variance x(1−x).

Formally, one can regard the models as defining a stochastic process with
sample paths in DI [0,∞), the space of functions from [0,∞) to I = [0, 1] which
are right-continuous and have left limits. Each model defines a probability measure
over all such possible paths, denote this by ∆N . The content of the result below
is that the probability measures converge weakly to that yielded by equation (10),
denote this by ∆. Weak convergence is denoted by =⇒.11

For the following result one technical assumption is required. It guarantees,
in conjunction with the form of the variance term, that the limiting diffusion
has a unique solution.12 Recall that a function g satisfies a Lipschitz condition
if there exists a constant K such that |g(x) − g(y)| ≤ K|x − y| for all x,y. If
g is continuously differentiable, then this will be true provided the derivative is
uniformly bounded (as it must be since the unit interval is compact).

Assumption 3 λ1(x) and λ2(x), and hence φ(x) = λ2(x)−λ1(x), and s(x) satisfy
a Lipschitz condition.

One then has,

Theorem 1 Under Assumptions 1 to 3, provided XN(0) =⇒ X(0), then ∆N =⇒
∆, where ∆ is the probability measure on DI [0,∞) generated by (10) with initial
condition X(0), where b(x) = (λ2(x)− λ1(x))x(1−x) +µ(1−x)−µx and σ(x) =√

2x(1− x) in the case of overlapping generations, and b(x) = s(x)x(1 − x) +

µ(1−x)−µx and σ(x) =
√
x(1− x) in the case of non-overlapping generations.

Proof: See Appendix.

In other words, provided the initial condition in the discrete model converges
to that in the continuous model, the probability distribution of the sample paths
also does.

11To be precise, one needs to specify a topology on the space of sample paths for weak conver-
gence to be a well-defined notion. The appropriate topology is the Skorokhod topology — see
Ethier and Kurtz (1986) Chapter 3 for a definition and a general treatment of weak convergence.

12See for example Durrett (1996) Chapter 5, Theorem 3.3.
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The diffusion process constructed above has the property that it always remains
in the unit interval, as it must if it is to approximate the finite process. Intuitively,
this follows from the fact that the drift points inward at the boundaries and the
variance vanishes sufficiently rapidly as the process approaches the boundaries (0
or 1). In fact for large µ, the process cannot hit the boundaries but if it starts
there it can leave them for the interior of the interval. If µ is small, however, then
the boundaries can be reached.13 Nevertheless, the specification above ensures
that the process cannot leave the unit interval14 and in fact spends measure zero
time at the boundaries.15

For current purposes, the most interesting fact is not the convergence of the
sample paths but the fact that the stationary distributions of the discrete model
converge to that of the diffusion process.

Under Assumption 3, (10) has a unique stationary distribution on [0, 1] with
density function (with respect to Lebesgue measure) given by

f(x) = C
1

σ2(x)
exp

(∫ x

ξ

2b(s)

σ2(s)
ds

)
(25)

where b(x) and σ(x) have the form given in Theorem 1,16 C is a constant chosen
so that the density integrates to 1 and ξ is an arbitrary point (its value only affects
that of C). One has

Theorem 2 The stationary distribution of the mean number of players playing
strategy 1 converges weakly to that given by (25), where b(x) and σ(x) have the
form given in Theorem 1.

Proof: See Appendix.

This result will be used in the next Section to study the invariant distributions
of the process with small noise. Theorem 1 holds even if µ is zero, but in this
case the boundaries are absorbing and so there is no stationary distribution of the
limiting process. Hence Theorem 2 fails to apply. One can however show that the
absorption probabilities of the boundary points converge to those for the limiting
process (see for example Ethier (1979)) but this result will not be needed here.

It is straightforward to extend Theorem 1 to general n×n games and show that
the limiting distribution is the limit of the finite stationary distributions. Except

13To be more precise the boundaries can be reached when µ < 1 with overlapping generations
and µ < 1/2 with non-overlapping generations. See Durrett (1996) Chapter 6.5, or Karlin and
Taylor (1981) Chapter 15, Sections 5 and 6 for details.

14See for example, Ethier (1976)
15See for example Shiga (1981) Lemma 3.2 for a proof. In other words, the boundary points

are instantaneously reflecting (see for example Revuz and Yor (1991) p.285). Norman (1980)
has a detailed discussion of the implied boundary conditions for the limiting model with these
kind of approximations.

16See for example Karlin and Taylor (1981) Chapter 15, Sections 5 and 6 or Rogers and
Williams (1987) Chapter V.52 and V.53.
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in a few special cases, however, explicit solutions for the stationary distribution of
a multi-dimensional diffusion process are not known, so the results are less useful.
Attention is therefore restricted to 2× 2 games.

It is perhaps briefly worth comparing the limiting model to those considered in
the literature previously. Foster and Young (1990) consider a model with b(x) =
(α + βx)x(1 − x) and σ(x) = ε, in the spirit of Freidlin and Wentzell (1984),
where α and β are constants. The constant variance term implies that the process
may leave the unit interval, so they impose the condition that the process be
instantaneously reflected at the boundary to prevent this but this assumption
does not seem well-motivated. Fudenberg and Harris (1992) assume aggregate
shocks to payoffs and deterministic mutation and obtain a model of the form
b(x) = (α+βx)x(1−x)+µx−µ(1−x) and σ(x) = x(1−x). This is similar to the
model obtained above with linear s(x) except that the variance term in their model
is the square of the term here. This has the consequence that the boundaries are
unattainable in their model so long as µ is strictly positive. Here the boundaries
are attainable for small µ but as noted above this does not cause difficulties.
Corradi and Sarin (1996) consider a model of the form b(x) = (α + βx)x(1 − x)
and σ(x) =

√
x(1− x), so that it has the same form as the current one with linear

s(x) and no mutation, so the boundaries are absorbing.

5 Equilibrium Selection

This section applies the results obtained in the previous section to equilibrium
selection. The natural procedure, by analogy with previous work, is to let the
mutation rate tend to zero. It is shown in Section 5.1 that here this does not
lead to unique equilbrium selection. Instead when mutation rates become small
the process spends most of its time in the neighbourhood one or other of the
equilibria but occasionally switches between them. Intuitively this is because even
in the absence of mutation there is still considerable randomness in the system
due to randomness in the process of strategy choice. Once mutation has allowed
the system to escape from one of the boundaries, this randomness in the selection
process makes it relatively easy to move counter to the forces of the deterministic
selection dynamic and reach the other boundary.

Section 5.2 considers the effects of eliminating this randomness by making se-
lection strong. In this case unique selection is achieved. Now, even if mutation
allows the system to escape from one of the boundaries, the strength of the deter-
minstic component of selection will force it back to the equilibrium with greater
mean fitness.

It follows from Theorem 2 that the stationary distribution of the limiting pro-
cess in the case of overlapping generations has a density of the form

f(x) = Cxµ−1(1− x)µ−1 exp

(∫ x

ξ

φ(y) dy

)
(26)

14



where C is a normalising constant (and is a function of the parameters). In the
case of non-overlapping generations, the above becomes

f(x) = Cx2µ−1(1− x)2µ−1 exp

(∫ x

ξ

2s(y) dy

)
(27)

The extra factor 2 in (27) does not affect the asymptotics and for definiteness,

attention will focus on (26). To save notation, let H(x) = exp
(∫ x

ξ
φ(y) dy

)
and

K(x) = exp
(∫ x

ξ
2s(y) dy

)
.

5.1 Weak Mutation

It is easy to see from (26) that as µ tends to zero most of the density of the process,
and so the probability mass concentrates on the end-points, 0 and 1. Intuitively,
as µ becomes smaller and smaller it becomes harder and harder to escape from
the boundaries and so the process spends most of its time there. The relative
magnitudes of the densities near 0 and 1 are determined by H(0) and H(1) and
so the following is plausible:

Theorem 3 As µ tends to zero the stationary distribution given by (26) (respec-
tively (27)) converges weakly to a discrete distribution that puts positive probability
mass only on 0 and 1, and that in the ratio H(0) to H(1) (respectively K(0) to
K(1)).

For a proof see the Appendix. Referring to the definition of H(x) one sees

Corollary 1 The limiting distribution of (26) (respectively (27)) puts greater

weight on the point 1 if and only if
∫ 1

0
φ(x) dx > 0 (respectively

∫ 1

0
s(x) dx > 0).

φ(x), and s(x), represent the difference in reproductive fitness or difference in
rates at which players become dissatisfied when a proportion x of players is playing
strategy 1. Hence the result can be interpreted as saying that more weight will be
put on strategy 1 if it has higher mean fitness.

If one denotes the stationary distribution in a finite model by νNµ , then the
implication of the results above and in the previous section is therefore

Corollary 2 limµ→0 limN→∞ ν
N
µ (in the sense of weak convergence) is given by

the discrete distribution in Theorem 3.

In other words provided one chooses µ sufficiently small then for sufficiently large
N (which may depend on µ), the ratio of probability mass on 0 and 1 will be
approximately H(0)/H(1). The result therefore gives information about the cor-
responding discrete models provided limits are taken in the order indicated.

This result contrasts with the usual results in the literature (for example Kan-
dori, Mailath and Rob (1993)), which predict that all the players will end up
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playing the same strategy. The reason is not too hard to see. Although the mu-
tation rates tend to zero, there is still aggregate randomness in the system in the
limit from randomness in individual choice (or selection). As a result, once muta-
tion allows escape from (say) x = 0, aggregate randomness means it possible to
move relatively quickly to the neighbourhood of x = 1. The system then spends
a long time there until mutation allows it to escape again. As a result the sys-
tem spends almost all its time at the end-points (in the ratio H(0) to H(1), see
Asmussen (1987) Chapter V) but occasionally switches between them.17

So far no restrictions have been put on the nature of φ(x) and s(x). The
following seems reasonable.

Assumption 4 sgn(φ(x)) = sgn(π1(x)− π2(x)) and similarly for s(x).

In other words, players playing strategy 1 reproduce to a greater extent or
become dissatisfied more slowly, if strategy 1 currently yields a higher payoff. In
the special case when φ(x) is simply α(π1(x)−π2(x)), where α is a constant, then
strategy 1 has higher mean fitness if and only if it risk-dominates strategy 2. This
can be seen in Figure 3. The difference in payoffs is shown by the dotted line.
The total area below between the line and the x-axis, which is proportional to
the mean difference in payoffs is positive only if 1 − x∗ exceeds x∗. The point x∗

is the mixed-strategy equilibrium. The case shown corresponds to there being a
co-ordination game. Here if there are deterministic best-reply dynamics (everyone
switches to the best-reply when switching) the population converges to everyone
playing strategy 1 if the initial proportion players playing 1 exceeds x∗. The arrows
on the x-axis show the direction of motion under best-reply dynamics. This region
is therefore referred to as the basin of attraction of strategy 1. Strategy 1 risk-
dominates strategy 2 precisely if it has a larger basin of attraction.

In fact, strategy 1 has greater mean fitness than strategy 2 provided φ(x) =
f(π1(x)−π2(x)) and f is an odd function (that is f(−y) = −f(y)), in other words
fitness solely depends on the payoff difference between the two strategies. This can
be seen from the diagram: an equal distance from x∗ gives the same (absolute)
difference in payoffs between the two strategies, but the risk-dominant strategy
has a longer basin to integrate over. This yields

Corollary 3 In the co-ordination case, the limiting distribution puts more weight
on strategy 1 when φ(x) (or s(x)) is an odd function of the payoff difference between
1 and 2 if and only if 1 risk-dominates strategy 2.

On the other hand, this clearly need not be the case if fitness is not an odd
function of the payoff difference between the strategies. In the case of the model of
players becoming dissatisfied with their current strategies, the spirit is that rather

17The model of Binmore and Samuelson (1997) which is quite similar gives unique selection.
The difference is that here the selective difference between the strategies tends to zero as the
population size grows so that the system is still stochastic in the limit.
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than comparing strategies they only look at the payoff of their current strategy
before deciding whether to switch. It would therefore be more natural to suppose
that φ(x) = f(π1(x)) − f(π2(x)), which does not have the form above unless f
is linear. Similarly in the case of selective differences in reproduction one might
argue that the selective difference should be the ratio of functions of the current
payoffs and this would not in general make s(x) a function of the payoff difference.
The support for the prediction that the risk-dominant strategy will be selected is
therefore rather limited.

As a description of co-ordination games the model is not unattractive: the
system spends most of its time in the neighbourhood of the pure-strategy equi-
libria but occasionally switches between them. The observant reader will have
noticed, however, that the system will still spend a positive amount of time in
the neighbourhood of x = 0 even if strategy 1 strictly dominates strategy 2. The
reason is not hard to understand: since randomness does not vanish in the limit it
is still possible for the inferior strategy to dominate by chance. This is, perhaps,
unsatisfactory and the case of strong selection, considered in the next sub-section,
will not have this feature.

5.2 Strong Selection

The previous sub-section considered what happened as mutation becomes weak
but even in the limit there is considerable randomness in selection. This sub-
section considers what happens as the deterministic component of selection be-
comes strong and the randomness is eliminated. In this case unique equilibrium
selection is achieved. For even if the system escapes from the boundaries, the
deterministic component of the selection dynamic will tend to push the system
back to the equilibrium with greater mean fitness.

To be more precise, consider replacing φ(x) by kφ(x) where k measures the
strength of selection. The equation for the evolution of the limiting model becomes

dx = kφ(x)x(1− x) + µ(1− x)− µx+
√

2x(1− x)dW (28)

As k becomes large, both the effects of mutation and random variation become
small relative to the deterministic component and so one might expect unique
selection.18 Note that from (25), this has the same effect on the stationary distri-
bution as holding φ fixed but replacing µ by µ/k and 2x(1−x) by 2x(1−x)/k, that
is, allowing the mutation terms and variance to tend to zero. Although formally
equivalent, this is perhaps harder to interpret in terms of the underlying finite
models.

Assumptions 1 and 2 become

Assumption 5 λN1 (x) = max{1 + k λ1(x)
N

+ o
(

1
N

)
, 0} and λN2 (x) = max{1 +

k λ2(x)
N
, 0}+ o

(
1
N

)
and µN = µ

N
+ o
(

1
N

)
.

18For an example of this kind of exercise in a biological context, see Gillespie (1983).
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and

Assumption 6 sN(x) = max{1 + k s(x)
N

+ o
(

1
N

)
, 0} and µN = µ

N
+ o
(

1
N

)
.

This simply ensures that all the relevant parameters are non-negative (as was
implicitly assumed before). Since k is held fixed as N tends to infinity, for large N
these restrictions are irrelevant and so the previous limiting results apply. Using
the notation of the previous section, it follows from (26) that the limiting density
for the case of overlapping generations is

f(x) = Cxµ−1(1− x)µ−1 exp

(
k

∫ x

ξ

φ(y) dy

)
(29)

As k becomes large, one would expect almost all weight to go to points for which∫ x
ξ
φ(y) is largest. Under Assumption 4, these points can only be Nash equilibrium

points. Hence the following is plausible (proof in Appendix)

Theorem 4 As k tends to infinity, the stationary distribution of the limiting
model converges weakly

(a) in the co-ordination case to a point mass at x = 1 if
∫ 1

0
φ(x) dx > 0

(
∫ 1

0
s(x) dx > 0 with non-overlapping generations) or to a point mass at x = 0 if∫ 1

0
φ(x) dx < 0 (respectively

∫ 1

0
s(x) dx < 0).

(b) to a point mass at x = 1 if strategy 1 is dominant or to a point mass at
x = 0 if strategy 2 is dominant

(c) in the mixed strategy case to a point mass at x∗, the mixed-strategy equilib-
rium point.

As before, this provides information on the finite models. If one denotes the
stationary distribution of a finite model by νNk , then the previous result and the
results of the last section imply

Corollary 4 limk→∞ limN→∞ ν
N
k (in the sense of weak convergence) is given by

the appropriate discrete distribution of Theorem 4.

So in the co-ordination case if k is large enough, then almost all the probability
mass will be put on the equilibrium with greater fitness if N is large enough.

As in the last sub-section, the equilibrium with greatest mean fitness need not
be the risk-dominant equilibrium.

6 Discussion

6.1 Order of Limits

The last section showed that when selection becomes strong, the finite model puts
almost all weight on the equilibrium with greater mean fitness when the population
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size is large, if one takes limits in the order: first population size goes to infinity
and then selection becomes strong. One might ask what happens if one reverses
the order of limits. For the moment, attention is restricted to the model with
non-overlapping generations. If one fixes N and lets k become large, the finite
model is still ergodic for all finite k and for k =∞ as µN is still positive. One has

Lemma 1 limk→∞ ν
N
k = νN∞ (in the sense of weak convergence).

This is proven in the Appendix but is easily seen since any limit of νNk is a
stationary distribution for the model when k =∞ and since the model is ergodic,
this must be νN∞. In any case, it follows that it is enough to consider the model
when k =∞ in evaluating the reverse order limit.

From Assumption 5 and (20), it follows that when k =∞, the probability that
a member of the next generation plays strategy 1 if the current proportion playing
1 is x is given by19

pN(x) =

{
1− µN if 1 is a best reply

µN otherwise
(30)

In other words, the process is now best-reply dynamics perturbed by an error
probability µN . As N becomes large, µN becomes small and so the results of
Kandori, Mailath and Rob (1993) suggest that in the co-ordination case the risk-
dominant equilibrium will be selected. This not immediate as they consider the
case of small error probability and fixed population size but the following is shown
in the Appendix:20

Theorem 5 In the co-ordination case, νN∞ tends weakly to a discrete distribution
which puts all probability mass on the risk-dominant equilibrium.

Putting this together with Lemma 1 yields

Corollary 5 limN→∞ limk→∞ ν
N
k is a discrete distribution placing all probability

mass on the risk-dominant equilibrium.

This contrasts with Corollary 4 which shows that if limits are taken in the
reverse order, the risk-dominant equilibrium need not be selected. Intuitively,
making k large first makes all dynamics like perturbed best-reply dynamics. The
work of Kandori, Mailath and Rob (1993) therefore suggests that if k becomes
large faster than N , the risk-dominant equilibrium will be selected. When N

19For convenience assume that the mixed strategy equilibrium point is irrational, so it is not
an element of the state space for finite N . This is not essential.

20Kandori, Mailath and Rob (1993) conjecture (p. 47) that if the error probability is held fixed
and N tends to infinity, probability mass will concentrate on the risk-dominant equilibrium. The
argument in the Appendix can easily be adapted to prove this as well.
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becomes larger faster than k, however, the detailed interaction of the dynamics
with the random terms is important, so the form of the dynamic matters.

The result for the case of overlapping generations is slightly different. To
simplify the analysis, it is convenient to replace Assumption 5 with the particular
assumption

Assumption 7 λN1 (x) = exp
(
k λ1(x)

N

)
and λN2 (x) = exp

(
k λ2(x)

N

)
and µN = µ

N
.

Note that since exp
(
k λ1(x)

N

)
= 1 + k λ1(x)

N
+ o

(
1
N

)
, this satisfies Assumption 5.

This specific form is tractable and has the feature, under Assumption 4, that as
k becomes large the relative frequency of death (or dissatisfaction) of the less fit
strategy tends to infinity.

In this case, the limiting model as k tends to infinity is not ergodic.21 Here
as k becomes large, the less fit strategy dies off much faster than the fit one and
so it becomes in the limit impossible for less fit strategy to grow, since the only
way it can do so is by mutations after deaths of the fitter strategy, which are
increasingly rare. This contrasts with the case of non-overlapping generations,
where all strategies die at the same rate and mutation in the reproduction process
can still lead to entry of less fit strategies even though they reproduce at a much
lesser rate than the fitter ones. In any event, one does not obtain perturbed best-
reply dynamics in the limit as k tends to infinity here and one cannot appeal to
Lemma 1. One can however show (proof in Appendix):

Theorem 6 With overlapping generations, limN→∞ limk→∞ ν
N
k = limk→∞ limN→∞ ν

N
k

in the co-ordination case.

In other words, the limiting distribution puts all weight on the equilibrium
with greater mean fitness in the co-ordination case. This contrasts with the result
for non-overlapping generations and is perhaps more reassuring. The contrast can
perhaps be understood in terms of the remarks before the Theorem.22 23

Nevertheless, the results with non-overlapping generations raise the question of
the order of limits. Which limit is more appropriate is open to debate. Loosely, one
might think that taking N to become large faster than k is appropriate when one
is interested in the effect of varying the strength of selection in a large population,
whereas the reverse order is more appropriate when one is interested in the effect
of population size when selection is strong. The results of the previous section are
perhaps more appealing but some care is clearly required in applications.

21Note that only relative rates of death matter for the stationary distribution, so one can
always normalise the model so the rates are finite.

22Note that this result is not a question of non-overlapping versus overlapping generations:
one can construct overlapping generations models which have the features of the non-overlapping
process and also yield the risk-dominant equilibrium

23Note that result in Theorem 6 depends on the exponential form. In general one will not
obtain equality of the double limits even with overlapping generations.
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6.2 Asymmetric Mutation

It is straightforward to allow mutation rates to be asymmetric. Suppose that the
probability that some-one mutates from playing strategy 1 is µN1 = µ1/N and from
strategy 2 is µN2 = µ2/N .24 Then one obtains in the limiting model

dx = φ(x)x(1− x) + µ2(1− x)− µ1x+
√

2x(1− x)dW (31)

In the case of strong selection, considered in Section 4.2 the results are unaf-
fected. In the case of weak mutation, the answer depends on how fast µ1 and µ2

tend to zero. It is straightforward to show that if µ1/µ2 → 0, that is the proba-
bility of mutation or escape from x = 0 goes to zero much faster than from x = 1,
then x = 0 will be selected in the limit. Since mutation is conceived of as arising
from random error, this does not seem a very appealing resolution of the selection
issue in the absence of convincing story as to why mutation rates should behave
like this.

7 Conclusion

This paper has investigated the extent to which diffusion approximations give a
guide to equilibrium selection results in finite models. It showed that for a class of
models where selection is weak at the individual level and randomness is important,
they do so provided that limits are taken in a certain order. They need not always
do so, however, and this suggests some caution as to their use.

The paper also showed that the usual procedure of letting mutation rates go
to zero need not result in unique equilibrium selection. In these models, there
is still considerable randomness even in the absence of mutation and once one
has escaped from one equilibrium, it is relatively easy to move between equilibria.
The system therefore spends more time in the neighbourhood of the equilibrium
with greater mean fitness but moves in between the equilibria periodically. By
contrast, if selection becomes strong, the deterministic component dominates and
so it becomes very difficult to escape from the neighbourhood of the equilbrium
with greater mean fitness. Unique equilibrium selection therefore results.

The results show that the prediction of the diffusion approximations that the
risk-dominant equilibrium need not always be selected is borne out in finite models
with a large population and weak selection. In contexts where these are appropri-
ate, therefore, the risk-dominant equilibrium need not always be observed.

24In the case of random sampling, this assumes that the probability of mutation depends on
the strategy sampled not the original strategy.
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Appendix

Proof of Theorem 1
In the case of non-overlapping generations, Theorem 1.1 of Chapter 10 (p. 415)

of Ethier and Kurtz (1986) proves the result for the case when s(x) is a constant.
The argument in the general case is exactly the same. The assumption that s(x)
satisfies a Lipschitz condition means that the conditions of Theorem 2.1 in Chapter
8 (p. 371) are satisfied.

In the case of overlapping generations, the argument is as above except one
appeals to Corollary 8.7 in Chapter 4 instead of Corollary 8.9 and Theorem 6.1 in
Chapter 1 instead of Theorem 6.5.

Proof of Theorem 2
In the case of non-overlapping generations, the result follows directly from

Theorem 1 of Norman (1975). In the case of overlapping generations, the argument
indicated there on p. 573 yields the result.

Proof of Theorem 3
Denote the stationary distribution for µ positive by νµ. The set of probability

measures on [0, 1] is compact in the weak topology (see Billingsley (1968) p. 37) and
so it is enough to prove that any convergent subsequence of νµ has the indicated
limit. Further by Billingsley (1968) p. 2 it is enough to show that for any 0 < a < 1,
νµ[0, a]/νµ(a, 1] converges to H(0)/H(1) and νµ(a, b]/νµ[0, a] converges to 0 if
0 < b < 1. Now for any δ

νµ[0, a]

νµ(a, 1]
=

νµ[0, δ] + νµ(δ, a]

νµ(a, 1− δ] + νµ(1− δ, 1]
(32)

Since H is continuous given ε > 0 one can find δ (with δ < a < 1 − δ) such that
H(0) − ε < H(x) < H(0) + ε for x ≤ δ and H(1) − ε < H(x) < H(1) + ε for
x ≥ 1− δ. Now it follows from (26) that if µ < 1

νµ[0, δ] ≥ C(H(0)− ε)δ
µ

µ
(33)

and

νµ[0, δ] ≤ C(H(0) + ε)(1− δ)µ−1 δ
µ

µ
(34)

Similarly if µ < 1

νµ(1− δ, 1] ≥ C(H(1)− ε)δ
µ

µ
(35)

and

νµ(1− δ, 1] ≤ C(H(1) + ε)(1− δ)µ−1 δ
µ

µ
(36)
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Also if µ < 1

νµ(δ, a] ≤ CH̄δµ−1(1− a)µ−1a (37)

where H̄ is an upper bound for H(x) on [0, 1]. Similarly

νµ(a, 1− δ] ≤ CH̄aµ−1(1− δ)µ−1(1− a) (38)

It follows that

lim inf
µ→0

νµ[0, a]

νµ(a, 1)
≥ H(0)− ε
H(1) + ε

(1− δ) (39)

and

lim sup
µ→0

νµ[0, a]

νµ(a, 1]
≤ H(0) + ε

H(1) + ε

1

(1− δ)
(40)

Since ε and δ can be made arbitrarily small, it follows that νµ[0, a]/νµ(a, 1] con-
verges to H(0)/H(1). That νµ(a, b]/νµ[0, a] converges to 0 follows easily from (33)
and (37) and (38).

Proof of Theorem 4
It follows from Assumption 4 that in R(x) =

∫ x
ξ
φ(x) dx achieves its maximum

at a Nash equilibrium. The proof is given for the co-ordination case. The proofs
for the other cases are similar.

Suppose that
∫ 1

0
φ(x) dx < 0, so that R(x) achieves a unique maximum at

x = 0. Denote the stationary distribution for finite k by νk. Since the set of
probability measures on [0, 1] is compact (see Billingsley (1968) p. 37) it suffices
to show that for each a > 0, νk[0, a]/νk(a, 1] tends to infinity as k tends to infinity
(see Billingsley (1968) p. 2). Since R is continuous and attains a unique maximum
at x = 0 one can find 0 < δ < a such that s′ ≡ infx∈[0,δ) R(x) > supy∈(a,1] R(y) ≡ s̄.

Now

vk[0, a]

ν[a, 1]
=

∫ δ
0
xµ−1(1− x)µ−1 exp (kR(x)) dx+

∫ a
δ
xµ−1(1− x)µ−1 exp (kR(x)) dx∫ 1

a
xµ−1(1− x)µ−1 exp (kR(x)) dx

≥
exp(ks′)

∫ δ
0
xµ−1(1− x)µ−1 +

∫ a
δ
xµ−1(1− x)µ−1 exp (kR(x)) dx

exp(ks̄)
∫ 1

a
xµ−1(1− x)µ−1 dx

(41)

Since the second integral in the numerator is bounded below by zero and s′ > s̄,
the expression after the inequality tends to infinity as k tends to infinity, which
proves the required result.
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Proof of Lemma 1
Consider an ergodic finite Markov chain with transition probabilities pkij, where

k is a parameter and i and j states. A stationary distribution for the chain is the
unique probability vector πk with

∑
i π

k
i p

k
ij = πkj for all j. Suppose pkij converges

to p∞ij for each i,j as k tends to infinity and the resulting chain is ergodic with
stationary distribution π∞. Since the set of probability vectors on a finite state
space is compact to show that πk converges to π∞ (since the state space is finite,
weak convergence is equivalent of each component of the vector) it suffices to
show that any convergent subsequence of πk converges to π∞. Taking limits of the
equation for a stationary distribution one finds that the limit of any convergent
subsequence is a stationary distribution for p∞ij , which since an ergodic chain has
a unique stationary distribution must be π∞.

Proof of Theorem 5
Let x∗ denote the mixed-strategy equilibrium point. Arguing as in the proof

of Theorem 4 it is enough to show that νN∞[a, b]/νN∞[a, b]c (where c denotes com-
plement) tends to zero for any 0 < a < x∗ < b < 1 and νN∞[0, x∗)/νN∞(x∗, 1] tends
to zero if x = 1 is the risk-dominant equilibrium.

To show the first part, note that for a Markov Chain with stationary distribu-
tion πi, for any set A, ∑

i∈A

∑
j /∈A

πipij =
∑
j /∈A

∑
i∈A

πjpji (42)

In other words, the net probability flux out of A must be zero. Now for fixed N ,
the process forms a Markov Chain with state space {0, 1

N
, . . . , 1}. Hence one can

apply (42) to A = [a, b]
⋂
{0, 1

N
, . . . , 1}. Now for i ∈ A there exists j /∈ A such

that pij ≥
(
1− µ

N

)N
(one can leap to 0 or 1 by taking a best response — as the

mixed strategy point does not belong to the state space). On the other hand for
j /∈ A, pji ≤ µ

N
for all i in A, as it requires at least one mistake to enter A. It

follows from (42) that νN∞[a,b]
νN [a,b]c

converges to zero as N tends to ∞, as was to be
shown.

On the other hand, note that for any point i in [0, x∗), the probability of
leaping to a point j in (x∗, 1] is the same: namely the probability of making j
mistakes. Similarly the probability of leaping to a point in [0, x∗) is independent
of the starting point in (x∗, 1]. It follows from (42) that

νN∞[0, x∗)B(N,
µ

N
,Nx∗) = νN∞(1− x∗, 1]B(N,

µ

N
,N(1− x∗)) (43)

where B(N, p, r) denotes the probability of making at least r mistakes when mis-
takes are drawn from a Binomial distribution with mistake probability p and pop-
ulation size N . (To save notation Nx∗ is written rather than the integer part.)
Let B∗(N, p, r) denote the probability of making exactly r mistakes. Now it is
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straightforward to check that if r ≥ Np

B∗(N, p, r) ≤ B(N, p, r) ≤ 1− p
1− (N+1)p

k+1

B∗(N, p, r) (44)

(The first inequality is obvious, the second follows by considering the ratios of
the Binomial probabilities — see for example Shorack and Wellner (1986) p. 482.)
Applying this to (43), one finds

νN∞[0, x∗)

νN∞(x∗, 1]
≤

B∗(N, µ
N
, Nx∗)

B∗(N, µ
N
, N(1− x∗))

1− µ
N

1− (N+1) µ
N

Nx∗+1

=
( µ
N

)N(2x∗−1)

(1− µ

N
)N(1−2x∗) 1− µ

N

1− (N+1)µ/N
Nx∗+1

(45)

Letting N tend to infinity, it follows that if x∗ < 1/2, so that x = 1 is the risk-
dominant equilibrium, νN∞[0, x∗)/νN∞(x∗, 1] tends to zero, as was to be shown.

Proof of Theorem 6
For fixedN , the process forms a birth-death process with state-space {0, 1

N
, . . . , 1}.

For notational ease the states will be referred to as 0 to N . For more detailed ref-
erences on birth-death chains see Amir and Berninghaus (1996) or Binmore and
Samuelson (1997). Let πi be the stationary probability that the process has state
i. Let θi be the transition rate from state i to i+ 1 and γi the transition rate from
i to i − 1. Then the stationary distribution must satisfy the following detailed
balance equation

πiθi = πi+1γi+1 (46)

From (19) and (18) it follows that here

θi =(N − i) exp

(
k
λ2

(
i
N

)
N

)[
i

N
(1− µN) +

N − i
N

µN
]

(47)

γi =i exp

(
k
λ1

(
i
N

)
N

)[
N − i
N

(1− µN) +
i

N
µN
]

(48)

Using (46) and the above expressions for the transitions rates, it follows that for
fixed N as k tends to infinity the probability measure converges to one with all
weight on the end points, with all weight on 1 if

1

N

N−1∑
i=0

λ2

(
i

N

)
− λ1

(
i+ 1

N

)
> 0 (49)

If N is large enough this will be true if and only if∫ 1

0

(λ2(x)− λ1(x)) dx > 0 (50)

This is precisely the criterion of Theorem 4.
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