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         ABSTRACT 

We analyze the technical efficiency of German and Swiss urban public transport 

companies by means of SFA. In transport networks we might face different network 

structures or complexities, not observed, but influencing the production process. The 

unobserved factors are typically modeled as separable factors. However, we argue that 

the entire production process is organized around different network structures. Therefore, 

they are inevitably non-separable from the observed inputs and outputs. The adopted 

econometric model is a random coefficient stochastic frontier model. We estimate an 

input distance function for the years 1991 to 2006. The results underline the presence of 

unobserved non-separable factors. 
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1. Introduction 

Following the explosive growth of subsidy requirements for public transport 

services observed in the 1970s and 1980s, several European governments have 

introduced during the last two decades, regulatory reforms in their local transport sectors. 

Most of these countries, in line with the EU directives, have adopted a competitive 

tendering procedure for the assignment of franchised monopolies in the local transport 

sector. These procedures are supposed to replace the previous models with relatively low 

incentives for cost efficiency, commonly based on annual negotiations with individual 

companies over costs and transfers. However, several studies have pointed out the 

difficulties in the implementation of tendering procedures, which have been experienced 

across many European countries (Toner, 2001; Boitani and Cambini, 2002; Cambini and 

Filippini, 2003). These difficulties are mainly related to potential collusion among the 

bidders and the tendency toward auctioning small networks hence, suboptimal scale and 

density. An alternative approach would be incentive regulation schemes, such as 

yardstick competition or performance based contracts.1 The latter regulation schemes are 

based on benchmarking analysis of costs and/or quality to determine the transfers and 

prices. In particular, Hensher and Stanley (2003) and Hensher (2007) have shown that 

performance based contracts can reach a greater social surplus than competitive tendering 

procedures. 

 
1 For a general discussion on these two approaches see Demsetz (1968), Laffont and Tirole (1993), 
Klemperer (1999) and Hensher and Stanley (2003).  



In Switzerland and Germany the competitive tendering procedures have been 

introduced only partially and limited to certain areas.2 Nevertheless, the regional 

authorities have been discussing the possibility of adopting high-powered contracts based 

on a yardstick competition model proposed by Shleifer (1985). In this context the use of 

production, distance or cost frontier models could be useful as a complementary control 

instrument in the definition of the amount of subsidies granted to the regional public 

transit companies.3 Of course, the reliability of efficiency estimates is crucial for an 

effective implementation of those incentive mechanisms. In fact, the empirical evidence 

suggests that the estimates are sensitive to the adopted benchmarking approach.4 This 

implies that the choice of the approach can have important effects on the financial 

situation of the companies. 

Since urban transit companies operate in different networks and environments, and 

provide urban passenger services using a diversity of vehicles (bus, tramway, light rail, 

etc.) any method based on cost comparison has been subject to criticism. A high level of 

output heterogeneity is a general characteristic of network industries. Companies 

characterized by different share of the employed vehicles and networks with different 

shapes have different organization and coordination problems, thus different 

performances in terms of production and costs. For instance, in the transit sector the 

production of 100 tramway-kilometers on a simple linear network is less costly than the 

same output in a Y-shaped network. Other factors such as the density of stops can also 

                                                 
2 These include Swiss rural area, one German state (Hesse) and only a few large German cities (Hamburg 
and Munich). In most other cases, particularly, in Swiss urban areas, the incumbent companies continue to 
receive concessions without any competitive tendering. 
3 For an application of yardstick competition in the transport sector see Dalen and Gòmez-Lobo (2003). 
4 See Jamasb and Pollit (2003) and Estache et al. (2004) for examples.  
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affect the costs.  Furthermore, different environmental characteristics influence the 

production process and therefore the costs. In general, the information is not available for 

all output characteristics. Many of these characteristics are therefore omitted from the 

production, distance and cost function specifications. Of course, this efficiency 

measurement problem related to the unobserved firm-specific heterogeneity becomes 

more serious when a regulator decides to perform a comparative efficiency analysis 

across several countries. This type of analysis is becoming more and more popular 

because regulators are interested in comparing the inefficiency level of the companies 

operating in the own country with the performance obtained by companies operating in 

another regulatory environment or just simply to increase the number of companies in the 

sample. It is also believed that by using international benchmarking, the regulators could 

limit the possibility of strategic behavior of firms within the country. The increasing use 

of international benchmarking analysis in network industries has raised serious concerns 

among regulators and companies regarding the reliability of efficiency estimates, because 

of unobserved firm- and country-specific heterogeneity. 

Thus, our main objective is to derive and apply an appropriate SFA model, which is 

able to capture firm-specific unobserved heterogeneity using panel data. In recent SFA 

panel data models unobserved firm-specific heterogeneity can be taken into account with 

conventional fixed or random effects. In order to distinguish heterogeneities such as 

external network effects from cost efficiency, Greene (2004, 2005a,b) proposed an 

approach that integrates an additional stochastic term representing inefficiency in both 

fixed and random effects models.5 Within this framework the unobserved factors are 

                                                 
5 Kumbhakar (1991) proposed a similar approach using a three-stage estimation procedure. See Heshmati 
and Kumbhakar (1994) for an applications of this model.  
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widely modeled as separable factors from the production process (Greene, 2005b).  

However, we argue that the entire production process is organized around different 

network structures and shapes. Therefore, the unobserved heterogeneity is inevitably non-

separable from the observed inputs and outputs. Against this background we propose a 

model assuming that unobserved heterogeneous factors are non-separable from the 

production process (see e.g. Bagdadioglu and Weyman-Jones, 2008). We show that along 

with the variation over time, the distinction between separable and non-separable factors 

can be helpful in disentangling the inefficiency from the unobserved firm-specific 

factors: Assuming that firm-specific factors are time-invariant but non-separable, while 

the inefficiency components are time-variant and separable, one can achieve a more 

realistic separation between the two components. In fact, being an integrated part of the 

technology process the unobserved network characteristics are non-separable but more or 

less time-invariant. Whereas it is likely that the main driving factor behind technical 

inefficiency namely, the management’s efforts and incentives are independent from the 

production technology thus separable but time-variant. 

The adopted econometric model is a random coefficient stochastic frontier model 

that allows non-separability between the firm-specific unobserved heterogeneity and the 

production factors. In our model the unobserved heterogeneity is treated as a stochastic 

network characteristic that enters as a latent variable in the distance function and can be 

interacted with observed inputs and outputs. The resulting specification is a random-

parameter stochastic frontier model in which the individual random effects are based on a 

single standard normal variable.6 The input distance function is used to test the 

assumption of separability between unobserved network characteristics and observed 
                                                 
6 The econometric model bears some resemblance to the specification proposed by Alvarez et al. (2004). 
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production factors. The model also allows an assessment of the effect of separability 

assumptions on the estimates of efficiency as well as technological properties such as 

returns to scale and cost-complementarities.  

The model is applied to a panel data sample of 56 transit companies including 

German and Swiss operators. The estimates of efficiency are compared between the two 

countries and the statistical significance of the differences is tested. From a 

methodological point of view, the analysis contributes to the discussion of unobserved 

heterogeneity that is particularly relevant for international comparisons. This study also 

provides an insight to the potential use of benchmarking within competitive tendering 

procedures that are often promoted in the ongoing reforms in the public transport sector. 

The rest of the paper is organized as follows: Sections 2 presents the model specification. 

The data and the econometric models are explained in Section 3. Section 4 presents the 

estimation results and discusses their implications, and Section 5 provides the 

conclusions. 

 

2. Model Specification  

There is a great body of literature on the estimation of production and cost frontiers 

for public transit operators.7 However, the majority of these studies estimate single 

output production or cost frontiers. There are only a few studies that estimated a multi-

output cost function. The most relevant ones in this category are Viton (1992), Viton 

(1993) and Colburn and Talley (1992), both of which analyzed the long run cost structure 

of urban multi-mode transit system in the U.S. Viton (1992) studied the cost structure of 

a sample of 289 urban transit companies operating in the U.S. between 1984 and 1986. 
                                                 
7 See De Borger et al. (2002) for a detailed literature overview. 
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Six modes are distinguished: motor-bus, rapid-rail, streetcar, trolley-bus, demand 

responsive mode and a last mode including all other modes. Viton uses a quadratic total 

cost function. Colburn and Talley (1992) analyze the economies of scale and scope of a 

single urban multi-service company using quarterly data from 1979 to 1988. Four modes 

are distinguished: motor-bus, dial-a-ride, elderly service, and van pool service. Colburn 

and Talley used a translog total cost function. The first European analysis for multi-

output firms has been performed by Farsi et al. (2006b). In this study, the authors 

estimate a quadratic cost function considering three modes (motor-bus, streetcar, trolley-

bus) and using a dataset composed of 16 Swiss multi-mode urban transport operators 

observed during the period 1985–2003. All these studies did not estimate a frontier 

function and, therefore, did not perform an efficiency analysis. The main interest of these 

studies was in the estimation of the economies of scale and scope. 

                                                

To measure the efficiency level of the multi-outputs Swiss and German urban 

transit companies we apply a parametric frontier input distance function.8 We therefore 

focus on the technical inefficiency as opposed to possible inefficiencies due to 

suboptimal allocation of input factors. Because of the lack of consistent data on costs and 

input prices especially on the German side, we could not use a multi-output cost function. 

The latter approach, while providing a benefit in estimating the resulting effect of 

technical and allocative inefficiency, has an important drawback in international 

benchmarking. Namely, international cost comparisons would involve several empirical 

difficulties given the different accounting rules, depreciation standards, exchange rates 

etc. In addition, the choice of distance functions does not require the cost minimization 

 
8 For the use of parametric distance functions in the transport sector see Coelli and Perelman (1999, 2000). 
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assumption.9  Compared to production functions the distance functions are more readily 

adaptable to multi-output contexts. Moreover, assuming that outputs are exogenous for 

given companies, we favored an input distance specification as opposed to an output 

distance function.10  

The input distance function is defined on the input set as the extent to which the 

input vector may be proportionally contracted with the output vector held fixed (see 

Coelli, 2002):  

 

{ )()/(:max),( yLxyxd I ∈= }ρρ                              (1) 

 

),( yxd I  will take a value greater than or equal to one if the input vector x  is an element 

of the feasible input set . In addition,  if )(yL 1),( =yxd I x  is located on the inner 

boundary of the input set. ρ  represents the scalar distance, so the amount by which the 

input vector can be deflated. It is assumed that the technology satisfies the standard 

axioms:  is non-decreasing, positively linearly homogeneous and concave in ),( yxd I x  

and increasing in y .11 

As in most empirical studies in production literature, we specify a translog 

functional form for the input distance function in order to satisfy flexibility while a 

                                                 
9 For a discussion on the advantages and drawbacks of the distance-functions approach see Coelli (2002) 
and Coelli and Perelman (2000).  
10 An input-oriented distance function is motivated by the nature of production in the public transport 
sector, because it implies that efficiency is improved by reducing input usage for a given exogenous output, 
set by regulators or the demand side factors that are beyond the provider’s control.  
11  See Coelli (2002) and Färe and Primont (1995) for more details on these properties. 
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straightforward imposition of the linear homogeneity restriction.12 For the case of 

M outputs and K  inputs the input distance function for the th firm can be written as i
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1 1 1 1
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To obtain the frontier surface (the transformation function) one would set , so the 

left hand side equals zero  (see Coelli and Perelman, 2000). The restrictions for 

linear homogeneity in inputs can be written as:   

1=Iid

0ln =Iid

 

   

1 1 1

1, 0  and  0
K K K

k kl km
k k k

β β δ
= = =

= =     for all values of l and m                    (3) 

 

A convenient approach of imposing homogeneity constraints is to follow Lovell et 

al. (1994) and Coelli and Perelman (2000): Considering that homogeneity implies that for 

any  0>w

 

),(),( yxwdywxd IiI =                           (4) 

 

Therefore, one of the inputs might be arbitrarily chosen, such as the K th input and 

set . Then one obtains  KXw /1=

                                                 
12 The Cobb Douglas form is too restrictive with regard to the elasticity of substitution and scale properties. 
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KIKI XyxdyXxd /),(),/( =                  (5) 

 

For the specification of the model used in this study we considered public transit 

companies characterized by a production process with three inputs, labor, number of 

trams and number of buses, and two outputs, seat-kilometers provided by tramways and 

buses respectively.13 Considering this production process we can specify the following 

input distance function:  

 

d =f (XL , XCT, XCB , YT , YB , Z , γ, t)        (6) 

 

where xL is labor; yB and yT are the numbers of seat-kilometers provided by buses 

and tramways respectively. Following Farsi et al. (2006a, 2006b) we decided to assume 

two pure supply oriented measures of the output. xCB, xCT are respectively two indicators 

of the capital input, number of buses and number of tramways; t is a time variable which 

captures the shift in technology, Z is the total network length (trams and bus networks) 

introduced in the model in order to capture part of the observable heterogeneity of the 

operating environment of the companies. However, in transport networks we might face 

different network structures and various shapes or complexities. Thus, network length 

only captures part of the network heterogeneity. For this reason, we included in the model 

a variable, γ, that captures other network structural characteristics that are constant over 

                                                 
13 We concentrate our analysis only on transit companies supplying services using the same transport 
modes (buses and tramways). Therefore, we excluded transit companies operating with underground 
system as well as small companies that use only buses. Moreover, in Switzerland some of the companies 
supply trolley as well as autobus services. We assumed for the empirical analysis that the trolley busses 
feature similar characteristics as the autobuses, therefore we sum up both singles branches to have an 
aggregated bus stock and aggregated supplied services. 

9 



time. These characteristics include unobserved factors related to network’s shape and 

complexity.14 As we will discuss in the next session, it is possible to consider γ  as a 

latent variable in the econometric specification. In our model, we therefore assume that γ  

captures the time-invariant unobserved heterogeneity of the production process of the 

transit companies, in our case mainly the structural characteristics of the network. 

Using a translog functional form and assuming non-separability of the unobserved 

network structural variable, γ,  the model in equation (6) can be expressed as follows:  
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Of course, by imposing separability of the unobserved heterogeneity, in our case 

represented mainly by the unobserved network characteristics, a simplified version of 

                                                 
14 For instance, Filippini and Maggi (1992) have shown the importance of the inclusion of an indicator of 
the network complexity in a cost function for transport companies. In that study a complexity indicator 
based on the graph theory is used to measure the network complexity. Unfortunately, data on the shape and 
structure of the networks are not available for the companies included in our sample. 
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model (7) can be estimated.15 However, the separability assumption is relatively strong, 

because the network structure influences the optimal choice of the mix of inputs and 

outputs. For this reason, we decided to use the non-separabilty assumption. To consider, 

that this assumption can have important measurement effects on the estimation of the 

value of the return to scale.  

 

Idln  is a nonnegative variable which can be associated with technical inefficiency 

. Given the stochastic error this model can be formulated in the common SFA form 

with the combined error term  and the common assumption of a normal 

distribution for and a half-normal distribution truncated at zero for .

itu itv

itit uv −

itv itu 16 A radial 

input-oriented measure of technical efficiency can be obtained by  
1

exp( )it
Ii

= =TE . u
d

−

                                                

The distance function provides a promising new solution to the single output 

restriction of the standard production functions. One concern in the econometric 

estimation might be the regressor endogeneity which may introduce possible 

simultaneous equation bias.17 Sickles et al. (2002) and Atkinson and Primont (2002) used 

methods based on instrumental variables to correct for such endogeneities. However, 

Coelli (2002) showed that compared to production functions, the distance functions do 

not face a greater risk of endogeneity bias.18  

 
15 With the separability assumption, all the interactions of the variable γ with observed variables will be 
excluded. 
16 For estimation purposes, the negative sign on the dependent variable can be ignored. This results in the 
signs of the estimated coefficient being reversed. 
17 This results from the fact that for instance in an input distance function, the inputs appearing on the right 
hand side of the equation might be correlated with the residuals.  
18A second issue is that estimated input distance functions often fail to satisfy the concavity properties 
implied by economic theory. Regularity conditions could also be imposed by estimating the model in a 
Bayesian framework (see O’Donnell and Coelli, 2005). 
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3. Data and econometric specification 

3.1. Data 

The multi-output distance input function is estimated using annual data on 49 

German and 7 Swiss companies observed over a sixteen-year period from 1991 to 2006. 

We use an unbalanced panel data set and had 13 years for each country (from 1991-2003 

for Switzerland, and from 1994-2006 for Germany).  The data for Germany is provided 

by the VDV Statistics.19 For 360 public transport companies data is available; among 

them are 60 companies which are offering bus as well as regional rail services. We 

created a consistent panel data set for 49 multi-output companies offering tram and bus 

services in medium and larger German cities.20  

In Switzerland operate sixteen public transport companies which cover all the local 

public transit services within the urban centers in Switzerland. Like in Germany the 

companies can be defined as independent local monopolies, given the fact that there is no 

overlapping between the offered transport services across the companies. For our analysis 

seven Swiss companies out of the sixteen are relevant, as six offer all three modal transit 

services, and one firm offers motor-bus and trolley-bus services, therefore can be 

considered as multi-output transport companies. For the years between 1991 and 1997 the 

Swiss data has been extracted from the annual statistics on public transport reported by 

the Swiss Federal Statistical Office (BFS (1991-97)). The data for the following years 

                                                 
19 VDV (Verband Deutscher Verkehrsunternehmen, Association of German Transport Companies) which is 
an organization for Germany’s public transport companies and rail freight transport. The VDV has 
approximately 440 members. 
20 In order to have in the sample companies that offer more or less the same services, we excluded from the 
analysis four companies that offer underground railways services in addition to bus and tram services and 3 
other small single-output bus companies that have only trolley bus. We think that this type of services 
needs a quit different technology. Moreover, just four companies operating in four large German cities 
(Berlin, Hamburg, Munich and Nuremberg), are characterized by underground services.  
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(1998-2003) have been collected from companies’ annual reports. Summary statistics of 

the variables used in our models are given in Table 1.  

 

Table 1: Summary statistics for Germany and Switzerland 

Variable Obs Mean Min Max Obs Mean Min Max 

German = GE;  
Swiss=CH 

GE GE GE GE  CH  CH  CH  CH 

Inhabitants 616 366709 40800 1642000 91 285215 76381 421802 

Number of employees  616 978 30 3996 91 953 76 2798 

Network length  
tram in km 

616 49 3 155 91 32 8 110 

Network length 
bus in km 

616 465 5 2653 91 139 42 362 

Number trams 616 118 2 755 91 128 12 432 
Number buses 616 135 2 470 91 167 30 314 
Tram-km in 1000 km 616 5664 61 34363 91 6111 398 20518 

Bus-km in 1000 km 616 7211 86 28519 91 8121 1525 18438 

Seat-km tram in 1000 
km 

616 964943 5000 6187000 91 847835 37387 2926006 

Seat-km bus in 1000 
km 

616 584293 4000 2303000 91 974580 121443 2283553 

Area in km2 616 171 21 405 91 169 90 275 

 

 

The sample used in this empirical analysis is, therefore, composed of a sample of 

Swiss and German transit companies that provides bus and tram transport services 

characterized by partly different technologies, different regulation methods, different 

environmental variables and in particular different network complexities iγ . This large 

output heterogeneity is not completely covered and observed in the data. This is evidently 

more relevant when it comes to international cross-country efficiency analysis. Therefore, 
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in the choice of the econometric models this heterogeneity of the sample has to be 

considered in detail in order to separate the unobserved factors from inefficiencies by 

means of panel data.  

 

3.2 Econometric Specification using panel data  

The first use of panel data models in stochastic frontier models goes back to Pitt 

and Lee (1981) who interpreted the panel data random effects as inefficiency rather than 

heterogeneity.21 A main shortcoming of these models is that any unobserved, time-

invariant, firm-specific heterogeneity is considered as inefficiency. In order to solve this 

problem, the SFA model in its original form (Aigner et al., 1977) can be readily extended 

to panel data models, by adding a fixed or random effect in the model. Although similar 

extensions have been proposed by several previous authors,22 Greene (2005a,b) provides 

effective numerical solutions for both models with random and fixed effects, which he 

respectively refers to as “true” fixed and random effects models. Several recent studies 

such as Greene (2004), Farsi et al. (2006b), Alvarez et al. (2004) and Tsionas (2002) have 

followed this line. Some of these models have proved a certain success in a broad range 

of applications in network industries in that they give more plausible efficiency 

                                                 
21 Pitt and Lee (1981)’s model is different from the conventional RE model in that the individual specific 
effects are assumed to follow a half-normal distribution. Important variations of this model were presented 
by Schmidt and Sickles (1984) who relaxed the distribution assumption and used the GLS estimator, and by 
Battese and Coelli (1988) who assumed a truncated normal distribution. In more recent papers the random 
effects model has been extended to include time-variant inefficiency. Cornwell et al. (1990) and Battese 
and Coelli (1992) are two important contributions in this regard. In particular the former paper proposes a 
flexible function of time with parameters varying among firms. However, in both these models the 
variation of efficiency with time is considered as a deterministic function that is commonly defined for all 
firms. 
22 In particular Kumbhakar (1991) proposed a three-stage estimation procedure to solve the model with 
time- and firm-specific effects.   
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estimates.23 These results raise an important question as to what extent the panel-data-

adapted models can be used to have a better understanding of the inefficiencies and 

whether they can provide a reliable basis for benchmarking and incentive regulation 

systems in industries characterized by strong heterogeneity. This question is especially 

important when companies operate in multiple networks, entailing several network-

specific heterogeneity dimensions iγ . In the recent “true” SFA models the unobserved 

factors are widely modeled as separable factors from the production process (Greene, 

2005a,b). However, we argue that the entire production process is organized around 

different network structures and shapes. Therefore, the unobserved heterogeneity is 

inevitably non-separable from the observed inputs and outputs. We propose a model 

assuming that unobserved heterogeneous factors are non-separable from the production 

process (see for instance Bagdadioglu and Weyman-Jones, 2008).  

Along with the variation over time, the distinction between separable and non-

separable factors can be helpful in disentangling the inefficiency from the unobserved 

firm-specific factors: Assuming that firm-specific factors are time-invariant but non-

separable, while the inefficiency components are time-variant and separable, one can 

achieve a more realistic separation between the two components. In fact, being an 

integrated part of the technology process the unobserved network characteristics are non-

separable but more or less time-invariant. Whereas it is likely that the main driving factor 

behind technical inefficiency namely, the management’s efforts and incentives are 

independent from the production technology thus separable but, as shown by Alvarez et 

al. (2004), time-variant. 
                                                 
23 See Saal et al. (2007), Farsi et al. (2005, 2006a,b) for applications in water distribution, electricity 
networks, bus transport and railroads respectively. 
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Considering the technical efficiency as a time-variant stochastic term with half-

normal distribution, , and an additive idiosyncratic symmetric error with 

normal distribution, , the distance from the stochastic frontier ( ) can 

be specified as . By substituting for  the stochastic frontier given in equation 

(7) can therefore be transformed to a random parameter stochastic frontier model with all 

random parameters (first order input and output terms, constants and structural variable) 

as functions of a single stochastic term 

),0(~ 2
uit Nu σ+

),0(~ 2
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iγ  with standard normal distribution , as 
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 In generic terms, this represents a random parameters stochastic frontier model 

with random constant term  = 2
0 1 2

1

2iα η iγ η γ+ +  where the unobserved fixed output also 

enters in quadratic terms, and first order terms of inputs 3( ), (CT i CB iα η 4 )γ α η γ+ + , outputs 
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5( ), (T i B 6 )iβ η γ β η γ+ + , and the structural variable network length  7( )Z iα η γ+  and 

nonrandom second order terms in the specified translog distance function. The 

unobserved network characteristics are therefore aggregated into a single time-invariant 

stochastic output ( iγ ) interacted with observed inputs and outputs, and entering as a 

latent variable in the distance function model. Inspired by the Alvarez et al. (2004)’s 

model we can derive a stochastic frontier model in which all the random parameters are 

based on an identical random effect iγ . 

In summary, we see that the unobserved firm-specific heterogeneity attributed to 

the different network structures of the transport companies applies to marginal products 

represented by the coefficients of the distance function (see Section 4.1). We therefore 

allow firms to have different underlying production technologies caused by unobserved 

differences in technological conditions and networtk structures. In particular network 

structural characteristics play an important role in the production of transport services and 

cannot be fully captured by a production frontier with fixed coefficients. The proposed 

random coefficient frontier accounts for these differences using a single stochastic 

variable that is interpreted as an aggregate measure of  structural characteristics that are 

not completely observable.  

 

 

4. Empirical results 

Table 2 shows the regression results of the distance function, based on the 

stochastic frontier model given in equation 8. The table also includes the results of an 

alternative specification in which the unobserved network variable ( iγ ) is assumed to be 
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separable from all production factors. Given that all the variables are in logarithmic form, 

these coefficients can be directly interpreted as elasticities. For instance, the derivative of 

a translog input distance function with respect to a particular input is equal to the input 

contribution share of that input. In the interpretation of the coefficients it should be noted 

that a positive coefficient implies a contraction of the feasible input set thus, an increase 

in the distance function. Conversely, the negative effects are associated with an 

expansion in the input set. Therefore, outputs are expected to have negative coefficients 

while inputs are associated with positive effects. Similarly any positive coefficient 

indicates an improvement in production feasibilities, while negative coefficients can be 

interpreted as more resources and costs. For instance, the value of the coefficient of the 

time trend indicates an average technological progress of about 2 percent per year over 

the sample period. 

Table 2: Distance function estimation results  

 

  

Random parameter model 
with separable unobserved 
heterogeneity  

Random parameter model 
with non-separable 
unobserved heterogeneity 

Variable Parameter Coefficient 
Standard 

error 
Coefficient 

Standard 
error 

Constant iα  -0.090* 0.008 0.031* 0.008 

Ln(x2/x1) CTα  0.191* 0.007 0.243* 0.007 

Ln(x3/x1) CBα  0.365* 0.012 0.357* 0.013 

Ln(x2/x1)
2 CTCTα  -0.051* 0.016 -0.060* 0.015 

Ln(x3/x1)
2 CBCBα  0.067* 0.028 0.124* 0.023 

Ln(x2/x1)*ln(x3/x1) CBCTα  0.139* 0.014 0.098* 0.012 

lny1 Tβ  -0.334* 0.006 -0.333* 0.006 

lny2 Bβ  -0.485* 0.007 -0.456* 0.007 

lny1
2 TTβ  -0.113* 0.011 -0.110* 0.012 

lny2
2 BBβ  -0.174* 0.018 -0.179* 0.020 
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lny1*lny2 BTβ  0.114* 0.014 0.091* 0.015 

Ln(x2/x1)*lny1 TCTδ  0.092* 0.013 0.086* 0.013 

Ln(x2/x1)*lny2 TCBδ  -0.044* 0.014 -0.017 0.015 

Ln(x3/x1)*lny1 BCTδ  -0.004 0.018 0.054* 0.017 

Ln(x3/x1)*lny2 BCBδ  0.007 0.018 -0.084* 0.019 

Trend tα  0.022* 0.001 0.022* 0.001 

lnz1 Zα  -0.049* 0.006 -0.032* 0.006 

lnz1
2 ZZα  0.010 0.013 -0.033* 0.014 

lnz1*ln(x2/x1) ZTα  0.159* 0.010 0.138* 0.009 

lnz1*ln(x3/x1) ZBα  -0.119* 0.014 -0.109* 0.015 

lnz1*lny1 ZCTα  -0.122* 0.009 -0.131* 0.009 

lnz1*lny2 ZCBα  0.188* 0.009 0.206* 0.010 

2 2
u uσ σ σ= +   0.123* 0.004 0.121* 0.004 

/u vλ σ σ=   1.927* 0.225 2.322* 0.284 
 Coefficients 

related to latent 
heterogeneity  

  

  

iγ  
1η  0.136* 0.004 0.277* 0.008 

iγ *ln(x2/x1) 3η    
0.125* 0.010 

iγ *ln(x3/x1) 4η    
-0.130* 0.015 

iγ *lny1 5η    
-0.021* 0.010 

iγ *lny2 6η    
-0.023* 0.010 

iγ *lnz1 7η    
0.024* 0.009 

iγ * iγ  2η  0.055* 0.006 0.093* 0.011 
 
Wald Test 

0

3 4 5 6 7

:

0

H

η η η η η= = = = =
 

Chi-squared = 526.95 
p-value = 0.000 
 
H0 is rejected 
      

Notes: The coefficient reported for each random parameter is the mean; (a) we report estimates of SD of 
normal distribution of random parameters. (*) indicates significance at the 5% level. 
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The estimated coefficients (means for the random parameters) of the first-order 

terms have the expected signs and are statistically significant at the sample median. As 

expected, the coefficients of first-order output variables are negative and significantly 

different from zero implying that the estimated distance function is decreasing in outputs. 

The coefficients of the first-order terms of the capital and labor inputs are as expected 

positive and significantly different from zero. The sum of the coefficients of the two 

output variables is 0.79 or 0.82 (depending on the model). This result suggests the 

presence of economies of density at the sample median, because, ceteris paribus, by 

increasing both outputs by 10 percent, the input requirement will increase only by about 8 

percent. As for the effect of network length, the results show that the first order term is, 

as expected negative and statistically significant. The sum of this coefficient with the two 

coefficients of the two output variables is 0.87 or 0.82. This result indicates the presence 

of economies of scale, because by increasing both outputs and network length by 10 

percent, the input requirement will increase only by about 8 (9) percent.24  

The negative coefficients of the output square terms for both bus and tram 

outputs, suggest that the rate of economies of scale is decreasing in each output. The 

positive coefficient of the interaction of the two outputs indicates cost-complementarity 

between tram and bus services. For instance, the results suggest that increasing one 

output by 10%, will result in 0.9 or 1.1 percent (depending on the model) decrease in the 

marginal cost of the other output. The effect of interactions with the network length 

suggest that providing bus services over longer networks is relatively less costly, while 

for trams, longer networks are associated with higher marginal costs. This result is 

                                                 
24 Note that in translog form, any statement about sample points other than the approximation point (here, 
sample median), should consider the second-order terms in addition to the main effects. 
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consistent with the fact that in tramways, the maintenance of the network infrastructure 

(rails and cables) in longer network might take relatively more capital and labor resources 

than in bus transport.  

The table shows that in both models, the coefficients of the unobserved structural 

variable ( 1 7η η− ) are significantly different from zero at conventional 5% levels of 

significance. This provides empirical evidence for the presence of unobserved 

heterogeneity. Using a Wald test we tested the hypothesis of separability. The results 

(also listed in the table) favor the complete model, indicating that the unobserved network 

characteristics are not separable form observed production factors.  Comparing the results 

across the two models indicates a close similarity in the coefficients of the first-order 

terms, suggesting that the estimates of returns to scale and other technological 

characteristics at the approximation point (here the sample median) are not sensitive to 

the assumption of separability. However, most second-order terms especially those 

related to network length (variable Z), vary across the two models. This suggests that 

quantities such as complementarity effects between different outputs as well as 

substitution elasticities between inputs could be sensitive to the assumptions related to 

separability from the unobserved network characteristics. The differences of second-order 

effects across the two models also suggest that the variation of the economies of scale at 

different levels of output and network length is sensitive to the separability assumption.     

Studying the coefficients of the latent heterogeneity can be helpful in detecting the 

effects captured by that variable. The positive sign of the constant ( 1η ) indicates that 

higher levels of the latent variable (γ) are associated with network and environmental 

characteristics that are beneficial to production. Therefore the latent variable γ can be 
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interpreted as an aggregate indicator of network structural characteristics with an inverse 

correlation with network complexity. With this interpretation in mind, namely associating 

lower values of γ  with greater network complexity, we can explore the consistency of the 

regression results with our underlying assumptions about network heterogeneity. The 

coefficients of the interactions of the unobserved heterogeneity with both outputs, tram 

seat-kilometers ( 5η ) and bus seat-kilometers ( 6η ), have a negative sign, implying that the 

network complexity has a lower effect in higher levels of output. Similarly, the positive 

coefficient of the interaction of the latent variable with the network length ( 7η ) suggests 

that the network complexity has a relatively greater effect in larger networks. The 

positive sign of the squared term of the latent variable ( 2η ) can also be interpreted as an 

increasing marginal effect of complexity. While all these interpretations appear to be 

consistent with the idea of linking the latent variable to network complexity, we should 

recognize that alternative interpretations could equally be justified. The results however 

point to the fact that the time-invariant heterogeneity is not separable from observed 

production factors.  

The results listed in Table 2 also indicate considerable variation across companies 

with regard to time-invariant heterogeneity. The significant effect of interaction terms of 

the latent variable with outputs suggest that the technological characteristics such as the 

economies of scope or rates of returns to scale and density show a considerable variation 

across different companies. These variations are ignored in the model with separability 

assumption. In principle, such variations can be also modeled with a random coefficients 

model with several random effects. However, considering an identical latent variable 

allows a more tangible interpretation of such variations by associating them to 
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unobserved characteristics such as network complexity. For instance, considering the 

latent variable as an inverse measure of the network complexity, we can interpret the 

negative coefficients of the output interactions as an indication that more complex 

networks have higher rates of economies of scale.  

The inefficiency scores  are summarized in Table 3. The estimated values of the 

inefficiency vary from 0.01 to about 0.62. The values of the mean and median technical 

inefficiency are fairly low amounting to about 8 percent of input resources.

iu

25 A simple 

calculation based on the estimated effects of iγ  and 2
iγ , indicate that the effect of 

heterogeneity is more considerable: Considering the estimated coefficients in Table 2 

(especially 7η ), one standard deviation of this heterogeneity is approximately equivalent 

to about 0.14 or 0.28 depending on the model. These results suggest that the effect of 

time-invariant heterogeneity on inputs (and costs) is significantly greater than the average 

estimated inefficiencies. Moreover, the results suggest that these heterogeneities tend to 

be underestimated should they be assumed separable from observed production factors.    

                                                 
25 For comparison purposes, we also computed the efficiency indices using the “classical” model for panel 
data proposed by Pitt and Lee (1981) who interpreted the random effects as inefficiency, thus considering 
any unobserved firm-specific heterogeneity as inefficiency. As expected, the values of technical 
inefficiency are higher and have more dispersion than the inefficiencies that emerge from our models.  
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Table 3: Descriptive statistics of inefficiency estimates  

 Model 1 with 
separability 
assumption 

Model 2 with non-
separability 
assumption 

Number of 
Observation 

707 707 

Mean 0.084 0.085 
Std. Dev 0.053 0.057 
Min 0.012 0.012 
Median 0.071 0.069 
Max 0.617 0.601 

 

 

Table 4 provides the descriptive statistics of inefficiency estimates by country. 

These results indicate more or less similar efficiency scores across the two countries. The 

results of Kruskal-Wallis test on the differences in inefficiency scores (p-value of .58 or 

.91 depending on the model) suggest that there is no significant difference between the 

Swiss and German transit companies. This finding is valid in both models suggesting that 

the variation of efficiency within each country is greater than any systematic difference 

between the two countries. The estimates of latent heterogeneity on the other hand point 

to higher average values of γ in Switzerland compared to Germany. The statistical 

significance of these differences is confirmed by a Kruskal-Wallis test, suggesting that 

the German companies operate on networks that are relatively more complex than those 

in Switzerland.   
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Table 4: Descriptive statistics of country-specific efficiency estimates 

 Model 1 with 
separability 
assumption 

Model 2 with non-
separability assumption 

 Germany 

Number of 
Observation 

616 616 

Mean 0.085 0.086 
Std. Dev 0.055 0.059 
Min 0.012 0.012 
Median 0.072 0.069 
Max 0.617 0.601 
   
 Switzerland 

Number of 
Observation 

91 91 

Mean 0.077 0.079 
Std. Dev 0.035 0.039 
Min 0.026 0.025 
Median 0.068 0.074 
Max 0.196 0.182 

 

 

5. Summary and Conclusions  

In this paper we examine the technical efficiency of a sample of Swiss and 

German urban transit companies. These companies are characterized by a high degree of 

heterogeneity in environmental and network characteristics. Due to lack of data and also 

because many of these structural factors such as network shape and complexity are not 

easily measured, only part of this heterogeneity is observed and can be considered in the 

input distance model specification. It is evident that the unobserved firm-specific 

heterogeneity becomes more serious in cross-country comparative efficiency analyses. 

Thus, it is important to use an appropriate SFA model, which is able to capture firm-

specific unobserved heterogeneity using panel data.  
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Modeling heterogeneity in the empirical literature is often based on certain 

assumptions about the separability from the observed production factors. However, we 

argue that in our context the entire production process is organized around different 

network structures and shapes. Therefore, the unobserved heterogeneity is inevitably non-

separable from the observed inputs and outputs. Against this background we propose a 

random coefficient stochastic frontier model assuming that unobserved heterogeneous 

factors are non-separable from the production process.  

 Similar to other panel data specifications such as ‘true’ random effects and 

random parameter frontier models proposed by Greene (2005a), the econometric model 

used in this study can be helpful to disentangle the unobserved time-invariant 

heterogeneity (such as network complexities) from the inefficiency estimates. The 

proposed model has however a distinctive feature in that such heterogeneities are 

represented by a single stochastic term that are not separable from the production process, 

while the inefficiencies are assumed to be uncorrelated thus separable from all production 

factors. Such distinctions between inefficiency and network heterogeneity could be used 

for a better identification of time-variant inefficiencies.  

The results suggest that the estimated input distance function could be a 

reasonable fit to the observed data and that the estimated input and output elasticities 

have the correct sign and magnitude. The statistical tests favor the presence of 

considerable network heterogeneity and reject the separability assumption. Determining 

the scale elasticities we see that the median company operates under both economies of 

density and scale. Our analysis indicates that while the first-order coefficients of the 

distance function are not sensitive to the separability assumption, the second-order terms 
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could differ significantly across the models. This is especially important in estimating the 

variation of technological properties such as returns to scale and economies of scope with 

output and network characteristics. In these cases, the proposed model can be used to 

relax the separability assumption, while allowing a possible association between the 

variations with tangible structural characteristics such as network complexity.  

The results of a Kruskal-Wallis test on the differences in inefficiency scores 

between the Swiss and German transit companies indicates no significant difference 

between these two types of  companies. However, the statistical tests suggest that the 

German companies operate in networks and environments that are relatively more 

complex regarding the unobserved factors.  

In general, the results indicate considerable variation across companies in the 

marginal impact of the observed input and outputs. This underlines that the unobserved 

characteristics of the network structure play a crucial role in transport services. Thus, the 

proposed model can improve the estimates taking into account different unobserved 

network complexities. However, this study along with the previous empirical literature 

suggests that given possible errors in the measurement of the efficiency level, the direct 

use of benchmarking results in regulation could have significant and possibly undesired 

financial consequences for the companies. Therefore, the benchmarking results should 

not be directly applied to define the tariffs applied to individual companies. However, the 

results can be used as an instrument to minimize the information asymmetry between the 

regulator and the regulated companies. For instance, benchmarking can be used as a 

guide to classify the companies into several efficiency groups.   
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