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Abstract
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of strong Nash equilibrium. Strong curb sets are product sets of pure strategies such

that each player�s set of recommended strategies must contain all coalitional best-

responses of each coalition to whatever belief each coalition member may have that

is consistent with the recommendations to the other players. Minimal strong curb

sets are shown to exist and are compared with other well known solution concepts.

We also provide a dynamic learning process leading the players to playing strategies

from a minimal strong curb set.
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1 Introduction

The notion of Nash equilibrium does not incorporate the possibility that groups of

players might coordinate their actions to reach an outcome that is better for all

of them. Aumann (1959) was �rst to introduce this consideration into the theory

of noncooperative games by proposing the notion of strong Nash equilibrium. A

strategy pro�le is a strong Nash equilibrium if it is immune not only to individ-

ual deviations, but also to coalitional deviations. Later on, Bernheim, Peleg and

Whinston (1987) have proposed the notion of coalition-proof Nash equilibrium. A

strategy pro�le is a coalition-proof Nash equilibrium if it is immune to coalitional

deviations which are themselves immune to further deviations by subcoalitions. The

main weakness of strong Nash equilibrium and coalition-proof Nash equilibrium is

that existence is not guaranteed in a natural class of games, as opposed to the Nash

equilibrium concept.

Basu and Weibull (1991) have proposed a set-theoretic coarsening of the notion

of strict Nash equilibrium: minimal curb (closed under rational behavior) sets.1 This

set-valued solution concept combines a standard rationality condition, stating that

the set of recommended strategies of each player must contain all best responses

to whatever belief he may have that is consistent with the recommendations to the

other players, with players�aim at simplicity, which encourages them to maintain a

set of strategies as small as possible.

In this paper we introduce the concept of minimal strong curb sets which is a

set-theoretic coarsenings of the notion of (strict) strong Nash equilibrium. We re-

quire the sets to be immune not only against individual deviations, but also against

group deviations. Strong curb sets are product sets of pure strategies such that each

player�s set of recommended strategies must contain all coalitional best-responses of

each coalition to whatever belief each coalition member may have that is consistent

with the recommendations to the other players. A strong curb set is minimal if it

does not properly contain another strong curb set. Think of the set of recommen-

dations to a player in a minimal strong curb set as a well-packed bag for a sports

1Many games of interest lack strict Nash equilibria. A strategy pro�le is a strict Nash equilib-

rium if each player�s equilibrium strategy is better than all her other strategies, given the other

players�strategies. In any non-strict Nash equilibrium, at least one player is indi¤erent between her

equilibrium strategy and some other strategy, given the other players�strategies. Such indi¤erence

can make the Nash equilibrium evolutionary unstable. See Weibull (1995).
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weekend: you may want to be prepared for di¤erent kinds of sports since you may

like playing tennis with player 2 or playing golf with playing 3 or playing bridge with

players 2, 3 and 4 or going alone for a jog. Minimal strong curb sets are shown to

exist in general and are compared with other well known solution concepts: strong

Nash equilibrium, coalition-proof Nash equilibrium, and coalitional rationalizability.

Finally, we provide a dynamic motivation for the concept of minimal strong curb

sets. Hurkens (1995) has proposed a dynamic learning process where players have

bounded memory and play best-responses against beliefs, formed on the basis of

strategies used in the recent past. This learning process leads the players to playing

strategies from a minimal curb set.2 We propose a similar learning process except

that now groups of players may play coalitional best-responses. A game is played at

discrete point in time. For each role in the game there is a pool of players. At the

beginning of each period one player is drawn from each pool to play the game in that

period. These players are partitioned into coalitions to form a coalition structure.

Each coalition structure has a positive probability to occur at each period. Players

observe how the game has been played in the recent past, form their beliefs upon

these observations, and select an action pro�le jointly with their coalition partners.

We show that, if the memory is long enough, play settle down in a minimal strong

curb set.

The paper is organized as follows. We recall notations and de�nitions in Section

2. We formally de�ne the concept of minimal strong curb sets in Section 3. We

compare minimal strong curb sets with strong Nash equilibria, coalition-proof Nash

equilibria and coalitionally rationalizable strategy pro�les in Section 4. We provide

a dynamic learning process leading the players to playing strategies from a minimal

strong curb set in Section 5. We conclude in Section 6.

2 Preliminaries

Strict set inclusion is denoted by  and weak set inclusion is denoted by �. A
normal-form game is a tuple G =



N; fAigi2N ; fuigi2N

�
, where N = f1; 2; : : : ; ng

is a �nite set of players, each player i 2 N has a nonempty, �nite set of pure strategies
(or actions) Ai and a von Neumann-Morgenstern utility function ui : A! R, where
A = �j2NAj. The set of all games is denoted by �. For every X � A, let X�i

2See also Young (1998).
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= �j2NnfigXj, 8i 2 N . The subgame obtained from G by restricting the action

set of each player i 2 N to a subset Xi � Ai is denoted �with a minor abuse

of notation from restricting the domain of the utility functions ui to �j2NXj �by

GX =


N; fXigi2N ; fuigi2N

�
. The set of mixed strategies of player i 2 N with

support in Xi � Ai is denoted by �(Xi). Payo¤s are extended to mixed strategies

in the usual way. Beliefs are pro�les of mixed strategies: correlation is not allowed.

The pro�le of strategies where player i 2 N plays ai 2 Ai and her opponents

play according to the mixed strategy pro�le ��i = (�j)j2Nnfig 2 �j2Nnfig�(Aj) is
denoted (ai; ��i). For i 2 N and ��i 2 �j2Nnfig�(Aj),

BRi(��i) = fai 2 Ai j ui(ai; ��i) � ui(a0i; ��i) for each a0i 2 Aig

is the set of pure best responses of player i against her belief ��i.

Basu and Weibull (1991) have introduced the concept of strategy subset closed

under rational behavior (curb), which is a set-theoretic coarsening of the notion of

strict Nash equilibrium. Formally, curb sets are de�ned as follows.

De�nition 1. A curb set is a product set X = �i2NXi where

(a) for each i 2 N , Xi � Ai is a nonempty set of pure strategies;

(b) for each i 2 N and each belief ��i of player i with support in X�i, the set Xi

contains all best responses of player i against his belief:

8i 2 N;8��i 2 �j2Nnfig�(Xj);BR
i(��i) � X:

Curb sets are product sets of pure strategies such that each player�s set of recom-

mended strategies must contain all best-replies to whatever belief he may have that

is consistent with the recommendations to the other players. Since the full strategy

space is always curb, particular attention is devoted to minimal curb sets. A curb set

X is minimal if no curb set is a proper subset of X. Basu and Weibull (1991) have

shown that every game G possesses at least one minimal curb set. The set-valued so-

lution concept that assigns to each game its collection of minimal curb sets is denoted

by min-curb. Hence, min-curb(G) = fX � A j X is a minimal curb set of Gg. Sim-
ilarly, curb(G) = fX � A j X is a curb set of Gg.3

3Voorneveld (2004) has proposed the notion of prep sets which are product sets of pure strategies

such that each player�s set of recommended strategies must contain at least one best-response to
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The notion of strong Nash equilibrium is due to Aumann (1959). A strong

Nash equilibrium is a strategy pro�le such that no subset of players has a joint

deviation that bene�ts all of them. Coalitions are nonempty subsets of players (J

such that J � N and J 6= ?). For every X � A, let X�J = �j2NnJXj, 8J � N .

The pro�le of strategies where players belonging to coalition J play according to

the strategy pro�le aJ 2 �i2JAi and the remaining players play according to the
mixed strategy pro�le ��J = (�j)j2NnJ 2 �j2NnJ�(Aj) is denoted (aJ ,��J). For
every J � N , i 2 J , X � A and ��i = (�j)j2Nnfig 2 �j2Nnfig�(Xj), we denote

by ��J�i the marginal distribution of ��i over X�J . Formally, the notion of strong

Nash equilibrium is de�ned as follows. The strategy pro�le a� 2 �i2NAi is a strong
Nash equilibrium if and only if, 8J � N , 8aJ 2 �j2JAj (aJ 6= a�J), 9 i 2 J such that
ui(a

�) � ui(aJ ; a��J). A strong Nash equilibrium is strict if the last inequality holds

strictly.

3 Strong curb sets

While the concept of curb sets is a set-theoretic coarsening of the notion of strict

Nash equilibrium, we now introduce the concept of strong curb sets which is a set-

theoretic coarsening of the notion of strict strong Nash equilibrium. That is, we

require the set to be immune not only against individual deviations (as for curb

sets), but also against coalitional deviations. Let us generalize the concept of best

response to coalitions of players.

De�nition 2. For each vector of beliefs � = (��i)i2N with ��i 2 �j2Nnfig�(Aj),
the set of coalitional best-responses of coalition J � N is

CBRJ(�) = faJ 2 �i2JAi j (i) 8i 2 J , ui(ai; ��i) � ui(aJ ; ��J�i ), 8ai 2 Ai and

(ii) @ a0J 2 �i2JAi such that 8i 2 J , ui(aJ ; ��J�i ) < ui(a0J ; ��J�i )g.

whatever belief she may have that is consistent with the recommendations to the other players.

A formal de�nition is provided in the appendix. Every curb set is a prep set and every curb

set contains a minimal prep set. But, minimal prep sets may contain a proper subset of the

strategies contained in the minimal curb sets. Kalai and Samet (1984) have introduced the notion

of persistent retracts which require the recommendations to each player to contain at least one

best-response to beliefs in a small neighborhood of the beliefs restricted to the recommendations

to the other players. Voorneveld (2005) has shown that, in generic games, persistent retracts,

minimal prep sets and minimal curb sets coincide.
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Given a vector of beliefs �, a pro�le of strategies aJ for coalition J is a coalitional

best-response if (i) each member i 2 J prefers to join coalition J and playing aJ
rather than playing her individually best-response against her belief ��i, (ii) there

is no other pro�le a0J 6= aJ such that all members of J strictly prefer a0J to aJ .

Conditions (i) and (ii) captures some rudimentary form of coalitional rationality.

First, a sensible concept of coalitional rationality should prescribe coordination on

strategy pro�les so that all coalition members have incentives to join the group.

Second, it should be conceivable that members of coalition J will never coordinate

their play on strategy pro�les that are Pareto dominated. Of course, CBRfig(�)

coincides with BRi(��i) 8i 2 N .

Example 1. Consider the normal-form games G1 and G2.

L R L R

U 4; 5 0; 0 U 2; 0 0; 0

D 0; 0 3; 2 D 0; 0 0; 2

G1 G2

Take the normal-form game G1 and let J = f1; 2g. Condition (i) makes that (U;R)
and (D;L) are never coalitional best-responses for J whatever �. Condition (ii)

makes that (D;R) is not a coalitional best-response for J whatever �. However, the

strategy pro�le (U;L) satis�es both conditions whatever �. Thus, CBRf1;2g(�) =

f(U;L)g. Notice that the set of coalitional best-responses, CBRJ(�), may be empty
if jJ j � 2. Take the normal-form game G2 and consider the beliefs � = (��1; ��2)

with ��1(L) = 1 and ��2(D) = 1. Then, BR1(��1) = fUg and BR2(��2) = fRg
and the expected payo¤s are u1(U; ��1) = 2 and u2(R;��2) = 2. Thus, we have

that CBRf1;2g(�) = ?.�

A set X is a strong curb set if the belief that only strategies in X are played

implies that players and coalitions have no incentives to use other strategies than

those belonging to X. Formally, strong curb sets are de�ned as follows.

De�nition 3. A strong curb set is a product set X = �i2NXi where

(a) for each i 2 N , Xi � Ai is a nonempty set of pure strategies;

(b) for each J � N and each vector of beliefs � = (��1; :::; ��N) of the players

with each belief ��i having support in X�i, the product set XJ = �j2JXj
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contains all coalitional best-responses of coalition J against the beliefs of its

members:

8J � N;8� = (��1; :::; ��n) with ��i 2 �l2Nnfig�(Xl), i 2 N ,

CBRJ(�) � �j2JXj.

Strong curb sets are product sets of pure strategies such that each player�s set

of recommended strategies must contain all coalitional best-responses of each coali-

tion to whatever belief each coalition member may have that is consistent with the

recommendations to the other players.4 A set X � A is not a strong curb set if

there exists a coalition having a deviation outside the set of recommended strategies

such that each coalition member is at least as well o¤ by deviating for at least one

possible belief concerning the play of others in the set of recommended strategies.

A deviation is blocked if we can �nd one player who is strictly better o¤ by blocking

the deviation. Notice that each coalition member is allowed to have a di¤erent be-

lief concerning the play of others in the set of recommended strategies to assess the

pro�tability of the deviation. In other words, the coalition members may disagree

on where the deviation leads to.56

A strong curb set X is minimal if no strong curb set is a proper subset of

X. The set-valued solution concept that assigns to each game its collection of

minimal strong curb sets is denoted by min-strong-curb. Hence, for a game G,

min-strong-curb(G) = fX � A j X is a minimal strong curb set of Gg and strong-
curb(G) = fX � A j X is a strong curb set of Gg. Every normal-form game has a

minimal strong curb set.

4We assume that players choose pure strategies. However, the notion of strong curb set can

be easily extended to mixed strategies simply by accommodating the de�nition of CBR. Then,

strong curb sets would still be product sets of pure strategies but such that each player�s set of

recommended strategies contains now the support all coalitional best-responses of each coalition

to whatever belief each coalition member may have that is consistent with the recommendations

to the other players.
5We are implicitly assuming that players do not update their beliefs by trying to understand

why some coalitional action is a best-response for the other players of the coalition.
6Similarly to strong curb sets, we can de�ne the notion of strong prep sets. Strong prep sets are

product sets of pure strategies such that each player�s set of recommended strategies must contain

at least one coalitional best-response of each coalition to whatever belief each coalition member

may have that is consistent with the recommendations to the other players. We provide a formal

de�nition of strong prep sets in the appendix.
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Proposition 1. Every normal-form game G has a minimal strong curb set.

Establishing existence of minimal strong curb sets in �nite games is simple.

The entire pure-strategy space A is a strong curb set. Hence the collection of strong

curb sets is nonempty, �nite (since A is �nite) and partially ordered by set inclusion.

Consequently, a minimal strong curb set exists. In the appendix we show that the

existence result holds for every game G 2 G, where G is the class of normal-form
games G =



N; fAigi2N ; fuigi2N

�
where for each player i 2 N = f1; 2; : : : ; ng, Ai is

a compact subset of a metric space and ui : A ! R is a continuous von Neumann-
Morgenstern utility function.

If X is a minimal strong curb set of G =


N; fAigi2N ; fuigi2N

�
, then it is a

minimal strong curb set of the subgame GX =


N; fXigi2N ; fuigi2N

�
. The intuition

behind the proof of this result is the following. In the game G, for every possible

belief pro�le with support in X, there is no pro�table deviation outside X (since

X 2 min-strong-curb(G)). Then, there is no deviation from some subset Y � X

outside X for beliefs with support in Y . Since Y =2 min-strong-curb(G) (as it would
contradict that X 2 min-strong-curb(G)), there should exist a deviation from Y to

XnY . Then, Y =2 min-strong-curb(GX).

Proposition 2. If X 2 min-strong-curb(G) then X 2 min-strong-curb(GX).

Proof. Let X 2 min-strong-curb(G). X is a trivial strong curb set of the subgame

GX : X 2 strong-curb(GX). We will show that there is no Y  X such that

Y 2 strong-curb(GX). Suppose, on the contrary, that there exists Y  X such

that Y 2 strong-curb(GX). Since Y is not a minimal strong curb set of G, there

exists a vector of beliefs concentrated on Y and a coalition J � N such that each

member of the coalition prefers to play a strategy pro�le outside the set Y rather

than playing a best-response in Y to his belief. Formally, since Y =2 min-strong-
curb(G), there exists J � N , aJ 2 �j2JAjnYj and � = (��1; :::; ��N) with ��i 2
�j2Nnfig�(Yj), i 2 N , such that uj(aJ ; ��J�j ) � uj(aj; ��j) for all j 2 J , for all

aj 2 Yj. Since Y 2 strong-curb(GX), the aforementioned deviation of coalition J
does not belong to �j2JXjnYj, we have aJ 2 �j2JAjnXj. Since X 2 strong-curb(G)
and ��i 2 �j2Nnfig�(Xj) 8i 2 N (since �j2Nnfig�(Yj)  �j2Nnfig�(Xj)), at least

one member j� 2 J prefers to play a best-response in X against the belief ��j�

than playing according to aJ . Thus, we have uj�(bj� ; ��j�) > uj�(aJ ; ��J�j�) for some

bj� 2 Xj. Since uj�(aJ ; ��J�j�) � uj�(aj� ; ��j�) for all aj� 2 Yj�(Y =2 strong-curb(G)),
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we have uj�(bj� ; ��j�) > uj�(aj� ; ��j�) for some bj� 2 Xj�, for all aj� 2 Yj�. This
contradicts the fact that Y 2 strong-curb(GX) since we have identi�ed a belief �
which is such that BRj

�
(��j�) * Y .

4 Relationships with other solution concepts

In this section we relate the concept of minimal strong curb set to the concepts of

strong Nash equilibrium, coalition-proof Nash equilibrium and coalitional rational-

izability. The product set of actions chosen in every strict strong Nash equilibrium

is a minimal strong curb set. Conversely, for every minimal strong curb set com-

posed of one action per player, the strategy pro�le in which each player selects this

action is a strict strong Nash equilibrium. The main weakness of the strong Nash

equilibrium concept is that it fails to exist in a natural class of games. However, the

existence of minimal strong curb sets is guaranteed in general. The question we now

address is whether minimal strong curb sets allow us to make reasonable predictions

in games in which a strong Nash equilibrium does not exist. We provide below a

game in which a strong Nash equilibrium does not exist but the unique minimal

strong curb set is a proper subset of the full strategy space.

Example 2. Consider the normal-form game G3.

L C R

U 4; 4 0; 5 0; 0

M 0; 3 2; 2 0; 0

D 0; 0 0; 0 a; 1

For a < 4 the game G3 has no strong Nash equilibrium while the minimal strong

curb set is unique: min-strong-curb(G3) = ffU;Mg � fL;Cgg. Indeed, when each
player believes that the other player plays in the set, each player�s individual best-

responses lie in the set. In addition, any coalitional deviations outside the set is

blocked by player 2.�

The collection of minimal strong curb sets may be composed of more elements

than the product set of actions chosen in every strong Nash equilibria even when

strong Nash equilibria exist. Consider again the game G3 for a > 4. The strategy

pro�le (D;R) is the unique strong Nash equilibrium of the game. The set composed

of those actions is thus a minimal strong curb set. But, fU;Mg� fL;Cg is another
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minimal strong curb set. As a consequence, the unique strong Nash equilibrium may

not be the only reasonable prediction in this game.

We now establish that if X � A is a strong curb set and a 2 �i2NXi is a strict

strong Nash equilibrium of the subgame restricted to X, then a is a strict strong

Nash equilibrium of the original game.

Proposition 3. For every game G = hN; (Ai)i2N ; (ui)i2Ni, if X � A is a strong

curb set of G and a 2 �i2NXi is a strict strong Nash equilibrium of the subgame

GX = hN; (Xi)i2N ; (ui)i2Ni, then a is a strict strong Nash equilibrium of the original
game G.

Proof. Consider a game G = hN; (Ai)i2N ; (ui)i2Ni. By contradiction, suppose X
� A is a strong curb set of G, a 2 �i2NXi is a strict strong Nash equilibrium of the

subgame GX = hN; (Xi)i2N ; (ui)i2Ni but a is not a strict strong Nash equilibrium of
the original game G. Since a is not a strict strong Nash equilibrium of the original

game G, there exists a coalition J � N and a strategy pro�le a0J 2 �j2JAj which
satis�es ui(a0J ; a�J) � ui(a) 8i 2 J . Since X is a strong curb set of the original

game, a0J 2 �j2JXj (a0J =2 �j2J(AjnXj)). It contradicts the fact that a is a strict

strong Nash equilibrium of the subgame GX = hN; (Xi)i2N ; (ui)i2Ni.

When a coalition-proof Nash equilibrium exists, its support is not necessarily

contained in a minimal strong curb set, as the following example shows.

Example 3 (Ambrus, QJE 2006). Consider the normal-form game G4.

L C R

U 2; 1; 0 0; 0; 0 �9;�9;�9
M 2; 0; 1 1; 0; 2 �9;�9;�9
D �9;�9;�9 �9;�9;�9 �9;�9;�9

l

L C R

U 1; 2; 0 0; 2; 1 �9;�9;�9
M 0; 0; 0 0; 1; 2 �9;�9;�9
D �9;�9;�9 �9;�9;�9 �9;�9;�9

c

L C R

U �9;�9;�9 �9;�9;�9 �9;�9;�9
M �9;�9;�9 �9;�9;�9 �9;�9;�9
D �9;�9;�9 �9;�9;�9 �8;�8;�8

r

The unique coalition-proof Nash equilibrium of G4 is (D;R; r), while the unique

minimal strong curb set is min-strong-curb(G3) = ffU;Mg � fL;Cg � fl; cgg. The
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predictions obtained under the minimal strong curb set seem more reasonable than

the one given by the coalition-proof Nash equilibrium.�

Outside the equilibrium framework Bernheim (1984) and Pearce (1984) have

proposed the concept of rationalizability which consists of an iterative procedure

that eliminates at each round strategies that are never best-response. Strategies

that survive this iterative procedure are said to be rationalizable. Basu and Weibull

(1991) have shown that every strategy contained in a minimal curb set is rationaliz-

able.7 However, contrary to curb sets, strong curb sets may include strategies that

are strictly dominated or even not rationalizable.8

Example 4. Consider the prisoners dilemma G5.

L R

U 2; 2 0; 3

D 3; 0 1; 1

We have that the action U (L) is strictly dominated for player 1 (2) but belongs

to the unique minimal strong curb set of G5. Indeed, min-strong-curb(G5) =

ffU;Dg � fL;Rgg. �

Ambrus (2006) has proposed the concept of coalitional rationalizability using

an iterative procedure.9 The construction is similar to the original de�nition of

rationalizability provided by Bernheim (1984) and Pearce (1984), except that not

only never best-response strategies of individual players are deleted by the procedure,

but also strategies of group of players. Strategies of group of players are deleted if

it is in their mutual interest to restrict their play to the remaining set of strategies.

The set of coalitionally rationalizable strategies is the set of strategies that survive

the iterative procedure of restrictions.10

7See Bernheim (1984), Pearce (1984), Herings and Vannetelbosch (1999, 2000) for the de�nitions

of rationalizability for normal-form games and of its re�nements. The set of rationalizable strategies

coincide with the maximal tight curb set where tight curb sets are curb sets which are identical

with their own best responses.
8Hofbauer and Weibull (1996) have provided a class of evolutionary selection dynamics under

which strictly dominated strategies do survive for some games.
9Ambrus (2009) has provided an alternative concept of best-response to coalitions of players

and he has o¤ered epistemic de�nitions of coalitional rationalizability in normal-form games.
10Another approach is Herings, Mauleon and Vannetelbosch (2004) who have introduced the

notion of social rationalizability
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Coalitional rationalizability may have more cutting power than minimal strong

curb sets, as the following example shows.

Example 5 (Ambrus, QJE 2006). Consider the normal-form game G6.

L R

U 2; 2; 2 0; 0; 0

D 0; 0; 0 3; 3; 0

l

L R

U 0; 0; 0 0; 0; 0

D 0; 0; 0 1; 1; 1

r

The game G6 has a unique coalitionally rationalizable strategy pro�le which is

(D;R; r). Intuitively, player 1 and player 2 both recognize that they have a dom-

inant strategy pro�le (D;R). Anticipating this choice, player 3 selects r. On the

other hand, fDg�fRg�frg is not a strong curb set since the deviation of the three
players from (D;R; r) to (U;L; l) is Pareto improving. The unique strong curb set

of G6 is the full strategy space.�

However, the converse may also be true. Minimal strong curb sets may have

more cutting power than coalitional rationalizability.

Example 6 (Ambrus, QJE 2006). Consider the normal-form game G7.

L C R

U �2; 1 �1; 0 1;�2
M 0;�1 0; 0 0;�1
D 1;�2 �1; 0 �2; 1

In G7 the strategy pro�le (M;C) is a strict strong Nash equilibrium and min-strong-

curb(G7) = ffMg � fCgg. But, any strategy pro�le is coalitionally rationalizable.�

5 Learning to play min-strong-curb strategies

We now provide a class of dynamic learning processes in which groups of players

may coordinate their actions. In line with Hurkens (1995),11 players observe actions

played recently, form their beliefs upon these observations, and play best-responses

to those beliefs. The new feature of the processes we propose is that players are

11See also Fudenberg and Levine (1998) or Young (1998). Kets and Voorneveld (2008) have

provided an alternative dynamic learning process in which players display a bias towards recent

choices and choose best-responses to beliefs supported by observed play in the recent past. The

limit behavior of this learning process is shown to eventually settle down in minimal prep sets.

11



allowed to play coalitional best-reponses. That is, players are allowed to select

a joint action if by doing so, the expected payo¤ of each member of the group is

increased with respect to the payo¤ she would have obtained by playing individually.

We will show that the learning processes we propose lead the players to play only

strategies from a minimal strong curb set, and thus provide a dynamic motivation

for the concept of minimal strong curb set.

A game G =


N; fAigi2N ; fuigi2N

�
is played once every period. In each period,

one player is drawn at random from each of n disjoint classes C1; C2; :::; Cn, to play

the game G in that period. These players are partitioned into coalitions to form a

coalition structure. A coalition structure J = (J1; J2; : : : ; JM) is a partition of the

player set N = f1; 2; : : : ; ng such that Jk \ Jl = ? for k 6= l and [Mk=1Jk = N .

Let J be the �nite set of coalition structures. Each coalition structure J 2 J has a
positive probability to occur at each period. Players have information about how

the game has been played in the last K periods. We de�ne the state space H = AK

to consist of all histories h = (a�K ; :::; a�1) of length K. In a given period t, for

a particular history ht = (at�K ; :::; at�1), at�k is the action pro�le chosen by the

n players in period t � k for k 2 f1; :::; Kg. Since the choices of the players are
time-independent, the learning process can be described by a stationary Markov

chain on the state space H = AK . Call bh 2 H a successor of h 2 H if bh is obtained
from h by deleting the leftmost element and by adding some element a 2 A to the
right. Let r(bh) denote the rightmost element of bh 2 H. For h = (a�K ; :::; a�1) 2 H,
let �i(h; k) = fa�ki ; :::; a�1i g denote the set of strategies played by player i in the
k last periods, for k � K. Let P : H � H ! [0; 1] be a transition matrix, where

P (h;bh) is the probability of moving from state h 2 H to state bh 2 H in one period

and �bh2HP (h;bh) = 1 for all h 2 H. A learning process is described by a transition
matrix P 2 P, where P is de�ned as follows.

De�nition 4. Let P be the set of transition matrices P that satisfy for all histories h,bh 2 H, P (h;bh) > 0 if and only if (i) bh is a successor of h, (ii) there exists some J 2 J
and � = (��1; :::; ��n) with ��i 2 �j2Nnfig�(�j(h;K)) such that r(bh) = (aJ)J2J

with aJ 2 CBRJ(�) if CBRJ(�) 6= ? and aJ 2 �i2JBRi(��i) otherwise.

At each period every player chooses an action. This action can be chosen individ-

ually or in group, and is chosen after having observed the recent past play. When a

group of players coordinate their actions, they choose a Pareto undominated action

12



pro�le such that each member of the group bene�ts from playing jointly. In state

h, if coalition J � N has a coalitional best-response aJ 2 CBRJ(�) given a pro�le
of beliefs with support in the set of strategies played in the recent past, then the

process moves with positive probability from state h to state bh in which each mem-
ber of coalition J plays according to aJ . To determine the outcome of such learning

processes, what matters is to identify, for each state h, the set of states that can

be reached from h in one period with positive probability and those that cannot be

reached. Since the exact probability does not matter, we do not have to specify a

particular process of belief formation nor a protocol of coalition formation. We only

require that every such belief with support in the set of actions played recently and

every partition of the players occur with positive probability.

For each k 2 N , P k : H �H ! [0; 1] denotes the k-step transition probabilities

of the Markov process with transition matrix P 2 P : P 1 = P and P k = P � P k�1

for k > 1. We will write h  bh if there exists k 2 N satisfying P k(h;bh) > 0.

Now  de�nes a weak order on H. We can de�ne an equivalence relation on H:

h � bh , h  bh and bh  h. Let [h] denote the equivalence class that contains

h and let Q = f[h] j h 2 Hg denote the set of equivalence classes. A partial order
� on Q is given by: [h] � [bh] , bh  h. The minimal elements with respect to

the order � are called ergodic sets. The other elements are called transient sets.

If the process leaves a transient set it can never return to that set. If the process

is in an ergodic set it can never leave that set. The elements belonging to ergodic

and transient sets are called ergodic and transient states, respectively. In any �nite

Markov chain, no matter where the process starts, the probability that the process

is in an ergodic state after k steps tends to 1 as k tends to in�nity (see Kemeny and

Snell, 1976). Proposition 4 states that if memory is long enough (K high enough),

the probability that the players are playing a minimal strong curb strategy pro�le

after k steps of the learning process tends to 1 as k tends to in�nity. To prove this

result it is su¢ cient to show that each ergodic set Z of every Markov chain with

transition matrix P 2 P satis�es Z � XK for some X 2 min-strong-curb(G).

Proposition 4. There exists K 2 N such that for all �nite K � K and every

Markov chain with transition matrix P 2 P; if Z � H is an ergodic set then

Z � XK for some minimal strong curb set X.

Let L = �ni=1 jAij � (n � 1). Let M = max(jA1j ; :::; jAnj ;�ni=1 jAij � n). Take
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K = L +M and let K � K be �nite. Let P 2 P. To prove Proposition 4 we will
show that (i) from any history h1 2 H, the process moves with positive probability
in L � 1 steps to a state hL 2 H such that �i2N�i(hL; L) is a strong curb set, (ii)
from state hL, the process moves with positive probability in M steps to a state

hL+M 2 H such that �i2N�i(hL+M ;M) is a minimal strong curb set, and (iii) steps
(i) and (ii) imply that if Z � H is an ergodic set then Z � XK for some minimal

strong curb set X. The following lemma will be useful to prove Proposition 4.

Lemma 1. Let ht = (xK�t; :::; x1; a1; :::; at) be a particular history. (a) If the players

draw their beliefs from �i2N�i(ht; t), the process moves with positive probability to
an history ht+1 such that �i2N�i(ht; t)  �i2N�i(ht+1; t + 1) if �i2N�i(ht; t) is not
a strong curb set. (b) If the players draw their beliefs from �i2N�i(ht; t), the process
moves with probability 1 to an history ht+1 such that �i2N�i(ht; t) = �i2N�i(ht+1; t+
1) if �i2N�i(ht; t) is a strong curb set.

Proof. Let ht = (xK�t; :::; x1; a1; :::; at) be a particular history. (a) Assume that

�i2N�i(ht; t) is not a strong curb set. Then, there exists a partition J 2 J,
a pro�le of beliefs with support in the set of actions played in the last t peri-

ods � = (��1; :::; ��n) with ��i 2 �j2Nnfig�(�j(ht; t)), and a pro�le of actions
at+1 2 A n �i2N�i(ht; t) where at+1 = (bJ)J2J with bJ 2 CBR

J(�) if CBRJ(�) 6= ?
and bJ 2 �i2J BRi(��i) otherwise. Let ht+1 = (xK�t+1; :::; x1; a1; :::; at+1). Then

P (ht; ht+1) > 0 and �i2N�i(ht; t)  �i2N�i(ht+1; t+ 1).
(b) Assume that �i2N�i(ht; t) is a strong curb set. Take any partition J 2 J and
any pro�le of beliefs with support in the set of actions played in the last t periods

(� = (��1; :::; ��n) with ��i 2 �j2Nnfig�(�j(ht; t))), we have that every pro�le of
actions at+1 2 A such that at+1 = (bJ)J2J with bJ 2 CBR

J(�) if CBRJ(�) 6= ?
and bJ 2 �i2J BRi(��i) otherwise, belongs to the strong curb set �i2N�i(ht; t) by
de�nition of P . Let ht+1 = (xK�t+1; :::; x1; a1; :::; at+1). Then P (ht; ht+1) > 0 and

�i2N�i(ht; t) = �i2N�i(ht+1; t+ 1).

Proof of Proposition 4. (i) Let a1; :::; aT 2 A be such that at+1 =2 �i2N�i(ht; t)
for all t = 1; :::; T � 1. By de�nition of L, we have T � L since �i2N�i(h1; 1)
contains n actions, �i2N�i(ht+1; t + 1) contains at least one additional action than
�i2N�i(ht; t) and the action space A, which is the largest strong curb set, contains
�ni=1 jAij of them. Thus, there exists a � � L such that, starting from h1 and

applying � times part (a) of Lemma 1, we have h1  h� = (xK�� ; :::; x1; a1; :::; a� )
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and �i2N�i(h� ; �) is a strong curb set. From part (b) of Lemma 1, we have h�  
hL = (xK�L; :::; x1; a1; :::; a� ; :::; aL) such that �i2N�i(h� ; �) is a strong curb set and
�i2N�i(hL; L) = �i2N�i(h� ; �).
(ii) Let X � �i2N�i(hL; L) be a minimal strong curb set. Since K � L +M

and since every strategy in a minimal strong curb set is an element of a coalitional

best-response to some belief concentrated on the set, there exists a set fb1; :::; bMg
that spans X and such that hL  hL+M = (:::; a1; :::; aL; b1; :::; bM). That is, from

hL there is a positive probability that each player i 2 N draws speci�c beliefs from

�j2Nnfig�(�j(hL; L)) and is assigned to speci�c coalitions duringM periods in a row

(from period L+1 to period L+M) such that each coalition (possibly a single player)

chooses a coalitional best-response in each period and the process reaches hL+M =

(:::; a1; :::; aL; b1; :::bM).12 Once in hL+M , each player draws with positive probability

her beliefs from the minimal strong curb set �i2N�(�i(hL+M ;M)) during K �M
periods in a row. Then, the process reaches history hL+K = (b1; :::; bM ; c1; :::; cK�M)

such that �i2N�i(hL+K ; K�M) � X. By de�nition of P, when the process reaches
state hL+K , each player draws her beliefs from X with probability 1 and plays

coalitional best-responses to her beliefs by selecting with probability one actions from

X. So, �i2N�i(hL+K+1; K) � X. Repeating the previous argument, we have that
�i2N�i(hL+K+k; K) � X for all k 2 N and for all hL+K+k such that hL+K  hL+K+k.

Once in hL+K , each player plays with probability one actions from the minimal

strong curb set X in all future periods. The set XK thus contains an ergodic set.

(iii) By contradiction, suppose there exists an ergodic set Z such that Z * XK

for any minimal strong curb set X. Thus Z contains an ergodic state h 2 H such

that h =2 XK for all minimal strong curb set X. Applying (i) and (ii), we have

h h0 such that h0 2 Y K for some minimal strong curb set Y and h0 is an ergodic
state of some ergodic set W � Y K . Since h =2 W , we do not have h0  h. This

contradicts the fact that h is an ergodic state and thus that Z is an ergodic set. �
Remark 1. Take any game G =



N; fAigi2N ; fuigi2N

�
such that jAij > 1 and jAjj >

1 for i; j 2 N , i 6= j. We have M = �ni=1 jAij � n. Suppose we are in state hL and
X � �i2N�i(hL; L) is a minimal strong curb set of G. Let k = max(jX1j ; :::; jXnj)
and let l = �ni=1 jXij � n. (a) If X = �i2NXi is such that every action ai 2 Xi

of each player i 2 N is an individual best-response to some belief in the set, the

process can converge in exactly k periods from hL to hL+k = (:::; a1; :::; aL; b1; :::bk)

12See Remark 1 for an explanation of the value of M.
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with the property that fb1; :::; bkg spans X. (b) If X = �i2NXi is such that some

action ai 2 Xi of player i only belongs to some coalitional best-response, the time

of convergence of the process can be longer even more if the same player is involved

in di¤erent coalitional moves. It can take at most l periods to move from hL to

hL+l = (:::; a1; :::; aL; b1; :::bl) with the property that fb1; :::; blg spans X. This is
illustrated through the following example.

Example 7. Consider the normal form game G8

L R

U 2; 2; 1 0; 3; 3

D 3; 0; 1 1; 1; 1

l

L R

U 0;�1; 0 2; 0; 2

D 1;�1; 0 3; 0; 0

r

We have that min-strong-curb(G8) = ffU;Dg�fL;Rg�fl; rgg andM = �ni=1 jAij�
n = 3. Suppose the process is in state hM where �i2N�i(hM ;M) = A. Let k be the
smallest integer such that hM  hM+k with the property that �i2N�i(hM+k; k) = A.

We have k = 3 since player 2 selects her strategy L only when coalition f1; 2g plays
(U;L). Player 3 selects her strategy r only when coalition f1; 3g plays (U; r). A
third period is needed for player 1 to play D.�

6 Conclusion

Basu and Weibull (1991) have introduced the notion of curb sets which are product

sets of pure strategies containing all individual best-responses against beliefs re-

stricted to the recommendations to the remaining players. The concept of minimal

curb sets is a set-theoretic coarsening of the notion of strict Nash equilibrium. In

this paper we have introduced the concept of minimal strong curb sets which is a

set-theoretic coarsening of the notion of strong Nash equilibrium. Strong curb sets

require sets to be immune not only against individual deviations, but also against

group deviations. Strong curb sets are product sets of pure strategies such that each

player�s set of recommended strategies must contain all coalitional best-responses of

each coalition to whatever belief each coalition member may have that is consistent

with the recommendations to the other players. We have shown that minimal strong

curb sets exist in general. We have also compared minimal strong curb sets with

other well known solution concepts. Finally, we have provided a dynamic learning

process leading the players to playing strategies from a minimal strong curb set only.
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Appendix

A Existence of strong curb sets

We now show that the existence of minimal strong curb sets holds in general. Let G
be the class of normal-form games G =



N; fAigi2N ; fuigi2N

�
where for each player

i 2 N = f1; 2; : : : ; ng, Ai is a compact subset of a metric space and ui : A ! R
is a continuous von Neumann-Morgenstern utility function. Payo¤s are extended

to mixed strategies in the usual way. Let �(Ai) be the set of Borel probability

measures over Ai. If Bi � Ai is a Borel set, then �(Bi) denotes the set of Borel

probability measures with support in Bi: �(Bi) = f�i 2 �(Ai) j �i(B) = 1g. If
G 2 G, that is, payo¤ functions are continuous and strategy sets compact, then each
set BRi(��i) � Ai is nonempty and compact.

Theorem A.1. Every game G 2 G has a minimal strong curb set.

Proof. Let Q = strong-curb(G) denote the collection of all strong curb sets of G.

A is a strong curb set of G since for every J � N and � = (��1; :::; ��N) with

��i 2 �l2Nnfig�(Al), i 2 N , we have CBRJ(�) � �j2JAj. So Q is nonempty and

partially ordered via set inclusion. According to the Hausdor¤Maximality Principle,

Q contains a maximal nested subset R. For each i 2 N , let Xi = \Y 2RYi be the
intersection of player i�s strategies in the nested set R. The set Xi is nonempty
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since the conditions of the Cantor intersection principle13 are satis�ed, i.e. (i) the

collection fYi j Y 2 Rg is nested and thus satis�es the �nite intersection property
and (ii) each Yi is nonempty and compact for each strong curb set. It remains to

prove that X = �i2NXi is a minimal strong curb set. Take � = (��1; :::; ��N)

with ��i 2 �l2Nnfig�(Xl), i 2 N . We have that CBRJ(�) \ �j2J(AjnXj) = ;
for J � N since CBRJ(�) \ �j2J(AjnXj) = CBRJ(�) \ ([Y 2R �j2J (AjnYj)) =
[Y 2R(CBRJ(�)\�j2J(AjnYj)) and CBRJ(�)\�j2J(AjnYj) = ; for all Y 2 R (Y
is a strong curb set). This establishes that X is a strong curb set. The fact that it is

minimal follows directly from the fact that R is a maximal nested subset of Q.

B Strong prep sets

Voorneveld (2004) has proposed another set-valued solution concept, prep sets,

which are formally de�ned as follows.

De�nition B.1. A prep set is a product set X = �i2NXi where (a) for each i 2 N ,
Xi � Ai is a nonempty set of pure strategies; (b) for each i 2 N and each belief ��i
of player i with support in X�i, the set Xi contains at least one best response of

player i against his belief : 8i 2 N; 8��i 2 �j2Nnfig�(Xj); BR
i(��i) \Xi 6= ?.

A prep set X is minimal if no prep set is a proper subset of X. Voorneveld

(2004) has shown that every game G possesses at least one minimal prep set. The

set-valued solution concept that assigns to each game its collection of minimal prep

sets is denoted by min-prep.14 Similarly to strong curb sets, we can de�ne the notion

of strong prep sets as follows.

De�nition B.2. A strong prep set is a product set X = �i2NXi where (a) for each

i 2 N , Xi � Ai is a nonempty set of pure strategies; (b) for each J � N and each

vector of beliefs� = (��1; :::; ��N) of the players with each belief ��i having support

in X�i, the product set XJ = �j2JXj contains at least one coalitional best response

13In words, the Cantor intersection principle tells us that to show that the intersection of an

in�nite number of elements of a set Z is nonempty and compact, we just need to show that the

intersection is nonempty and compact for every subset of Z composed of �nite elements.
14Voorneveld, Kets and Norde (2005) have provided axiomatizations of minimal prep sets and

minimal curb sets.
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of coalition J against the beliefs of its members: 8J � N;8� = (��1; :::; ��n) with
��i 2 �l2Nnfig�(Xl), i 2 N , CBRJ(�) \ �j2JXj 6= ?.

A strong prep set X is minimal if no strong prep set is a proper subset of X.

Every strong curb set is a strong prep set, so if a strong curb set is contained in a

minimal strong prep set, the two sets are necessarily equal. Similarly to Proposition

2 we have that, if X is a minimal strong prep set of G, then it is a minimal strong

prep set of the subgame GX .
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