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A NOTE ON UTILITY MAXIMIZATION WITH UNBOUNDED RANDOM
ENDOWMENT

KEITA OWARI

Graduate School of Economics, Hitotsubashi University
2-1 Naka, Kunitachi, Tokyo 186-8601, Japan

This paper addresses the applicability of the convex duality method for utility maximiza-
tion, in the presence of random endowment. When the price process is a locally bounded
semimartingale, we show that the fundamental duality relation holds true, for a wide class
of utility functions and unbounded random endowments. We show this duality by exploit-
ing Rockafellar’s theorem on integral functionals, to a random utility function.

1. INTRODUCTION

Maximization of expected utility has been a time-honored issue in the study of mathemat-
ical finance. Especially, the following version of the problem with random endowment is
important in view of its application to utility indifference valuation:

(1.1) maximize EŒU.� � ST C B/�; over all � 2 �;

where U is an utility function, S is a semimartingale, � is the set of admissible integrands
(strategies), and B is a random variable expressing a random endowment or a contingent
claim.

A sophisticated way of solving (1.1) is the convex duality method which pass (1.1) to a
minimization over the set of local martingale measures for S , through the (formal) duality
equality:

(1.2) sup
�2�

EŒU.� � ST C B/� D inf
�>0

inf
Q2M

E

�
V

�
�

dQ

dP

�
C �

dQ

dP
B

�
;

where V is the Fenchel-Legendre transform of the utility function U , and M is a set of
local martingale measures. The RHS of (1.2) is the optimal value of the dual problem.
Note that the inequality “�” is always true, while “�” may not. This equality is shown by
several authors in different settings, e.g., the case of no endowment .B � 0) by Kramkov
and Schachermayer [12] and Schachermayer [17], the case of bounded B by Bellini and
Frittelli [2], and the case of exponential utility with suitably integrable B by Delbaen et al.
[5], Kabanov and Stricker [11] and Becherer [1].

Then a natural question arises: to what degree of generality does the equality (1.2) hold
true ? This is the theme of this note. Under the fundamental assumption that S is locally
bounded, we shall prove the duality for a wide class of endowments B . Our idea is based on
a refinement of [2] from a slightly different point of view. Namely, we view the problem

E-mail address: keita.owari@gmail.com, ed061002@g.hit-u.ac.jp.
2010 Mathematics Subject Classification. 91G80, 60H30, 46N10 .
Key words and phrases. Utility maximization, Convex duality method, Martingale measures.

1

mailto:keita.owari@gmail.com
mailto:ed061002@g.hit-u.ac.jp


2 K. OWARI

(1.1) as the maximization of expected utility functional associated to the random utility
function .!; x/ 7! U.x C B.!//. This allows us to take full advantage of Rockafellar’s
theorem on convex integral functionals.

2. RESULT

2.1. SETUP

Suppose we are given a complete probability space .˝;F ; P / equipped with a filtration
F WD .Ft /t2Œ0;T � satisfying the usual conditions of right-continuity and completeness,
where T 2 .0; 1/ is the fixed time horizon. We assume F D FT for notational simplicity.
Let S be a d -dimensional càdlàg locally bounded semimartingale on .˝;FT ; F ; P /, and
define

(2.1) �bb WD f� 2 L.S/ W �0 D 0; � � S is uniformly bounded from belowg;

where L.S/ D L.S; P / denotes the set of d -dimensional predictable processes � D

.�1; :::; �d / which are .S; P /-integrable, and � � S D
R �

0 �sdSs is the stochastic integral of
� 2 L.S/ w.r.t. S . For the precise definitions and basic properties of stochastic integrals
and the set L.S/, we refer the reader to Jacod [9, 10]. Any � 2 �bb is called an admissible
strategy, and we explicitly include the condition �0 D 0 in the definition of admissibility
to avoid the contribution of the initial value �0S0 to the stochastic integral.

In this paper, we consider only a class of utility functions defined on the whole real line.
More precisely, we assume:

(A1) U W R ! R is a continuously differentiable, increasing, and strictly concave function
satisfying the so-called Inada condition:

(2.2) lim
x!�1

U 0.x/ D C1 and lim
x!C1

U 0.x/ D 0:

For a given utility function U , the Fenchel-Legendre transform of U is defined by

V.y/ WD sup
x2R

.U.x/ � xy/; y 2 R:

In the language of convex analysis, V is the convex conjugate of the convex function
˚.x/ D �U.�x/. Under (A1), V is also differentiable with V 0.y/ D �.U 0/�1.y/, and
has the explicit representation: V.y/ D U..U 0/�1.y// � y.U 0/�1.y/ if y > 0, V.0/ D

U.C1/ WD limx!C1 U.X/, and V.y/ D C1 if y < 0. Furthermore, we have

lim
y#0

V 0.y/ D �1 and lim
y!1

V 0.y/ D C1:(2.3)

Note in particular that V is bounded from below. For utility functions, we assume also the
condition of reasonable asymptotic elasticities:

(A2) AE�1.U / WD lim inf
x&�1

xU 0.x/

U.x/
> 1; AEC1.U / WD lim sup

x%C1

xU 0.x/

U.x/
< 1:

This condition is introduced by Kramkov and Schachermayer [12] and Schachermayer [17]
as a necessary and sufficient condition for the existence of optimal investment strategy.
Also, (A2) is equivalent to (see [6]): for any closed interval Œa; b� � .0; 1/, there exists
C1; C2 > 0 such that

V.�y/ � C1V.y/ C C2.y C 1/; 8y > 0; � 2 Œa; b�:(2.4)

A probability measure Q � P under which S is a local martingale is called an ab-
solutely continuous local martingale measure for S , and the set of all such measures is



UTILITY MAXIMIZATION WITH ENDOWMENT 3

denoted by Mloc . For the domain of the dual problem, we introduce the following subset
of Mloc :

MV WD fQ 2 Mloc W EŒV.dQ=dP /� < 1g:

Note that, by the consequence (2.4) of (A2), we have for all Q � P ,

EŒV.dQ=dP /� < 1 , EŒV.�dQ=dP /� < 1; 8� > 0:

Generically, for any set Q of positive measures Q � P , we denote by Qe the set of
Q 2 Q with Q � P . We assume a version of no-arbitrage condition:

(A3) Me
V ¤ ;.

Finally, let B be a FT -measurable random variable such that:

(A4) There exists some " > 0 for which,

EŒU.�.1 C "/B�/� > �1;(2.5)

EŒU.�"BC/� > �1:(2.6)

2.2. MAIN THEOREM AND RELATED RESULTS

We are now in the position to state the main theorem. The proof will be given in Section 3.

Theorem 2.1. Under (A1) – (A4), the duality equality holds, i.e.,

(2.7) sup
�2�bb

EŒU.� � ST C B/� D inf
�>0

inf
Q2MV

E

�
V

�
�

dQ

dP

�
C �

dQ

dP
B

�
;

and the infimum in the RHS is attained by some . O�; yQ/ 2 .0; 1/ � Me
V .

From a practical point of view, it is also important to ask whether the optimal expected
utility can be approximated by bounded stochastic integrals, i.e., by admissible strategies
such that � � S is bounded not only from below, but also from above. If the utility function
is bounded from above, the answer is positive. Let

(2.8) �b D f� 2 L.S/ W �0 D 0; � � S is uniformly boundedg:

Corollary 2.2. If, in addition to (A1) – (A4), U is bounded from above, then we have

(2.9) sup
�2�b

EŒU.� � ST C B/� D inf
�>0

inf
Q2MV

E

�
V

�
�

dQ

dP

�
C �

dQ

dP
B

�
:

Finally, as pointed out by [5] in the case of exponential utility, the duality equality is
quite robust in the choice of admissible class. Let

(2.10) �V WD f� 2 L.S/ W �0 D 0; � � S is a supermartingale under 8Q 2 MV g:

Corollary 2.3. Suppose (A1) – (A4), and let � � L.S/ be sandwiched by �bb (resp. �b

if U.1/ < 1) and �V , i.e., �bb � � � �V (resp. �b � � � �V ). Then (2.7) remains
true with �bb replaced by �.

We conclude this section with a brief review of related literature. Generally speaking,
our result is an intermediate one among duality results of the type (1.2), in that, we require
S to be locally bounded, but give a duality of the classical-type (i.e., exclude the unpleasant
intervention of bizarre singular term, see below) for a wide class of U and B .
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Bounded Endowment. To our best knowledge, a duality result as our Theorem 2.1 appears
first in [2]. Their argument (from our view point) is based on the analysis of the functional
X 7! EŒU.X/� on L1, and its conjugate defined on ba ' .L1/� (Banach space of
finitely additive signed measures), giving the duality for the case B � 0. Then the case of
bounded endowment follows by translation of the domain in L1.
Exponential Utility. The “Six-Author Paper” [5] and its refinement [11] develop a general
duality theory for the case of exponential utility: U.x/ D 1 � e�˛x , giving the duality
equality under (2.5) and the boundedness from above of B . This assumption is weakened
by [1] to the condition corresponding to our (A4). More recently, Owari [13] extends this
framework to the robust exponential utility maximization.
General Semimartingales. Without doubt, the duality theory can be extended to the case
with non-locally bounded S . In this case, however, the duality equality holds only in a
generalized sense as (Biagini et al. [3]):

sup
�2HW

EŒU.� � ST C B/� D inf
�>0

inf
Q2MW

�
E

�
V

�
�

dQr

dP

��
C �Q.B/ C �kQs

k

�
:

where HW is the set of integrands of which � � S is bounded from below by a suitable
random variable W , MW is a subset of ba, Q.B/ is the “integral” of B w.r.t. a finitely
additive measure Q, and Qr (resp. Qs) denotes the regular (resp. singular) part of Q in
the Hewitt-Yosida decomposition. Our integrability assumption (A4) appears in [3]. In
this respect, Theorem 2.1 states that, in the case of locally bounded S , the singular term
automatically disappears, whenever B satisfies (A4), although the case where B satisfies
(2.5) and (2.6) for “8" > 0” is covered by [3].
Other Case. Yet another approach is proposed by [14]. There the problem (1.1) is consid-
ered under the assumption that there exists x0; x00 2 R and � 0; � 00 2 �V such that

(2.11) x0
C � 0

� ST � B � x00
C � 00

� ST ;

and � 0 � S is a martingale under every Q 2 MV . This has no apparent relation to our
assumption. In contrast to this formulation, our approach has an advantage that we need
only the integrability conditions for B , which are easily checked a priori, while (2.11) is
hard to verify.

Remark 2.4. Since we focus only on the case of utility on R, articles on the case of
utility on RC are omitted. For this direction, see e.g., Cvitanić et al. [4], Hugonnier and
Kramkov [7], Hugonnier et al. [8] and references therein.

3. PROOFS

3.1. OUTLINE

We first give the outline of the proof, which may help the understanding. Roughly speak-
ing, our idea is based on Bellini and Frittelli [2], but exploits Rockafellar’s theorem [15]
on convex integral functionals to a random utility function.

As most of literature on this subject, we first reduce the problem to a maximization of a
concave functional defined on L1, and then appeal to the .L1; ba/-duality. Define

(3.1) C WD fX 2 L1
W 9� 2 �bb such that X � � � ST g;

which is a convex cone containing L1
� and K WD f� � ST W � 2 �bg (see e.g., [2]). As in

[2], we can show (Lemma 3.6 below):

sup
�bb

EŒU.� � ST C B/� D sup
X2C

EŒU.X C B/�:
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Let ıC.X/ D 0 if X 2 C and D C1 otherwise (i.e., ıC is the indicator function of C in the
sense of convex analysis), and define (formally) a concave functional uB on L1 by

(3.2) uB.X/ WD EŒU.X C B/�:

Then we have

sup
X2C

uB.X/ D sup
X2L1

.uB.X/ � ıC.X//;

Now if uB is well-defined and regular enough, Fenchel’s duality theorem shows that

sup
X2L1

.uB.X/ � ıC.X// D min
�2ba

.ı�
C.�/ � u�

B.�// D min
�2ba

.vB.�/ C ı�
C.�//;

where vB is the conjugate of uB defined on ba by

vB.�/ WD sup
X2L1

.uB.X/ � �.X//; � 2 ba:(3.3)

Thus, the key step is to verify the regularity of uB and to derive the explicit form of vB . We
will do this (Proposition 3.8) by exploiting Rockafellar’s theorem to uB which is a concave
integral functional defined by the random concave function UB on ˝ � R: UB.!; x/ WD

U.x C B.!//. In this step, the assumption (A4) plays a crucial role, giving the estimates
between U , UB and V (Lemma 3.4).

3.2. PRELIMINARIES AND IMPORTANT ESTIMATES

We first introduce some additional notations and concepts used in the proof of Theorem 2.1.
The first one is the description of the space ba.

Definition 3.1 (ba.˝;FT ; P /). ba WD ba.˝;FT ; P / is the set of all bounded finitely
additive measures absolutely continuous w.r.t. P , i.e., � 2 ba.˝;FT ; P / if and only if �

is a real valued function on FT such that (1) supA2FT
j�.A/j < 1, (2) for every A 2 FT ,

P.A/ D 0 implies �.A/ D 0, (3) if A; B 2 FT and A \ B D ;, then �.A [ B/ D

�.A/C�.B/. Also, baC (resp. ba� ) denotes the set of positive (resp. �-additive) elements
of ba, and set ba�

C WD baC \ ba� , ba
�;1
C WD f� 2 ba�

C W �.˝/ D 1g, and

QV WD f� 2 ba�
C W EŒV.d�=dP /� < 1g:

Only facts which will be used here are: (1) ba is a Banach space equipped with the
total variation norm, and ba ' .L1/�, (2) every � 2 ba has a unique decomposition
� D �r C �s , where �r 2 ba� and �s is purely finitely additive. ba

�;1
C is nothing but the

set of probabilities Q on .˝;FT / with Q � P . Also, as a direct consequence of (2.4),
QV is a convex cone having the following representation:

Lemma 3.2.

1. If V.0/ D U.1/ < 1,

(3.4) QV D f�Q W � � 0; Q 2 ba
�;1
C ; EŒV .dQ=dP /� < 1g:

2. If V.0/ D C1,

(3.5) QV D f�Q W � > 0; Q 2 ba
�;1
C ; EŒV .dQ=dP /� < 1g:

Recall that the set C (defined by (3.1)) is a convex cone containing L1
� . The following

relation between C and Mloc is well-known (e.g., [2, Lemma 1.1]): for every Q 2 ba
�;1
C ,

(3.6) Q 2 Mloc , EQŒX� � 0; for 8X 2 C:
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Let ı�
C be the conjugate of the indicator function ıC , i.e.,

ı�
C.�/ D sup

X2L1

.�.X/ � ıC.X// D sup
X2C

�.X/; 8� 2 ba:

The above observations immediately yield the next lemma.

Lemma 3.3. ı�
C.�/ D C1 if � 62 baC, and for all � 2 ba�

C,

(3.7) ı�
C.�/ D

(
0 if � 2 cone.Mloc/

C1 otherwise.

Here

cone.Mloc/ D f�Q W � � 0; Q 2 Mlocg:

Proof. If � 62 ba, there exists NX 2 L1
C with �. NX/ < 0. Since L1

� � C, we have �� NX 2 C
for all � > 0, hence

ı�
C.�/ � sup

�>0

���. NX/ D C1:

The fact that C is a cone implies that ı�
C is f0; C1g-valued, and ı�

C.�/ D 0 if and only
if �.X/ � 0 for all X 2 C. If � 2 ba�

C, the latter condition is equivalent to saying that
� 2 cone.Mloc/ by (3.6). ¤

The following estimates are elementary, but play a key role in the proof of theorem.

Lemma 3.4. Let " > 0.

(a) For every random variable Y � 0,
"

1 C "
.V .Y / � V.1// C U.�.1 C "/B�/ � V.Y / C YB

�
1 C "

"
V .Y / �

1

"
U.�"BC/:

(3.8)

(b) For every Y � 0 and every random variable X ,

"

1 C "
U

�
1 C "

"
X

�
C

1

1 C "
U.�.1 C "/B�/ � U.X C B/

�
1 C "

"
V .Y / C XY �

1

"
U.�"BC/:

(3.9)

Remark 3.5. We make some remarks on the consequences of (A4).

1. (3.8) implies that V.Y / 2 L1 if and only if V.Y / C YB 2 L1, and in this case,
YB 2 L1 and EŒV.Y / C YB� D EŒV.Y /� C EŒYB�. In particular, for any Q 2 ba

�;1
C ,

EŒV.dQ=dP /� < 1 implies B 2 L1.Q/.
2. The map .�; Q/ 7! EŒV.�dQ=dP / C �.dQ=dP /B� on RC � ba

�;1
C to .�1; C1� is

well-defined (note that V is bounded from below), and is finite if and only if �Q 2 QV .
Let �; Q be such a pair. Then by Jensen’s inequality,

(3.10) E

�
V

�
�

dQ

dP

�
C �

dQ

dP
B

�
�

"

1 C "
.V .�/ � V.1// C EŒU.�.1 C "/B�/�:

In particular, inf��0;Q2MV
EŒV.�dQ=dP / C �.dQ=dP /B� > �1, since again V is

bounded from below.
3. (A3) and (A4) implies that U.X C B/ 2 L1 for every X 2 L1. Indeed, the LHS of

(3.9) is integrable for any X 2 L1 since U is monotone, while the RHS is integrable
for Y D d xQ=dP with xQ 2 MV .
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Proof of Lemma. (a) For any Y � 0,

"YB � Y."BC/ � V.Y / � U.�"BC/;(3.11)

by Young’s inequality, thus,

V.Y / C YB �
1 C "

"
V.Y / �

1

"
U.�"BC/;

and we get the second inequality in (3.8). On the other hand,

YB�
D

Y

1 C "
.1 C "/B�

�

�
"

1 C "
C

1

1 C "
Y

�
.1 C "/B�

� V

�
"

1 C "
C

1

1 C "
Y

�
� U.�.1 C "/B�/

�
1

1 C "
V.Y / C

"

1 C "
V .1/ � U.�.1 C "/B�/:

Using this,

V.Y / C YB � V.Y / � YB�
�

"

1 C "
V.Y / �

"

1 C "
V .1/ C U.�.1 C "/B�/:

These prove the assertion (a).
(b) For any random variable X and positive random variable Y ,

U.X C B/ � V.Y / C Y.X C B/

�
1 C "

"
V.Y / C XY �

1

"
U.�"BC/;

by (3.11). Also, since U is concave and monotone increasing,

U.X C B/ D U

�
"

1 C "
�

1 C "

"
X C

1

1 C "
� .1 C "/B

�
�

"

1 C "
U

�
1 C "

"
X

�
C

1

1 C "
U..1 C "/B/

�
"

1 C "
U

�
1 C "

"
X

�
C

1

1 C "
U.�.1 C "/B�/:

This completes the proof. ¤

We now reduce the problem to a minimization in C.

Lemma 3.6. We have

(3.12) sup
�2�bb

EŒU.� � ST C B/� D sup
X2C

EŒU.X C B/�:

Proof. The inequality “�” is immediate from the definition of C and the monotonicity of
U . Let � 2 �bb . Then for any k 2 N, Xk WD .� � ST / ^ k is in C. Since � 2 �bb , there
exists x > 0 with � � S � �x uniformly, a.s., hence Xk � �x, a.s. We have

U.Xk C B/ % U.� � ST C B/; a.s.(3.13)

Now Lemma 3.4 (b) implies that U.Xk C B/ �
"

1C"
U. �.1C"/

"
x/ C

1
1C"

U.�.1 C "/B�/,
for each k, which is in L1 by (A4). On the other hand, taking Q 2 MV (by (A3)),
U.� � ST C B/ �

1C"
"

V.dQ=dP / C � � ST dQ=dP �
1
"
U.�"BC/ 2 L1, since � � S is a

Q-supermartingale, and U.�"BC/ 2 L1 by (A4). Therefore, the convergence (3.13) takes
place in L1 by the dominated convergence theorem, hence limk!1 EŒU.Xk C B/� D

EŒU.� � ST C B/�. This proves the inequality “�”. ¤
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The final lemma in this subsection states that the infimum in the dual problem must not
attained neither by � D 0 nor by Q 6� P .

Lemma 3.7. If � 2 QV n Qe
V , there exists Q� 2 Qe

V such that

E

�
V

�
d Q�

dP

�
C

d Q�

dP
B

�
< E

�
V

�
d�

dP

�
C

d�

dP
B

�
:

Proof. This is trivial if V.0/ D C1 since then QV D Qe
V , thus we assume V.0/ < 1.

Let � 2 QV and N� 2 Qe
V (¤ ; by (A3)). Set �˛ WD ˛ N� C .1 � ˛/� 2 QV (˛ 2 Œ0; 1�). Note

that �˛ 2 Qe
V for ˛ 2 .0; 1/. Set also,

'˛ WD V

�
d�˛

dP

�
C

d�˛

dP
B 2 L1:

Since ˛ 7! '˛.!/ is convex for a.e. !, ˛ 7! .'˛ � '0/=˛ is increasing in ˛, hence
'˛ � '0

˛
& Z; a.s.,

for some random variable Z. Since .'1 � '0/=˛ 2 L1, we can apply the monotone
convergence theorem to get

(3.14) lim
˛&0

E
h'˛ � '0

˛

i
D EŒZ�:

On the other hand,

Z D

�
V 0

�
d�

dP

�
C B

��
d N�

dP
�

d�

dP

�
D �1 on

�
d�

dP
D 0

�
;

since V 0.0/ D �1 (by (A1)) and N� 2 Qe
V . Therefore, (3.14) shows that if � 6� P , there

exists ˛ 2 .0; 1/ such that

E

�
V

�
d�˛

dP

�
C

d�˛

dP
B

�
� E

�
V

�
d�

dP

�
C

d�

dP
B

�
< �˛:

Since �˛ 2 Qe
V , we have the desired result. ¤

3.3. DESCRIPTION OF THE CONJUGATE FUNCTIONAL

We now come to the key step, namely, the regularity of uB defined by (3.2), and the
description of its conjugate vB defined by (3.3).

Proposition 3.8. Assume (A1) – (A4). Then

(a) uB is well-defined and continuous on L1 w.r.t. the norm topology.
(b) vB has the expression:

(3.15) vB.�/ D

˚
E
h
V
�

d�
dP

�
C

d�
dP

B
i

if � 2 QV

C1 otherwise.

We shall prove this by exploiting Rockafellar’s theorem on convex integral functionals.
We begin with some preparation.

Definition 3.9. A map f W ˝ � R ! R [ fC1g is called a normal convex integrand if:

(a) f is jointly measurable (i.e., F � B.R/-measurable),
(b) x 7! f .!; x/ is a lower semicontinuous proper convex function for a.e. !.

Also, the conjugate random convex function of f is defined by

(3.16) f �.!; y/ WD sup
x2R

.xy � f .!; x//; .!; y/ 2 ˝ � R:
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We cite here Rockafellar’s theorem in a form suited to our purpose.

Theorem 3.10 (Rockafellar [15], Theorem 1, Corollary 2A).

1. Let f W ˝ � R ! R be a random convex function such that
(a) there exists some X 2 L1 such that, f .�; X.�//C 2 L1,
(b) there exists some Y 2 L1 such that, f �.�Y.�//C 2 L1.
Then the map

(3.17) If .X/ WD EŒf .X/� D

Z
˝

f .!; X.!//P.d!/; X 2 L1

is well-defined as a convex functional on L1, and the conjugate I �
f

W ba 7! R [ fC1g

is expressed as:

(3.18) I �
f .�/ D If �.�r / C ı�

dom.If /.�
s/; � 2 ba;

where,

If �.�r / D EŒf �.d�r=dP /� D

Z
˝

f �

�
!;

d�r

dP
.!/

�
P.d!/;

ı�
dom.If /.�

s/ D sup
X2dom.If /

�s.X/:

2. If in addition f .�; X.�// 2 L1 for every X 2 L1, then If is continuous on L1 and

(3.19) I �
f .�/ D

(
EŒf �.d�=dP /� if � 2 ba�

C1 otherwise.

Remark 3.11. In [15], the notion of normal convex integrands is introduced in a slightly
different way, which is equivalent to our Definition 3.9 if the underlying probability space
is complete as we assumed. See Rockafellar and Wets [16], Ch.14 for detail. Also, the
original version of Theorem 3.10 in [15] is stated and proved on a �-finite measure space,
rather than a probability space.

Proof of Proposition 3.8. We apply Rockafellar’s theorem to the random convex function

f .!; x/ D �U.�x C B.!//;

which is clearly jointly measurable, convex and continuous in x, hence normal. The con-
jugate f � is given by

f �.!; y/ D V.y/ C yB.!/;

and If .X/ D EŒ�U.�X C B/� D �uB.�X/, thus I �
f

D vB .
For every X 2 L1, f .X/ D �U.�XCB/ is integrable by Lemma 3.4 and Remark 3.5.

On the other hand, we can take xQ 2 MV by (A3), so that f �.d xQ=dP / D V.d xQ=dP / C

.d xQ=dP /B 2 L1, by Lemma 3.4. Hence we can apply Theorem 3.10 to get the assertion
(a), and that

vB.�/ D I �
f .�/ D

˚
E
h
V
�

d�
dP

�
C

d�
dP

B
i

if � 2 ba�

C1 otherwise.

It remains to show that vB.�/ D C1 if � 2 ba� nQV . Suppose � 2 ba� n ba�
C. Since

f �.d�=dP / D V.d�=dP /C.d�=dP /B D C1 on the set fd�=dP < 0g which has a pos-
itive probability, the estimate (3.8) of Lemma 3.4 shows that vB.�/ D EŒf �.d�=dP /� D

C1. Finally, for any Y � 0 f �.Y / 2 L1 if and only if V.Y / 2 L1 by Remark 3.5, hence
vB.�/ < 1 if and only if � 2 QV . ¤
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3.4. PROOF OF MAIN RESULTS

Proof of Theorem 2.1. We apply Fenchel’s theorem for .L1; ba/ to uB and ıC . By Propo-
sition 3.8, dom.uB/ D L1 and uB is continuous, hence epi.uB/ has non-empty interior
w.r.t. the product topology of L1�R. Indeed, .0; uB.0/�1/ is an interior point of epi.uB/.
Also, dom.uB/ \ dom.ıC/ D C has an interior point, since L1

� � C, and X � �1 is an
interior point of L1

� . Using (3.6), Lemma 3.4, and (A4),

sup
X2L1

.uB.X/ � ıC.X// D sup
X2C

EŒU.X C B/�

�
1 C "

"
E

"
V

 
d xQ

dP

!#
�

1

"
EŒU.�"BC/� C sup

X2C
E

xQŒX�

�
1 C "

"
E

"
V

 
d xQ

dP

!#
�

1

"
EŒU.�"BC/� < 1:

where xQ is an element of MV (¤ ; by (A3)). Therefore, we can apply Fenchel’s theorem
to get

sup
X2C

uB.X/ D sup
X2L1

.uB.X/ � ıC .X// D min
�2ba

.vB.�/ C ı�
C .�//

D min
�2QV

�
E

�
V

�
d�

dP

�
C

d�

dP
B

�
C ı�

C .�/

�
D min

�>0;Q2Me
V

E

�
V

�
�

dQ

dP

�
C �

dQ

dP

�
:

Here, the third equality follows from Proposition 3.8, and the fourth from Lemma 3.3 and
Lemma 3.7. Now Theorem 2.1 follows from Lemma 3.6. ¤

Proof of Corollary 2.2. This is a direct consequence of the following minor modification
of Kabanov and Stricker [11], Lemma 5.1. ¤

Lemma 3.12. Suppose that U is bounded from above. Then for any � 2 �bb , there exists
a sequence .�n/ � �b such that ..� � �n/ � S/�

T ! 0 in probability and

(3.20) EŒU.� � ST C B/� D lim
n!1

EŒU.�n
� ST C B/�:

Proof. Since S is locally bounded, we can take a increasing sequence .�n/n of stopping
times with S�

�n
� n, and �n % T , stationarily, a.s. Then ..�1J0;�nK � �/ � S/�

T ! 0

in probability, for any � 2 L.S/. Thus, if � � S � �x, we have U.� � S
�n

T C B/ !

U.� � ST C B/ in probability, and this sequence is uniformly bounded from below (resp.
above) by "

1C"
U. �."C1/

"
x/C

1
1C"

U.�.1C"/B�/ 2 L1 (resp. U.1/ < 1) by Lemma 3.4
(b) and (A4). Hence the dominated convergence theorem shows that

lim
n!1

EŒU.� � S
�n

T C B/� D EŒU.� � ST C B/�:

This reduces the assertion to the case where S is uniformly bounded by some constant c.
Suppose that � � S is uniformly bounded from below by a > 0. Set

Q�n
WD �1fj� j�ng; �n WD infft W � � St � ng; �n WD infft W .. Q�n

� �/ � S/�
t � 1g ^ T:

Note that Q�n � S�n � a � 1. Indeed, Q�n � S�n
� � � � S�n

� � 1 by the definition of �n, and

� Q�n
� S�n D �1fj� j�ng�S�n D 1fj� j�ng�� � S�n ;
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hence

Q�n
� S�n D Q�n

� S�n
� C � Q�n

� S�n � � � S�n
� � 1 C 1fj� j�ng�� � S�n

D 1fj� j�ng� � S�n C 1fj� j>ng� � S�n
� � 1 � a � 1:

Now let �n WD Q�n1J0;�n^�nK. Then �n � S D Q�n � S�n^�n � a � 1, and

�n
� S D �n

� S� C ��n
� S � Q�n

� S�n^�n
� C �1fj� j�ng�S�n^�n

� � � S�n^�n
� C 1 C 2cn � n C 1 C 2cn:

Hence �n 2 �b . On the other hand, we have .. Q�n � �/ � S/�
T D ..�1fj� j>ng/ � S/�

T ! 0

in probability (note that � 2 L.S/ if and only if ..�1fj� j�ng/ � S/n2N is a Cauchy sequence
w.r.t. the semimartingale topology). This implies also that P.�n < T / ! 0 ( i.e., �n % T ,
stationarily, a.s.), thus ..�n � Q�n/ � S/�

T ! 0 in probability. Hence ..�n � �/ � S/�
T ! 0

in probability. Finally, since �n � S is uniformly bounded from below by a � 1, and U is
bounded from above, we can use as above the dominated convergence theorem to conclude
limn!1 EŒU.�n � ST C B/� D EŒU.� � ST C B/�. ¤

Proof of Corollary 2.3. Let �bb � � � �V . For any � 2 �, we have by Young’s
inequality,

U.� � ST C B/ � V

�
�

dQ

dP

�
C �

dQ

dP
.� � ST C B/; 8� > 0; 8Q 2 MV ;

hence

EŒU.� � ST C B/� � E

�
V

�
�

dQ

dP

�
C �

dQ

dP
B

�
C �EQŒ� � ST �

� E

�
V

�
�

dQ

dP

�
C �

dQ

dP
B

�
; 8� 2 �; 8� > 0; 8Q 2 MV ;

since � � S is a supermartingale under each Q 2 MV . Then Theorem 2.1 implies that

sup
�2�

EŒU.� � ST C B/� � inf
�>0

inf
Q2MV

E

�
V

�
�

dQ

dP

�
C �

dQ

dP
B

�
D sup

�2�bb

EŒU.� � ST C B/�;

The converse inequality follows from the inclusion �bb � �. Finally, if U.1/ < 1, we
can replace all �bb above by �b , and the proof is complete. ¤
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