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Abstract

Truncation or censoring of the response variable in a regression model is
a problem in many applications, e.g. when the response is insurance claims
or the durations of unemployment spells. We introduce a local polynomial re-
gression estimator which can deal with such truncated or censored responses.
For this purpose, we use local versions of the STLS and SCLS estimators of
Powell (1986) and the QME estimator of Lee (1993) and Laitila (2001). The
asymptotic properties of our estimators, and the conditions under which they
are valid, are given. In addition, a simulation study is presented to investigate
the finite sample properties of our proposals.

Keywords: Non-parametric regression, Truncation, Censoring, Asymptotic
properties.
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1 Introduction

Truncation or censoring of the response variable in a regression model is a problem
appearing in many applications. Truncation occur, for instance, when studying the
value of insured property damages due to fire, theft or a similar event, because any
loss that are below the deductible will not be reported to the insurance company.
Censoring often occur when studying durations, e.g., unemployment spells in labour
economics, survival times in medical experiments and failure times for components in
industrial processes.

We consider the following regression model

yi=mz) vl i=12 0 1)

where y* is a latent response variable, z is an explanatory variable, m(x) is an un-
known p + 1 (p > 1) times diffentiable function, and ¢* is a random error term
independently and identically distributed with mean zero and finite variance.

With left (right) truncated, the pairs of observations (z;,y;) are only observed if
yr >t (yf < t), where ¢ is a known constant truncation point. For simplicity let
t = 0. This can be done without loss of generality, by subtracting ¢ from y; and from
m(z;). Let y denote the observed response variable and let n denote the observed
sample size. A similar problem to truncation is censoring where data is said to be
left (right) censored if y = max(y*, ¢) ( y = min(y*, ¢)), where ¢ is a known censoring
point. Again, for simplicity and without loss of generality, let ¢ = 0. Note that the
explanatory variable x is observed under censoring, but not under truncation of the
response variable. Moreover, under left (right) censoring it is known that the response
is smaller (larger) than ¢ = 0, but the exact value is unknown. Such information is
not available under truncation, and we do not even know how many observations are
truncated.

In this paper we introduce a local polynomial regression estimator of the function
m(z), which is able to deal with truncated or censored outcomes. There are few
available non-parametric estimators, in particular when it comes to truncated or non-
random censored responses; exceptions include Chen et al. (2005) for the censored

case and Lewbel and Linton (2002) for both the truncated and censored situations.



Local polynomial regression is a popular nonparametric regression technique due to its
attractive asymptotic properties, in particular at the border of the support. For fully
observed responses, a local polynomial regression estimate of m(z,) is obtained by
estimating a polynomial in x with weighted ordinary least squares. Fach unit in the
study is weighted depending of its distance in x to the design point of interest (focal
value) xg, thereby making the procedure local. In order to obtain a local polynomial
regression estimator for truncated or censored data we propose to replace ordinary
least squares with other distribution-free estimators designed for the estimation of
a parametrized mean function, e.g. linear in the parameters m(z;) = a7 3, with
truncated or censored responses. Such estimators are reviewed in Lee and Kim (1998),
including symmetrically trimmed /censored least squares estimators (STLS and SCLS)
suggested first by Powell (1986), and the quadratic mode estimator (QME), suggested
by Lee (1993); see also Laitila (2001) and Karlsson (2004). Thus, we present in
Section 2 a local-STLS (and local-SCLS) polynomial regression estimator, deriving
also asymptotic propeties. A local-QME estimator is described in Section 3. Section
4 presents a Monte Carlo study of the finite sample properties of these estimators.

The paper is concluded with a discussion in Section 5.

2 Local symmetrically trimmed least squares esti-
mators

Symmetrically trimmed least squares estimators (Powell, 1986) can be used to address
either truncation or censoring in the setting of (semi-)parametric regression models,
that is when m(x;) in (1) can be described parametrically, for example with a poly-
nomial m(z;) = By + fix; + ... + Bpxy. Truncation (or censoring) of the response
variable introduces an asymmetry in its distribution. The STLS and SCLS estimators
symmetrically truncates and censors, respectively, the response variable in order to
restore the distribution symmetry about Gy + G1z; +. ..+ S,2}. In this way, the least
squares estimator is consistent and asymptotically normal, under some regularity
conditions, including the assumption of symmetrically distributed error terms.

In the case of left truncation (at ¢ = 0), and for a polynomial model, the parametric



STLS estimator is defined by

n 1 2
argming Z (yi — max (5%7 w?ﬂ)) 5 (2)

=1

where z; = (1,z;,...,27)T and B8 = (B, ...,5,)", or equivalently as the value of 3
solving
> 1y < 22 B)(y; — ) B)a; = 0, (3)
i=1

where 1[E] is the indicator function of the event F, which takes value 1 if E is true
and 0 otherwise.

Hence, all observations y; larger than 2x! 3 are trimmed (“truncated”) to restore
the symmetry of the error distribution. Similarly, for the SCLS estimator, (1/2y;)* —
(maX (0, aczTB))2 is added to the objective function in (2) for all observations larger
than 2273 so these observations get “censored”.

The proposal in this paper is to generalize the STLS and SCLS estimation pro-
cedures into local procedures that produce a non-parametric fit by introducing a set
of “localizing” weights K ((:L‘Z — x9)/ h), inspired by the local polynomial regression
estimator for non-truncated /non-censored data (Fan and Gijbels, 1996). The points
xo are called focal values and are often, but do not have to be, equal to the x-points
in the sample. The focal values should, however, belong to the space spanned by the
observed z-values.

Thus, define a local-STLS estimator for m(z) in (1) with a left truncated response
variable at t = 0 by (o) = €78 (x,), where e = (1,0, ...,0)” and

n 2
0),(zy) = argming Z K (xZ ; xo) (yz — max <%yi, z?@)) ; (4)
i=1

where z; = (1,(z; — 0),..., (xz; — 20)P)T, 8 = (6p,061,...,0,)7 and where K is a
kernel function of order r, that is satisfying [ K(u)du = 1, [v*K(u)du = 0 for
k=1,...,r—1and [u K(u)du # 0. Typical choices for K (-) are the Gaussian p.d.{.

or the tricube function as in (8) below.

Similarly, define a local-SCLS estimator for m(xzo) in (1) with a left censored



response variable (at ¢ = 0) by m(xy) = €78, (zo) and

Oh(ﬂfo)

= argmin, [ZK (252 (- (g ziTe))z
¥ ; (P50 1> 227 <(%y)2 ~ (max (0 z,.To)f) |

2.1 Asymptotics

Define 0),() as the solution of (4), and @),(x) as the solution of its population

- 1 2
argming F (K (%z . :c0> <yi - max(ﬁyi,z?9)> ) ) (6)

where the expecation is over the joint distribution of (y;,z;). First it is shown that

version

0),(x0) — O, (x0) almost surely as n — oo, and that the estimator is asymptotically
normally distributed around 6, (zy). Then it is shown that, under some regularity con-
ditions, 8 (xo) — 6,, as h — 0 and n — oo, where 8 = (m(zg), mV(x0), ..., m®P (z))

and m® (z,) is the " derivative of m evaluated at .

Assumption 1 The true parameter vector 0y (zo) is an interior point of a compact

parameter space O.

Assumption 2 The regressors z; are independently distributed random vectors with
E(||z||*"™) < Ky for some positive Ky and 1, and v,, the minimum characteristic

root of the matrix

1 & T; — To
Nn:—E:El.T9> K22 z2!
nz‘:l ([Zl _60] ( h >ZZZ>

has v, > vy whenever n > ngy, some positive €y, vy and nyg.

Assumption 3 The error terms € are mutually independent distributed, and, con-
ditionally on z;, are continuously symmetrically distributed about zero, with densities
which are bounded above and continuous and positive at zero, uniformly in 1. That

is, if F(X|z;,1) = F;(X\) is the conditional c.d.f. of € given z;, then dF;(\) = f;(\)dA,



where fi(A) = fi(=X), fi(A\) < L, and fi(\) > (o whenever |\| < (o, some positive
constants Ly and (y. In addition, the error densities f;(\) are unimodal, with strict
unimodality, uniformly in i, in some neighborhood of zero. That is, fi(A2) > fi(A\1) if
IA1| > |X2|, and there exists some g > 0 and some function h(\), strictly decreasing
in [0, apl, such that fi(Ao) — fi(A1) > h(|A2]) — h(|A1]) when |As] < [M\| < ap.

Assumptions 1 and 3 are the same as in Powell (1986, assumption P, E'1 and E2).
Assumption 2 is a modified version of assumption R in Powell (1986) to take into ac-
count the local weighting scheme K (). The condition on the minimum characteristic
root, v,, of N, in Assumption 2 is the essential condition for unique identification of

0, by assuring that z is sufficiently variable.

Theorem 4 Under Assumptions 1, 2 and 3

~

1. 04(xg) — Oy(x0) almost surely when n — oo.

2. Zn ' P(W, = Vi)v/n(On(x0) — On(xo)) — N(0,1) in distribution when n — oo,

where
_ l - T , T Ti —Toy _ T
W, = n;E<1[ 210 <eg <z 0K ( ; )zlzi)
s . T — x0, 227 0 fi(210) T
V, = EZE<1[zi0>O]K( . ) F(270) zzzi>

Zy = 1 ZE(l[—ziTO <g < z?@]K(%)e?zg?)

and Z;'? is any square root of the inverse of Z,.

The proof follows exactly the same lines as the proof of Theorem 2 in Powell (1986)
and is therefore omitted. For the censoring case, a similar proof can be obtained for
the estimator, @(z,) defined by (5) by adapting the assumptions P, R and E1 and
following the lines of Theorem 1 in Powell (1986).

Theorem 4 establishes consistency and asymptotic normality of 9h(3§0) around
0),(zo). This is of interest because 0,(zg) — 0,, as h — 0 under regularity conditions.

This may be shown by taking the derivative of the expectation in (6), equating it to



zero, and using a Taylor expansion:

0 ,
g ) _maxgyz, r0)) ]

h
_ {E(K ;x“ =5 | {s = max( yu =0)})’]

= -2F, {E(K( - )1[yi<2ziT0](yi—ziT0)zix

9 {K(

o)
)}

ZT; —[L’O)

= -2k,
h

K(

X (Zi/o ; (2] 0 — 2] 0 + (y; — m(z:)) + R(sz)>f(yz|$z)d%>]

T — 2 . . QZZTG
= 2B, |K( - (20, — 2] 0)z; i fyilzi)dy;

Ty — To

—2E, | K(=— )Zz‘/ozi (yi—m(xi))f(yﬂxi)dyz-]

h

T — To 2z7'0
0

where we have used an order p Taylor expansion around o of m(z;): m(z;) = 27 0,,+
R(x;).

Assuming regularity conditions, we have that the last term in the sum above tends
to zero when h — 0, because then K (£2%2) set all weight on z; = 2o and R(zo) = 0.
The same hold for the second term when setting 8 = 6,,, because K (%) set all
weight on x; = xy and fom (yZ m(z;))z: f (yi|z;)dy; = 0 by construction. Finally,
because the first term is set to zero for 8 = 8,, for any h, we can say that 6y (z)
tends to 0,,, as h — 0.

Note that the above behaviour is in line with classical results in non-parametric
regression where asymptotic results are obtained by letting h tend towards zero (see
the above) when n tends towards infinity (see Theorem 4). The above developments
do not, however, say how fast h has to tend to zero with respect to n. It is to be
expected that h has to tend to zero at a slower rate than n tends to infinity as it is
generally the case in non-parametric regression. The convergence rate of h has not

much practical relevance however. Instead it is more interesting to have a data-driven



method that chooses h optimally in some respect. Thus, an important question for

further research.

3 Alternatives/related estimators

As an alternative to the “localization” of the STLS and SCLS estimators to obtain
a non-parametric fit for regression models when the response variable is truncated
or censored it is possible to build on a different available proposal for parametric
truncated models, for example the quadratic mode estimator (QME) of Lee (1993).
Define the local QME estimator of m(zg) in (1) by m(ze) = €70y (xo) with

0,,(xy) = argming i K <IZ ; IO) ((yZ — max (z, 0, 5))2 - (52> : (7)

where 0 is a trimming threshold parameter determined by the researcher.

A particular appealing feature of the QME estimator over the STLS estimator
is that with the former the assumption of symmetrically distributed errors can be
relaxed, see Laitila (2001), when the slope parameters can be consistently estimated
under asymmetrically distributed errors. Nevertheless, for consistent estimation of
the intercept symmetrically distributed errors still are required. This means that if
the interest is to estimate the derivatives of m(-), as is the case in many economic
applications, the local-QME is suitable for this purpose even when asymmetry is
suspected. A drawback of QME is the need to choose the extra tuning parameter, 9.

The asymptotic properties (consistency and asymptotic normality) of the estima-
tor defined by (7) can be obtained by adapting the results in Laitila (2001).

4 Simulation study

A simulation study is performed in order to study the finite sample properties of
the proposed estimators, local-STLS and local-QME, defined in (4) and (7) under
truncation. For comparison, the local polynomial regression estimator, LPR, (Fan
and Gijbels, 1996) defined as m(z¢) = €70,(zy) with

éh(m) = argming Z K (JCZ ;z IO) (yi - z;fFO)2 ,
i=1

8



ignoring the truncation is also used to estimate m(x¢) in (1).
In the simulation study polynomials of order 1 and 2 are used. The kernel function,

K (-) used for all the proposed estimators is the tricube weight function
K(u) = (1 - [uf’)’. (8)

In the simulation three different bandwidths, A, are used, viz: 2, 3, and 5. For the

local-QME the threshold parameter § also has to be chosen. Here § = 0.50, 6 = 1.00,

and 0 = 2.00 are utilised, where o is the standard deviation of the error term.
Samples of size n* = 500 and n* = 1000 are generated from the following three

models:

Model 1: y* = 2.5z +¢*, where x ~ Uniform(2,8), ¢* ~ Normal(0,0) and ¢ = 0.3.

The response is truncated if y* is smaller than the truncation point, t = 6.

Model 2: y* = sin(x) + ¢*, where z ~ Uniform(2,8), ¢* ~ Normal(0,0) and

o = 0.3. Data is truncated if y* is smaller than the truncation point, ¢ = —1.5.

Model 3: The same model as Model 2, but with a higher truncation point, viz:
t=-1.0

The truncation points in the first two models yield an overall truncation grade of
approximately 5% and 1% respectively. However, at some values of the explanatory
variables the truncation grade is much higher. Model 3 is included as an extreme
situation where truncation grade is almost 50% at some focal values (10% overall).
Figure 1 displays data simulated from the models described above. The estimators
are evaluated at 13 equally spaced focal values, {2.0,2.5,3.0,...,8.0} in terms of the
average bias and the average mean squared error (MSE) over 1000 replicates. The
truncation grade at each focal value is reported in the same tables as the simulation
results on bias and MSE.

Model 1 is also estimated with the ordinary (“parametric”) STLS, SCLS and QME
estimators to provide benchmarks to the preformance of the local-STLS, local-SCLS,
and local-QME respectively. For Model 2 and 3, both polynomials of order 1 and of
order 2 are used for the local-STLS.
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Figure 1: Simulated data (n* = 200) from Models 1-3 (from left to right). The
horizontal lines indicate the truncation points for each model.

4.1 Results

For Model 1 under truncation, the average MSE and average bias at the 13 focal values
are found in Tables 1 and 2, respectively. All tables are found in the Appendix. The
average MSE of the local-STLS and local-QME at all focal values decreases when n*
increases from 500 to 1000. The absolute value of the average bias of the local-STLS
and local-QME also decreases at most, but not all, focal values when n* increases.
The local-STLS and local-QME with 6 = 20 perform best in terms of bias and MSE
for all the bandwidths, h, considered. Compared to the ordinary STLS and QME
estimators for linear truncated regression models the bias and MSE of the local-STLS
and local-QME are higher, as expected, since Model 1 is a linear model.

Figure 2 illustrates results from Model 2 (average over 1000 samples of size n* =
1000) on the estimated functions (left panel) and their corresponding bias (right panel)
using the local-STLS estimator, the local-QME estimator, and LPR, with bandwidth
h = 2. For the local-QME ¢ = 10 is used. In the upper panel a first order polynomial
is used to approximate m(x) locally for all three estimators and in the lower panel
a second order polynomial is used. The estimators using a second order polynomial
are denoted local-STLS2, local-QME2 and LPR2. We can note that the local-STLS
and local-QME perform better than LPR. When using a second order polynomial the
differences between the estimated curves are smaller, but the LPR2 still overestimates
the true curve m(x). This is most obvious at focal values where truncation occur more
often. All of the estimated curves using second order polynomials are closer to the

true curve (less bias) than those using first order, especially where the function m(x)

10



changes direction.
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Figure 2: Estimates of m(z) (left panel) and bias (right panel) using local-STLS (dot-
ted), local-QME (dashed), and LPR (dashed and dotted) with 1st order polynomials
(upper panel) and 2nd order polynomials (lower panel), h = 2, and § = 1o. Average
over 1000 samples of size n* = 1000 from Model 2 under truncation.

Table 3 displays the average MSE of the estimators LPR, local-STLS, local-STLS2,
and local-QME for Model 2. The MSE of local-STLS, local-STLS2 and local-QME
decreases (or is more or less unchanged) when n* increases. For focal values between
3.5 and 6.0, MSE is large for LPR due to the truncation, while the other estimators
perform well. The results for Model 3 (presented in Table 4) are similar to those for
Model 2, with larger MSEs where truncation is more important.

Finally, in simulation experiments (not presented here), local-SCLS behaved sim-

ilarly under censoring than local-STLS under truncation.

5 Discussion

Local polynomial regression is a popular non-parametric regression technique due to
its nice properties (local linear regression is for instance more performant at the edges
than simple kernel regression) and to its conceptual simplicity which makes it easy
to communicate to non-specialists. We have introduced in this paper two versions

(local-STLS and local-QME) of a local polynomial regression estimator which are able

11



to deal with truncated or censored outcomes. The asymptotic normal distribution
together with an explicit expression for the variance are given, thereby allowing for
the construction of confidence bands.

The small sample properties of the estimators are studied in a simulation study.
As usual with non-parametric estimators the choice of the bandwidth balances bias
and variability. Our results indicate that one should consider adaptive bandwidths,
i.e., using smaller bandwidth when the observations fall near the trunction (censoring)
point. In situations where an automatic bandwith selection is needed one may con-
sider cross-validation, although more work is needed to adapt the latter out-of-sample
validation method to truncated outcomes.

Local-QME has an extra tunning parameter. By varying the latter, local-QME
could not outperform local-STLS in the simulated situations. On the other hand,
local-QME does not require symmetrically distributed errors when estimating the

derivative of the objective function, and has therefore wider applicability.
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