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Abstract 

Truncation or censoring of the response variable in a regression model is 
a problem in many applications, e.g. when the response is insurance claims 
or the durations of unemployment spells. We introduce a local polynomial re­
gression estimator which can deal with such truncated or censored responses. 
For this purpose, we use local versions of the STLS and SCLS estimators of 
Powell (1986) and the QME estimator of Lee (1993) and Laitila (2001). The 
asymptotic properties of our estimators, and the conditions under which they 
are valid, are given. In addition, a simulation study is presented to investigate 
the finite sample properties of our proposals. 
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1 Introduction 

Truncation or censoring of the response variable in a regression model is a problem 

appearing in many applications. Truncation occur, for instance, when studying the 

value of insured property damages due to fire, theft or a similar event, because any 

loss that are below the deductible will not be reported to the insurance company. 

Censoring often occur when studying durations, e.g., unemployment spells in labour 

economics, survival times in medical experiments and failure times for components in 

industrial processes. 

We consider the following regression model 

yi 
∗ = m(xi) + εi 

∗ , i = 1, 2, ..., n ∗ (1) 

where y ∗ is a latent response variable, x is an explanatory variable, m(x) is an un­

known p + 1 (p ≥ 1) times diffentiable function, and ε∗ is a random error term 

independently and identically distributed with mean zero and finite variance. 

With left (right) truncated, the pairs of observations (xi, y i 
∗) are only observed if 

yi 
∗ > t (yi 

∗ < t), where t is a known constant truncation point. For simplicity let 

t = 0. This can be done without loss of generality, by subtracting t from yi 
∗ and from 

m(xi). Let y denote the observed response variable and let n denote the observed 

sample size. A similar problem to truncation is censoring where data is said to be 

left (right) censored if y = max(y ∗ , c) ( y = min(y ∗ , c)), where c is a known censoring 

point. Again, for simplicity and without loss of generality, let c = 0. Note that the 

explanatory variable x is observed under censoring, but not under truncation of the 

response variable. Moreover, under left (right) censoring it is known that the response 

is smaller (larger) than c = 0, but the exact value is unknown. Such information is 

not available under truncation, and we do not even know how many observations are 

truncated. 

In this paper we introduce a local polynomial regression estimator of the function 

m(x), which is able to deal with truncated or censored outcomes. There are few 

available non-parametric estimators, in particular when it comes to truncated or non­

random censored responses; exceptions include Chen et al. (2005) for the censored 

case and Lewbel and Linton (2002) for both the truncated and censored situations. 
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Local polynomial regression is a popular nonparametric regression technique due to its 

attractive asymptotic properties, in particular at the border of the support. For fully 

observed responses, a local polynomial regression estimate of m(x0) is obtained by 

estimating a polynomial in x with weighted ordinary least squares. Each unit in the 

study is weighted depending of its distance in x to the design point of interest (focal 

value) x0, thereby making the procedure local. In order to obtain a local polynomial 

regression estimator for truncated or censored data we propose to replace ordinary 

least squares with other distribution-free estimators designed for the estimation of 

a parametrized mean function, e.g. linear in the parameters m(xi) = xi
T β, with 

truncated or censored responses. Such estimators are reviewed in Lee and Kim (1998), 

including symmetrically trimmed/censored least squares estimators (STLS and SCLS) 

suggested first by Powell (1986), and the quadratic mode estimator (QME), suggested 

by Lee (1993); see also Laitila (2001) and Karlsson (2004). Thus, we present in 

Section 2 a local-STLS (and local-SCLS) polynomial regression estimator, deriving 

also asymptotic propeties. A local-QME estimator is described in Section 3. Section 

4 presents a Monte Carlo study of the finite sample properties of these estimators. 

The paper is concluded with a discussion in Section 5. 

Local symmetrically trimmed least squares esti­
mators 

Symmetrically trimmed least squares estimators (Powell, 1986) can be used to address 

either truncation or censoring in the setting of (semi-)parametric regression models, 

that is when m(xi) in (1) can be described parametrically, for example with a poly­

nomial m(xi) = β0 + β1xi + . . . + βpx
p
i . Truncation (or censoring) of the response 

variable introduces an asymmetry in its distribution. The STLS and SCLS estimators 

symmetrically truncates and censors, respectively, the response variable in order to 

restore the distribution symmetry about β0 + β1xi + . . . + βpxi
p. In this way, the least 

squares estimator is consistent and asymptotically normal, under some regularity 

conditions, including the assumption of symmetrically distributed error terms. 

In the case of left truncation (at t = 0), and for a polynomial model, the parametric 
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STLS estimator is defined by
 � � ��2n
1 

argminβ yi − max yi, x Ti β , (2)
2

i=1 

p)Twhere xi = (1, xi, . . . , xi and β = (β0, . . . , βp)
T , or equivalently as the value of β 

solving 
n

1[yi < 2x Ti β] yi − x Ti β xi = 0, (3) 
i=1 

where 1[E] is the indicator function of the event E, which takes value 1 if E is true 

and 0 otherwise. 

Hence, all observations yi larger than 2xi
T β are trimmed (“truncated”) to restore 

the symmetry of the error distribution. Similarly, for the SCLS estimator, (1/2yi)
2 − � � ��2 

max 0, xi
T β is added to the objective function in (2) for all observations larger 

than 2xi
T β so these observations get “censored”. 

The proposal in this paper is to generalize the STLS and SCLS estimation pro­

cedures into local procedures that produce a non-parametric fit by introducing a set 

of “localizing” weights K (xi − x0)/h , inspired by the local polynomial regression 

estimator for non-truncated/non-censored data (Fan and Gijbels, 1996). The points 

x0 are called focal values and are often, but do not have to be, equal to the x-points 

in the sample. The focal values should, however, belong to the space spanned by the 

observed x-values. 

Thus, define a local-STLS estimator for m(x0) in (1) with a left truncated response 

variable at t = 0 by m̂(x0) = eT θ̂h(x0), where e = (1, 0, . . . , 0)T and 

n � �� � ��2 
xi − x0 1 Tθ̂h(x0) = argminθ K yi − max yi, zi θ , (4)

h 2
i=1 

where zi = (1, (xi − x0), . . . , (xi − x0)
p)T , θ = (θ0, θ1, . . . , θp)

T and where K is a 

kernel function of order r, that is satisfying K(u)du = 1, ukK(u)du = 0 for 

k = 1, . . . , r −1 and urK(u)du = 0� . Typical choices for K(·) are the Gaussian p.d.f. 

or the tricube function as in (8) below. 

Similarly, define a local-SCLS estimator for m(x0) in (1) with a left censored 
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response variable (at c = 0) by m̃(x0) = eT θ̃h(x0) and 

θ̃h(x0) � n � �� � ��2 
xi − x0 1 T = argminθ K yi − max yi, zi θ 

h 2

n � 
i=1 � �� �2 

��� xi − x0 � 
T 
� 1 � � 

T 
��2 

+ K 1 yi > 2zi θ yi − max 0, zi θ . (5)
h 2

i=1 

2.1 Asymptotics 

Define θ̂h(x0) as the solution of (4), and θh(x0) as the solution of its population 

version �� � � � �2 
xi − x0 1 

argminθ E K yi − max( yi, zi
T θ) , (6)

h 2

where the expecation is over the joint distribution of (yi, xi). First it is shown that 

θ̂h(x0) → θh(x0) almost surely as n → ∞, and that the estimator is asymptotically 

normally distributed around θh(x0). Then it is shown that, under some regularity con­

ditions, θh(x0) → θm as h → 0 and n →∞, where θT = (m(x0), m
(1)(x0), . . . ,m

(p)(x0))m 

and m(i)(x0) is the ith derivative of m evaluated at x0. 

Assumption 1 The true parameter vector θh(x0) is an interior point of a compact 

parameter space Θ. 

Assumption 2 The regressors zi are independently distributed random vectors with 

E(||zi||4+η) < K0 for some positive K0 and η, and νn, the minimum characteristic 

root of the matrix 

n � � 
1 T xi − x0 T = E 1[zi θ ≥ �0]K zizNn i n h 

i=1 

has νn > ν0 whenever n > n0, some positive �0, ν0 and n0. 

Assumption 3 The error terms �∗ 
i are mutually independent distributed, and, con­

ditionally on zi, are continuously symmetrically distributed about zero, with densities 

which are bounded above and continuous and positive at zero, uniformly in i. That 

is, if F (λ|zi, i) ≡ Fi(λ) is the conditional c.d.f. of �∗ given zi, then dFi(λ) = fi(λ)dλ,i 
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where fi(λ) = fi(−λ), fi(λ) < L, and fi(λ) > ζ0 whenever |λ| < ζ0, some positive 

constants L0 and ζ0. In addition, the error densities fi(λ) are unimodal, with strict 

unimodality, uniformly in i, in some neighborhood of zero. That is, fi(λ2) ≥ fi(λ1) if 

|λ1| ≥ |λ2|, and there exists some α0 > 0 and some function h(λ), strictly decreasing 

in [0, α0], such that fi(λ2) − fi(λ1) ≥ h(|λ2|) − h(|λ1|) when |λ2| ≤ |λ1| ≤ α0. 

Assumptions 1 and 3 are the same as in Powell (1986, assumption P , E1 and E2). 

Assumption 2 is a modified version of assumption R in Powell (1986) to take into ac­

count the local weighting scheme K(·). The condition on the minimum characteristic 

root, νn, of Nn in Assumption 2 is the essential condition for unique identification of 

θ, by assuring that z is sufficiently variable. 

Theorem 4 Under Assumptions 1, 2 and 3 

1. θ̂h(x0) → θh(x0) almost surely when n →∞. 

2. Zn 
−1/2

(Wn − Vn) 
√ 

n(θ̂h(x0) − θh(x0)) → N (0, I) in distribution when n → ∞, 

where 

Wn = 
1 
n 

n� 
E 
� 
1[−z T 

i θ < εi < z T 
i θ]K 

�xi − x0 

h 

� 
ziz T 

i 

� 

i=1 

Vn = 
1 
n 

n� 

i=1 

E 
� 
1[z T 

i θ > 0]K 
�xi − x0 

h 

�2zT 
i θfi(z

T 
i θ) 

Fi(zT 
i θ) 

ziz T 
i 

� 

Zn = 
1 
n 

n� 
E 
� 
1[−z T 

i θ < εi < z T 
i θ]K 

�xi − x0 

h 

� 
ε2 

i ziz T 
i 

� 

i=1 

and Zn 
−1/2 is any square root of the inverse of Zn. 

The proof follows exactly the same lines as the proof of Theorem 2 in Powell (1986) 

and is therefore omitted. For the censoring case, a similar proof can be obtained for 

the estimator, θ̃(x0) defined by (5) by adapting the assumptions P , R and E1 and 

following the lines of Theorem 1 in Powell (1986). 

Theorem 4 establishes consistency and asymptotic normality of θ̂h(x0) around 

θh(x0). This is of interest because θh(x0) → θm as h → 0 under regularity conditions. 

This may be shown by taking the derivative of the expectation in (6), equating it to 
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zero, and using a Taylor expansion:
 

∂ �xi − x0 �� 1 �2 
E K yi − max( yi, zi

T θ)
∂θ h 2�xi − x0 � ∂ 1 �2T � 

= Ex E K yi − max( yi, zi θ) �x 
h ∂θ 2�xi − x0 � T T ��

= −2Ex E K 1[yi < 2zi θ](yi − zi θ)zi�x 
h �xi − x0 �
 

= −2Ex K
 
h � 2zT

i θ 

× zi (z T θm − z T θ + (yi − m(xi)) + R(xi))f(yi|xi)dyii i 
0 � 2zT

i θ�xi − x0 � T T−2Ex K (zi θm − zi θ)zi f(yi|xi)dyi =
 
h
 0 � 2zT

i θ�xi − x0 � −2Ex K 
h
 

zi (yi − m(xi))f(yi|xi)dyi 
0 � 2zT

i θ�xi − x0 � −2Ex K R(xi)zi f(yi|xi)dyi = 0,

h
 0 

where we have used an order p Taylor expansion around x0 of m(xi): m(xi) = zi
T θm + 

R(xi). 

Assuming regularity conditions, we have that the last term in the sum above tends 
xi−x0to zero when h → 0, because then K set all weight on xi = x0 and R(x0) = 0.

h � � 
xi−x0The same hold for the second term when setting θ = θm, because K 

h set all � 2m(xi)weight on xi = x0 and (yi − m(xi))zif(yi|xi)dyi = 0 by construction. Finally, 
0 

because the first term is set to zero for θ = θm for any h, we can say that θh(x0) 

tends to θm as h → 0. 

Note that the above behaviour is in line with classical results in non-parametric 

regression where asymptotic results are obtained by letting h tend towards zero (see 

the above) when n tends towards infinity (see Theorem 4). The above developments 

do not, however, say how fast h has to tend to zero with respect to n. It is to be 

expected that h has to tend to zero at a slower rate than n tends to infinity as it is 

generally the case in non-parametric regression. The convergence rate of h has not 

much practical relevance however. Instead it is more interesting to have a data-driven 
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method that chooses h optimally in some respect. Thus, an important question for
 

further research. 

Alternatives/related estimators 

As an alternative to the “localization” of the STLS and SCLS estimators to obtain 

a non-parametric fit for regression models when the response variable is truncated 

or censored it is possible to build on a different available proposal for parametric 

truncated models, for example the quadratic mode estimator (QME) of Lee (1993). 

Define the local QME estimator of m(x0) in (1) by m̆(x0) = eT θ̆h(x0) with 

θ̆h(x0) = argminθ 

n� 
K 

� 
xi − x0 

h 

� �� 
yi − max 

� 
z T 

i θ, δ 
��2 − δ2 

� 
, (7) 

i=1 

where δ is a trimming threshold parameter determined by the researcher. 

A particular appealing feature of the QME estimator over the STLS estimator 

is that with the former the assumption of symmetrically distributed errors can be 

relaxed, see Laitila (2001), when the slope parameters can be consistently estimated 

under asymmetrically distributed errors. Nevertheless, for consistent estimation of 

the intercept symmetrically distributed errors still are required. This means that if 

the interest is to estimate the derivatives of m(·), as is the case in many economic 

applications, the local-QME is suitable for this purpose even when asymmetry is 

suspected. A drawback of QME is the need to choose the extra tuning parameter, δ. 

The asymptotic properties (consistency and asymptotic normality) of the estima­

tor defined by (7) can be obtained by adapting the results in Laitila (2001). 

Simulation study 

A simulation study is performed in order to study the finite sample properties of 

the proposed estimators, local-STLS and local-QME, defined in (4) and (7) under 

truncation. For comparison, the local polynomial regression estimator, LPR, (Fan 

and Gijbels, 1996) defined as m̄(x0) = eT θ̄h(x0) with 

n � �� xi − x0 � �2
θ̄h(x0) = argminθ K yi − zi

T θ ,
h 

i=1 
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ignoring the truncation is also used to estimate m(x0) in (1). 

In the simulation study polynomials of order 1 and 2 are used. The kernel function, 

K(·) used for all the proposed estimators is the tricube weight function 

K(u) = (1 − |u|3)3 . (8) 

In the simulation three different bandwidths, h, are used, viz: 2, 3, and 5. For the 

local-QME the threshold parameter δ also has to be chosen. Here δ = 0.5σ, δ = 1.0σ, 

and δ = 2.0σ are utilised, where σ is the standard deviation of the error term. 

Samples of size n ∗ = 500 and n ∗ = 1000 are generated from the following three 

models: 

Model 1: y ∗ = 2.5x + ε∗, where x ∼ Uniform(2, 8), ε∗ ∼ Normal(0, σ) and σ = 0.3. 

The response is truncated if y ∗ is smaller than the truncation point, t = 6. 

Model 2: y ∗ = sin(x) + ε∗, where x ∼ Uniform(2, 8), ε∗ ∼ Normal(0, σ) and 

σ = 0.3. Data is truncated if y ∗ is smaller than the truncation point, t = −1.5. 

Model 3: The same model as Model 2, but with a higher truncation point, viz: 

t = −1.0 

The truncation points in the first two models yield an overall truncation grade of 

approximately 5% and 1% respectively. However, at some values of the explanatory 

variables the truncation grade is much higher. Model 3 is included as an extreme 

situation where truncation grade is almost 50% at some focal values (10% overall). 

Figure 1 displays data simulated from the models described above. The estimators 

are evaluated at 13 equally spaced focal values, {2.0, 2.5, 3.0, ..., 8.0} in terms of the 

average bias and the average mean squared error (MSE) over 1000 replicates. The 

truncation grade at each focal value is reported in the same tables as the simulation 

results on bias and MSE. 

Model 1 is also estimated with the ordinary (“parametric”) STLS, SCLS and QME 

estimators to provide benchmarks to the preformance of the local-STLS, local-SCLS, 

and local-QME respectively. For Model 2 and 3, both polynomials of order 1 and of 

order 2 are used for the local-STLS. 
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Figure 1: Simulated data (n ∗ = 200) from Models 1-3 (from left to right). The 
horizontal lines indicate the truncation points for each model. 

4.1 Results 

For Model 1 under truncation, the average MSE and average bias at the 13 focal values 

are found in Tables 1 and 2, respectively. All tables are found in the Appendix. The 

average MSE of the local-STLS and local-QME at all focal values decreases when n ∗ 

increases from 500 to 1000. The absolute value of the average bias of the local-STLS 

and local-QME also decreases at most, but not all, focal values when n ∗ increases. 

The local-STLS and local-QME with δ = 2σ perform best in terms of bias and MSE 

for all the bandwidths, h, considered. Compared to the ordinary STLS and QME 

estimators for linear truncated regression models the bias and MSE of the local-STLS 

and local-QME are higher, as expected, since Model 1 is a linear model. 

Figure 2 illustrates results from Model 2 (average over 1000 samples of size n ∗ = 

1000) on the estimated functions (left panel) and their corresponding bias (right panel) 

using the local-STLS estimator, the local-QME estimator, and LPR, with bandwidth 

h = 2. For the local-QME δ = 1σ is used. In the upper panel a first order polynomial 

is used to approximate m(x) locally for all three estimators and in the lower panel 

a second order polynomial is used. The estimators using a second order polynomial 

are denoted local-STLS2, local-QME2 and LPR2. We can note that the local-STLS 

and local-QME perform better than LPR. When using a second order polynomial the 

differences between the estimated curves are smaller, but the LPR2 still overestimates 

the true curve m(x). This is most obvious at focal values where truncation occur more 

often. All of the estimated curves using second order polynomials are closer to the 

true curve (less bias) than those using first order, especially where the function m(x) 
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changes direction.
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Figure 2: Estimates of m(x) (left panel) and bias (right panel) using local-STLS (dot­
ted), local-QME (dashed), and LPR (dashed and dotted) with 1st order polynomials 
(upper panel) and 2nd order polynomials (lower panel), h = 2, and δ = 1σ. Average 
over 1000 samples of size n ∗ = 1000 from Model 2 under truncation. 

Table 3 displays the average MSE of the estimators LPR, local-STLS, local-STLS2, 

and local-QME for Model 2. The MSE of local-STLS, local-STLS2 and local-QME 

decreases (or is more or less unchanged) when n ∗ increases. For focal values between 

3.5 and 6.0, MSE is large for LPR due to the truncation, while the other estimators 

perform well. The results for Model 3 (presented in Table 4) are similar to those for 

Model 2, with larger MSEs where truncation is more important. 

Finally, in simulation experiments (not presented here), local-SCLS behaved sim­

ilarly under censoring than local-STLS under truncation. 

Discussion 

Local polynomial regression is a popular non-parametric regression technique due to 

its nice properties (local linear regression is for instance more performant at the edges 

than simple kernel regression) and to its conceptual simplicity which makes it easy 

to communicate to non-specialists. We have introduced in this paper two versions 

(local-STLS and local-QME) of a local polynomial regression estimator which are able 

11
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to deal with truncated or censored outcomes. The asymptotic normal distribution 

together with an explicit expression for the variance are given, thereby allowing for 

the construction of confidence bands. 

The small sample properties of the estimators are studied in a simulation study. 

As usual with non-parametric estimators the choice of the bandwidth balances bias 

and variability. Our results indicate that one should consider adaptive bandwidths, 

i.e., using smaller bandwidth when the observations fall near the trunction (censoring) 

point. In situations where an automatic bandwith selection is needed one may con­

sider cross-validation, although more work is needed to adapt the latter out-of-sample 

validation method to truncated outcomes. 

Local-QME has an extra tunning parameter. By varying the latter, local-QME 

could not outperform local-STLS in the simulated situations. On the other hand, 

local-QME does not require symmetrically distributed errors when estimating the 

derivative of the objective function, and has therefore wider applicability. 
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