IFAU - INSTITUTE FOR LABOUR MARKET POLICY EVALUATION

Local polynomial regression with truncated or censored response

Maria Karlsson
Eva Cantoni
Xavier de Luna

The Institute for Labour Market Policy Evaluation (IFAU) is a research institute under the Swedish Ministry of Employment, situated in Uppsala. IFAU's objective is to promote, support and carry out scientific evaluations. The assignment includes: the effects of labour market policies, studies of the functioning of the labour market, the labour market effects of educational policies and the labour market effects of social insurance policies. IFAU shall also disseminate its results so that they become accessible to different interested parties in Sweden and abroad.

IFAU also provides funding for research projects within its areas of interest. The deadline for applications is October 1 each year. Since the researchers at IFAU are mainly economists, researchers from other disciplines are encouraged to apply for funding.

IFAU is run by a Director-General. The institute has a scientific council, consisting of a chairman, the Director-General and five other members. Among other things, the scientific council proposes a decision for the allocation of research grants. A reference group including representatives for employer organizations and trade unions, as well as the ministries and authorities concerned is also connected to the institute.

Postal address: P.O. Box 513, 75120 Uppsala
Visiting address: Kyrkogårdsgatan 6, Uppsala
Phone: +46 184717070
Fax: +46 184717071
ifau@ifau.uu.se
www.ifau.se

Papers published in the Working Paper Series should, according to the IFAU policy, have been discussed at seminars held at IFAU and at least one other academic forum, and have been read by one external and one internal referee. They need not, however, have undergone the standard scrutiny for publication in a scientific journal. The purpose of the Working Paper Series is to provide a factual basis for public policy and the public policy discussion.

Local polynomial regression with truncated or censored response*

Maria Karlsson ${ }^{\dagger}$ Eva Cantoni ${ }^{\dagger}$ and Xavier de Luna ${ }^{\dagger}$

December 14, 2009

Abstract

Truncation or censoring of the response variable in a regression model is a problem in many applications, e.g. when the response is insurance claims or the durations of unemployment spells. We introduce a local polynomial regression estimator which can deal with such truncated or censored responses. For this purpose, we use local versions of the STLS and SCLS estimators of Powell (1986) and the QME estimator of Lee (1993) and Laitila (2001). The asymptotic properties of our estimators, and the conditions under which they are valid, are given. In addition, a simulation study is presented to investigate the finite sample properties of our proposals.

Keywords: Non-parametric regression, Truncation, Censoring, Asymptotic properties.
JEL: C14

[^0]
1 Introduction

Truncation or censoring of the response variable in a regression model is a problem appearing in many applications. Truncation occur, for instance, when studying the value of insured property damages due to fire, theft or a similar event, because any loss that are below the deductible will not be reported to the insurance company. Censoring often occur when studying durations, e.g., unemployment spells in labour economics, survival times in medical experiments and failure times for components in industrial processes.

We consider the following regression model

$$
\begin{equation*}
y_{i}^{*}=m\left(x_{i}\right)+\varepsilon_{i}^{*}, \quad i=1,2, \ldots, n^{*} \tag{1}
\end{equation*}
$$

where y^{*} is a latent response variable, x is an explanatory variable, $m(x)$ is an unknown $p+1(p \geq 1)$ times diffentiable function, and ε^{*} is a random error term independently and identically distributed with mean zero and finite variance.

With left (right) truncated, the pairs of observations $\left(x_{i}, y_{i}^{*}\right)$ are only observed if $y_{i}^{*}>t\left(y_{i}^{*}<t\right)$, where t is a known constant truncation point. For simplicity let $t=0$. This can be done without loss of generality, by subtracting t from y_{i}^{*} and from $m\left(x_{i}\right)$. Let y denote the observed response variable and let n denote the observed sample size. A similar problem to truncation is censoring where data is said to be left (right) censored if $y=\max \left(y^{*}, c\right)\left(y=\min \left(y^{*}, c\right)\right)$, where c is a known censoring point. Again, for simplicity and without loss of generality, let $c=0$. Note that the explanatory variable x is observed under censoring, but not under truncation of the response variable. Moreover, under left (right) censoring it is known that the response is smaller (larger) than $c=0$, but the exact value is unknown. Such information is not available under truncation, and we do not even know how many observations are truncated.

In this paper we introduce a local polynomial regression estimator of the function $m(x)$, which is able to deal with truncated or censored outcomes. There are few available non-parametric estimators, in particular when it comes to truncated or nonrandom censored responses; exceptions include Chen et al. (2005) for the censored case and Lewbel and Linton (2002) for both the truncated and censored situations.

Local polynomial regression is a popular nonparametric regression technique due to its attractive asymptotic properties, in particular at the border of the support. For fully observed responses, a local polynomial regression estimate of $m\left(x_{0}\right)$ is obtained by estimating a polynomial in x with weighted ordinary least squares. Each unit in the study is weighted depending of its distance in x to the design point of interest (focal value) x_{0}, thereby making the procedure local. In order to obtain a local polynomial regression estimator for truncated or censored data we propose to replace ordinary least squares with other distribution-free estimators designed for the estimation of a parametrized mean function, e.g. linear in the parameters $m\left(x_{i}\right)=x_{i}^{T} \boldsymbol{\beta}$, with truncated or censored responses. Such estimators are reviewed in Lee and Kim (1998), including symmetrically trimmed/censored least squares estimators (STLS and SCLS) suggested first by Powell (1986), and the quadratic mode estimator (QME), suggested by Lee (1993); see also Laitila (2001) and Karlsson (2004). Thus, we present in Section 2 a local-STLS (and local-SCLS) polynomial regression estimator, deriving also asymptotic propeties. A local-QME estimator is described in Section 3. Section 4 presents a Monte Carlo study of the finite sample properties of these estimators. The paper is concluded with a discussion in Section 5.

2 Local symmetrically trimmed least squares estimators

Symmetrically trimmed least squares estimators (Powell, 1986) can be used to address either truncation or censoring in the setting of (semi-)parametric regression models, that is when $m\left(x_{i}\right)$ in (1) can be described parametrically, for example with a polynomial $m\left(x_{i}\right)=\beta_{0}+\beta_{1} x_{i}+\ldots+\beta_{p} x_{i}^{p}$. Truncation (or censoring) of the response variable introduces an asymmetry in its distribution. The STLS and SCLS estimators symmetrically truncates and censors, respectively, the response variable in order to restore the distribution symmetry about $\beta_{0}+\beta_{1} x_{i}+\ldots+\beta_{p} x_{i}^{p}$. In this way, the least squares estimator is consistent and asymptotically normal, under some regularity conditions, including the assumption of symmetrically distributed error terms.

In the case of left truncation (at $t=0$), and for a polynomial model, the parametric

STLS estimator is defined by

$$
\begin{equation*}
\operatorname{argmin}_{\boldsymbol{\beta}} \sum_{i=1}^{n}\left(y_{i}-\max \left(\frac{1}{2} y_{i}, \boldsymbol{x}_{i}^{T} \boldsymbol{\beta}\right)\right)^{2}, \tag{2}
\end{equation*}
$$

where $\boldsymbol{x}_{i}=\left(1, x_{i}, \ldots, x_{i}^{p}\right)^{T}$ and $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{p}\right)^{T}$, or equivalently as the value of $\boldsymbol{\beta}$ solving

$$
\begin{equation*}
\sum_{i=1}^{n} 1\left[y_{i}<2 \boldsymbol{x}_{i}^{T} \boldsymbol{\beta}\right]\left(y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}\right) \boldsymbol{x}_{i}=0 \tag{3}
\end{equation*}
$$

where $1[E]$ is the indicator function of the event E, which takes value 1 if E is true and 0 otherwise.

Hence, all observations y_{i} larger than $2 \boldsymbol{x}_{i}^{T} \boldsymbol{\beta}$ are trimmed ("truncated") to restore the symmetry of the error distribution. Similarly, for the SCLS estimator, $\left(1 / 2 y_{i}\right)^{2}-$ $\left(\max \left(0, \boldsymbol{x}_{i}^{T} \boldsymbol{\beta}\right)\right)^{2}$ is added to the objective function in (2) for all observations larger than $2 \boldsymbol{x}_{i}^{T} \boldsymbol{\beta}$ so these observations get "censored".

The proposal in this paper is to generalize the STLS and SCLS estimation procedures into local procedures that produce a non-parametric fit by introducing a set of "localizing" weights $K\left(\left(x_{i}-x_{0}\right) / h\right)$, inspired by the local polynomial regression estimator for non-truncated/non-censored data (Fan and Gijbels, 1996). The points x_{0} are called focal values and are often, but do not have to be, equal to the x-points in the sample. The focal values should, however, belong to the space spanned by the observed x-values.

Thus, define a local-STLS estimator for $m\left(x_{0}\right)$ in (1) with a left truncated response variable at $t=0$ by $\hat{m}\left(x_{0}\right)=\boldsymbol{e}^{T} \hat{\boldsymbol{\theta}}_{h}\left(x_{0}\right)$, where $\boldsymbol{e}=(1,0, \ldots, 0)^{T}$ and

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}_{h}\left(x_{0}\right)=\operatorname{argmin}_{\boldsymbol{\theta}} \sum_{i=1}^{n} K\left(\frac{x_{i}-x_{0}}{h}\right)\left(y_{i}-\max \left(\frac{1}{2} y_{i}, \boldsymbol{z}_{i}^{T} \boldsymbol{\theta}\right)\right)^{2}, \tag{4}
\end{equation*}
$$

where $\boldsymbol{z}_{i}=\left(1,\left(x_{i}-x_{0}\right), \ldots,\left(x_{i}-x_{0}\right)^{p}\right)^{T}, \boldsymbol{\theta}=\left(\theta_{0}, \theta_{1}, \ldots, \theta_{p}\right)^{T}$ and where K is a kernel function of order r, that is satisfying $\int K(u) d u=1, \int u^{k} K(u) d u=0$ for $k=1, \ldots, r-1$ and $\int u^{r} K(u) d u \neq 0$. Typical choices for $K(\cdot)$ are the Gaussian p.d.f. or the tricube function as in (8) below.

Similarly, define a local-SCLS estimator for $m\left(x_{0}\right)$ in (1) with a left censored
response variable (at $c=0$) by $\tilde{m}\left(x_{0}\right)=\boldsymbol{e}^{T} \tilde{\boldsymbol{\theta}}_{h}\left(x_{0}\right)$ and

$$
\begin{align*}
& \tilde{\boldsymbol{\theta}}_{h}\left(x_{0}\right) \\
& \quad=\operatorname{argmin}_{\theta}\left[\sum_{i=1}^{n} K\left(\frac{x_{i}-x_{0}}{h}\right)\left(y_{i}-\max \left(\frac{1}{2} y_{i}, \boldsymbol{z}_{i}^{T} \boldsymbol{\theta}\right)\right)^{2}\right. \\
& \left.\quad+\sum_{i=1}^{n} K\left(\frac{x_{i}-x_{0}}{h}\right) 1\left[y_{i}>2 \boldsymbol{z}_{i}^{T} \boldsymbol{\theta}\right]\left(\left(\frac{1}{2} y_{i}\right)^{2}-\left(\max \left(0, \boldsymbol{z}_{i}^{T} \boldsymbol{\theta}\right)\right)^{2}\right)\right] . \tag{5}
\end{align*}
$$

2.1 Asymptotics

Define $\hat{\boldsymbol{\theta}}_{h}\left(x_{0}\right)$ as the solution of (4), and $\boldsymbol{\theta}_{h}\left(x_{0}\right)$ as the solution of its population version

$$
\begin{equation*}
\operatorname{argmin}_{\boldsymbol{\theta}} E\left(K\left(\frac{x_{i}-x_{0}}{h}\right)\left(y_{i}-\max \left(\frac{1}{2} y_{i}, \boldsymbol{z}_{i}^{T} \boldsymbol{\theta}\right)\right)^{2}\right), \tag{6}
\end{equation*}
$$

where the expecation is over the joint distribution of $\left(y_{i}, x_{i}\right)$. First it is shown that $\hat{\boldsymbol{\theta}}_{h}\left(x_{0}\right) \rightarrow \boldsymbol{\theta}_{h}\left(x_{0}\right)$ almost surely as $n \rightarrow \infty$, and that the estimator is asymptotically normally distributed around $\boldsymbol{\theta}_{h}\left(x_{0}\right)$. Then it is shown that, under some regularity conditions, $\boldsymbol{\theta}_{h}\left(x_{0}\right) \rightarrow \boldsymbol{\theta}_{m}$ as $h \rightarrow 0$ and $n \rightarrow \infty$, where $\boldsymbol{\theta}_{m}^{T}=\left(m\left(x_{0}\right), m^{(1)}\left(x_{0}\right), \ldots, m^{(p)}\left(x_{0}\right)\right)$ and $m^{(i)}\left(x_{0}\right)$ is the $i^{\text {th }}$ derivative of m evaluated at x_{0}.

Assumption 1 The true parameter vector $\boldsymbol{\theta}_{h}\left(x_{0}\right)$ is an interior point of a compact parameter space Θ.

Assumption 2 The regressors \boldsymbol{z}_{i} are independently distributed random vectors with $E\left(\left\|\boldsymbol{z}_{i}\right\|^{4+\eta}\right)<K_{0}$ for some positive K_{0} and η, and ν_{n}, the minimum characteristic root of the matrix

$$
N_{n}=\frac{1}{n} \sum_{i=1}^{n} E\left(1\left[\boldsymbol{z}_{i}^{T} \boldsymbol{\theta} \geq \epsilon_{0}\right] K\left(\frac{x_{i}-x_{0}}{h}\right) \boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T}\right)
$$

has $\nu_{n}>\nu_{0}$ whenever $n>n_{0}$, some positive ϵ_{0}, ν_{0} and n_{0}.

Assumption 3 The error terms ϵ_{i}^{*} are mutually independent distributed, and, conditionally on \boldsymbol{z}_{i}, are continuously symmetrically distributed about zero, with densities which are bounded above and continuous and positive at zero, uniformly in i. That is, if $F\left(\lambda \mid \boldsymbol{z}_{i}, i\right) \equiv F_{i}(\lambda)$ is the conditional c.d.f. of ϵ_{i}^{*} given \boldsymbol{z}_{i}, then $d F_{i}(\lambda)=f_{i}(\lambda) d \lambda$,
where $f_{i}(\lambda)=f_{i}(-\lambda), f_{i}(\lambda)<L$, and $f_{i}(\lambda)>\zeta_{0}$ whenever $|\lambda|<\zeta_{0}$, some positive constants L_{0} and ζ_{0}. In addition, the error densities $f_{i}(\lambda)$ are unimodal, with strict unimodality, uniformly in i, in some neighborhood of zero. That is, $f_{i}\left(\lambda_{2}\right) \geq f_{i}\left(\lambda_{1}\right)$ if $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right|$, and there exists some $\alpha_{0}>0$ and some function $h(\lambda)$, strictly decreasing in $\left[0, \alpha_{0}\right]$, such that $f_{i}\left(\lambda_{2}\right)-f_{i}\left(\lambda_{1}\right) \geq h\left(\left|\lambda_{2}\right|\right)-h\left(\left|\lambda_{1}\right|\right)$ when $\left|\lambda_{2}\right| \leq\left|\lambda_{1}\right| \leq \alpha_{0}$.

Assumptions 1 and 3 are the same as in Powell (1986, assumption $P, E 1$ and $E 2$). Assumption 2 is a modified version of assumption R in Powell (1986) to take into account the local weighting scheme $K(\cdot)$. The condition on the minimum characteristic root, ν_{n}, of N_{n} in Assumption 2 is the essential condition for unique identification of $\boldsymbol{\theta}$, by assuring that \boldsymbol{z} is sufficiently variable.

Theorem 4 Under Assumptions 1, 2 and 3

1. $\hat{\boldsymbol{\theta}}_{h}\left(x_{0}\right) \rightarrow \boldsymbol{\theta}_{h}\left(x_{0}\right)$ almost surely when $n \rightarrow \infty$.
2. $Z_{n}^{-1 / 2}\left(W_{n}-V_{n}\right) \sqrt{n}\left(\hat{\boldsymbol{\theta}}_{h}\left(x_{0}\right)-\boldsymbol{\theta}_{h}\left(x_{0}\right)\right) \rightarrow \mathcal{N}(\mathbf{0}, I)$ in distribution when $n \rightarrow \infty$, where

$$
\begin{aligned}
W_{n} & =\frac{1}{n} \sum_{i=1}^{n} E\left(1\left[-\boldsymbol{z}_{i}^{T} \boldsymbol{\theta}<\varepsilon_{i}<\boldsymbol{z}_{i}^{T} \boldsymbol{\theta}\right] K\left(\frac{x_{i}-x_{0}}{h}\right) \boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T}\right) \\
V_{n} & =\frac{1}{n} \sum_{i=1}^{n} E\left(1\left[\boldsymbol{z}_{i}^{T} \boldsymbol{\theta}>0\right] K\left(\frac{x_{i}-x_{0}}{h}\right) \frac{2 \boldsymbol{z}_{i}^{T} \boldsymbol{\theta} f_{i}\left(\boldsymbol{z}_{i}^{T} \boldsymbol{\theta}\right)}{F_{i}\left(\boldsymbol{z}_{i}^{T} \boldsymbol{\theta}\right)} \boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T}\right) \\
Z_{n} & =\frac{1}{n} \sum_{i=1}^{n} E\left(1\left[-\boldsymbol{z}_{i}^{T} \boldsymbol{\theta}<\varepsilon_{i}<\boldsymbol{z}_{i}^{T} \boldsymbol{\theta}\right] K\left(\frac{x_{i}-x_{0}}{h}\right) \varepsilon_{i}^{2} \boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T}\right)
\end{aligned}
$$

and $Z_{n}^{-1 / 2}$ is any square root of the inverse of Z_{n}.

The proof follows exactly the same lines as the proof of Theorem 2 in Powell (1986) and is therefore omitted. For the censoring case, a similar proof can be obtained for the estimator, $\tilde{\boldsymbol{\theta}}\left(x_{0}\right)$ defined by (5) by adapting the assumptions P, R and $E 1$ and following the lines of Theorem 1 in Powell (1986).

Theorem 4 establishes consistency and asymptotic normality of $\hat{\boldsymbol{\theta}}_{h}\left(x_{0}\right)$ around $\boldsymbol{\theta}_{h}\left(x_{0}\right)$. This is of interest because $\boldsymbol{\theta}_{h}\left(x_{0}\right) \rightarrow \boldsymbol{\theta}_{m}$ as $h \rightarrow 0$ under regularity conditions. This may be shown by taking the derivative of the expectation in (6), equating it to
zero, and using a Taylor expansion:

$$
\begin{aligned}
\frac{\partial}{\partial \boldsymbol{\theta}} E & {\left[K\left(\frac{x_{i}-x_{0}}{h}\right)\left\{y_{i}-\max \left(\frac{1}{2} y_{i}, \boldsymbol{z}_{i}^{T} \boldsymbol{\theta}\right)\right\}^{2}\right] } \\
= & E_{x}\left\{E\left(\left.K\left(\frac{x_{i}-x_{0}}{h}\right) \frac{\partial}{\partial \boldsymbol{\theta}}\left[\left\{y_{i}-\max \left(\frac{1}{2} y_{i}, \boldsymbol{z}_{i}^{T} \boldsymbol{\theta}\right)\right\}^{2}\right] \right\rvert\, x\right)\right\} \\
= & -2 E_{x}\left\{E\left(\left.K\left(\frac{x_{i}-x_{0}}{h}\right) 1\left[y_{i}<2 \boldsymbol{z}_{i}^{T} \boldsymbol{\theta}\right]\left(y_{i}-\boldsymbol{z}_{i}^{T} \boldsymbol{\theta}\right) \boldsymbol{z}_{i} \right\rvert\, x\right)\right\} \\
= & -2 E_{x}\left[K\left(\frac{x_{i}-x_{0}}{h}\right)\right. \\
\times & \left.\left(\boldsymbol{z}_{i} \int_{0}^{2 \boldsymbol{z}_{i}^{T} \boldsymbol{\theta}}\left(\boldsymbol{z}_{i}^{T} \boldsymbol{\theta}_{m}-\boldsymbol{z}_{i}^{T} \boldsymbol{\theta}+\left(y_{i}-m\left(x_{i}\right)\right)+R\left(x_{i}\right)\right) f\left(y_{i} \mid x_{i}\right) d y_{i}\right)\right] \\
= & -2 E_{x}\left[K\left(\frac{x_{i}-x_{0}}{h}\right)\left(\boldsymbol{z}_{i}^{T} \boldsymbol{\theta}_{m}-\boldsymbol{z}_{i}^{T} \boldsymbol{\theta}\right) \boldsymbol{z}_{i} \int_{0}^{2 \boldsymbol{z}_{i}^{T} \boldsymbol{\theta}} f\left(y_{i} \mid x_{i}\right) d y_{i}\right] \\
& -2 E_{x}\left[K\left(\frac{x_{i}-x_{0}}{h}\right) \boldsymbol{z}_{i} \int_{0}^{2 \boldsymbol{z}_{i}^{T} \boldsymbol{\theta}}\left(y_{i}-m\left(x_{i}\right)\right) f\left(y_{i} \mid x_{i}\right) d y_{i}\right] \\
& -2 E_{x}\left[K\left(\frac{x_{i}-x_{0}}{h}\right) R\left(x_{i}\right) \boldsymbol{z}_{i} \int_{0}^{2 \boldsymbol{z}_{i}^{T} \boldsymbol{\theta}} f\left(y_{i} \mid x_{i}\right) d y_{i}\right]=\mathbf{0},
\end{aligned}
$$

where we have used an order p Taylor expansion around x_{0} of $m\left(x_{i}\right): m\left(x_{i}\right)=\boldsymbol{z}_{i}^{T} \boldsymbol{\theta}_{m}+$ $R\left(x_{i}\right)$.

Assuming regularity conditions, we have that the last term in the sum above tends to zero when $h \rightarrow 0$, because then $K\left(\frac{x_{i}-x_{0}}{h}\right)$ set all weight on $x_{i}=x_{0}$ and $R\left(x_{0}\right)=0$. The same hold for the second term when setting $\boldsymbol{\theta}=\boldsymbol{\theta}_{m}$, because $K\left(\frac{x_{i}-x_{0}}{h}\right)$ set all weight on $x_{i}=x_{0}$ and $\int_{0}^{2 m\left(x_{i}\right)}\left(y_{i}-m\left(x_{i}\right)\right) \boldsymbol{z}_{i} f\left(y_{i} \mid x_{i}\right) d y_{i}=0$ by construction. Finally, because the first term is set to zero for $\boldsymbol{\theta}=\boldsymbol{\theta}_{m}$ for any h, we can say that $\boldsymbol{\theta}_{h}\left(x_{0}\right)$ tends to $\boldsymbol{\theta}_{m}$ as $h \rightarrow 0$.

Note that the above behaviour is in line with classical results in non-parametric regression where asymptotic results are obtained by letting h tend towards zero (see the above) when n tends towards infinity (see Theorem 4). The above developments do not, however, say how fast h has to tend to zero with respect to n. It is to be expected that h has to tend to zero at a slower rate than n tends to infinity as it is generally the case in non-parametric regression. The convergence rate of h has not much practical relevance however. Instead it is more interesting to have a data-driven
method that chooses h optimally in some respect. Thus, an important question for further research.

3 Alternatives/related estimators

As an alternative to the "localization" of the STLS and SCLS estimators to obtain a non-parametric fit for regression models when the response variable is truncated or censored it is possible to build on a different available proposal for parametric truncated models, for example the quadratic mode estimator (QME) of Lee (1993).

Define the local QME estimator of $m\left(x_{0}\right)$ in (1) by $\breve{m}\left(x_{0}\right)=\boldsymbol{e}^{T} \breve{\boldsymbol{\theta}}_{h}\left(x_{0}\right)$ with

$$
\begin{equation*}
\breve{\boldsymbol{\theta}}_{h}\left(x_{0}\right)=\operatorname{argmin}_{\boldsymbol{\theta}} \sum_{i=1}^{n} K\left(\frac{x_{i}-x_{0}}{h}\right)\left(\left(y_{i}-\max \left(\boldsymbol{z}_{i}^{T} \boldsymbol{\theta}, \delta\right)\right)^{2}-\delta^{2}\right), \tag{7}
\end{equation*}
$$

where δ is a trimming threshold parameter determined by the researcher.
A particular appealing feature of the QME estimator over the STLS estimator is that with the former the assumption of symmetrically distributed errors can be relaxed, see Laitila (2001), when the slope parameters can be consistently estimated under asymmetrically distributed errors. Nevertheless, for consistent estimation of the intercept symmetrically distributed errors still are required. This means that if the interest is to estimate the derivatives of $m(\cdot)$, as is the case in many economic applications, the local-QME is suitable for this purpose even when asymmetry is suspected. A drawback of QME is the need to choose the extra tuning parameter, δ.

The asymptotic properties (consistency and asymptotic normality) of the estimator defined by (7) can be obtained by adapting the results in Laitila (2001).

4 Simulation study

A simulation study is performed in order to study the finite sample properties of the proposed estimators, local-STLS and local-QME, defined in (4) and (7) under truncation. For comparison, the local polynomial regression estimator, LPR, (Fan and Gijbels, 1996) defined as $\bar{m}\left(x_{0}\right)=\boldsymbol{e}^{T} \overline{\boldsymbol{\theta}}_{h}\left(x_{0}\right)$ with

$$
\overline{\boldsymbol{\theta}}_{h\left(x_{0}\right)}=\operatorname{argmin}_{\boldsymbol{\theta}} \sum_{i=1}^{n} K\left(\frac{x_{i}-x_{0}}{h}\right)\left(y_{i}-\boldsymbol{z}_{i}^{T} \boldsymbol{\theta}\right)^{2},
$$

ignoring the truncation is also used to estimate $m\left(x_{0}\right)$ in (1).
In the simulation study polynomials of order 1 and 2 are used. The kernel function, $K(\cdot)$ used for all the proposed estimators is the tricube weight function

$$
\begin{equation*}
K(u)=\left(1-|u|^{3}\right)^{3} . \tag{8}
\end{equation*}
$$

In the simulation three different bandwidths, h, are used, viz: 2,3 , and 5 . For the local-QME the threshold parameter δ also has to be chosen. Here $\delta=0.5 \sigma, \delta=1.0 \sigma$, and $\delta=2.0 \sigma$ are utilised, where σ is the standard deviation of the error term.

Samples of size $n^{*}=500$ and $n^{*}=1000$ are generated from the following three models:

Model 1: $y^{*}=2.5 x+\varepsilon^{*}$, where $x \sim \operatorname{Uniform}(2,8), \varepsilon^{*} \sim \operatorname{Normal}(0, \sigma)$ and $\sigma=0.3$. The response is truncated if y^{*} is smaller than the truncation point, $t=6$.

Model 2: $y^{*}=\sin (x)+\varepsilon^{*}$, where $x \sim \operatorname{Uniform}(2,8), \varepsilon^{*} \sim \operatorname{Normal}(0, \sigma)$ and $\sigma=0.3$. Data is truncated if y^{*} is smaller than the truncation point, $t=-1.5$.

Model 3: The same model as Model 2, but with a higher truncation point, viz: $t=-1.0$

The truncation points in the first two models yield an overall truncation grade of approximately 5% and 1% respectively. However, at some values of the explanatory variables the truncation grade is much higher. Model 3 is included as an extreme situation where truncation grade is almost 50% at some focal values (10% overall). Figure 1 displays data simulated from the models described above. The estimators are evaluated at 13 equally spaced focal values, $\{2.0,2.5,3.0, \ldots, 8.0\}$ in terms of the average bias and the average mean squared error (MSE) over 1000 replicates. The truncation grade at each focal value is reported in the same tables as the simulation results on bias and MSE.

Model 1 is also estimated with the ordinary ("parametric") STLS, SCLS and QME estimators to provide benchmarks to the preformance of the local-STLS, local-SCLS, and local-QME respectively. For Model 2 and 3, both polynomials of order 1 and of order 2 are used for the local-STLS.

Figure 1: Simulated data $\left(n^{*}=200\right)$ from Models 1-3 (from left to right). The horizontal lines indicate the truncation points for each model.

4.1 Results

For Model 1 under truncation, the average MSE and average bias at the 13 focal values are found in Tables 1 and 2, respectively. All tables are found in the Appendix. The average MSE of the local-STLS and local-QME at all focal values decreases when n^{*} increases from 500 to 1000. The absolute value of the average bias of the local-STLS and local-QME also decreases at most, but not all, focal values when n^{*} increases. The local-STLS and local-QME with $\delta=2 \sigma$ perform best in terms of bias and MSE for all the bandwidths, h, considered. Compared to the ordinary STLS and QME estimators for linear truncated regression models the bias and MSE of the local-STLS and local-QME are higher, as expected, since Model 1 is a linear model.

Figure 2 illustrates results from Model 2 (average over 1000 samples of size $n^{*}=$ 1000) on the estimated functions (left panel) and their corresponding bias (right panel) using the local-STLS estimator, the local-QME estimator, and LPR, with bandwidth $h=2$. For the local-QME $\delta=1 \sigma$ is used. In the upper panel a first order polynomial is used to approximate $m(x)$ locally for all three estimators and in the lower panel a second order polynomial is used. The estimators using a second order polynomial are denoted local-STLS2, local-QME2 and LPR2. We can note that the local-STLS and local-QME perform better than LPR. When using a second order polynomial the differences between the estimated curves are smaller, but the LPR2 still overestimates the true curve $m(x)$. This is most obvious at focal values where truncation occur more often. All of the estimated curves using second order polynomials are closer to the true curve (less bias) than those using first order, especially where the function $m(x)$
changes direction.

Figure 2: Estimates of $m(x)$ (left panel) and bias (right panel) using local-STLS (dotted), local-QME (dashed), and LPR (dashed and dotted) with 1st order polynomials (upper panel) and 2nd order polynomials (lower panel), $h=2$, and $\delta=1 \sigma$. Average over 1000 samples of size $n^{*}=1000$ from Model 2 under truncation.

Table 3 displays the average MSE of the estimators LPR, local-STLS, local-STLS2, and local-QME for Model 2. The MSE of local-STLS, local-STLS2 and local-QME decreases (or is more or less unchanged) when n^{*} increases. For focal values between 3.5 and 6.0, MSE is large for LPR due to the truncation, while the other estimators perform well. The results for Model 3 (presented in Table 4) are similar to those for Model 2, with larger MSEs where truncation is more important.

Finally, in simulation experiments (not presented here), local-SCLS behaved similarly under censoring than local-STLS under truncation.

5 Discussion

Local polynomial regression is a popular non-parametric regression technique due to its nice properties (local linear regression is for instance more performant at the edges than simple kernel regression) and to its conceptual simplicity which makes it easy to communicate to non-specialists. We have introduced in this paper two versions (local-STLS and local-QME) of a local polynomial regression estimator which are able
to deal with truncated or censored outcomes. The asymptotic normal distribution together with an explicit expression for the variance are given, thereby allowing for the construction of confidence bands.

The small sample properties of the estimators are studied in a simulation study. As usual with non-parametric estimators the choice of the bandwidth balances bias and variability. Our results indicate that one should consider adaptive bandwidths, i.e., using smaller bandwidth when the observations fall near the trunction (censoring) point. In situations where an automatic bandwith selection is needed one may consider cross-validation, although more work is needed to adapt the latter out-of-sample validation method to truncated outcomes.

Local-QME has an extra tunning parameter. By varying the latter, local-QME could not outperform local-STLS in the simulated situations. On the other hand, local-QME does not require symmetrically distributed errors when estimating the derivative of the objective function, and has therefore wider applicability.

References

Chen, S., Dahl, G. B., Kahn, S. (2005), Nonparametric identification and estimation of a censored location-scale regression model, Journal of the American Statistical Association, 100, 212-221.
Fan, J., Gijbels, I. (1996), Local polynomial modelling and its applications. Chapman \& Hall.

Karlsson, M. (2004), Finite Sample Properties of the QME, Communications in Statistics - Simulation and Computation, 33, 567-583.

Laitila, T. (2001), Properties of the QME under asymmetrically distributed disturbances, Statistics $\mathcal{E}^{\mathcal{G}}$ Probability Letters 52, 347-352.
Lee, M. J. (1993), Quadratic mode regression, Journal of Econometrics 57, 1-19.
Lee, M. J., Kim, H. (1998), Semiparametric econometric estimation for a truncated regression model: A review with an extension, Statistica Neerlandica 52, 200-225. Lewbel, A., Linton, O. (2002), Nonparametric censored and truncated regression, Econometrica 70, 765-779.
Powell, J. L. (1986), Symmetrically trimmed least squares estimation for tobit models, Econometrica 54, 1435-1460.

Appendix: Tables

Table 1: Average MSE at focal values in 1000 replicates of Model 1 under truncation.
$\begin{array}{ll}0.0012 & 0.0035 \\ 0.0012 & 0.0035 \\ 0.0104 & 0.0193\end{array}$ $0.0104-0.0193$ $\begin{array}{ll}0.0047 & 0.0123 \\ 0.0015 & 0.0046\end{array}$
oì
0
0
0
0
0
0

0 | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 | N

0
0
0
0
0
0 $0.0044 \quad 0.0088$

$\stackrel{n}{\circ}$
0
0
0
0
0

0 | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| . |

 0.00340 .0055
8 0.0
0.
0.
0.
0.
0.
 $\begin{array}{ll}0.0029 & 0.0039 \\ 0.0008 & 0.0011\end{array}$ 182
020
0
0
0 0.0075 0.0026 22
8
0
0 28 0.0072
0.0024

18
0
0

0.

0
0
0

0.0005

\circ
8
8

0
0
0
0
0
0
0
0
0 $0.0003 \quad 0.0003$ $\begin{array}{ll}0.0051 & 0.0058 \\ 0.0013 & 0.0016\end{array}$

 $\begin{array}{ll}0.0044 & 0.0055 \\ 0.0012 & 0.0016\end{array}$ $\begin{array}{ll}0.0012 & 0.0016 \\ 0.0003 & 0.0004\end{array}$

 $\begin{array}{lll}0.0002 & 0.0002 & 0.0003 \\ 0.0002 & 0.0002 & 0.0003\end{array}$

 긍
0
0
0
0
0
0
0
0
0
\square
8
0
0
0
0

0 | 7. |
| :--- |
| 0. |
| 0. |
| 0. |
| 0. |
| 0. |
| 0. |
| 0. |
| . |

 10
$\stackrel{1}{0}$
0
0
0
0
0
0

\circ
0.
0.
0.
0.
0.
.

 8
8
0
0
0
0
0
0
0
O
8
0
0
0
0
0
0
 7.
응
0
0
0
0
0.
0.0

O. ${ }_{0}^{\circ}$ M
$\stackrel{3}{3} \mathrm{O}$
0
0
0
응 N

$0.0001-0.0002$

2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5

focal values, x_{0}	2.0	2.5
$P\left(y^{*} \leq t \mid x=x_{0}\right)$	(0.99)	(0.20)

 II 3
 $\begin{array}{lllllllll}\text { local-QME, } \delta=1.0 \sigma & 0.0512 & 0.0131 & 0.0046 & 0.0024 & 0.0020 & 0.0019 & 0.0019 & 0.0017 \\ \text { local-QME, } \delta=2.0 \sigma & 0.0265 & 0.0065 & 0.0019 & 0.0009 & 0.0006 & 0.0005 & 0.0005 & 0.0005\end{array}$ 0.0002 No 0.0012

No
$\stackrel{O}{\circ}$
O.
:---
O_{0}°
0
8

0.0002 ∞

0
0
0
0
0
0 0.0003
0.0002
0.0002 승 8.0
0_{0}
0.0
0
0.0001 ${ }^{-1}$.
-1
8
0
0
 10
0.0
0.0
0
0
-8
8
0 N
No
0
0
0
0
0
0
0
0 8
0
0
0
0
0
0
0 5
0.8
0
0 N.
N.
0.0
0
0
0 N
0
0
0

0 | -8 |
| :--- |
| \bigcirc |
\circ

 웅
0
0
0
0
0
0
0
0
0
0
0 N 등으응 $\begin{array}{ll}0.0002 & 0.0002 \\ 0.0002 & 0.0002\end{array}$ $0.0037-0.0038$ $0.0010 \quad 0.0009$
.0002 응

O.
0
0
0
0
0
0

Bin
0
0
0
0
0
0
0
0
0
0
0
0 0.0004
0.0003 0.0003 0.0013 $\begin{array}{r}3 \\ 8 \\ 8 \\ \hline\end{array}$
0.0006
0.0003
 20
0.8
0.8
0
No
0
0.0
0

0 ت | Z |
| :--- |
| 8 |
| 8 |
| 0 |

 1 눙 $\begin{array}{r}\text { N } \\ \hline 8 \\ \hline\end{array}$

$\stackrel{3}{\circ}$
$\stackrel{\circ}{\circ}$

0
0
0
0

0 ${ }^{\infty}$. $\begin{array}{lll}0 & 0 & 0 \\ 0 & 20 \\ 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0\end{array}$ \begin{tabular}{l}
\circ

8.

8

8

\hline 8

 $\stackrel{1}{2} \stackrel{1}{0}$ ${ }_{0}^{\circ}$ 280

7

\hline \multirow{2}{3}{}

0.

0.0

4

\hline 10

0.

0

0

0

 Nั

0

\hline 0

0

0

0

0

0
\end{tabular}

 \#n
0
0
0
0
0
0 0.0504
0.0073 $\begin{array}{cc}\text { M } \\ 0 & N \\ 0 & \text { N } \\ 0 & 0 \\ 0 & 0\end{array}$ 0.0164
 $h=3$ 0.0026 0.0011
0.0096
0.0044 0.0016
0.0018 $\begin{array}{cc}\infty & 2 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$
.0007 0
0
0
0
0
0
0
0

0010 $h=2$
LPR
QME, $\delta=0.5 \sigma$
QME, $\delta=1.0 \sigma$
QME, $\delta=2.0 \sigma$

 $h=3$ LPR S

 $h=5$ 0.0043
 \circ
0
0
0
0
0
0
0
0
0
0

0 0_{0}° LPR | 0.022 | $0064-0.0025$ |
| :--- | :--- |
| 0 | |

 0.0033 0
0
0
0
0
0
0
0 0.0064
0.0023 N
N.
O.
0
0 0.0033
STLS
QME, $\delta=0.5 \sigma$
QME, $\delta=1.0 \sigma$
QME, $\delta=2.0 \sigma$ LPR

 local-QME, $\delta=$ İLPR

 local-QME, δ

[^1]Table 2: Average bias at focal values in 1000 replicates of Model 1 under truncation.

$\begin{aligned} & \text { focal values, } x_{0} \\ & P\left(y^{*} \leq t \mid x=x_{0}\right) \\ & \hline \end{aligned}$	$\begin{gathered} 2.0 \\ (0.99) \\ \hline \end{gathered}$	$\begin{gathered} 2.5 \\ (0.20) \\ \hline \end{gathered}$	$\begin{gathered} 3.0 \\ (0.00) \\ \hline \end{gathered}$	$\begin{array}{r} 3.5 \\ (0.0) \\ \hline \end{array}$	$\begin{gathered} 4.0 \\ (0.00) \\ \hline \end{gathered}$	$\begin{gathered} 4.5 \\ (0.00) \\ \hline \end{gathered}$	$\begin{gathered} 5.0 \\ (0.00) \end{gathered}$	$\begin{gathered} \hline 5.5 \\ (0.00) \\ \hline \end{gathered}$	$\begin{gathered} 6.0 \\ (0.00) \\ \hline \end{gathered}$	$\begin{gathered} 6.5 \\ (0.00) \\ \hline \end{gathered}$	$\begin{gathered} 7.0 \\ (0.00) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.5 \\ (0.00) \\ \hline \end{gathered}$	$\begin{gathered} 8.0 \\ (0.00) \\ \hline \end{gathered}$
	$n^{*}=500$												
$h=2$													
LPR	0.2343	0.1026	0.0458	0.0161	0.0027	0.0002	0.0003	0.0001	0.0000	0.0003	0.0004	0.0004	0.0009
local-STLS	-0.0005	-0.0008	-0.0001	0.0005	0.0004	0.0002	0.0003	0.0001	0.0000	0.0003	0.0004	0.0004	0.0009
local-QME, $\delta=0.5 \sigma$	0.1404	0.0611	0.0257	0.0086	0.0029	0.0037	0.0023	0.0012	0.0009	-0.0008	0.0001	-0.0040	-0.0052
local-QME, $\delta=1.0 \sigma$	0.0260	0.0104	0.0020	0.0006	0.0006	0.0010	0.0017	0.0012	0.0008	-0.0000	0.0002	0.0007	0.0007
local-QME, $\delta=2.0 \sigma$	-0.0077	-0.0038	-0.0187	-0.0007	-0.0006	-0.0005	-0.0001	0.0001	0.0003	0.0007	0.0006	0.0000	0.0004
$h=3$													
LPR	0.1380	0.0774	0.0436	0.0236	0.0115	0.0044	0.0009	0.0002	0.0002	0.0003	0.0004	0.0004	0.0003
local-STLS	-0.0015	-0.0001	0.0006	0.0005	0.0004	0.0004	0.0003	0.0002	0.0002	0.0004	0.0004	0.0004	0.0003
local-QME, $\delta=0.5 \sigma$	0.0852	0.0491	0.0284	0.0157	0.0071	0.0045	0.0037	0.0016	0.0014	-0.0016	-0.0038	-0.0066	-0.0071
local-QME, $\delta=1.0 \sigma$	0.0012	0.0029	-0.0001	-0.0012	-0.0004	0.0006	0.0008	0.0010	0.0008	0.0004	-0.0007	0.0001	0.0001
local-QME, $\delta=2.0 \sigma$	-0.0048	-0.0024	-0.0009	-0.0008	-0.0007	-0.0004	-0.0000	0.0001	0.0002	0.0005	0.0006	0.0004	-0.0004
$h=5$													
LPR	0.0696	0.0478	0.0338	0.0243	0.0172	0.0115	0.0068	0.0032	0.0008	-0.0001	0.0001	0.0003	0.0005
local-STLS	0.0009	0.0008	0.0006	0.0005	0.0004	0.0004	0.0004	0.0003	0.0003	0.0003	0.0003	0.0003	0.0005
local-QME, $\delta=0.5 \sigma$	0.0456	0.0289	0.0205	0.0140	0.0103	0.0076	0.0037	0.0022	-0.0040	-0.0048	-0.0068	-0.0134	-0.0124
local-QME, $\delta=1.0 \sigma$	-0.0039	-0.0037	-0.0021	-0.0007	-0.0007	-0.0000	0.0002	0.0003	0.0004	0.0004	0.0002	-0.0008	-0.0015
local-QME, $\delta=2.0 \sigma$	-0.0014	-0.0011	-0.0009	-0.0006	-0.0004	-0.0002	-0.0000	0.0001	0.0002	0.0004	0.0005	0.0007	0.0008
STLS	0.0006	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0003	0.0003	0.0003	0.0002	0.0002	0.0002
QME, $\delta=0.5 \sigma$	0.0228	0.0194	0.0161	0.0128	0.0095	0.0062	0.0028	-0.0005	-0.0038	-0.0071	-0.0104	-0.0138	-0.0171
QME, $\delta=1.0 \sigma$	-0.0015	-0.0012	-0.0010	-0.0008	-0.0005	-0.0003	-0.0000	0.0002	0.0005	0.0007	0.0010	0.0012	0.0015
$\mathrm{QME}, \delta=2.0 \sigma$	-0.0011	-0.0009	-0.0008	0.0006	-0.0004	-0.0003	-0.0001	0.0001	0.0003	0.0004	0.0006	0.000	0.0009

	$n^{*}=1000$												
$h=2$													
LPR	0.2179	0.0902	0.0388	0.0133	0.0022	0.0032	0.0006	0.0009	0.0009	0.0005	-0.0002	-0.0011	-0.0023
local-STLS	-0.0034	-0.0011	-0.0006	-0.0005	-0.0001	0.0003	0.0006	0.0009	0.0009	0.0005	-0.0002	-0.0011	-0.0023
local-QME, $\delta=0.5 \sigma$	0.1039	0.0423	0.0173	0.0041	0.0007	0.0013	0.0010	0.0001	-0.0009	-0.0041	-0.0026	-0.0027	-0.0018
local-QME, $\delta=1.0 \sigma$	0.0091	0.0008	-0.0005	0.0003	0.0002	0.0008	0.0005	0.0009	0.0008	0.0006	0.0003	-0.0009	-0.0017
local-QME, $\delta=2.0 \sigma$	-0.0086	-0.0035	-0.0014	-0.0008	-0.0002	0.0005	0.0009	0.0012	0.0012	0.0006	-0.0001	-0.0008	-0.0018
$h=3$													
LPR	0.1217	0.0666	0.0374	0.0205	0.104	0.0042	0.0010	0.0006	0.0005	0.0003	-0.0002	-0.0010	-0.0019
local-STLS	-0.0011	-0.0009	-0.0007	-0.0004	-0.0000	0.0003	0.0005	0.0006	0.0005	0.0003	-0.0003	-0.0010	-0.0019
local-QME, $\delta=0.5 \sigma$	0.0060	0.0030	0.0013	0.0041	0.0011	0.0019	0.0000	-0.0013	-0.0014	-0.0037	-0.0055	-0.0071	-0.0071
local-QME, $\delta=1.0 \sigma$	-0.0005	-0.0013	-0.0008	-0.0001	0.0001	0.0004	0.0007	0.0010	0.0009	0.0005	0.0003	-0.0005	-0.0018
local-QME, $\delta=2.0 \sigma$	-0.0037	-0.0020	-0.0013	-0.0082	-0.0002	0.0004	0.0006	0.0007	0.0007	0.0004	-0.0002	-0.0010	-0.0017
$h=5$													
LPR	0.0599	0.0416	0.0299	0.0216	0.0154	0.0103	0.0061	0.0029	0.0007	-0.0002	-0.0001	-0.0003	-0.0009
local-STLS	-0.0014	-0.0010	-0.0004	-0.0003	-0.0000	0.0001	0.0002	0.0002	0.0002	0.0002	0.0001	-0.0003	-0.0009
local-QME, $\delta=0.5 \sigma$	0.0162	0.0067	0.0036	0.0029	0.0038	0.0024	-0.0007	-0.0020	-0.0027	-0.0039	-0.0056	-0.0079	-0.0104
local-QME, $\delta=1.0 \sigma$	-0.0012	-0.0005	-0.0005	0.0000	0.0001	0.0002	0.0004	0.0006	0.0007	0.0008	0.0006	0.0002	-0.0002
local-QME, $\delta=2.0 \sigma$	-0.0026	-0.0019	-0.0011	-0.0005	-0.0001	0.0001	0.0002	0.0003	0.0003	0.0003	0.0001	-0.0003	-0.0010
STLS	-0.0000	-0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.0002	0.0002	0.0002	0.0002	0.0003	0.0003
QME, $\delta=0.5 \sigma$	0.0080	0.0066	0.0051	0.0037	0.0023	0.0009	-0.0005	-0.0020	-0.0034	-0.0048	-0.0062	-0.0076	-0.0090
QME, $\delta=1.0 \sigma$	-0.0003	-0.0002	-0.0001	0.0000	0.0001	0.0002	0.0003	0.0004	0.0005	0.0006	0.0007	0.0008	0.0009
QME, $\delta=2.0 \sigma$	-0.0001	-0.0001	-0.0001	-0.0000	0.0000	0.0001	0.0001	0.0002	0.0002	0.0003	0.0003	0.0004	0.0004

Table 3: Average MSE at focal values in 1000 replicates of Model 2 under truncation.

focal values, x_{0}	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5
$P\left(y^{*}<t \mid x=x_{0}\right)$	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.04)	(0.04)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)

$h=2$																
LPR	0.0112	0.0018	0.0006	0.0082	0.0414	0.0797	0.0804	0.0394	0.0059	0.0021	0.0094	0.0020	0.0332			
local-STLS	0.0112	0.0018	0.0008	0.0023	0.0030	0.0193	0.0180	0.0026	0.0018	0.0023	0.0094	0.0020	0.0332			
local-STLS2	0.0077	0.0014	0.0016	0.0013	0.0014	0.0015	0.0016	0.0013	0.0018	0.0010	0.0017	0.0015	0.0078			
local-QME, $\delta=0.5 \sigma$	0.0344	0.1076	0.0064	0.0132	0.0388	0.0699	0.0653	0.0334	0.0106	0.0067	0.0120	0.0109	0.0654			
local-QME, $\delta=1.0 \sigma$	0.0202	0.0055	0.0027	0.0058	0.0144	0.0470	0.0419	0.0114	0.0045	0.0037	0.0107	0.0069	0.0456			
local-QME, $\delta=2.0 \sigma$	0.0122	0.0021	0.0011	0.0016	0.0049	0.0720	0.0492	0.0030	0.0015	0.0024	0.0090	0.0025	0.0345			
$h=3$																
LPR	0.0094	0.0039	0.0005	0.0315	0.1519	0.2779	0.2730	0.1494	0.0273	0.0014	0.0119	0.0010	0.0854			
local-STLS	0.0118	0.0021	0.0008	0.0027	0.0024	0.0383	0.0246	0.0035	0.0021	0.0033	0.0113	0.0010	0.0854			
local-STLS2	0.0113	0.0022	0.0036	0.0033	0.0015	0.0082	0.0088	0.0041	0.0045	0.0010	0.0033	0.0019	0.0116			
local-QME, $\delta=0.5 \sigma$	0.0354	0.0112	0.0068	0.0287	0.1143	0.1773	0.1749	0.0737	0.0151	0.0069	0.0142	0.0140	0.1286			
local-QME, $\delta=1.0 \sigma$	0.0197	0.0061	0.0027	0.0069	0.0218	0.0822	0.0605	0.0143	0.0056	0.0045	0.0127	0.0069	0.1033			
local-QME, $\delta=2.0 \sigma$	0.0137	0.0022	0.0012	0.0017	0.0034	0.0959	0.0433	0.0022	0.0016	0.0036	0.0107	0.0017	0.0885			
$h=5$																
LPR	0.0707	0.1108	0.0165	0.0525	0.3403	0.6461	0.6661	0.3860	0.0857	0.0020	0.0532	0.0292	0.0407			
local-STLS	0.0094	0.0024	0.0007	0.0029	0.0024	0.2350	0.0090	0.0060	0.0024	0.0037	0.0121	0.0010	0.1175			
local-STLS2	0.0957	0.0031	0.0247	0.0059	0.0068	0.0365	0.0350	0.0049	0.0113	0.0519	0.0397	0.0020	0.0270			
local-QME, $\delta=0.5 \sigma$	0.0216	0.0200	0.0118	0.0677	0.2920	0.5136	0.3978	0.1593	0.0250	0.0097	0.0319	0.0143	0.1138			
local-QME, $\delta=1.0 \sigma$	0.0152	0.0070	0.0027	0.0218	0.2746	0.2867	0.0928	0.0254	0.0065	0.0049	0.0148	0.0070	0.1304			
local-QME, $\delta=2.0 \sigma$	0.0136	0.0022	0.0012	0.0017	0.4558	0.2866	0.0161	0.0039	0.0017	0.0041	0.0112	0.0018	0.1299			

Table 4: Average MSE at focal values in 1000 replicates of Model 3 under truncation.

focal values, x_{0}	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0
7.5	8.0										
$P\left(y^{*}<t \mid x=x_{0}\right)$	(0.00)	(0.00)	(0.00)	(0.02)	(0.21)	(0.47)	(0.45)	(0.16)	(0.01)	(0.00)	(0.00)
(0.00)	(0.00)										

$h=2$														
LPR	0.0107	0.0019	0.0005	0.0177	0.0899	0.1797	0.1789	0.0812	0.0123	0.0010	0.0090	0.0020	0.0332	
local-STLS	0.0111	0.0018	0.0011	0.0018	0.0096	0.1360	0.0895	0.0061	0.0017	0.0019	0.0091	0.0020	0.0332	
local-STLS2	0.0080	0.0013	0.0016	0.0023	0.0215	0.0085	0.0093	0.0204	0.0024	0.0013	0.0013	0.0015	0.0078	
local-QME, $\delta=0.5 \sigma$	0.0319	0.0091	0.0075	0.0104	0.0238	0.0904	0.0808	0.0316	0.0108	0.0092	0.0172	0.0129	0.0464	
local-QME, $\delta=1.0 \sigma$	0.0209	0.0051	0.0035	0.0050	0.0216	0.1691	0.1153	0.0173	0.0049	0.0041	0.0114	0.0069	0.0420	
local-QME, $\delta=2.0 \sigma$	0.0122	0.0021	0.0014	0.0030	0.0187	0.2472	0.1522	0.0117	0.0032	0.0015	0.0087	0.0025	0.0342	
$h=3$														
LPR	0.0068	0.0040	0.0008	0.0597	0.2515	0.4425	0.4308	0.2407	0.0514	0.0004	0.0111	0.0012	0.0800	
local-STLS	0.0131	0.0018	0.0011	0.0018	0.0049	0.0924	0.0500	0.0032	0.0030	0.0025	0.0108	0.0011	0.0805	
local-STLS2	0.0081	0.0013	0.0016	0.0025	0.0144	0.0322	0.0365	0.0275	0.0033	0.0015	0.0014	0.0016	0.0088	
local-QME, $\delta=0.5 \sigma$	0.0281	0.0107	0.0084	0.0109	0.0267	0.0891	0.2972	0.0546	0.0173	0.0098	0.0221	0.0120	0.0933	
local-QME, $\delta=1.0 \sigma$	0.0218	0.0056	0.0035	0.0050	0.0143	0.1164	0.0879	0.0092	0.0045	0.0051	0.0135	0.0067	0.0947	
local-QME, $\delta=2.0 \sigma$	0.0140	0.0022	0.0014	0.0029	0.0079	0.1036	0.0525	0.0072	0.0060	0.0017	0.0102	0.0017	0.0815	
$h=5$														
LPR	0.0782	0.0899	0.0026	0.1166	0.5052	0.8729	0.8886	0.5437	0.1516	0.0010	0.0419	0.0324	0.0294	
local-STLS	0.0137	0.0018	0.0011	0.0019	0.0041	0.0738	0.2954	0.0086	0.0038	0.0028	0.0114	0.0011	0.1086	
local-STLS2	0.0262	0.0042	0.0153	0.0004	0.0317	0.0910	0.0908	0.0311	0.0006	0.0292	0.0015	0.0017	0.0114	
local-QME, $\delta=0.5 \sigma$	0.0341	0.0580	0.0503	0.0538	0.2550	0.7571	1.0556	0.6362	0.2310	0.0424	0.0335	0.0254	0.0766	
local-QME, $\delta=1.0 \sigma$	0.0222	0.0057	0.0035	0.0062	0.0565	0.4057	0.6077	0.2127	0.0406	0.0065	0.01388	0.0082	0.1345	
local-QME, $\delta=2.0 \sigma$	0.0144	0.0022	0.0014	0.0030	0.0064	0.0822	0.2944	0.0170	0.0078	0.0018	0.0106	0.0017	0.1007	

$h=2$													
LPR	0.0079	0.0017	0.0003	0.0199	0.0972	0.1840	0.1697	0.0762	0.0124	0.0011	0.0105	0.0021	0.0264
local-STLS	0.0081	0.0016	0.0007	0.0011	0.0063	0.1106	0.0762	0.0038	0.0010	0.0021	0.0105	0.0021	0.0264
local-STLS2	0.0034	0.0008	0.0008	0.0013	0.0174	0.0075	0.0084	0.0101	0.0013	0.0009	0.0008	0.0009	0.0043
local-QME, $\delta=0.5 \sigma$	0.0233	0.0069	0.0052	0.0078	0.0179	0.0823	0.0590	0.0181	0.0073	0.0064	0.0147	0.0094	0.0399
local-QME, $\delta=1.0 \sigma$	0.0132	0.0033	0.0019	0.0030	0.0131	0.1348	0.0912	0.0087	0.0025	0.0033	0.0110	0.0043	0.0340
local-QME, $\delta=2.0 \sigma$	0.0086	0.0018	0.0008	0.0018	0.0124	0.1894	0.1300	0.0075	0.0017	0.0016	0.0100	0.0022	0.0273
$h=3$													
LPR	0.0051	0.0037	0.0009	0.0672	0.2676	0.4488	0.4185	0.2219	0.0450	0.0004	0.0128	0.0011	0.0714
local-STLS	0.0104	0.0016	0.0008	0.0013	0.0025	0.0829	0.0487	0.0023	0.0023	0.0030	0.0127	0.0009	0.0718
local-STLS2	0.0038	0.0009	0.0008	0.0014	0.0157	0.0325	0.0357	0.0244	0.0015	0.0011	0.0009	0.0012	0.0054
local-QME, $\delta=0.5 \sigma$	0.0227	0.0080	0.0059	0.0078	0.0163	0.0867	0.1956	0.0195	0.0088	0.0083	0.0201	0.0094	0.0881
local-QME, $\delta=1.0 \sigma$	0.0153	0.0034	0.0020	0.0030	0.0078	0.0982	0.0593	0.0046	0.0026	0.0046	0.0130	0.0036	0.0866
local-QME, $\delta=2.0 \sigma$	0.0104	0.0018	0.0009	0.0021	0.0042	0.0916	0.0504	0.0042	0.0042	0.0021	0.0118	0.0013	0.0742
$h=5$													
LPR	0.0731	0.0764	0.0007	0.1299	0.5218	0.8829	0.8882	0.5357	0.1436	0.0003	0.0461	0.0331	0.0274
local-STLS	0.0110	0.0016	0.0008	0.0014	0.0020	0.0635	0.5164	0.0079	0.0031	0.0034	0.0134	0.0007	0.0971
local-STLS2	0.0113	0.0042	0.0145	0.0002	0.0341	0.0949	0.0930	0.0306	0.0007	0.0339	0.0010	0.0013	0.0075
local-QME, $\delta=0.5 \sigma$	0.0210	0.0177	0.0123	0.0163	0.1130	0.5773	1.0219	0.6507	0.1950	0.0228	0.0226	0.0163	0.0898
local-QME, $\delta=1.0 \sigma$	0.0159	0.0034	0.0020	0.0030	0.0102	0.2483	0.6560	0.2493	0.0134	0.0050	0.0134	0.0039	0.1244
local-QME, $\delta=2.0 \sigma$	0.0109	0.0018	0.0009	0.0022	0.0034	0.0633	0.5050	0.0134	0.0057	0.0022	0.0124	0.0012	0.0930

Publication series published by the Institute for Labour Market Policy Evaluation (IFAU) - latest issues

Rapporter/Reports

2009:1 Hartman Laura, Per Johansson, Staffan Khan and Erica Lindahl, "Uppföljning och utvärdering av Sjukvårdsmiljarden"
2009:2 Chirico Gabriella and Martin Nilsson "Samverkan för att minska sjukskrivningar - en studie av åtgärder inom Sjukvårdsmiljarden"
2009:3 Rantakeisu Ulla "Klass, kön och platsanvisning. Om ungdomars och arbetsförmedlares möte på arbetsförmedlingen"

2009:4 Dahlberg Matz, Karin Edmark, Jörgen Hansen and Eva Mörk "Fattigdom i folkhemmet - från socialbidrag till självförsörjning"

2009:5 Pettersson-Lidbom Per and Peter Skogman Thoursie "Kan täta födelseintervaller mellan syskon försämra deras chanser till utbildning?"
2009:6 Grönqvist Hans "Effekter av att subventionera p-piller för tonåringar på barnafödande, utbildning och arbetsmarknad"
2009:7 Hall Caroline "Förlängningen av yrkesutbildningarna på gymnasiet: effekter på utbildningsavhopp, utbildningsnivå och inkomster"

2009:8 Gartell Marie "Har arbetslöshet i samband med examen från högskolan långsiktiga effekter?"

2009:9 Kennerberg Louise "Hur försörjer sig nyanlända invandrare som inte deltar i sfi?"
2009:10 Lindvall Lars "Bostadsområde, ekonomiska incitament och gymnasieval"
2009:11 Vikström Johan "Hur påverkade arbetsgivaransvaret i sjukförsäkringen lönebildningen?"
2009:12 Liu Qian and Oskar Nordström Skans "Föräldraledighetens effekter på barnens skolresultat

2009:13 Engström Per, Hans Goine, Per Johansson and Edward Palmer "Påverkas sjukskrivning och sjukfrånvaro av information om förstärkt granskning av läkarnas sjukskrivning?"

2009:14 Goine Hans, Elsy Söderberg, Per Engström and Edward Palmer "Effekter av information om förstärkt granskning av medicinska underlag"
2009:15 Hägglund Pathric "Effekter av intensifierade förmedlingsinsatser vid Arbetsförmedlingen - erfarenheter från randomiserade experiment"
2009:16 van den Berg Gerard J. and Johan Vikström "Hur påverkas de arbetslösa av sanktioner i arbetslöshetsförsäkringen?"

2009:17 Gartell Marie "Val av högskola och inkomster - hur stabil är rangordningen? En metodstudie"

2009:18 Edin Per-Anders, Peter Fredriksson, Hans Grönqvist and Olof Åslund "Bostadssegregationens effekter på flyktingbarns skolresultat"

2009:19 Blomskog Stig and Johan Bring "Hur bör en arbetsvärderingsmodell specificeras? en analys baserad på mångdimensionell beslutsteori"

2009:20 Böhlmark Anders, Oskar Nordström Skans and Olof Åslund "Invandringsålderns betydelse för social och ekonomisk integration"

2009:21 Sibbmark Kristina "Arbetsmarknadspolitisk översikt 2008"
2009:22 Eliason Marcus "Inkomster efter en jobbförlust: betydelsen av familjen och trygghetssystemet"
2009:23 Bennmarker Helge, Erik Grönqvist and Björn Öckert "Betalt efter resultat: utvärdering av försöksverksamhet med privata arbetsförmedlingar"

2009:24 Hensvik Lena, Oskar Nordström Skans and Olof Åslund "Sådan chef, sådan anställd? - Rekryteringsmönster hos invandrade och infödda chefer"

Working papers

2009:1 Crépon Bruno, Marc Ferracci, Grégory Jolivet and Gerard J. van den Berg "Active labor market policy effects in a dynamic setting"

2009:2 Hesselius Patrik, Per Johansson and Peter Nilsson "Sick of your colleagues’ absence?"
2009:3 Engström Per, Patrik Hesselius and Bertil Holmlund "Vacancy referrals, job search and the duration of unemployment: a randomized experiment"
2009:4 Horny Guillaume, Rute Mendes and Gerard J. van den Berg "Job durations with worker and firm specific effects: MCMC estimation with longitudinal employeremployee data"

2009:5 Bergemann Annette and Regina T. Riphahn "Female labor supply and parental leave benefits - the causal effect of paying higher transfers for a shorter period of time"

2009:6 Pekkarinen Tuomas, Roope Uusitalo and Sari Kerr "School tracking and development of cognitive skills"

2009:7 Pettersson-Lidbom Per and Peter Skogman Thoursie "Does child spacing affect childrens's outcomes? Evidence from a Swedish reform"

2009:8 Grönqvist Hans "Putting teenagers on the pill: the consequences of subsidized contraception"

2009:9 Hall Caroline "Does making upper secondary school more comprehensive affect dropout rates, educational attainment and earnings? Evidence from a Swedish pilot scheme"

2009:10 Gartell Marie "Unemployment and subsequent earnings for Swedish college graduates: a study of scarring effects"
2009:11 Lindvall Lars "Neighbourhoods, economic incentives and post compulsory education choices"

2009:12 de Luna Xavier and Mathias Lundin "Sensitivity analysis of the unconfoundedness assumption in observational studies"

2009:13 Vikström Johan "The effect of employer incentives in social insurance on individual wages"

2009:14 Liu Qian and Oskar Nordström Skans "The duration of paid parental leave and children's scholastic performance"

2009:15 Vikström Johan "Cluster sample inference using sensitivity analysis: the case with few groups"

2009:16 Hägglund Pathric "Experimental evidence from intensified placement efforts among unemployed in Sweden"
2009:17 Andersson Christian and Per Johansson "Social stratification and out-of-school learning"
2009:18 van den Berg Gerard J. and Johan Vikström "Monitoring job offer decisions, punishments, exit to work, and job quality"

2009:19 Gartell Marie "Stability of college rankings - a study of relative earnings estimates applying different methods and models on Swedish data"
2009:20 Åslund Olof, Per-Anders Edin, Peter Fredriksson and Hans Grönqvist "Peers, neighborhoods and immigrant student achievement - evidence from a placement policy"
2009:21 Åslund Olof, Anders Böhlmark and Oskar Nordström Skans "Age at migration and social integration"
2009:22 Arni Patrick, Rafael Lalive and Jan C. van Ours "How effective are unemployment benefit sanctions? Looking beyond unemployment exit"

2009:23 Bennmarker Helge, Erik Grönqvist and Björn Öckert "Effects of outsourcing employment services: evidence from a randomized experiment"
2009:24 Åslund Olof, Lena Hensvik and Oskar Nordström Skans "Seeking similarity: how immigrants and natives manage at the labor market"
2009:25 Karlsson Maria, Eva Cantoni and Xavier de Luna "Local polynomial regression with truncated or censored response"

Dissertation series

2009:1 Lindahl Erica "Empirical studies of public policies within the primary school and the sickness insurance"
2009:2 Grönqvist Hans "Essays in labor and demographic economics"

[^0]: *Acknowledgments: We are grateful to two anonymous referees for helpful comments. We acknowledge the following funding bodies for their support: Institute of Labour Market Policy Evaluation, Jan Wallanders and Tom Hedelius Foundation, and the Swedish Research Council through the Ageing and Living Condition program and the Umeå node of the Swedish Innitiative for Research on Microdata in the Social and Medical Sciences.
 ${ }^{\dagger}$ Department of Statistics, Umeå University, S-90187 Umeå, Sweden.
 ${ }^{\ddagger}$ Department of Econometrics, University of Geneva, Bd Pont d’Arve 40, 1211 Geneva 4, Switzerland.

[^1]:

