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1 Introduction

Disentangling a stationary process from a unit root one has attracted the atten-
tion of many researchers. The testing strategy may have either non-stationarity
or stationarity as the null hypothesis and many of the test statistics proposed so
far under both approaches are now available in econometric software and routinely
applied by empirical researchers. In this paper we focus our attention on the, by
now very popular, test of the null hypothesis of stationarity proposed Kwiatkowski
et al. (1992), hereafter KPSS. This test statistic builds on the work by Nabeya and
Tanaka (1988) who, in a framework with i.i.d. normal errors, obtained the local
best invariant (LBI) test to verify the coefficient constancy in a linear regression
model (but see also Nyblom, 1986; Nyblom and Méikelédinen, 1983). To take into ac-
count the possible strong autocorrelation of most macroeconomic time series, KPSS
proposed an extension of the LBI test, involving a different standardization of the
numerator of the test, which can then be used as a test of the null hypothesis of
stationarity.

Casting the discussion in formal terms, and assuming for the sake of simplicity
that the deterministic component of the series is just the constant term!®, the data
generating process (DGP) of the observable variable y; in KPSS is given by (see also
(Stock, 1994)):

yt:5+rt—i—et tzl,,T (la)
re = Te—1 + N (1b)
ne ~1i.d.(0,07), € ~1(0), mles Vtands (1c)

The null hypothesis of stationarity constrains the variance of the error 7; to be zero,

2:
n

to a constant term and ¥, is level stationary. This DGP can also be written as the
ARMA model

namely Hg : o 0, so that, under the null, the random walk process r; collapses

Y=y twg, wp=v+0v1, a=1 (2)

with the null hypothesis given § = —1 where, now, « is nuisance parameter.
The KPSS test statistic is based on the behaviour of the rescaled sum of the

squared partial sums of the residuals from the regression of 4, on the deterministic

In general, when a generic deterministic component is present in the DGP, the limit theory we present in
the next section can be obtained by simply substituting the Wiener process W (r) with the detrended Wiener
process W(r) = W(r) — (fol dW(s)X(s)’)(fo1 X(s)X(s)'ds)™" [ X(r), where we assume that there exists some
standardizing matrix YT such that Tflx[T,«] — X(r) and X(r) = (1,7,...,7?)". For instance, under the trend
stationary null hypothesis we have x; = (1,¢)" and the limit theory should be rephrased in terms of the second-
level Brownian bridge given by Va(r) = W(r) + (2r — 3r)W (1) + (6r% — 67) fol W. Here, we focus on the case

known as “local-level” unobserved component model (Harvey, 1995).



component. In model (1a)-(1c), defining the residual as e; = y; — y and the partial

sum S; = 2321 ej, the KPSS test statistic is given by

T
KPSS=T"?> " 5; / w? (3)
t=1

2

€

The crucial point in (3) is the choice of the scale factor w?, which depends on the

behaviour of €. If these errors are i.i.d., then it is sufficient to rescale by the usual
estimator of the variance, i.e. 62 = T~} ZtT:1 e?. In addition, if ¢ is Gaussian, as
in Nabeya and Tanaka (1988), then the test (3) is LBI. If ¢ is dependent, satisfying
the (strong mixing) regularity conditions of Phillips and Perron (1988, p. 336), or
the linear process conditions of Phillips and Solo (1992, Theorems 3.3, 3.14), KPSS
propose to replace w? by a consistent estimate, say s?(mr), of the long run variance
of the residual e;, where my is a bandwidth parameter with mp — oo as T — 00 so
that mp /T — 0.

As T — oo, under the null hypothesis the test converges to
1
KPSS = / V(r)3dr (4)
0

where V(r) is a standard Brownian bridge V(r) = W (r) — rW (1) and W(r) is a
Wiener process.

As emphasized by Miiller (2005), the rescaling by s?(mr) is aimed at achieving
the correct size of the test in the presence of autocorrelated series while, at the
same time, it has to provide power when the strong autocorrelation arises from
an integrated process. Thus, this balance between size and power relies crucially
on a “good” estimator of the long run variance of the process and, as testified by
several simulation studies, it might be difficult to achieve in practice. Among the
many simulation studies, Lee (1996) is a typical example of this problem: his results
indicate that estimators of the long run variance producing a test with the correct
size also lead to dramatic loss in power.

Concentrating on size distortion, extreme size distortion of stationarity tests has
been documented in several previous works. Simulation results in Kwiatkowski et al.
(1992) and Caner and Kilian (2001) indicate that over-rejection is quite important
whenever the largest autoregressive root is close to unity. For instance, considering
an AR(1) process the effective size is 11.4% when the autoregressive parameter is
equal to 0.7 but it peaks at 55.4% (70.8%) when it is equal to 0.95 (0.98). Thus,
for economically plausible parameter values, the K PSS test exhibits effective size
much greater than the nominal size leading to a serious over-rejection in empirical

works?. Miiller (2005) advocates the use of local-to-unity asymptotics to obtain more

?Caner and Kilian (2001) and Lanne and Saikkonen (2003) present evidence on the relevance of this problem

on the stationarity test proposed by Leybourne and McCabe (1994), say LMC.



accurate approximation of the small sample distribution of the stationarity test, as
it has been done for unit root tests. He shows that the behavior of stationarity
test depends heavily on long run variance estimator and on the rate of growth of
the bandwidth parameter but, more importantly, he points out that the remedy
to reduce the large size distortion in the presence of strongly autocorrelated series
might open the door to test inconsistency.

Previous studies investigated the issue of size distortion focussing on the impli-
cations of high persistence, in relation to the role played by the large autoregressive
root in the ARMA representation, thus considering a near-integrated processes as
in Miiller (2005). In this paper, the objective is to improve our understanding of the
behaviour of the K PSS test under the null hypothesis of stationarity and to point
out its fragility in the presence of small deviations from the maintained hypothesis
of a = 1 when, at the same time, we induce small deviations of the moving average
parameter 6 from —1, the parameter value under the null hypothesis. Assuming
that €; is an i.i.d. process (this assumption will be removed in the Appendix), we
will consider a specific generating mechanism for these deviations so that the ob-
servable process will be a stationary ARMA process with no common factor in any
finite sample whereas, in the limit as 7" — oo, the process y; will approach an i.i.d.
process since the autoregressive root approaches unity and the moving average root
approaches minus unity, thus canceling out each other. Thus, our study concerns
the behavior of the test under a sequence of DGPs exhibiting different degrees of
autocorrelation in any finite sample but converging, as the sample size grows large,
to the setup where the K PSS is known to be the locally best invariant test under
normality.

Formally, we follow Nabeya and Perron (1994) and Perron and Ng (1996) by con-
sidering a so-called nearly-integrated nearly-white noise process which is a sequence
of stationary ARMA(1,1) processes such that the autoregressive root approaches
unity and the MA root tends to —1 as T — oo. In other words, the ARMA(1,1)
has an asymptotic common factor. Nabeya and Perron (1994) and Perron and Ng
(1996) have originally used this process but in a different context to investigate the
behavior of unit root tests under a sequence of alternative hypotheses converging to
a specific alternative hypothesis, namely a white noise process, but this specifica-
tion of the DGP is especially well suited for our purposes®. By combining a possibly
large autoregressive root and a moving average root close to -1, the nearly-integrated
nearly-white noise DGP is capable of generating a wide range of first-order autocor-

relation coefficient but, because of the presence of an asymptotic common factor, it

3The size distortion of unit root tests has been studied by Pantula (1991) with a similar specification. His

process has a unit root in finite samples and converges to a white noise as T' — co.



collapses to a white noise process as T’ — oo generating the “ideal” settings for the
test statistic.

The nearly-white-noise, nearly-integrated sequence of DGPs should be helpful
in providing a better approximation to the exact distribution of the test statistics
when the time series is stationary but autocorrelated with an MA structure with
large negative correlation, as it is the case for several macroeconomic time series.
We show that the limiting distribution of the K PSS test depends upon the degree
of nearly stationarity and on the vicinity of the autoregressive parameter to the
nonstationarity region.

The plan of the paper is as follows. In the following section, we provide a more ac-
curate description of the nearly-white noise, nearly integrated DGPs and we present
the main result of the paper on the limiting behavior of the K PSS statistic under
this sequence of DGPs. Next, we conduct a small sample analysis via a MonteCarlo
experiment to assess the extent of size distortion under this DGP and the importance

of bandwidth and kernel choice.

2 The KPSS test under a nearly-integrated nearly-white
noise DGP

Following Nabeya and Perron (1994), we consider a setting in which the error term
¢ in (la)-(1c) is i.i.d. with zero mean and finite variance o2, the general case is
considered in the Appendix?. Then, defining ¢ = 0727 / UZ, we may write 1y = ge\/dhy
where h; isi.i.d. with zero mean and unit variance by construction. Next, we let ¢ be
dependent on the sample size in such a way that ¢ — 0 as T' 1 oo, that is /¢ = §/T.
Finally, autocorrelation in the observable process y; is introduced by modeling r; as
an AR(1) process with a local-to-unity autoregressive root given by exp(c/T"), with
¢ < 0, and error term h; scaled by the o(1) factor do/T. Our sequence of DGPs is
given then by

yw=p+r+e t=1,...,T (5a)
oo
re = exp(c/T)ri—1 + ?eht, (5b)
hy ~ii.d.(0,1), € ~i.i.d.(0,02), hyll es ¥Vt and s (5¢)
“In the Appendix we show that the generalization to the linear process ¢; = a(L)u;, where u; is i.i.d.(0; 02),
and a(L) = 3772, a;jL7 is a polynomial in the lag operator L with a(1) = i—oaj # 0and 3377, j*a} < oo

can be handled easily. Yet, it would overshadow our main point: to consider a highly autocorrelated local to a
white noise process series y:. Allowing for serially correlated errors, one would then obtain a nearly-7(0), nearly-
integrated process. Briefly, in the Appendix we point out that under the more general specification, our results

will hold by simply substituting ¢ by da(1) both in the sequence of DGPs and in the limiting distributions.



Simple inspection of (5a)-(5c) reveals that, for any fixed T', the observable process

1+ is near-integrated process

yr = Pl —exp(c/T)] + exp(c/T)yt—1 + we
50’6h
T

wy = & —exp(c/T)e—1+

where the composite error term w; has a moving average root approaching —1 as
T — oo. It follows that, asymptotically, the autoregressive near unit root cancels out
the moving average root and, at the same time, the influence of h; vanishes so that
y¢ collapses to a white noise process. This specification allows us to investigate the
behavior of the K PSS stationarity test under a sequence of null hypothesis relevant
in empirical works where persistent stationary processes are often encountered.

In finite samples, the process w; has an MA(1) representation with MA parameter

given by the negative root of
E(wywi—1) + E(w})¢ + E(ww1)€* =0 (6)

with E(w?) = (1 + exp(2¢/T))o? + (§/T)?0? and E(wwi—1) = E(wwi1) =
—o2exp(c/T).

Table 1 provides evidence on the degree of persistence of y;, as measured by
the first-order autocorrelation coefficient. The nearly-integrated, nearly white noise
process is capable of generating a wide range of degree of persistence, from almost
0 in correspondence of the common AR and MA factor to 0.9 and beyond. As
the first-order autocorrelation decreases, the root of the MA component tends to
approach -1 and the process gets close to a white noise process.

The presence of autocorrelation in finite samples would call for a consistent es-
timator of the long run variance in the computation of the K PSS test in (3), even
though the observable process is local to a white noise, which would suggest the
use of a standard estimator of the (short run) variance of the residuals e;. As a
matter of fact, this is quite a delicate issue for the K PSS test. As it is well-known,
the usage of a data-dependent automatic bandwidth selection according Andrews
(1991) or AR-prewhitening combined with automatic bandwidth as in Andrews and
Mohanan (1992) is not allowed because both of them lead to inconsistent tests since
the estimated bandwidth would grow at the rate O,(7") which implies that the
KPSS test would be O,(1) under the alternative hypothesis, as discussed in Choi
(1994). In fact, test inconsistency is the price paid by Miiller (2005), who makes
use of these data-dependent bandwidth choices, to get stationarity tests with size
closer to the nominal level when the observable process is nearly integrated. How-
ever, we believe that test consistency is an important feature of the test statistic

to be maintained. Therefore, we consider both a fixed bandwidth as in the original



Table 1: First-order autocorrelation of the nearly-white noise, nearly integrated process (5a)-

(5¢) for selected values of ¢ and § (02 = 1)

e —

o
c T exp(c/T) 1 5 10 20 30 40 50
-1 50 0.980 0.010 0.199 0.495 0.787 0.884 0.924 0.943
100 0.990 0.005 0.111 0.332 0.662 0.812 0.881 0.917
500 0.998 0.001 0.024 0.091 0.286 0.473 0.615 0.713
-5 50 0.905 0.002 0.047 0.164 0.424 0.602 0.705 0.766
100 0.951 0.001 0.024 0.090 0.282 0.462 0.596 0.689
500 0.990 0.000 0.005 0.020 0.074 0.152 0.242 0.332
-10 50 0.819 0.001 0.024 0.089 0.268 0.427 0.540 0.616
100 0.905 0.000 0.012 0.047 0.164 0.300 0.424 0.525
500 0.980 0.000 0.002 0.010 0.038 0.082 0.138 0.199
-15 50 0.741 0.001 0.016 0.060 0.194 0.329 0.435 0.510
100 0.861 0.000 0.008 0.032 0.115 0.222 0.329 0.423
500 0.970 0.000 0.002 0.007 0.026 0.056 0.096 0.142

Kwiatkowski et al. (1992) or the data-dependent bandwidth choice suggested by
Newey and West (1994), which has been shown to deliver test consistency by Hobijn
et al. (2004).

The limiting behavior of the test statistic relies on a Functional Central Limit
Theorem by Phillips and Solo (1992, Theorem 3.3) for the partial sums S, =
ZEZE e¢ built from the residuals e; = y; —  and the Continuous Mapping Theorem.

As T — oo, we have that

[Tr] -
\;TS[TT] = \/1? ;615 = o V(r)+ 055/0 K (s)ds = oV 5(r) (7)

where V(r) = Wi(r) — rWi(1) is a standard Brownian bridge, K .(r) = K.(r) —
fol K.(s)ds and K.(r) = [; e"=9)¢dW,(s) is a diffusion (Ornstein-Uhlenbeck) pro-
cess. Further, Wi(r) and Ws(r) are two independent Wiener processes such that
T-1/2 Z{Qﬁ € = o Wi(r) and T—1/2 ZEZ] hy = Ws(r). Since we may also write

K.(r) = Wa(r) + c/o G(T_S)CWQ(S)CIS

we have the following expression, whose components will enter the asymptotic dis-

tribution of the K PSS test under a nearly-white-noise, nearly-integrated process,

— Z et =0V (r)+ 055/ W, (s)ds+
— 0

r s 1 v
+ 06(50/ [/ eBTWW, (u)du — / </ e(”_”)ch(u)du> dv} ds
o LJo 0 \Jo

6



where Wy(r) = Wa(r) — fol Ws(s)ds. The first term is just the usual Brownian
bridge appearing in the limiting distribution of the K'PSS test (see Kwiatkowski
et al. (1992)) under the null hypothesis. The second term appears in the limiting
distribution of the K PSS test statistics under a sequence of local alternatives, that
is DGPs (5a)-(5b) with ¢ = 0, as in Stock and Watson (1998) and Cappuccio and
Lubian (2006) and it is relevant when the interest is in the local asymptotic power
of the test statistic. Notice that this bias term is present despite the fact that the
nearly-white-noise, nearly-integrated DGP is stationary both in finite samples and
in the limit as T" — oo. The third component reflects both the degree of nearly-
integration of r; via the parameter ¢ and the influence of this component, via the
scale factor §, in shaping the time dependence structure of the observable process
Yt

The consistent estimator s?(mr) of the long run variance of e; may be obtained
either following the original suggestion of Kwiatkowski et al. (1992) by choosing
mp = O(T*) or by applying the procedure proposed by Newey and West (1994)
outlined in Table 3. Under both choices, the following proposition characterizes the
asymptotic behavior of the K PSS test under a sequence of a nearly-white noise,

nearly-integrated processes.

PROPOSITION 2.1 Under DGP (5a)-(5¢), the asymptotic distribution of the K PSS

test is given by

KPSS = /0 1 V2s(r)dr = /O 1 V(r)2dr +9 /0 1 <V5,C(r) /0 ' Kc(s)ds) dr  (8)

This result indicates that the asymptotic behavior the K PSS test in the presence
of a nearly-white noise, nearly integrated process is affected both by the local-to-
unity parameter ¢ and by the scale factor §. Evidently, when § = 0, the order of
magnitude of ¢ becomes irrelevant since r; is just a constant. On the other hand,
when the process is persistent the K PSS suffers from size distortion as reported in
simulation studies (see Saikkonen and Luukkonen (1993); Caner and Kilian (2001)).

Asymptotic rejection rates based on the right-hand side of (8) are reported in
Table 2 as a function of ¢ and §. When § = 1 there is no size distortion whereas, in
general, for a given c size distortion increases with § and for given 4 it is decreasing in
c. Even for small values of the population first-order autocorrelation coefficient of the
nearly-white noise nearly integrated DGP implied by ¢ = —10 or ¢ = —15 (see Table
1), asymptotic size distortion may by substantial for 6 > 20. This suggests that the
second component of the right-hand side of (8) might be helpful to explain the small

sample size distortions observed in simulation and empirical research. Thus, the



Table 2: Asymptotic rejection rates based on (8) for selected values of ¢ and §

4]
1 5 10 20 30 40 50
c=0 6.33 29.79 61.48 86.85 94.67 98.21 99.09
c=-1 563 21.23 50.25 81.31 9251 97.04 98.82
c=-5 501 10.05 26.20 60.79 80.71 90.77 95.39
c=-10 493 6.88 14.07 39.43 62.69 7853 88.75
=-15 5.09 6.32 998 2571 4571 63.32 76.84

asymptotic result in Proposition 2.1 provides a quantitatively useful approximation
to the size distortion issue®.

As for the consistency of the test under the alternative hypothesis, it has been es-
tablished by Kwiatkowski et al. (1992) that under a fixed bandwidth choice (mz/T —
0 as T' — oo) the test is O,(T/mr). Hobijn et al. (2004) have shown that under
the automatic bandwidth selection procedure suggested in Newey and West (1994)
the test retains its consistency being O, (T 14/ 25) when using the Bartlett kernel
and Op(ng/ 125) with the Quadratic Spectral kernel. Again, details on kernels and

bandwidth selection procedure are provided in Table 3.

3 Finite sample properties

In a simulation study we investigate both the role played in finite samples by the
nearly-white noise, nearly integrated sequence of DGPs and the influence of different
choices of the kernel function and bandwidth parameter on the effective size of the
K PSS test. For simplicity, in the simulation we consider the local-level DGP (5a)-
(5¢) where the deterministic component is given by the constant term. We consider
the sequence § = {1,5,10,20,30,40,50}, values of ¢ ranging from 0 to —16 and
10000 replications.

The long run variance of the residuals e; is estimated using either the Bartlett or
the Quadratic Spectral kernels. As for the choice of the bandwidth parameter, for
comparison with previous studies, we adopt the fixed bandwidth as in the original
paper by Kwiatkowski et al. (1992) and the automatic bandwidth procedure by
Newey and West (1994) whose use has been advocated in Hobijn et al. (2004). For
the fixed bandwidth, we follow the latter authors by setting mp(4) = [4(T/100)'/4]
and mgg(4) = [%(T/lOO)Q/g].

Rejection rates of the K PSS test reported in Tables 4 and 5 are computed using
the 5% critical value of 0.463 as published in Kwiatkowski et al. (1992). In each

®We thank an anonymous referre for pointing this out.



Table 3: Kernels and Bandwidths

A. Kernels
Bartlett kp(j) = {(1 - j/E)m = otii\:ilse
Quadratic Spectral kos(j) = 127r2?;/m)2 [Smﬁ(i?(;(;gg?éa —cos(67(j/m)/5)
B. Fixed Bandwidth: mp(z), mgs(x)
Bartlett mp(x) = [=(T/100)"/"
Quadratic Spectral sz(l‘) = [%$(T/100)2/9]

C. Automatic Bandwidth Choice (Newey and West (1994))

Bartlett Quadratic Spectral
Initial bandwidth parameter mp(z) mqs(z)
Compute 3O =40 +2 Doty i

§ =2 Zyil i
§% =237 5

o\ 1/3 o\ 1/5
C t y = 1.1447 can y = 1.3221 3
ompute ¥y = 1. g(o) v =1 @
Select Bandwidth parameter np(x) = min{T, [¥T"/%]} nos(z) = min{T, [§T/°]}

panel of Table 4 we keep the parameter ¢ constant, with values ranging from ¢ = 0
to ¢ = —15, and we look at the effect of increasing §, for different growing sample
sizes. For ¢ = 0 (panel A), the process (5a)-(5c¢) is nonstationary irrespective of
the value taken by 0 and, therefore, rejection rates provide the empirical power
function of the test statistic. As expected, power grows with § and with the sample
size. As § gets large, for fixed T, the informative content in the nonstationary
component 7 increases and thus the observable process will behave more and more
as a unit root process. On the other hand, as T grows for fixed §, the amount
of information available to the econometrician increases thereby affecting positively
the power properties of the test. The Quadratic Spectral kernel delivers higher
power than the Bartlett one irrespective of the bandwidth adopted and it seems
less sensitive to the bandwidth choice than the Bartlett kernel given that power
with fixed bandwidth is close to the power with automatic bandwidth whereas the
Bartlett kernel generates greater power when used together with a fixed bandwidth.

Results in Panels B through F refer to cases where ¢ # 0 leading therefore to

consider stationary processes. Thus, the reported rejection rates are in fact the



effective sizes of the test. In each Panel, reading the Table by row we observe that
the effective size worsens as § increases. This result is expected from Table 1 where,
for a given c, higher values of § generate higher population first-order autocorrelation
coefficients making the observable process more persistent.

When reading Table 4 by column we notice that increasing the sample size does
not make the effective size closer to the nominal one but, on the contrary, it induces
even higher size distortion. This is the effect of the second term in the asymptotic
distribution of the K PSS test given by (8). These results are consistent with the
simulation evidence provided in Caner and Kilian (2001, Table 1), where it is re-
ported that for a sample size as large as T' = 500 the effective size of the test may
be as high as 60% or 50% according to the bandwidth choice.

Furthermore, automatic bandwidth yields lower size distortion under either choice
of the kernel function and, noticeably, the Bartlett kernel outperforms the QS kernel.

Table 5 provides a complementary look at the simulation results. Panels A
through F' contain the rejection rates of the test for (fixed) values of exp(c/T')
approaching unity. In each panel, three increasing sample sizes and increasing values
of ¢ are considered. According to the values taken by the first-order autocorrelation
coefficients in Table 1, for a given exp(c¢/T") when we move from the north-east to
the south-west of each panel we should observe effective sizes similar to the nominal
size. This should happen because in the north-east of each panel, the autocorrelation
structure of the process r; displays higher persistence than in the south-west region.
As the autoregressive root of the process approaches unity and we move from panel A
to panel F, the size of the test worsens for any sample size. However, when the root
is very close to unity, say exp(c/T) = 0.99, only for § = 1 the effective size is close
to the nominal one and it deteriorates quickly as ¢ increases, reaching extremely
high values for § = 50 with little beneficial effects provided by an increased sample
size. Our results also indicate that the automatic bandwidth leads to smaller size
distortion than the fixed bandwidth and that the Bartlett kernel performs better
than the Quadratic Spectral one, with large improvements in the effective size when
the autoregressive root is up to 0.8.

Figures 1 report the effective size of the K PSS for the sample sizes T' = 50 as a
function of ¢ as d increases for different choices of the kernel function and bandwidth
parameter. In general, the effective size of the test is greater then nominal size
and slightly lower when the automatic bandwidth is used. Considering the highly
persistent yet stationary processes obtained when § = 10 and c is between 0 and —2
for a sample size of T' = 50, the effective size is between 45% and 25%. Even though
it is hardly impossible to discriminate between kernels and bandwidth and to find

strong support for a particular kernel or bandwidth choice, our results suggest that

10



Bartlett kernel used together with automatic bandwidth choice might be able to
reduce size distortion an to provide a more accurate approximation to the limiting
distribution under i.i.d. errors. Unfortunately, § must be relatively small and the
autoregressive root enough far away form unity for the effective size to be close to

the nominal size.

4 Conclusion

In this paper we have set forth an analytic explanation for the size distortion of
the K PSS stationarity test. We studied the asymptotic behavior of the K PSS
test when the DGP is a nearly white noise, nearly-integrated process. Under this
sequence of processes the DGP is always stationary converging the the i.i.d. settings
under which the K PSS test statistic is known to be LBI. Our theoretical results
rationalize the size distortion found in simulation experiments by, e.g., Kwiatkowski
et al. (1992); Leybourne and McCabe (1994); Caner and Kilian (2001); Lanne and
Saikkonen (2003). Our simulation results indicate that even though the DGP is a
local to white noise, the bias in the effective size may be important not only when
the autoregressive root is close to unity. How this size distortion issue can be tackled

and possible solved, is a topic for future research.
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A Proof of Proposition 2.1

We provide a proof of Proposition 2.1 under general conditions on the sequence
of DGPs. In particular, we generalize the nearly-white noise, nearly integrated
process by considering a nearly-1(0), nearly integrated process. DGP (5a)-(5c) is
then modified as

yt:ﬂ—i—rt—l—et tzl,,T (9&)
)
ry = exple/T)ry_y + 22 )ht, (9b)
hy ~11.d.(0,1), € = a(L)u, htil_ us Vtand s (9¢)

where w; is i.i.d. with zero mean and finite variance o2, and a(L) = >0 a;L7 is a
polynomial in the lag operator L with a(1) = ijo a; # 0 and ZJOO 1 j2a2~ < oo. It
will be useful to define the long run variance of ¢; as w? = a(1)%?02 and to recall its
decomposition w? = 02 + 2k, where 02 = E(e2) and ke = Y oo | E(eoex).

The convergence in (7) is simply modified as

(Tr]

750 = g e (v v [ o) 0

Routine application of the continuous mapping theorem yields

S[Tr] = o2a(1) (V(T’) + 5/()rKc(r)ds)2

and

T2 z: S? = o2a(1) [/01 V(r)2dr + 5/01 (V(;,C(r) /0 Kc(s)ds> dr]

where Vso(r) =2V (r)+6 [§ K.(s)ds, V(r) = W(r)—rW(1) is a standard Brownian
bridge and K (s) = K.(s) — fol KC( )dv is a demeaned Ornstein-Uhlenbeck process.
Next, letting k(s/m7) be the kernel function as defined in Table 3 we need to show

that
T

;Ze?—l— Zk; s/mr) Z €ri_g (11)

t=s+1
is a consistent estimator of o2a(1)2.
Letting Hy = Z;:l exp{(t — j)¢/T}h; and H = T~ S| H;, under DGP (9a)-

(9¢) we have
da(l)oy,
T

e = (Ht—H)—i-(ét—E)
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where ¢ = T~1 Zthl €¢. After substitution in the first term of (11), we obtain

1 T
T2 =
t=1

T

2,(1)262 L a(1)oy < _
Z(Gt_€)2+T 5(T§Z(Ht—H)Z‘F?&(;)Z(Ht—H)(Et—G)

t t=1 t=1

Nl =
I

E? + op(1)

I
N
Ingl

P
— O

We turn to the analysis of the second term in (11), which, after tedious algebra and

apart from the constant, can be written as

T

—Zk‘ s/mr) Z erer_ S—Zk s/mr)= Z (et — €)(€r—s — €)+

t=s+1 t=s+1
5%a(1)202 <& 1 < _ _
+ #Zk(s/mﬂ T2 Y (H —H)(His—H) | +
s=1 t=s+1
T T
5@(711)0'u k( /mT) <7}2 Z (Ht s H)(Et — 6)) +
s=1 t=s+1
mr T
n 50‘%)0 > k(s/mr) <T12 > (H - H)(ers — g))
s=1 t=s+1
which, for convenience, we rewrite as

T

—Zk‘ s/mr) Z erer_ S—Zk s/mr)= Z (et — €)(€r—s — €)+

t=s+1 t s+1
T
+ %5%(1)20—3 [m;T z_: k(s/m7) (; t_;l(Ht — H)(Hy—s — H))
T
+ 75(1( TT Z k(s/mr) (; tzS;l(Ht_s — H)(e — e)> +
T
+ L sa(1)o mTT Z k(s /mz) (; S (Ho— H)ers - g))]
t=s+1

The first term is the standard expression for the kernel consistent estimator of k. =
> req E(eoer). By Phillips (1991, formula between (A.10) and (A.11)) the second
term in brackets is Op(1), and the third and fourth terms in brackets are Op(1) too
by (A.13). This follows by substituting in Phillips (1991) the Ornstein-Uhlenbeck
process K.(r) for the Wiener process and by making the usual assumption that the
kernel k(-) is a bounded, even function with [ |k(z)|dz < co. Since my/T — 0 as
T 1 o, it follows that

ka‘ S/WLT Z EtCi— s_>"'$e

t=s+1
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Finally, combining all convergence in probability established so far we obtain the

desired result, namely s2(m7p) 2 w? = 02 + 2k, = a(1)%02.
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Figure 1: Empirical size of K PSS test, T = 50
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Table 4: Rejection rates (per cent) of the K PSS test for the process (5a)-(5¢).

Fixed bandwidth, m(4)

Automatic bandwidth, n(4)

A.c=0 5 Bartlett Kernel 5
T ec/T 1 5 10 20 30 40 50 1 5 10 20 30 40 50
50 1 4.8 244 43.2 60.6 644 676 66.0| 55 244 41.8 54.7 557 57.5 56.9
100 1 4.7 255 521 68.8 76.6 79.2 79.2 | 51 256 49.8 60.7 66.7 68.0 66.5
500 1 70 299 593 825 914 948 96.4 || 7.3 29.5 583 80.1 86.9 &88.1 90.9
Quadratic Spectral Kernel
50 1 56 26.4 47.8 70.1 733 780 77.7 |58 254 435 60.6 65.0 67.8 66.6
100 1 53 287 56.8 78.6 876 89.7 90.9 || 5.1 262 51.9 684 763 789 785
500 1 7.0 30.0 60.8 832 930 963 97.6 | 7.1 299 60.1 829 92.2 954 97.1
B.c=-1 5 Bartlett Kernel 5
T ec/T 1 5 10 20 30 40 50 1 5 10 20 30 40 50
50 98.0 4.0 11.1 26.3 39.7 44.5 487 513 | 4.7 123 32.1 485 57.8 62.6 65.3
100 99.0 5.2 13.1 29.8 499 61.8 60.9 656 | 53 152 350 62.0 76.3 81.4 819
500 99.8 5.0 152 41.1 71.6 819 91.8 94.2| 5.1 149 41.5 729 84.5 93.6 959
Quadratic Spectral Kernel
50 980 5.2 114 25.0 34.0 350 39.0 40.1 || 4.1 11.5 27.6 399 453 49.6 52.0
100 99.0 5.7 13.3 27.7 40.7 485 47.3 455 | 54 139 299 494 61.5 60.7 64.9
500 99.8 5.0 153 399 66.8 745 814 834 | 54 152 409 722 831 92.5 94.9
C.c=-5 5 Bartlett Kernel 5
T ec/T 1 5 10 20 30 40 50 1 5 10 20 30 40 50
50 0.905 3.7 84 14.7 284 353 352 34.7 5.5 94 14.1 23.6 26.2 24.9 239
100 0.951 4.5 8.9 19.1 34.7 43,5 504 52343 9.3 182 289 34.0 36.4 36.5
500 0990 5.2 9.1 236 535 707 842 87.0| 55 89 235 494 61.8 71.7 TL5
Quadratic Spectral Kernel
50 0.905 4.8 10.7 176 36.5 46.8 455 50.1 | 4.8 94 150 28.7 36.3 36.2 35.6
100 0.951 54 104 23.7 464 582 69.2 71.1 | 4.9 9.0 19.2 344 43.2 50.1 514
500 0990 5.6 94 242 558 747 879 909 || 54 93 238 547 721 854 88.8
D.c=-10 5 Bartlett Kernel 5
T ec/T 1 5 10 20 30 40 50 1 5 10 20 30 40 50
50 0.819 4.1 4.7 6.8 174 228 21.5 268 | 56 4.6 7.1 151 175 16.2 175
100 0.905 5.0 5.5 107 197 289 339 39.0| 56 59 108 173 222 24.3 273
500 0.980 6.0 6.2 122 34.2 496 63.7 748 || 6.1 6.5 125 324 41.7 53.2 57.7
Quadratic Spectral Kernel
50 0.819 5.0 55 84 227 30.6 348 36.0| 45 56 7.0 17.7 232 214 26.7
100 0.905 59 6.6 128 27.8 41.4 521 55754 57 11.0 19.6 28.2 323 379
500 0980 59 6.6 128 36.8 551 69.7 80.2 | 6.2 6.5 12.8 351 520 654 76.8
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Table 4: continued

Fixed bandwidth, m(4)

Automatic bandwidth, n(4)

-15

Bartlett Kernel

E.
o 1)
T ec/T 1 5 10 20 30 40 50 1 5 10 20 30 40 50
50 0.741 38 57 73 98 124 146 176148 58 73 9.7 97 124 141
100 0.861 43 53 6.8 148 19.7 206 25047 52 74 133 159 16.1 16.5
500 0.970 4.9 5.2 94 194 374 457 572 | 5.3 5.3 9.1 184 325 349 419
Quadratic Spectral Kernel
50 0.741 52 6.2 88 12,5 19.1 220 26.7| 47 6.1 7.8 10.1 128 14.8 17.6
100 0.861 4.8 5.7 83 192 288 33.6 430 46 56 6.8 14.7 18.8 19.7 24.3
500 0970 52 56 99 21.8 415 51.3 640 50 54 9.8 20.8 39.1 482 604
Table 5: Rejection rates (per cent)of the K PSS test for the process (5a)-(5c).
Fixed bandwidth Automatic bandwidth
A. /T =07 s Bartlett Kernel 5
T 1.0 5.0 10.0 20.0 30.0 40.0 50.0| 1.0 5.0 10.0 20.0 30.0 40.0 50.0
50 3.8 4.8 6.2 94 11.3 133 143 || 4.9 5.6 6.8 9.0 9.8 11.2 11.0
100 4.7 4.1 4.7 6.2 8.0 9.1 10.7 | 4.8 4.4 4.7 6.3 77 82 9.0
500 49 48 47 45 50 50 55149 49 48 45 50 49 53
Quadratic Spectral Kernel
50 43 55 74 129 161 199 21343 51 66 9.8 11.5 133 14.0
100 51 47 52 7.7 105 134 16550 45 49 64 78 88 99
500 4.9 4.8 4.8 4.6 5.0 5.2 5.6 || 4.9 4.8 4.7 4.6 5.1 5.0 5.6
B. /T =0.8 S Bartlett Kernel 5
T 1.0 5.0 10.0 20.0 30.0 40.0 50.0| 1.0 5.0 10.0 20.0 30.0 40.0 50.0
50 39 54 78 146 183 208 22451 6.2 80 129 14.6 153 155
100 4.4 4.4 6.1 9.2 127 155 17.7| 4.7 4.5 6.2 88 11.1 121 12.9
500 46 47 52 48 54 60 66146 47 52 47 53 60 6.6
Quadratic Spectral Kernel
50 4.7 6.2 99 19.6 264 30.3 329 4.5 5.8 8.3 14.8 186 21.0 225
100 49 48 70 122 187 248 283 |46 46 6.2 9.1 124 147 16.7
500 4.7 47 54 50 56 65 72|46 47 53 49 54 62 7.0
C.e/T =09 5 Bartlett Kernel 5
T 1.0 5.0 10.0 20.0 30.0 40.0 50.0| 1.0 5.0 10.0 20.0 30.0 40.0 50.0
50 43 69 142 268 329 36.7 374 |56 75 135 22.0 244 259 26.5
100 46 57 9.8 202 284 336 35547 58 95 176 21.7 239 23.1
500 46 48 54 65 80 99 13347 48 53 63 7.7 91 11.7
Quadratic Spectral Kernel
50 49 81 178 35.1 436 49.2 506 || 47 7.3 148 275 335 372 38.0
100 5.2 6.6 11.8 272 404 49.3 53.6 | 4.8 6.0 9.9 19.9 27.7 32.5 34.2
500 46 48 54 68 85 11.1 154 |46 49 53 6.7 83 103 14.1
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Table 5: continued

Fixed bandwidth

Automatic bandwidth

D. /T =0.95 5 Bartlett Kernel 5
T 1.0 50 100 200 30.0 40.0 50.0| 1.0 5.0 10.0 20.0 30.0 40.0 50.0
50 4.3 104 224 379 434 463 48.7 | 54 106 21.0 314 33.1 353 36.0
100 46 81 178 352 44.0 49.2 53.0| 46 81 165 294 328 344 36.7
500 49 47 65 114 18.0 266 33.8 | 48 48 6.3 11.1 165 221 26.0
Quadratic Spectral Kernel
50 49 123 269 47.2 552 59.7 629 | 4.8 11.0 23.0 38.7 44.1 471 494
100 52 9.4 21.8 458 594 674 729 48 84 178 34.7 43.1 483 52.0
500 50 4.8 6.7 122 199 30.0 3861 50 48 6.6 11.8 189 28.0 35.7
E. e¢/T =0.97 5 Bartlett Kernel S
T 1.0 50 100 200 30.0 40.0 50.0| 1.0 5.0 10.0 20.0 30.0 40.0 50.0
50 4.1 12,7 282 445 514 534 552 | 5.1 132 26.7 376 41.0 422 43.3
100 49 10.7 25.2 453 547 582 61.2 | 51 109 23.3 377 425 429 442
500 45 59 89 21.0 350 475 558 |46 6.0 88 199 30.8 375 41.3
Quadratic Spectral Kernel
50 4.8 14.8 334 53.8 62.2 66.4 683 | 44 135 287 450 520 54.1 558
100 5.4 12.4 29.7 56.7 70.2 76.3 79.9| 50 109 252 449 539 57.2 60.1
500 44 6.1 94 227 385 528 626145 60 92 21.8 364 495 587
F. /T =0.99 5 Bartlett Kernel s
T 1.0 5.0 100 200 30.0 40.0 50.0| 1.0 5.0 10.0 20.0 30.0 40.0 50.0
50 4.7 185 37.7 544 59.2 61.8 63.8 | 5.7 187 357 478 50.0 51.7 525
100 5.0 16.3 384 589 67.1 69.6 714 50 16.2 36.3 50.8 54.6 54.8 55.7
500 49 92 247 534 719 80.6 864149 9.1 240 498 63.2 67.9 71.3
Quadratic Spectral Kernel
50 5.2 21.6 43.0 63.0 69.0 72.6 754 5.1 19.2 383 549 59.7 623 644
100 5.4 18.4 43.3 69.8 80.8 84.0 872 52 166 384 585 66.4 688 70.5
500 50 9.4 255 559 751 84.7 90.2| 51 94 251 547 733 823 88.2
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