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1 Introduction

Disentangling a stationary process from a unit root one has attracted the atten-

tion of many researchers. The testing strategy may have either non-stationarity

or stationarity as the null hypothesis and many of the test statistics proposed so

far under both approaches are now available in econometric software and routinely

applied by empirical researchers. In this paper we focus our attention on the, by

now very popular, test of the null hypothesis of stationarity proposed Kwiatkowski

et al. (1992), hereafter KPSS. This test statistic builds on the work by Nabeya and

Tanaka (1988) who, in a framework with i.i.d. normal errors, obtained the local

best invariant (LBI) test to verify the coefficient constancy in a linear regression

model (but see also Nyblom, 1986; Nyblom and Mäkeläinen, 1983). To take into ac-

count the possible strong autocorrelation of most macroeconomic time series, KPSS

proposed an extension of the LBI test, involving a different standardization of the

numerator of the test, which can then be used as a test of the null hypothesis of

stationarity.

Casting the discussion in formal terms, and assuming for the sake of simplicity

that the deterministic component of the series is just the constant term1, the data

generating process (DGP) of the observable variable yt in KPSS is given by (see also

(Stock, 1994)):

yt = β + rt + ǫt t = 1, . . . , T (1a)

rt = rt−1 + ηt (1b)

ηt ∼ i.i.d.(0, σ2
η), ǫt ∼ I(0), ηt |= ǫs ∀ t and s (1c)

The null hypothesis of stationarity constrains the variance of the error ηt to be zero,

namely H0 : σ2
η = 0, so that, under the null, the random walk process rt collapses

to a constant term and yt is level stationary. This DGP can also be written as the

ARMA model

yt = αyt−1 + wt, wt = vt + θvt−1, α = 1 (2)

with the null hypothesis given θ = −1 where, now, α is nuisance parameter.

The KPSS test statistic is based on the behaviour of the rescaled sum of the

squared partial sums of the residuals from the regression of yt on the deterministic

1In general, when a generic deterministic component is present in the DGP, the limit theory we present in

the next section can be obtained by simply substituting the Wiener process W (r) with the detrended Wiener

process W (r) = W (r) − (
∫ 1

0
dW (s)X(s)′)(

∫ 1

0
X(s)X(s)′ds)−1

∫ r

0
X(r), where we assume that there exists some

standardizing matrix Υ such that Υ−1x[Tr] → X(r) and X(r) = (1, r, . . . , rp)′. For instance, under the trend

stationary null hypothesis we have xt = (1, t)′ and the limit theory should be rephrased in terms of the second-

level Brownian bridge given by V2(r) = W (r) + (2r − 3r2)W (1) + (6r2 − 6r)
∫ 1

0
W . Here, we focus on the case

known as “local-level” unobserved component model (Harvey, 1995).
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component. In model (1a)-(1c), defining the residual as et = yt − ȳ and the partial

sum St =
∑t

j=1 ej , the KPSS test statistic is given by

KPSS = T−2
T
∑

t=1

S2
t

/

ω2
ǫ (3)

The crucial point in (3) is the choice of the scale factor ω2
ǫ , which depends on the

behaviour of ǫt. If these errors are i.i.d., then it is sufficient to rescale by the usual

estimator of the variance, i.e. σ̂2
ǫ = T−1

∑T
t=1 e

2
t . In addition, if ǫt is Gaussian, as

in Nabeya and Tanaka (1988), then the test (3) is LBI. If ǫt is dependent, satisfying

the (strong mixing) regularity conditions of Phillips and Perron (1988, p. 336), or

the linear process conditions of Phillips and Solo (1992, Theorems 3.3, 3.14), KPSS

propose to replace ω2
ǫ by a consistent estimate, say s2(mT ), of the long run variance

of the residual et, where mT is a bandwidth parameter with mT → ∞ as T → ∞ so

that mT /T → 0.

As T → ∞, under the null hypothesis the test converges to

KPSS ⇒
∫ 1

0
V (r)2dr (4)

where V (r) is a standard Brownian bridge V (r) = W (r) − rW (1) and W (r) is a

Wiener process.

As emphasized by Müller (2005), the rescaling by s2(mT ) is aimed at achieving

the correct size of the test in the presence of autocorrelated series while, at the

same time, it has to provide power when the strong autocorrelation arises from

an integrated process. Thus, this balance between size and power relies crucially

on a “good” estimator of the long run variance of the process and, as testified by

several simulation studies, it might be difficult to achieve in practice. Among the

many simulation studies, Lee (1996) is a typical example of this problem: his results

indicate that estimators of the long run variance producing a test with the correct

size also lead to dramatic loss in power.

Concentrating on size distortion, extreme size distortion of stationarity tests has

been documented in several previous works. Simulation results in Kwiatkowski et al.

(1992) and Caner and Kilian (2001) indicate that over-rejection is quite important

whenever the largest autoregressive root is close to unity. For instance, considering

an AR(1) process the effective size is 11.4% when the autoregressive parameter is

equal to 0.7 but it peaks at 55.4% (70.8%) when it is equal to 0.95 (0.98). Thus,

for economically plausible parameter values, the KPSS test exhibits effective size

much greater than the nominal size leading to a serious over-rejection in empirical

works2. Müller (2005) advocates the use of local-to-unity asymptotics to obtain more

2Caner and Kilian (2001) and Lanne and Saikkonen (2003) present evidence on the relevance of this problem

on the stationarity test proposed by Leybourne and McCabe (1994), say LMC.
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accurate approximation of the small sample distribution of the stationarity test, as

it has been done for unit root tests. He shows that the behavior of stationarity

test depends heavily on long run variance estimator and on the rate of growth of

the bandwidth parameter but, more importantly, he points out that the remedy

to reduce the large size distortion in the presence of strongly autocorrelated series

might open the door to test inconsistency.

Previous studies investigated the issue of size distortion focussing on the impli-

cations of high persistence, in relation to the role played by the large autoregressive

root in the ARMA representation, thus considering a near-integrated processes as

in Müller (2005). In this paper, the objective is to improve our understanding of the

behaviour of the KPSS test under the null hypothesis of stationarity and to point

out its fragility in the presence of small deviations from the maintained hypothesis

of α = 1 when, at the same time, we induce small deviations of the moving average

parameter θ from −1, the parameter value under the null hypothesis. Assuming

that ǫt is an i.i.d. process (this assumption will be removed in the Appendix), we

will consider a specific generating mechanism for these deviations so that the ob-

servable process will be a stationary ARMA process with no common factor in any

finite sample whereas, in the limit as T → ∞, the process yt will approach an i.i.d.

process since the autoregressive root approaches unity and the moving average root

approaches minus unity, thus canceling out each other. Thus, our study concerns

the behavior of the test under a sequence of DGPs exhibiting different degrees of

autocorrelation in any finite sample but converging, as the sample size grows large,

to the setup where the KPSS is known to be the locally best invariant test under

normality.

Formally, we follow Nabeya and Perron (1994) and Perron and Ng (1996) by con-

sidering a so-called nearly-integrated nearly-white noise process which is a sequence

of stationary ARMA(1, 1) processes such that the autoregressive root approaches

unity and the MA root tends to −1 as T → ∞. In other words, the ARMA(1,1)

has an asymptotic common factor. Nabeya and Perron (1994) and Perron and Ng

(1996) have originally used this process but in a different context to investigate the

behavior of unit root tests under a sequence of alternative hypotheses converging to

a specific alternative hypothesis, namely a white noise process, but this specifica-

tion of the DGP is especially well suited for our purposes3. By combining a possibly

large autoregressive root and a moving average root close to -1, the nearly-integrated

nearly-white noise DGP is capable of generating a wide range of first-order autocor-

relation coefficient but, because of the presence of an asymptotic common factor, it

3The size distortion of unit root tests has been studied by Pantula (1991) with a similar specification. His

process has a unit root in finite samples and converges to a white noise as T → ∞.
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collapses to a white noise process as T → ∞ generating the “ideal” settings for the

test statistic.

The nearly-white-noise, nearly-integrated sequence of DGPs should be helpful

in providing a better approximation to the exact distribution of the test statistics

when the time series is stationary but autocorrelated with an MA structure with

large negative correlation, as it is the case for several macroeconomic time series.

We show that the limiting distribution of the KPSS test depends upon the degree

of nearly stationarity and on the vicinity of the autoregressive parameter to the

nonstationarity region.

The plan of the paper is as follows. In the following section, we provide a more ac-

curate description of the nearly-white noise, nearly integrated DGPs and we present

the main result of the paper on the limiting behavior of the KPSS statistic under

this sequence of DGPs. Next, we conduct a small sample analysis via a MonteCarlo

experiment to assess the extent of size distortion under this DGP and the importance

of bandwidth and kernel choice.

2 The KPSS test under a nearly-integrated nearly-white

noise DGP

Following Nabeya and Perron (1994), we consider a setting in which the error term

ǫt in (1a)-(1c) is i.i.d. with zero mean and finite variance σ2
ǫ , the general case is

considered in the Appendix4. Then, defining φ = σ2
η/σ

2
ǫ , we may write ηt = σǫ

√
φht

where ht is i.i.d. with zero mean and unit variance by construction. Next, we let φ be

dependent on the sample size in such a way that φ → 0 as T ↑ ∞, that is
√
φ = δ/T .

Finally, autocorrelation in the observable process yt is introduced by modeling rt as

an AR(1) process with a local-to-unity autoregressive root given by exp(c/T ), with

c < 0, and error term ht scaled by the o(1) factor δσǫ/T . Our sequence of DGPs is

given then by

yt = β + rt + ǫt t = 1, . . . , T (5a)

rt = exp(c/T )rt−1 +
δσǫ
T

ht, (5b)

ht ∼ i.i.d.(0, 1), ǫt ∼ i.i.d.(0, σ2
ǫ ), ht |= ǫs ∀ t and s (5c)

4In the Appendix we show that the generalization to the linear process ǫt = a(L)ut, where ut is i.i.d.(0;σ2
u),

and a(L) =
∑

∞

j=0 ajL
j is a polynomial in the lag operator L with a(1) =

∑
∞

j=0 aj 6= 0 and
∑

∞

j=1 j
2a2

j < ∞

can be handled easily. Yet, it would overshadow our main point: to consider a highly autocorrelated local to a

white noise process series yt. Allowing for serially correlated errors, one would then obtain a nearly-I(0), nearly-

integrated process. Briefly, in the Appendix we point out that under the more general specification, our results

will hold by simply substituting δ by δa(1) both in the sequence of DGPs and in the limiting distributions.
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Simple inspection of (5a)-(5c) reveals that, for any fixed T , the observable process

yt is near-integrated process

yt = β[1− exp(c/T )] + exp(c/T )yt−1 + wt

wt = ǫt − exp(c/T )ǫt−1 +
δσǫ
T

ht

where the composite error term wt has a moving average root approaching −1 as

T → ∞. It follows that, asymptotically, the autoregressive near unit root cancels out

the moving average root and, at the same time, the influence of ht vanishes so that

yt collapses to a white noise process. This specification allows us to investigate the

behavior of the KPSS stationarity test under a sequence of null hypothesis relevant

in empirical works where persistent stationary processes are often encountered.

In finite samples, the process wt has an MA(1) representation with MA parameter

given by the negative root of

E(wtwt−1) + E(w2
t )ξ + E(wtwt+1)ξ

2 = 0 (6)

with E(w2
t ) = (1 + exp(2c/T ))σ2

ǫ + (δ/T )2σ2
ǫ and E(wtwt−1) = E(wtwt+1) =

−σ2
ǫ exp(c/T ).

Table 1 provides evidence on the degree of persistence of yt, as measured by

the first-order autocorrelation coefficient. The nearly-integrated, nearly white noise

process is capable of generating a wide range of degree of persistence, from almost

0 in correspondence of the common AR and MA factor to 0.9 and beyond. As

the first-order autocorrelation decreases, the root of the MA component tends to

approach -1 and the process gets close to a white noise process.

The presence of autocorrelation in finite samples would call for a consistent es-

timator of the long run variance in the computation of the KPSS test in (3), even

though the observable process is local to a white noise, which would suggest the

use of a standard estimator of the (short run) variance of the residuals et. As a

matter of fact, this is quite a delicate issue for the KPSS test. As it is well-known,

the usage of a data-dependent automatic bandwidth selection according Andrews

(1991) or AR-prewhitening combined with automatic bandwidth as in Andrews and

Mohanan (1992) is not allowed because both of them lead to inconsistent tests since

the estimated bandwidth would grow at the rate Op(T ) which implies that the

KPSS test would be Op(1) under the alternative hypothesis, as discussed in Choi

(1994). In fact, test inconsistency is the price paid by Müller (2005), who makes

use of these data-dependent bandwidth choices, to get stationarity tests with size

closer to the nominal level when the observable process is nearly integrated. How-

ever, we believe that test consistency is an important feature of the test statistic

to be maintained. Therefore, we consider both a fixed bandwidth as in the original
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Table 1: First-order autocorrelation of the nearly-white noise, nearly integrated process (5a)-

(5c) for selected values of c and δ (σ2
ǫ = 1)

δ

c T exp(c/T ) 1 5 10 20 30 40 50

-1 50 0.980 0.010 0.199 0.495 0.787 0.884 0.924 0.943

100 0.990 0.005 0.111 0.332 0.662 0.812 0.881 0.917

500 0.998 0.001 0.024 0.091 0.286 0.473 0.615 0.713

-5 50 0.905 0.002 0.047 0.164 0.424 0.602 0.705 0.766

100 0.951 0.001 0.024 0.090 0.282 0.462 0.596 0.689

500 0.990 0.000 0.005 0.020 0.074 0.152 0.242 0.332

-10 50 0.819 0.001 0.024 0.089 0.268 0.427 0.540 0.616

100 0.905 0.000 0.012 0.047 0.164 0.300 0.424 0.525

500 0.980 0.000 0.002 0.010 0.038 0.082 0.138 0.199

-15 50 0.741 0.001 0.016 0.060 0.194 0.329 0.435 0.510

100 0.861 0.000 0.008 0.032 0.115 0.222 0.329 0.423

500 0.970 0.000 0.002 0.007 0.026 0.056 0.096 0.142

Kwiatkowski et al. (1992) or the data-dependent bandwidth choice suggested by

Newey and West (1994), which has been shown to deliver test consistency by Hobijn

et al. (2004).

The limiting behavior of the test statistic relies on a Functional Central Limit

Theorem by Phillips and Solo (1992, Theorem 3.3) for the partial sums S[Tr] =
∑[Tr]

t=1 et built from the residuals et = yt − ȳ and the Continuous Mapping Theorem.

As T → ∞, we have that

1√
T
S[Tr] =

1√
T

[Tr]
∑

t=1

et ⇒ σǫV (r) + σǫδ

∫ r

0
Kc(s)ds ≡ σǫVc,δ(r) (7)

where V (r) = W1(r) − rW1(1) is a standard Brownian bridge, Kc(r) = Kc(r) −
∫ 1
0 Kc(s)ds and Kc(r) =

∫ r
0 e(r−s)cdW2(s) is a diffusion (Ornstein-Uhlenbeck) pro-

cess. Further, W1(r) and W2(r) are two independent Wiener processes such that

T−1/2
∑[Tr]

i=1 ǫt ⇒ σǫW1(r) and T−1/2
∑[Tr]

i=1 ht ⇒ W2(r). Since we may also write

Kc(r) = W2(r) + c

∫ r

0
e(r−s)cW2(s)ds

we have the following expression, whose components will enter the asymptotic dis-

tribution of the KPSS test under a nearly-white-noise, nearly-integrated process,

1√
T

[Tr]
∑

t=1

et ⇒σǫV (r) + σǫδ

∫ r

0
W 2(s)ds+

+ σǫδc

∫ r

0

[∫ s

0
e(s−u)cW2(u)du−

∫ 1

0

(∫ v

0
e(v−u)cW2(u)du

)

dv

]

ds
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where W 2(r) = W2(r) −
∫ 1
0 W2(s)ds. The first term is just the usual Brownian

bridge appearing in the limiting distribution of the KPSS test (see Kwiatkowski

et al. (1992)) under the null hypothesis. The second term appears in the limiting

distribution of the KPSS test statistics under a sequence of local alternatives, that

is DGPs (5a)-(5b) with c = 0, as in Stock and Watson (1998) and Cappuccio and

Lubian (2006) and it is relevant when the interest is in the local asymptotic power

of the test statistic. Notice that this bias term is present despite the fact that the

nearly-white-noise, nearly-integrated DGP is stationary both in finite samples and

in the limit as T → ∞. The third component reflects both the degree of nearly-

integration of rt via the parameter c and the influence of this component, via the

scale factor δ, in shaping the time dependence structure of the observable process

yt.

The consistent estimator s2(mT ) of the long run variance of et may be obtained

either following the original suggestion of Kwiatkowski et al. (1992) by choosing

mT = O(T 1/4) or by applying the procedure proposed by Newey and West (1994)

outlined in Table 3. Under both choices, the following proposition characterizes the

asymptotic behavior of the KPSS test under a sequence of a nearly-white noise,

nearly-integrated processes.

Proposition 2.1 Under DGP (5a)-(5c), the asymptotic distribution of the KPSS

test is given by

KPSS ⇒
∫ 1

0
V 2
c,δ(r)dr =

∫ 1

0
V (r)2dr + δ

∫ 1

0

(

Vδ,c(r)

∫ r

0
Kc(s)ds

)

dr (8)

This result indicates that the asymptotic behavior the KPSS test in the presence

of a nearly-white noise, nearly integrated process is affected both by the local-to-

unity parameter c and by the scale factor δ. Evidently, when δ = 0, the order of

magnitude of c becomes irrelevant since rt is just a constant. On the other hand,

when the process is persistent the KPSS suffers from size distortion as reported in

simulation studies (see Saikkonen and Luukkonen (1993); Caner and Kilian (2001)).

Asymptotic rejection rates based on the right-hand side of (8) are reported in

Table 2 as a function of c and δ. When δ = 1 there is no size distortion whereas, in

general, for a given c size distortion increases with δ and for given δ it is decreasing in

c. Even for small values of the population first-order autocorrelation coefficient of the

nearly-white noise nearly integrated DGP implied by c = −10 or c = −15 (see Table

1), asymptotic size distortion may by substantial for δ ≥ 20. This suggests that the

second component of the right-hand side of (8) might be helpful to explain the small

sample size distortions observed in simulation and empirical research. Thus, the
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Table 2: Asymptotic rejection rates based on (8) for selected values of c and δ

δ

1 5 10 20 30 40 50

c = 0 6.33 29.79 61.48 86.85 94.67 98.21 99.09

c = −1 5.63 21.23 50.25 81.31 92.51 97.04 98.82

c = −5 5.01 10.05 26.20 60.79 80.71 90.77 95.39

c = −10 4.93 6.88 14.07 39.43 62.69 78.53 88.75

c = −15 5.09 6.32 9.98 25.71 45.71 63.32 76.84

asymptotic result in Proposition 2.1 provides a quantitatively useful approximation

to the size distortion issue5.

As for the consistency of the test under the alternative hypothesis, it has been es-

tablished by Kwiatkowski et al. (1992) that under a fixed bandwidth choice (mT /T →
0 as T → ∞) the test is Op(T/mT ). Hobijn et al. (2004) have shown that under

the automatic bandwidth selection procedure suggested in Newey and West (1994)

the test retains its consistency being Op(T
14/25) when using the Bartlett kernel

and Op(T
92/125) with the Quadratic Spectral kernel. Again, details on kernels and

bandwidth selection procedure are provided in Table 3.

3 Finite sample properties

In a simulation study we investigate both the role played in finite samples by the

nearly-white noise, nearly integrated sequence of DGPs and the influence of different

choices of the kernel function and bandwidth parameter on the effective size of the

KPSS test. For simplicity, in the simulation we consider the local-level DGP (5a)-

(5c) where the deterministic component is given by the constant term. We consider

the sequence δ = {1, 5, 10, 20, 30, 40, 50}, values of c ranging from 0 to −16 and

10000 replications.

The long run variance of the residuals et is estimated using either the Bartlett or

the Quadratic Spectral kernels. As for the choice of the bandwidth parameter, for

comparison with previous studies, we adopt the fixed bandwidth as in the original

paper by Kwiatkowski et al. (1992) and the automatic bandwidth procedure by

Newey and West (1994) whose use has been advocated in Hobijn et al. (2004). For

the fixed bandwidth, we follow the latter authors by setting mB(4) = [4(T/100)1/4]

and mQS(4) = [83(T/100)
2/9].

Rejection rates of the KPSS test reported in Tables 4 and 5 are computed using

the 5% critical value of 0.463 as published in Kwiatkowski et al. (1992). In each

5We thank an anonymous referre for pointing this out.
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Table 3: Kernels and Bandwidths

A. Kernels

Bartlett kB(j) =

{

(1− j/(m+ 1)) j ≤ m

0 otherwise

Quadratic Spectral kQS(j) =
25

12π2(j/m)2

[

sin(6π(j/m)/5)

6π(j/m)/5
− cos(6π(j/m)/5)

]

B. Fixed Bandwidth: mB(x),mQS(x)

Bartlett mB(x) = [x(T/100)1/4]

Quadratic Spectral mQS(x) =
[

2
3x(T/100)

2/9
]

C. Automatic Bandwidth Choice (Newey and West (1994))

Bartlett Quadratic Spectral

Initial bandwidth parameter mB(x) mQS(x)

Compute ŝ(0) = γ̂0 + 2
∑m

i=1 γ̂i
ŝ(1) = 2

∑m
i=1 iγ̂i

ŝ(2) = 2
∑m

i=1 i
2γ̂i

Compute γ̂ = 1.1447





[

ŝ(1)

ŝ(0)

]2




1/3

γ̂ = 1.3221





[

ŝ(2)

ŝ(0)

]2




1/5

Select Bandwidth parameter nB(x) = min{T, [γ̂T 1/3]} nQS(x) = min{T, [γ̂T 1/5]}

panel of Table 4 we keep the parameter c constant, with values ranging from c = 0

to c = −15, and we look at the effect of increasing δ, for different growing sample

sizes. For c = 0 (panel A), the process (5a)-(5c) is nonstationary irrespective of

the value taken by δ and, therefore, rejection rates provide the empirical power

function of the test statistic. As expected, power grows with δ and with the sample

size. As δ gets large, for fixed T , the informative content in the nonstationary

component rt increases and thus the observable process will behave more and more

as a unit root process. On the other hand, as T grows for fixed δ, the amount

of information available to the econometrician increases thereby affecting positively

the power properties of the test. The Quadratic Spectral kernel delivers higher

power than the Bartlett one irrespective of the bandwidth adopted and it seems

less sensitive to the bandwidth choice than the Bartlett kernel given that power

with fixed bandwidth is close to the power with automatic bandwidth whereas the

Bartlett kernel generates greater power when used together with a fixed bandwidth.

Results in Panels B through E refer to cases where c 6= 0 leading therefore to

consider stationary processes. Thus, the reported rejection rates are in fact the
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effective sizes of the test. In each Panel, reading the Table by row we observe that

the effective size worsens as δ increases. This result is expected from Table 1 where,

for a given c, higher values of δ generate higher population first-order autocorrelation

coefficients making the observable process more persistent.

When reading Table 4 by column we notice that increasing the sample size does

not make the effective size closer to the nominal one but, on the contrary, it induces

even higher size distortion. This is the effect of the second term in the asymptotic

distribution of the KPSS test given by (8). These results are consistent with the

simulation evidence provided in Caner and Kilian (2001, Table 1), where it is re-

ported that for a sample size as large as T = 500 the effective size of the test may

be as high as 60% or 50% according to the bandwidth choice.

Furthermore, automatic bandwidth yields lower size distortion under either choice

of the kernel function and, noticeably, the Bartlett kernel outperforms the QS kernel.

Table 5 provides a complementary look at the simulation results. Panels A

through F contain the rejection rates of the test for (fixed) values of exp(c/T )

approaching unity. In each panel, three increasing sample sizes and increasing values

of δ are considered. According to the values taken by the first-order autocorrelation

coefficients in Table 1, for a given exp(c/T ) when we move from the north-east to

the south-west of each panel we should observe effective sizes similar to the nominal

size. This should happen because in the north-east of each panel, the autocorrelation

structure of the process rt displays higher persistence than in the south-west region.

As the autoregressive root of the process approaches unity and we move from panel A

to panel F , the size of the test worsens for any sample size. However, when the root

is very close to unity, say exp(c/T ) = 0.99, only for δ = 1 the effective size is close

to the nominal one and it deteriorates quickly as δ increases, reaching extremely

high values for δ = 50 with little beneficial effects provided by an increased sample

size. Our results also indicate that the automatic bandwidth leads to smaller size

distortion than the fixed bandwidth and that the Bartlett kernel performs better

than the Quadratic Spectral one, with large improvements in the effective size when

the autoregressive root is up to 0.8.

Figures 1 report the effective size of the KPSS for the sample sizes T = 50 as a

function of c as δ increases for different choices of the kernel function and bandwidth

parameter. In general, the effective size of the test is greater then nominal size

and slightly lower when the automatic bandwidth is used. Considering the highly

persistent yet stationary processes obtained when δ = 10 and c is between 0 and −2

for a sample size of T = 50, the effective size is between 45% and 25%. Even though

it is hardly impossible to discriminate between kernels and bandwidth and to find

strong support for a particular kernel or bandwidth choice, our results suggest that

10



Bartlett kernel used together with automatic bandwidth choice might be able to

reduce size distortion an to provide a more accurate approximation to the limiting

distribution under i.i.d. errors. Unfortunately, δ must be relatively small and the

autoregressive root enough far away form unity for the effective size to be close to

the nominal size.

4 Conclusion

In this paper we have set forth an analytic explanation for the size distortion of

the KPSS stationarity test. We studied the asymptotic behavior of the KPSS

test when the DGP is a nearly white noise, nearly-integrated process. Under this

sequence of processes the DGP is always stationary converging the the i.i.d. settings

under which the KPSS test statistic is known to be LBI. Our theoretical results

rationalize the size distortion found in simulation experiments by, e.g., Kwiatkowski

et al. (1992); Leybourne and McCabe (1994); Caner and Kilian (2001); Lanne and

Saikkonen (2003). Our simulation results indicate that even though the DGP is a

local to white noise, the bias in the effective size may be important not only when

the autoregressive root is close to unity. How this size distortion issue can be tackled

and possible solved, is a topic for future research.
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A Proof of Proposition 2.1

We provide a proof of Proposition 2.1 under general conditions on the sequence

of DGPs. In particular, we generalize the nearly-white noise, nearly integrated

process by considering a nearly-I(0), nearly integrated process. DGP (5a)-(5c) is

then modified as

yt = β + rt + ǫt t = 1, . . . , T (9a)

rt = exp(c/T )rt−1 +
δa(1)

T
ht, (9b)

ht ∼ i.i.d.(0, 1), ǫt = a(L)ut, ht |= us ∀ t and s (9c)

where ut is i.i.d. with zero mean and finite variance σ2
u, and a(L) =

∑

∞

j=0 ajL
j is a

polynomial in the lag operator L with a(1) =
∑

∞

j=0 aj 6= 0 and
∑

∞

j=1 j
2a2j < ∞. It

will be useful to define the long run variance of ǫt as ω
2
ǫ = a(1)2σ2

u and to recall its

decomposition ω2
ǫ = σ2

ǫ + 2κǫ where σ2
ǫ = E(ǫ20) and κǫ =

∑

∞

k=1E(ǫ0ǫk).

The convergence in (7) is simply modified as

1√
T
S[Tr] =

1√
T

[Tr]
∑

t=1

et ⇒ σua(1)
1/2

(

V (r) + δ

∫ r

0
Kc(s)ds

)

(10)

Routine application of the continuous mapping theorem yields

T−1S2
[Tr] ⇒ σ2

ua(1)

(

V (r) + δ

∫ r

0
Kc(r)ds

)2

and

T−2
T
∑

t=1

S2
t ⇒ σ2

ua(1)

[∫ 1

0
V (r)2dr + δ

∫ 1

0

(

Vδ,c(r)

∫ r

0
Kc(s)ds

)

dr

]

where Vδ,c(r) = 2V (r)+δ
∫ r
0 Kc(s)ds, V (r) = W (r)−rW (1) is a standard Brownian

bridge and Kc(s) = Kc(s)−
∫ 1
0 Kc(v)dv is a demeaned Ornstein-Uhlenbeck process.

Next, letting k(s/mT ) be the kernel function as defined in Table 3 we need to show

that

s2(mT ) =
1

T

T
∑

t=1

e2t +
2

T

mT
∑

s=1

k(s/mT )

T
∑

t=s+1

etet−s (11)

is a consistent estimator of σ2
ua(1)

2.

Letting Ht =
∑t

j=1 exp{(t− j)c/T}hj and H̄ = T−1
∑T

t=1Ht, under DGP (9a)-

(9c) we have

et =
δa(1)σu

T
(Ht − H̄) + (ǫt − ǭ)

12



where ǭt = T−1
∑T

t=1 ǫt. After substitution in the first term of (11), we obtain

1

T

T
∑

t=1

e2t =
1

T

T
∑

t=1

(ǫt − ǭ)2 +
1

T

[

δ2a(1)2σ2
u

T 2

T
∑

t=1

(Ht − H̄)2 + 2
δa(1)σu

T

T
∑

t=1

(Ht − H̄)(ǫt − ǭ)

]

=
1

T

T
∑

t=1

ǫ2t + op(1)

p→ σ2
ǫ

We turn to the analysis of the second term in (11), which, after tedious algebra and

apart from the constant, can be written as

1

T

mT
∑

s=1

k(s/mT )
T
∑

t=s+1

etet−s =

mT
∑

s=1

k(s/mT )
1

T

T
∑

t=s+1

(ǫt − ǭ)(ǫt−s − ǭ)+

+
δ2a(1)2σ2

u

T

mT
∑

s=1

k(s/mT )

(

1

T 2

T
∑

t=s+1

(Ht − H̄)(Ht−s − H̄)

)

+

+
δa(1)σu

T

mT
∑

s=1

k(s/mT )

(

1

T 2

T
∑

t=s+1

(Ht−s − H̄)(ǫt − ǭ)

)

+

+
δa(1)σu

T

mT
∑

s=1

k(s/mT )

(

1

T 2

T
∑

t=s+1

(Ht − H̄)(ǫt−s − ǭ)

)

which, for convenience, we rewrite as

1

T

mT
∑

s=1

k(s/mT )
T
∑

t=s+1

etet−s =

mT
∑

s=1

k(s/mT )
1

T

T
∑

t=s+1

(ǫt − ǭ)(ǫt−s − ǭ)+

+
mT

T
δ2a(1)2σ2

u

[

1

mTT

mT
∑

s=1

k(s/mT )

(

1

T

T
∑

t=s+1

(Ht − H̄)(Ht−s − H̄)

)]

+

+
mT

T
δa(1)σu

[

1

mTT

mT
∑

s=1

k(s/mT )

(

1

T

T
∑

t=s+1

(Ht−s − H̄)(ǫt − ǭ)

)]

+

+
mT

T
δa(1)σu

[

1

mTT

mT
∑

s=1

k(s/mT )

(

1

T

T
∑

t=s+1

(Ht − H̄)(ǫt−s − ǭ)

)]

The first term is the standard expression for the kernel consistent estimator of κǫ =
∑

∞

k=1E(ǫ0ǫk). By Phillips (1991, formula between (A.10) and (A.11)) the second

term in brackets is Op(1), and the third and fourth terms in brackets are Op(1) too

by (A.13). This follows by substituting in Phillips (1991) the Ornstein-Uhlenbeck

process Kc(r) for the Wiener process and by making the usual assumption that the

kernel k(·) is a bounded, even function with
∫

|k(x)|dx < ∞. Since mt/T → 0 as

T ↑ ∞, it follows that

1

T

mT
∑

s=1

k(s/mT )

T
∑

t=s+1

etet−s
p→ κǫ

13



Finally, combining all convergence in probability established so far we obtain the

desired result, namely s2(mT )
p→ ω2

ǫ = σ2
ǫ + 2κǫ = a(1)2σ2

u.
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Figure 1: Empirical size of KPSS test, T = 50
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Table 4: Rejection rates (per cent) of the KPSS test for the process (5a)-(5c).

Fixed bandwidth, m(4) Automatic bandwidth, n(4)

A. c = 0 Bartlett Kernelδ δ

T ec/T 1 5 10 20 30 40 50 1 5 10 20 30 40 50

50 1 4.8 24.4 43.2 60.6 64.4 67.6 66.0 5.5 24.4 41.8 54.7 55.7 57.5 56.9

100 1 4.7 25.5 52.1 68.8 76.6 79.2 79.2 5.1 25.6 49.8 60.7 66.7 68.0 66.5

500 1 7.0 29.9 59.3 82.5 91.4 94.8 96.4 7.3 29.5 58.3 80.1 86.9 88.1 90.9

Quadratic Spectral Kernel

50 1 5.6 26.4 47.8 70.1 73.3 78.0 77.7 5.8 25.4 43.5 60.6 65.0 67.8 66.6

100 1 5.3 28.7 56.8 78.6 87.6 89.7 90.9 5.1 26.2 51.9 68.4 76.3 78.9 78.5

500 1 7.0 30.0 60.8 83.2 93.0 96.3 97.6 7.1 29.9 60.1 82.9 92.2 95.4 97.1

B. c = −1 Bartlett Kernelδ δ

T ec/T 1 5 10 20 30 40 50 1 5 10 20 30 40 50

50 98.0 4.0 11.1 26.3 39.7 44.5 48.7 51.3 4.7 12.3 32.1 48.5 57.8 62.6 65.3

100 99.0 5.2 13.1 29.8 49.9 61.8 60.9 65.6 5.3 15.2 35.0 62.0 76.3 81.4 81.9

500 99.8 5.0 15.2 41.1 71.6 81.9 91.8 94.2 5.1 14.9 41.5 72.9 84.5 93.6 95.9

Quadratic Spectral Kernel

50 98.0 5.2 11.4 25.0 34.0 35.0 39.0 40.1 4.1 11.5 27.6 39.9 45.3 49.6 52.0

100 99.0 5.7 13.3 27.7 40.7 48.5 47.3 45.5 5.4 13.9 29.9 49.4 61.5 60.7 64.9

500 99.8 5.0 15.3 39.9 66.8 74.5 81.4 83.4 5.4 15.2 40.9 72.2 83.1 92.5 94.9

C. c = −5 Bartlett Kernelδ δ

T ec/T 1 5 10 20 30 40 50 1 5 10 20 30 40 50

50 0.905 3.7 8.4 14.7 28.4 35.3 35.2 34.7 5.5 9.4 14.1 23.6 26.2 24.9 23.9

100 0.951 4.5 8.9 19.1 34.7 43.5 50.4 52.3 4.3 9.3 18.2 28.9 34.0 36.4 36.5

500 0.990 5.2 9.1 23.6 53.5 70.7 84.2 87.0 5.5 8.9 23.5 49.4 61.8 71.7 71.5

Quadratic Spectral Kernel

50 0.905 4.8 10.7 17.6 36.5 46.8 45.5 50.1 4.8 9.4 15.0 28.7 36.3 36.2 35.6

100 0.951 5.4 10.4 23.7 46.4 58.2 69.2 71.1 4.9 9.0 19.2 34.4 43.2 50.1 51.4

500 0.990 5.6 9.4 24.2 55.8 74.7 87.9 90.9 5.4 9.3 23.8 54.7 72.1 85.4 88.8

D. c = −10 Bartlett Kernelδ δ

T ec/T 1 5 10 20 30 40 50 1 5 10 20 30 40 50

50 0.819 4.1 4.7 6.8 17.4 22.8 21.5 26.8 5.6 4.6 7.1 15.1 17.5 16.2 17.5

100 0.905 5.0 5.5 10.7 19.7 28.9 33.9 39.0 5.6 5.9 10.8 17.3 22.2 24.3 27.3

500 0.980 6.0 6.2 12.2 34.2 49.6 63.7 74.8 6.1 6.5 12.5 32.4 41.7 53.2 57.7

Quadratic Spectral Kernel

50 0.819 5.0 5.5 8.4 22.7 30.6 34.8 36.0 4.5 5.6 7.0 17.7 23.2 21.4 26.7

100 0.905 5.9 6.6 12.8 27.8 41.4 52.1 55.7 5.4 5.7 11.0 19.6 28.2 32.3 37.9

500 0.980 5.9 6.6 12.8 36.8 55.1 69.7 80.2 6.2 6.5 12.8 35.1 52.0 65.4 76.8
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Table 4: continued

Fixed bandwidth, m(4) Automatic bandwidth, n(4)

E. c = −15 Bartlett Kernelδ δ

T ec/T 1 5 10 20 30 40 50 1 5 10 20 30 40 50

50 0.741 3.8 5.7 7.3 9.8 12.4 14.6 17.6 4.8 5.8 7.3 9.7 9.7 12.4 14.1

100 0.861 4.3 5.3 6.8 14.8 19.7 20.6 25.0 4.7 5.2 7.4 13.3 15.9 16.1 16.5

500 0.970 4.9 5.2 9.4 19.4 37.4 45.7 57.2 5.3 5.3 9.1 18.4 32.5 34.9 41.9

Quadratic Spectral Kernel

50 0.741 5.2 6.2 8.8 12.5 19.1 22.0 26.7 4.7 6.1 7.8 10.1 12.8 14.8 17.6

100 0.861 4.8 5.7 8.3 19.2 28.8 33.6 43.0 4.6 5.6 6.8 14.7 18.8 19.7 24.3

500 0.970 5.2 5.6 9.9 21.8 41.5 51.3 64.0 5.0 5.4 9.8 20.8 39.1 48.2 60.4

Table 5: Rejection rates (per cent)of the KPSS test for the process (5a)-(5c).

Fixed bandwidth Automatic bandwidth

A. ec/T = 0.7 Bartlett Kernelδ δ

T 1.0 5.0 10.0 20.0 30.0 40.0 50.0 1.0 5.0 10.0 20.0 30.0 40.0 50.0

50 3.8 4.8 6.2 9.4 11.3 13.3 14.3 4.9 5.6 6.8 9.0 9.8 11.2 11.0

100 4.7 4.1 4.7 6.2 8.0 9.1 10.7 4.8 4.4 4.7 6.3 7.7 8.2 9.0

500 4.9 4.8 4.7 4.5 5.0 5.0 5.5 4.9 4.9 4.8 4.5 5.0 4.9 5.3

Quadratic Spectral Kernel

50 4.3 5.5 7.4 12.9 16.1 19.9 21.3 4.3 5.1 6.6 9.8 11.5 13.3 14.0

100 5.1 4.7 5.2 7.7 10.5 13.4 16.5 5.0 4.5 4.9 6.4 7.8 8.8 9.9

500 4.9 4.8 4.8 4.6 5.0 5.2 5.6 4.9 4.8 4.7 4.6 5.1 5.0 5.6

B. ec/T = 0.8 Bartlett Kernelδ δ

T 1.0 5.0 10.0 20.0 30.0 40.0 50.0 1.0 5.0 10.0 20.0 30.0 40.0 50.0

50 3.9 5.4 7.8 14.6 18.3 20.8 22.4 5.1 6.2 8.0 12.9 14.6 15.3 15.5

100 4.4 4.4 6.1 9.2 12.7 15.5 17.7 4.7 4.5 6.2 8.8 11.1 12.1 12.9

500 4.6 4.7 5.2 4.8 5.4 6.0 6.6 4.6 4.7 5.2 4.7 5.3 6.0 6.6

Quadratic Spectral Kernel

50 4.7 6.2 9.9 19.6 26.4 30.3 32.9 4.5 5.8 8.3 14.8 18.6 21.0 22.5

100 4.9 4.8 7.0 12.2 18.7 24.8 28.3 4.6 4.6 6.2 9.1 12.4 14.7 16.7

500 4.7 4.7 5.4 5.0 5.6 6.5 7.2 4.6 4.7 5.3 4.9 5.4 6.2 7.0

C. ec/T = 0.9 Bartlett Kernelδ δ

T 1.0 5.0 10.0 20.0 30.0 40.0 50.0 1.0 5.0 10.0 20.0 30.0 40.0 50.0

50 4.3 6.9 14.2 26.8 32.9 36.7 37.4 5.6 7.5 13.5 22.0 24.4 25.9 26.5

100 4.6 5.7 9.8 20.2 28.4 33.6 35.5 4.7 5.8 9.5 17.6 21.7 23.9 23.1

500 4.6 4.8 5.4 6.5 8.0 9.9 13.3 4.7 4.8 5.3 6.3 7.7 9.1 11.7

Quadratic Spectral Kernel

50 4.9 8.1 17.8 35.1 43.6 49.2 50.6 4.7 7.3 14.8 27.5 33.5 37.2 38.0

100 5.2 6.6 11.8 27.2 40.4 49.3 53.6 4.8 6.0 9.9 19.9 27.7 32.5 34.2

500 4.6 4.8 5.4 6.8 8.5 11.1 15.4 4.6 4.9 5.3 6.7 8.3 10.3 14.1
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Table 5: continued

Fixed bandwidth Automatic bandwidth

D. ec/T = 0.95 Bartlett Kernelδ δ

T 1.0 5.0 10.0 20.0 30.0 40.0 50.0 1.0 5.0 10.0 20.0 30.0 40.0 50.0

50 4.3 10.4 22.4 37.9 43.4 46.3 48.7 5.4 10.6 21.0 31.4 33.1 35.3 36.0

100 4.6 8.1 17.8 35.2 44.0 49.2 53.0 4.6 8.1 16.5 29.4 32.8 34.4 36.7

500 4.9 4.7 6.5 11.4 18.0 26.6 33.8 4.8 4.8 6.3 11.1 16.5 22.1 26.0

Quadratic Spectral Kernel

50 4.9 12.3 26.9 47.2 55.2 59.7 62.9 4.8 11.0 23.0 38.7 44.1 47.1 49.4

100 5.2 9.4 21.8 45.8 59.4 67.4 72.9 4.8 8.4 17.8 34.7 43.1 48.3 52.0

500 5.0 4.8 6.7 12.2 19.9 30.0 38.6 5.0 4.8 6.6 11.8 18.9 28.0 35.7

E. ec/T = 0.97 Bartlett Kernelδ δ

T 1.0 5.0 10.0 20.0 30.0 40.0 50.0 1.0 5.0 10.0 20.0 30.0 40.0 50.0

50 4.1 12.7 28.2 44.5 51.4 53.4 55.2 5.1 13.2 26.7 37.6 41.0 42.2 43.3

100 4.9 10.7 25.2 45.3 54.7 58.2 61.2 5.1 10.9 23.3 37.7 42.5 42.9 44.2

500 4.5 5.9 8.9 21.0 35.0 47.5 55.8 4.6 6.0 8.8 19.9 30.8 37.5 41.3

Quadratic Spectral Kernel

50 4.8 14.8 33.4 53.8 62.2 66.4 68.3 4.4 13.5 28.7 45.0 52.0 54.1 55.8

100 5.4 12.4 29.7 56.7 70.2 76.3 79.9 5.0 10.9 25.2 44.9 53.9 57.2 60.1

500 4.4 6.1 9.4 22.7 38.5 52.8 62.6 4.5 6.0 9.2 21.8 36.4 49.5 58.7

F. ec/T = 0.99 Bartlett Kernelδ δ

T 1.0 5.0 10.0 20.0 30.0 40.0 50.0 1.0 5.0 10.0 20.0 30.0 40.0 50.0

50 4.7 18.5 37.7 54.4 59.2 61.8 63.8 5.7 18.7 35.7 47.8 50.0 51.7 52.5

100 5.0 16.3 38.4 58.9 67.1 69.6 71.4 5.0 16.2 36.3 50.8 54.6 54.8 55.7

500 4.9 9.2 24.7 53.4 71.9 80.6 86.4 4.9 9.1 24.0 49.8 63.2 67.9 71.3

Quadratic Spectral Kernel

50 5.2 21.6 43.0 63.0 69.0 72.6 75.4 5.1 19.2 38.3 54.9 59.7 62.3 64.4

100 5.4 18.4 43.3 69.8 80.8 84.0 87.2 5.2 16.6 38.4 58.5 66.4 68.8 70.5

500 5.0 9.4 25.5 55.9 75.1 84.7 90.2 5.1 9.4 25.1 54.7 73.3 82.3 88.2
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