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Abstract 
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1 Introduction

Time series segmentation has many applications in several disciplines as neurology, cardiology, speech,

geology and others. Many series in these fields do not behave as stationary and the usual transforma-

tions to linearity can not be used. This paper describes and evaluates different methods for segmenting

non-stationary time series.

The goal of the segmentation is to obtain intervals, partitions, blocks or segments in which the time

series behaves as approximately stationary. Thus, the segmentation pursues: 1) to find the periods

of stability and homogeneity in the behavior of the process, 2) to identify the moments of change, 3)

to represent the regularities and features of each segment or block and, 4) to use this information in

order to determine the pattern moving the non-stationary time series.

Two of the most recent methods are AutoSLEX (Ombao et al. (2002)) and AutoPARM (Davis et al.

(2006)). Both of them have an important computational burden and are based on complex techniques.

In the case of AutoSLEX, the use of non-parametrics, frequency domain and dyadic structures com-

plicates the method. For AutoPARM, although it is based on parametric models, the need of a

genetic algorithm makes difficult the process. In this paper we propose the use of cusum methods

to obtain the stationary intervals, since they usually built into intuitive procedures. Cusum method

have been referred in the literature of time series in order to find breakpoints and which, in general,

intensive and complicated computer methods are not required. Following the initial idea in Lee et al.

(2003) we propose a modification consisting in an iterative cusum method -in what follows ICM-,

which is designed to search and identify multiple moments of parameters change. We also evaluate

and compare the performance of AutoSLEX and AutoPARM to and with ICM.

The organization of the paper is as follows. In Section 2, AutoSLEX, AutoPARM procedures. In Sec-

tion 3 we introduce cusum methods and propose some modifications to the hypothesis test presented

in Lee et al. (2003). In Section 4 we apply ICM, AutoSLEX and AutoPARM to several stationary

datasets to evaluate how each method performs when it should not segment the process. Moreover,

we present the application of each method to piecewise stationary processes and evaluates their per-

formance. In Section 5 we compare the results of applying ICM, AutoSLEX and AutoPARM to real

datasets of different disciplines: a neurology dataset, EEGT3 (the recordings from the left temporal

lobe during an epileptic seizure of a patient) and a linguistic dataset consisting of the speech recording

of the word GREASY. Finally, Section 6 presents the conclusions.
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2 Methodologies for segmenting a time series

Segmentation could be performed using different methods. In what follows we describe AutoSLEX

(Ombao et al. (2002)) and AutoPARM (Davis et al. (2006)) procedures for segmenting time series.

2.1 AutoSLEX

Fourier vectors are perfectly localized in frequency and hence are ideal at representing stationary time

series. However, they cannot adequately represent non stationary time series, i.e., the time series with

spectra that change over time. SLEX vectors are simultaneously orthogonal and localized in time

and frequency. They are constructed by applying a projection operator on the Fourier vectors. The

action of a projection operator on any periodic vector is identical to applying two specially constructed

smooth windows to the Fourier vectors. Then, a SLEX basis vector φS,ω (t) for the time block [α0, α1]

and oscillating at frequency ω, has support on the discrete time block S = {α0 − ε+ 1, ..., α1 − ε}

and has the form

φS,ω (t) = ΨS,+ (t) exp
(
i2πω

t

|S|

)
+ ΨS,− (t) exp

(
−i2πω t

|S|

)
(1)

where ω ∈ [−1/2, 1/2], |S| = α1−α0, ε is a small overlap between two consecutive time blocks which

ensures smoothness in the transition between them. In Huang et al. (2004), the windows ΨS,+ (t) and

ΨS,− (t) take the form

ΨS,+ (t) = r2
(
t− α0

ε

)
r2
(
α1 − t
ε

)
ΨS,− (t) = r

(
t− α0

ε

)
r

(
α0 − t
ε

)
− r

(
t− α1

ε

)
r

(
α1 − t
ε

)
where r (.) is called a “rising cut-off function”. Huang et al. (2004) use the sine rising cut-off function

r (u) = sin
(π

4
(1 + u)

)
, where u ∈ [−1, 1] . (2)

Other types of rising cut-off functions may be used (see Wickerhauser (1994) for details).

The SLEX library is a collection of bases, each having orthogonal vectors with time support that is

obtained by segmenting the time series, of length T , in a dyadic manner. The library is constructed by
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first specifying the finest resolution level J or the length of the smallest time block T/2J . At resolu-

tion level j, with j = 0, ..., J , time series is divided into 2j overlapping blocks. The amount of overlap

ε is the same for all levels j, and is equal to ε = T/2J+1. With this restriction the SLEX vectors

remain orthogonal despite the overlap. Let S (j, b) the block b on level j and Mj = T/2j the length

of the block j. The SLEX vectors on block S (j, b) are allowed to oscillate at different fundamental

frequencies ωk = k/Mj where k = −Mj/2 + 1, ...,Mj/2. For example, if J = 2, the SLEX library

consists of 5 orthogonal bases: i) S (0, 0); ii) S (1, 0)∪S (1, 1); iii) S (2, 0)∪S (2, 1)∪S (2, 2)∪S (2, 3);

iv) S (1, 0) ∪ S (2, 2) ∪ S (2, 3); v) S (2, 0) ∪ S (2, 1) ∪ S (1, 1). Therefor, the SLEX basis vectors are

allowed to have different lengths of support (different time and frequency resolutions).

The SLEX transform consists of the set of coefficients corresponding to all the SLEX vectors defined

in the library. The SLEX coefficients on block S = S (j, b) are defined by

θ̂S,k =
1√
Mj

∑
t

Xt,T
¯φS,ωk

(t), (3)

where the fundamental frequency is ωk = k/Mj and k = −Mj/2 + 1, ...,Mj/2. The SLEX peri-

odogram, an analogue of the Fourier periodogram for a stationary process is defined to be

α̂S,k =
∣∣∣θ̂S,k∣∣∣2 . (4)

After computing the SLEX transform a well-defined cost is computed at each of the blocks. For

example, the cost function of the block S (j, b) could be

Cost (j, b) =
Mj/2∑

k=−Mj/2+1

logα̂S,k + β
√
Mj , (5)

where β is a complexity penalty parameter. The penalty term β
√
Mj safeguards the procedure from

obtaining a segmentation that has too many or too few blocks. A small value of β leads to a procedure

that tends to select a segmentation with too many small blocks, and this favors the existence of less

bias due to the non stationarity. However, having less observations within each block leads to inflated

variances of the estimates. A large value of β, on the other hand, leads to a procedure that tends to

select a segmentation with very few blocks. Although variance of the estimates is reduced, having too

few blocks may lead to bias due to non stationarity (i.e. error due to not splitting a non stationary

block). The penalty parameter β can be either approximated or computed via a data-driven proce-

dure. Ombao et al. (2002) set β = 1 motivated by Donoho et al. (1998).
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The cost for a particular segmentation of the time series is the sum of the costs at all the blocks

defining that segmentation. The Best Basis Algorithm is applied to the SLEX transform to obtain

the unique orthonormal transform in the SLEX library that has the smallest cost. So, the Best Basis

in the SLEX library is the segmentation having the smallest cost.

Let BT the best basis selected from the SLEX library and ∪Si be the blocks in BT (a particular

dyadic segmentation of the time series). Define Mi to be the numbers of points on the block Si. Let

JT to be the highest time resolution level in BT , i.e., the smallest time block in BT has length T/2JT .

The frequencies defined on Si are the grid frequencies ωki
= ki/Mi for ki = −Mi/2 + 1, ...,Mi/2. The

spectral representation of Xt,T is

Xt,T =
∑

∪Si∼BT

1√
Mi

Mi/2∑
k=−Mi/2+1

θi,k,Tφi,k (t) zi,k (6)

where θi,k,T is the transfer function on time block Si and frequency k; φi,k is the SLEX basis vector

oscillating at frequency k and having support at block Si; and zi,k is a orthonormal random process

with finite fourth moment.

The SLEX spectrum is defined analogously to the spectrum of a stationary process. It is the square

of the modulus of the time varying transfer function. It is defined on rescaled time [0, 1]. Let u

be in an interval I ∈ [0, 1] such that [uT ] is in some time block Si on BT . The SLEX spectrum is

fT (u, ωk) = |θi,k,T |2 ⇔ [uT ] ∈ Si. Note that for a fixed frequency ωk, fT (u, ωk) is constant within

each time block. This is because for each fixed T the SLEX model gives an explicit partitioning of

the time-frequency plane, as determined by the blocks ∪iSi in the basis BT .

2.2 AutoPARM

Davis et al. (2006) proposed an automatic procedure called AutoPARM for modelling a non stationary

time series by segmenting the series into blocks of different autoregressive processes. Let τj the

breakpoint between the j-th and the (j+1)st AR processes, with j = 1, ...,m, τ0 = 1 and τm+1 = n+1.

Thus, the j-th piece of the series is modelled as an AR process,

Yt = Xt,j , τj−1 ≤ t < τj , (7)

where {Xt,j} is an AR(pj) process.
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Xt,j = γj + φj1Xt−1,j + ...+ φj,pjXt−pj ,j + σjεt,

where ψj :=
(
γj , φj1, ..., φj,pj , σ

2
j

)
is the parameter vector corresponding to this AR(pj) process and

the sequence {εt} is iid with mean 0 and variance 1. Under this model equation, it is assumed that

some aspect of the behavior of the time series is changing at various times. Such a change might be a

shift in the mean, a change in the variance and/or a change in the dependence structure of the process.

The idea is, given the time series {yi}ni=1, the objective is to obtain the best-fitting model from this

class of piecewise AR processes. In other words, the proposal is to find the best combination of the

number of pieces, m + 1, the location of the breakpoints τ1, ..., τm and the AR orders in each piece

p1, ..., pm+1. Once these parameters are estimated, the estimate of the evolutive spectrum is obtained

by substitution.

To solve the problem of selecting the appropriate model is applied the minimum description length

(MDL) principle of Rissanen (1989). The basic idea behind this principle is that the best-fitting

model is the one that makes the maximum compression of the data possible.

LetM the complete class of piecewise autoregressive models and F any model corresponding to this

classM. The MDL principle defines as the best model ofM as the one that produces the shortest

code length that completely describes the observed data y = (y1, y2, ..., yn). The code length of an

object is defined as the memory space required to store that object. In the applications of MDL

principle, a classical way to store y is to split y in 2 components: the adjusted model F̂ and the

portion of y not explained by the model, the residuals, denoted by ê = y − ŷ, where ŷ is the fitted

vector for y. If CLF (z) denotes the code length of the object z using model F , then is obtained the

following decomposition:

CLF (y) = CLF

(
F̂
)

+ CLF

(
ê/F̂

)
,

where CLF
(
F̂
)
represent the code length of the fitted model and CLF

(
ê/F̂

)
and is the code length

of the corresponding residuals conditional on the fitted model F̂ . Very briefly, the MDL principle

suggests that the best piecewise AR model F̂ is the minimizer of CLF (y). The authors decompose

CLF

(
F̂
)
in:

CLF (m) + CLF (τ1, ..., τm) + CLF (p1, ..., pm+1) + CLF

(
ψ̂1, ..., ψ̂m+1

)
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= CLF (m) + CLF (n1, ..., nm+1) + CLF (p1, ..., pm+1) + CLF

(
ψ̂1, ..., ψ̂m+1

)
.

Behind the last equation is the idea that complete knowledge of (τ1, ..., τm) implies the complete

knowledge of (n1, ..., nm+1) and vice versa. In general, to store a not bounded integer I, is required

approximately log2I bits. Then, CLF (m) = log2m and CLF (pj) = log2pj . If the object I has a

known bound, IU , is required approximately log2Iu bits. Since all nj are bounded by n, CLF (nj) =

log2n for all j. To calculate CLF
(
ψ̂j

)
a result of Rissanen is used. It says: A maximum likelihood

estimator of a real parameter computed using N observations can be encoded with 1
2 log2N bits. Since

each of the pj + 2 parameters of ψ̂j is computed with nj observations,

CLF

(
ψ̂j

)
=
pj + 2

2
log2nj .

Combining these results is obtained the equation (8):

CLF

(
F̂
)

= log2m+ (m+ 1) log2n+
m+1∑
j=1

log2pj +
m+1∑
j=1

pj + 2
2

log2nj . (8)

The code length for the residuals, CLF
(
ê/F̂

)
is obtained using a classical result of Rissanen, who

demonstrated that the code length of ê is equal to the negative of the log-likelihood of the fitted

model F̂ . Let yj :=
(
yτj−1 , ..., yτj−1

)
the vector of observations of the piece j in (7). For simplicity,

is assumed that µj , the mean of the piece j in (7) is 0 and the covariance matrix is denoted by

V−1
j = cov {yj}, where V̂j is an estimator of Vj . Even the εj ’s are not assumed to be normal, the

inference is based on a Gaussian likelihood (quasi-likelihood procedure). Assuming the independence

of the pieces, the Gaussian likelihood of a piecewise process is given by

L (m, τ0, τ1, ..., τm, p1, ..., pm+1, ψ1, ..., ψm+1; y) =
m+1∏
j=1

(2π)−nj/2 |Vj |1/2 exp
{
−1

2
yTj Vjyj

}
,

and then, the code length of ê given the model F̂ is

−log2L
(
m, τ0, τ1, ..., τm, p1, ..., pm+1, ψ̂1, ..., ψ̂m+1; y

)
= (9)

m+1∑
j=1

{
nj
2

log (2π)− 1
2

log
∣∣∣V̂j

∣∣∣+
1
2
yTj Vjyj

}
log2e.

Combining (8) and (9) and using logarithm base e rather than 2, is obtained the following approxi-

mation of CLF (y):
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logm+ (m+ 1) logn+
m+1∑
j=1

logpj +
m+1∑
j=1

pj + 2
2

lognj + (10)

+
m+1∑
j=1

{
nj
2

log (2π)− 1
2

log
∣∣∣V̂j

∣∣∣+
1
2
yTj Vjyj

}
.

Using the approximation of the likelihood for the autoregressive models −2log (likelihood) by nj logσ̂2
j ,

where σ̂2
j is the Yule Walker estimator of σ2

j (Brockwell and Davis (1991)), MDL is defined as:

MDL (m, τ1, ..., τm, p1, ..., pm+1) =

logm+ (m+ 1) logn+
m+1∑
j=1

logpj +
m+1∑
j=1

pj + 2
2

lognj +
m+1∑
j=1

nj
2

log
(
2πσ̂2

j

)
. (11)

Davis et al. (2006) demonstrated that the best-fitted model obtained by the minimization of the

MDL principle is a non trivial issue because the search space composed by m, τj ’s and pj ’s has a

enormous dimension. To solve this problem, they use an genetic algorithm. These algorithms make

a population of individuals “to evolve” subject to random actions similar to those that characterize

the biologic evolution (i.e. crossover and genetic mutation), as well as a selection process following a

certain criteria which determines the most adapted or best individuals that survive the process, and

the less adapted or the “worst” one, who are ruled out.

The genetic algorithm in its canonical version has the following idea: an initial set or population of

candidate solutions to one optimization problem is represented by vectors called chromosomes. The

chromosomes “parents” are randomly selected from the initial population with a probability inversely

proportional to their MDL. This mean that a chromosome with a low MDL will have a greater like-

lihood to be selected. The second generation (the first “child” chromosomes) are obtained under the

operations of crossover or mutation of the selected parents. Once enough members of the second

generation are obtained, it begins the production of the children of the third generation. This process

continues producing new generations, with the expectation of the gradual improvement of the values

of the objective function moving closer to the optimal value.

The crossover operation is the feature that distinguish the genetic algorithms from the other opti-

mization procedures. The chromosome child is created by the mixture of two parents. The new

solution created typically shares many of the best characteristics of its parents. One typical strategy

for the mixture is to assign to each location of the child’s gen the same probability of receipting the
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corresponding father’s or mother’s gen.

In the mutation, one child chromosome is created from only one parent chromosome. The child is

very similar to the parent, except for a small number of gens in which is introduced randomness to

reach the changes. The mutation operation prevents the algorithm to be trapped in local optima.

To preserve the best chromosome of the current generation, there exists the elitist stage. The worst

chromosome of the next generation is replaced with the best chromosome of the current generation.

This procedure guarantees the monotonicity of the algorithm.

There exist a lot of variations of the canonical genetic algorithm, pursuing the goal of the improvement

the convergence rates and to reduce obtaining suboptimal solutions. Davis et al. (2006) implement the

island model, which runs NI searchs (number of islands) simultaneously applying canonical genetic

algorithms in NI different subpopulations rather than performing the search in only one enormous

population. The key feature is that periodically a number of individuals emigrate between islands

according a certain migration rule. In Davis et al. (2006) after Mi generations, the worst MN chro-

mosomes of the jth island are replaced with the best MN chromosomes of the (j − 1)st island, with

j = 2, ..., NI. For j = 1, the best MN chromosomes emigrate from the NIth island.

3 Cusum methods for detecting changes in the data generating pro-
cess of a time series

Cusum Methods are useful for detecting the locations of change points (Inclán and Tiao (1994)).

They have been utilized for testing for a change in mean, variance and distribution function. In this

paper we propose to use cusum methods to obtain the approximately stationary intervals, since they

are an intuitive procedure referred in the literature of time series to find breakpoints and intensive

computer methods are not required. Thus, we modify the algorithm in Lee et al. (2003) which is

designed to searching for an unique change in the parameters of a time series when the underlying

distribution is completely unknown, in order to find more than one change using an iterative cusum

procedure. The fact that the procedure is not based on a known distribution allows to deal with

asymetric or non-constant variances data sets. In following subsections we describe the basic method

developed by Lee et al. (2003) and develop one iterative algorithm to search for multiples parameters

changes in time series.

10



3.1 Cusum method for detecting an unique change in the parameters of the
generating process

The basic idea in Lee et al. (2003) is the following: consider the stationary time series {xt; t = 0,±1,±2, ...},

and let θ = (θ1, ..., θJ) the parameter vector, which will be examined for constancy, e.g. the mean,

variance, autocovariances, etc. The hypotheses to test are:

H0 : θ does not change for x1, ..., xn versus H1: not H0.

Let θ̂k be the estimator of θ based on x1, ..., xk. Lee et al. (2003) investigate the differences θ̂k − θ̂n,

for constructing a cusum test. They assume that θ̂k obtained from x1, ..., xn satisfies the following

√
k
(
θ̂k − θ

)
=

1√
k

k∑
1

It + ∆k,

where It : It (θ) = (I1,t, ..., IJ,t)
′ forms stationary martingale differences with respect to a filtration

{Ft}, namely for every t,

E (It/Ft−1) = 0 a.s.,

and ∆k = (∆1,t, ...,∆J,t)
′. Let Γ = Var (It) be the covariance matrix of It. Lee et al. (2003) define

the statistic Tn by computing

Tk =
k2

n

(
θ̂k − θ̂n

)
Γ−1

(
θ̂k − θ̂n

)
(12)

and taking the maximum value for k = J, ..., n.

Tn = maxJ≤k≤nTk (13)

which in some regular conditions, and, under H0 holds:

Tn →d sup0≤s≤1

J∑
j=1

(
W o
j (s)

)2
. (14)

where Wo
J (s) = (W o

1 (s) , ...,W o
J (s))′ is a J -dimensional standard Brownian bridge. We reject H0

if Tn is large. To calculate the critical values of the distribution they provide the tables through a

Monte Carlo simulation, since it is not easy to calculate the critical values analytically. For this task,
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they generate the random numbers εt following the standard normal distribution and compute the

empirical quantiles based on the random variables

Un,J = max1≤k≤n

J∑
j=1

{
n−1/2

k∑
i=1

εi,j − n−1/2

(
k

n

n∑
i=1

εi,j

)}2

.

Lee et al. (2003) provide the critical values for the significance levels α = 0.01, 0.05, 0.1 and J =

1, ..., 10, which are obtained by replicating 10000 simulated U1000,J .

Lee et al. (2003) exposed the RCA(1) model, to analyze the existence of changes in the coefficient

of an AR(1) process, in its variance and in the variance of the innovation term. RCA models have

been studied to investigate the effects of random perturbations of a dynamical system (Tong (1990))

in the fields of biology, enginnering, finance and economics.

Let {xt; t = 0,±1,±2, ...} be the time series of the RCA(1) model

xt = (φ+ bt)xt−1 + εt, (15)

where
(
bt
εt

)
∼ iid

((
0
0

)
,

(
ω2 0
0 σ2

))
.

A sufficient condition for the strict stationarity and ergodicity of xt is φ2 + ω2 < 1 (Nicholls et al.

(1982)).

Lee et al. (2003) considered the problem of testing for a change of the parameter vector θ =
(
φ, ω2, σ2

)′
based on a conditional LSE θ̂. Using the sample x1, ..., xn with x0 = 0 they intended to test the fol-

lowing hypotheses:

H0 :
(
φ, ω2, σ2

)′ is constant over x1, ..., xn versus H1 : not H0.

In order to perform the test, they construct the cusum statistic, with θ̂k =
(
φ̂k, ω̂

2
k, σ̂

2
k

)′
, where

φ̂k is the estimator of φ obtained by the minimization of
∑k

t=1 (xt − φxt−1)2, and ω̂2
k and σ̂2

k are

the estimators of ω2 and σ2 defined as the minimizers of
∑k

t=1

(
û2
k,t − ω2x2

t−1 − σ2
)2

, with ûk,t =

xt − φ̂kxt−1. Moreover, Γ is a matrix of dimension 3x3 composed by
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Γ11 =
ω2Ex

4
1 + σ2Ex2

1(
Ex2

1

)2 ,

Γ22 =
(
Ex4

1 −
(
Ex2

1

)2)−2 ((
Eb41 − ω4

) (
Ex8

1 − 2Ex2
1Ex

6
1 +

(
Ex2

1

)2
Ex4

1

)
+ 4ω2σ2

(
Ex6

1 − 2Ex2
1Ex

4
1 +

(
Ex2

1

)3)+
(
Eε41 − σ4)

(
Ex4

1 −
(
Ex2

1

)2))
,

Γ33 =
(
Eb41 − ω4

)(
Ex4

1 −
2Ex2

1

(
Ex6

1 − Ex2
1Ex

4
1

)
Ex4

1 −
(
Ex2

1

)2
)

− 4ω2σ2Ex2
1 + Eε41 − σ4 +

(
Ex2

1

)2 Γ22,

Γ12 =
Eb31Ex

6
1 − Eb31Ex2

1Ex
4
1 + Eε31Ex

3
1

Ex2
1Ex

4
1 −

(
Ex3

1

)3
Γ13 =

−Eb31Ex2
1Ex

6
1 + Eb31

(
Ex4

1

)2 − Eε31Ex2
1Ex

3
1

Ex2
1Ex

4
1 −

(
Ex2

1

)3 ,

Γ23 =

(
Eb41 − ω4

) (
Ex6

1 − Ex2
1Ex

4
1

)
Ex4

1 −
(
Ex2

1

)2 + 4ω2σ2 − Ex2
1Γ22.

In order to obtain Γ they estimate Eε3t , Eb3t , Eε4t , and Eb4t minimizing
∑n

t=1

(
û3
t − x3

t−1Eb
3
t + Eε3t

)
and

∑n
t=1

(
û3
t − x3

t−1Eb
3
t + Eε3t

)
. Plug in those estimators and n−1

∑n
t=1 x

k
t , k = 2, 3, 4, 6, 8 into Γij ,

they obtain a consistent estimator of Γ.

3.2 Iterative cusum method to detect multiple parameters changes

In real time series and more in lengthy time series of very high frequency data the probability of

changes afecting the structure of the data is high and therefor to consider the posibility of only one

change is not realistic. In this section we start considering the hypothesis test presented in Lee et al.

(2003) and following the idea of a sequential search of changes in Inclán and Tiao (1994) we propose

an iterative cusum method (ICM). In general, ICM searches for changes in the parameters of the

model.

To simplify the exposition, we consider a particular case in which the assumed model is a RCA(1),

and we search for several changes in φ, σ2 and ω2. The results are easily extended to other models.

The algorithm proposed consists of:

• Step 0: Center the time series in the sample mean and apply the following steps to it. Set

t1 = 1. Model the whole centered time series with an RCA(1) obtaining φ̂n, σ̂2
n and ω̂2

n.
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• Step 1: Compute Tk (t1 : T ) for k = J..., n1. Let k∗ the point where maxk |Tk (t1 : T )| is

obtained, called Tn and if Tn > D∗ -being D∗ the critical value with 1− p level of significance-,

there is a shift in the time series at time k∗ and the procedure continues with the step 2a. If

Tn (t1 : T ) ≤ D∗ the algorithm stops.

• Step 2a: Let t2 = k∗. Estimate again a RCA(1) beginning in t1 and finishing in t2−1. We obtain

new values for φ̂n, σ̂2
n and ω̂2

n. Calculate Tk (t1 : t2) and finally the new Tn. If Tn (t1 : t2) > D∗,

then we have a new point of change. Again, let k∗ the point where |Tk (t1 : t2)| is maximized.

Repeat this step until Tn (t1 : t2) < D∗. Then, the first point of change is kfirst = t2.

• Step 2b: Let k ∗ (t1 : T ) the point of change found in step (1), set t1 = k ∗ (t1 : T ) + 1, estimate

the RCA(1) using the observations of the periods t1 to T , calculate Tk (t1 : T ) using observations

and evaluate whether its maximum is greater than D∗ or not. If the condition holds, the period

k∗ where we have the maximum is the period of the shift. Now, set t1 = k∗ and repeat this step

until Tn (t1 : T ) < D∗. The last period of change will be klast = t1 − 1 where Tn (t1 : T ) < D∗.

• Step 2c: If kfirst = klast there is only one shift in the time series. If kfirst < klast repeat Step 1

and Step 2 with t1 = kfirst + 1 and T = klast. Call NT the number of shifts found.

• Step 3: Sort the breakpoint in increasing order. Let cp be the vectors of breakpoints with

cp0 = 0 and cpNt+1 = T . Check all the breakpoint by calculating

Tk
(
cpj−1 + 1 : cpj+1

)
, j = 1, 2, ..., NT (16)

If Tk
(
cpj

)
> D∗ keep the point. Else eliminate it.

Since we work with lengthy time series, we compute the critical values for 0.05 and 0.01 significance

levels and J = 1, ..., 4, but we investigate the sensitiveness of the statistic to the length of the time

series. We perform 10000 replications of the statistic for T = 2k, where k = 9, ..., 15. The results are

presented in the table 1. We found that the critical values are not too sensitive to changes in the

time series length, although they are to the number of parameters to which the test is applied.

1In parenthesis there is the interval used for the computation of the statistic. That is the same for both Tk and Tn
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Table 1: Critical values for 0.05 and 0.01 significance levels and J = 1, ..., 4
J

T 1 2 3 4
512 1.76 2.41 2.97 3.37

2.48 3.27 3.87 4.37
1024 1.78 2.42 2.97 3.48

2.51 3.27 3.94 4.48
2048 1.79 2.44 2.97 3.51

2.59 3.31 3.96 4.49
4096 1.81 2.44 3 3.49

2.56 3.31 3.9 4.35
8192 1.85 2.49 3.04 3.49

2.65 3.29 3.91 4.54
2048 1.82 2.5 2.98 3.5

2.53 3.39 3.89 4.53
32768 1.86 2.5 3.03 3.51

2.66 3.38 3.9 4.53

4 Monte Carlo simulations

In this section we evaluate the performance of the three methods presented above. First, we com-

pute how many times the corresponding methodology segments a stationary process. The length of

simulated series is set equal to 212. We generate 1000 of the following processes yt:

• a white noise,

yt = at where at ∼ iid (0, 1) , (17)

• autoregressive of order one (AR(1))processes

yt = φyt−1 + at where y0 = 0 and at ∼ iid (0, 1) , (18)

where the parameter φ is set equal to 0.8, -0.8, 0.5, and -0.5, and,

• moving average of order one (MA(1)) processes

yt = θat−1 + at where at ∼ iid (0, 1) (19)

where the parameter θ is set equal to 0.8, -0.8, 0.5 and -0.5.

The second evaluation of the methods consists of computing how many times the corresponding

methodology correctly segments a piecewise stationary process. Since each process has two station-

ary segments or blocks the goodness of the results consists on the finding of these two stationary
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segments or blocks. Thus, we observe if the methodology find these two segments or blocks and if

any change occurs near the correct breakpoint.

The piecewise processes used in order to compute the type II error probability have length equal to

212. They are:

• AR(1) (and MA(1)) with parameter 0.8 changing to -0.8 in the observation t = 2048.

• AR(1) (and MA(1)) with parameter 0.5 changing to -0.5 in the observation t = 2048.

• AR(1) (and MA(1)) with parameter 0.9 changing to -0.2 in the observation t = 2048.

The observation 2048 is just in the middle of the sample. This location of the change is set in a

arbitrary way and favors the dyadic structure used by AutoSLEX.

Tables 2 to 4 present the results for stationary processes. In those tables α∗ represents the proportion

of wrong segmented stationary processes. The performances of AutoSLEX and AutoPARM methods

are very satisfactory. Applying both methods to stationary process we obtain only one block or seg-

ment in the most of the cases and only a small percentage of processes are segmented in two blocks. It

seems that AutoPARM has the best performance with a very small frequency of errors for stationary

processes (only two cases in all the 9000 simulated stationary processes).

Table 2: Number of blocks or segments applying AutoSLEX to stationary processes
Processes 1 block 2 blocks α*

White Noise 1000 0 0
AR(1) φ =0.8 995 5 0.005
AR(1) φ =-0.8 995 5 0.005
AR(1) φ =0.5 990 10 0.01
AR(1) φ =-0.5 982 18 0.018
MA(1) θ =0.8 988 12 0.012
MA(1) θ =-0.8 994 6 0.006
MA(1) θ =0.5 984 16 0.016
MA(1) θ =-0.5 990 10 0.01
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Table 3: Number of blocks or segments applying AutoPARM to stationary processes
Processes 1 block 2 blocks α*

White Noise 1000 0 0
AR(1) φ =0.8 999 1 0.001
AR(1) φ =-0.8 1000 0 0
AR(1) φ =0.5 1000 0 0
AR(1) φ =-0.5 1000 0 0
MA(1) θ =0.8 1000 0 0
MA(1) θ =-0.8 1000 0 0
MA(1) θ =0.5 1000 0 0
MA(1) θ =-0.5 999 1 0.001

Table 4: Number of blocks or segments applying ICM to stationary processes
Processes 1 block 2 or more blocks α*

White Noise 941 59 0.059
AR(1) φ =0.8 907 93 0.093
AR(1) φ =-0.8 906 94 0.094
AR(1) φ =0.5 902 98 0.098
AR(1) φ =-0.5 900 100 0.1
MA(1) θ =0.8 901 99 0.099
MA(1) θ =-0.8 908 92 0.092
MA(1) θ =0.5 906 94 0.094
MA(1) θ =-0.5 903 97 0.097

The proportion of wrong segmented stationary processes by ICM is always less than 0.1. We inves-

tigate the hypothesis that the correlation structure of the process could influence the segmentation

performed by ICM method. We assumed a RCA(1) as the true model to clean out the process of its

serial correlation. The results for MA(1) and AR(1) processes are similar leading to the conclusion

that the serial correlation seems to be not important to perform a appropriate segmentation using

ICM.

In tables 5 to 7 we show our results for the piecewise stationary processes, showing how many break-

points found belong to the interval 2048± 100.

Table 5: Number of piecewise stationary processes with changes

inside the interval 2048± 100 applying AutoSLEX
Processes 1 changes 2 changes ≤ 3 changes

AR(1): 0.8 to -0.8 671 141 188
AR(1): 0.5 to -0.5 895 60 45
AR(1): 0.9 to -0.2 765 105 130
MA(1): 0.8 to -0.8 623 131 246
MA(1): 0.5 to -0.5 881 72 47
MA(1): 0.9 to -0.2 848 92 60
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Table 6: Number of piecewise stationary processes with changes

inside the interval 2048± 100 applying AutoPARM
Processes 0 changes 1 change 2 changes

AR(1): 0.8 to -0.8 4 986 10
AR(1): 0.5 to -0.5 0 998 2
AR(1): 0.9 to -0.2 5 990 5
MA(1): 0.8 to -0.8 1 994 5
MA(1): 0.5 to -0.5 0 998 2
MA(1): 0.9 to -0.2 1 991 8

Table 7: Number of piecewise stationary processes with changes

inside the interval 2048± 100 applying ICM
Processes 0 changes 1 changes 2 changes ≤ 3 changes

AR(1): 0.8 to -0.8 27 797 155 21
AR(1): 0.5 to -0.5 17 839 129 15
AR(1): 0.9 to -0.2 9 856 122 13
MA(1): 0.8 to -0.8 46 891 60 3
MA(1): 0.5 to -0.5 65 932 3 0
MA(1): 0.9 to -0.2 69 931 0 0

AutoSLEX and ICM segment in more blocks than AutoPARM the piecewise stationary processes.

However, for most of the simulated series AutoSLEX and ICM found only one breakpoint. In the

case of AutoSLEX, given the dyadic segmentation, for all of the series which AutoSLEX found more

than two blocks, it necesarily found the correct breakpoint located in the middle of the sample.

The resulting segmentations using AutoPARM are the most satisfactory. The proportion of no changes

inside the interval 2048±100 varies from 0.001 to 0.05 for the different simulated piecewise processes.

Moreover, only in 0.006 to 0.06 proportion of cases AutoPARM segments in 3 blocks (2 breakpoints)

when the process has only 2 blocks. Finally, the location of the breakpoints is well detected with a

very high frequency (≥ 98.6%) by AutoPARM.

Applying ICM method to piecewise stationary processes we noticed a good performance, i.e. only one

change in the interval 2048± 100, in 79.7 to 93.2% of the simulated processes, meanwhile AutoSLEX

achieves only a index of 67.1 to 89.5%.

Monte Carlo simulations show very good results for AutoSLEX and AutoPARM since the proportion

of wrong segmented stationary processes are lower than 0.0018 and 0.001 respectively. For ICM this

proportion is smaller than 0.10. When the process has two blocks or segments, it seems that Au-

toSLEX and ICM tend to segment it more than AutoPARM. However, since we put the change in he

middle of the time series, in various of the processes which AutoSLEX segments more than it should,
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it finds the correct location of the correct change. Moreover, ICM method had a better performance

than AutoSLEX for piecewise stationary processes, obtaining a greater rate of correct unique changes.

5 Real datasets

The performance of the methods is illustrated with two datasets. We compare the results of applying

ICM, AutoSLEX and AutoPARM to real datasets of different disciplines:

• a neurology dataset denoted by EEGT3, which represents the recordings from the left temporal

lobe during an epileptic seizure of a patient with 32768 data observed at the sampling rate of

100 Hz.;

• a speech dataset consisting in the recording of the word GREASY with 8192 observations.

Both time series have been analyzed by Ombao et al. (2002) and Davis et al. (2006) and are pre-

sented in Figures 1 and 2 respectively. We apply the three methodologies to both datasets and present

the resulting segmentations in Figures 3 and 4 respectively. Breakpoints are showed with dotted lines.

Figure 1: EEGT3: Recordings from the left temporal lobe during a epileptic seizure of a patient.
T = 32768
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Figure 2: Speech signal representing the recording of the word GREASY. T = 8192.

Figure 3: Breakpoints in EEGT3 estimated by ICM, AutoSLEX and AutoPARM
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Figure 4: Breakpoints of GREASY estimated by ICM, AutoLSEX and AutoPARM

For EEGT3, AutoSLEX found 28 breakpoints, AutoPARM 18, ICM 5. The breakpoints estimated

by ICM’s are very similar to some of those found by AutoSLEX and AutoPARM. The segmentation

performed by ICM is concentrated (4 of the 5 changes) in the interval of high volatility. AutoSLEX

finds that the first half of the time series is stationary. The seizure, or at least a different behavior of

the series, seems to begin in t = 16384. The other methodologies show a observation after t = 18000

as the breakpoint beginning the seizure.

GREASY appears in the figure as non stationary, but it could be segmented into approximately sta-

tionary blocks. Note that in the behavior of the time series we can identify blocks corresponding to

the sounds G, R, EA, S, and Y (Ombao et al. (2002)). AutoSLEX and AutoPARM found a very

high number of breakpoints. The performance of ICM seems to be better than the other methods: it

found only 7 breakpoints, most of them limiting intervals corresponding to the sounds compounding

the word GREASY.

The number of changes found in EEGT3 and GREASY by ICM, AutoSLEX and AutoPARM is pre-

sented in the Table 8.
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Table 8: Number of breakpoints estimated for real datasets by each methodology
ICM AutoPARM AutoSLEX

EEGT3 5 18 28
GREASY 7 47 19

6 Conclusions

We have presented a new segmentation methodology, ICM, based on an iterative cusum test which

is designed to search and identify multiple moments of parameters change in time series when the

underlying distribution is completely unknown. ICM has the advantage of been an intuitive para-

metric method which is computationally atractive because it does not need genetic algorithm as is

the case of AutoPARM. Monte Carlo simulations show that although AutoPARM method usually

performs better than ICM, the obtained proportion of wrong segmentations are still satisfactory. The

applications of ICM to real datasets present very good performance and excellent results.

Still the method needs good benefits from other dynamic structure and more research, but we believe

that the obtained results are very promising.
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