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Abstract 
 
The use of log-transformed data has become standard in macroeconomic forecasting with 
VAR models. However, its appropriateness in the context of out-of-sample forecasts has 
not yet been exposed to a thorough empirical investigation. With the aim of filling this 
void, a broad sample of VAR models is employed in a multi-country setup and approxi-
mately 16 Mio. pseudo-out-of-sample forecasts are evaluated. The results show that, on 
average, the knee-jerk transformation of the data is at best harmless. 
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1 Introduction

In the field of forecasting macroeconomic time series with VAR-models, the
use of log-transformed data has become standard or at least good practice.
The rationale for using log-transformed data in time series regressions and
macroeconomic forecasts is rooted in the normality assumption of classical
econometric approaches. It aims at limiting the detrimental effects of het-
eroscedasticity and skewness in the level data on estimation and testing re-
sults. To choose between the use of data in levels and log-transformed data,
several in-sample statistical tests based on the Box-Cox-transformation have
been developed and applied. However, macroeconomic forecasters are typ-
ically interested in the out-of-sample forecast accuracy of a model. So far,
the appropriateness of the log-transformation in this context has not been
exposed to a thorough empirical investigation. With the aim of filling this
void, a broad sample of models is employed over different estimation periods
and forecast horizons. It is thereby assumed that the researcher is interested
in the forecasts of the levels of a time series. In order to re-transform the fore-
casts of the estimations in log-transformed data back to levels the adjusted
re-transformation approach following the lines of Arino and Franses (2000)
as well as the “naive” approach, i.e. simply using the exponential of the log-
arithmic forecast values, are considered and evaluated. In order to pose the
results of our study on a broad empirical basis, the analysis is implemented
on a G41 data set. All reasonable combinations of the variable of interest,
the real GDP, and an extended set of explanatory macroeconomic variables
are estimated employing VAR models. Using a recursive window approach,
for each model the 1 to 8 step ahead pseudo out-of-sample forecasts based
on an estimation in log-transformed data and on levels of the time series are
compared on the basis of the AFEs. The results show that according to the
forecast performance the standard use of log-transformed data at least has
to be questioned. This finding is independent of the use of the adjusted or
the “naive” re-transformation approach.
Our paper is structured as follows. Section 2 reviews the relevant literature.
Sections 3 to 5 lay out the set up for estimation and forecasting, the proce-
dure of the analysis, and the statistical tests employed, respectively. Section
6 describes the data and section 7 presents the results. The last section
concludes.

1The G4-countries comprise Germany, Great Britain, Japan, and the United States of
America
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2 Literature review

So far, no empirical analysis has been implemented comparing the accuracy
of forecasts based on VAR models estimated in logarithms to VAR models
estimated in level data. However, several studies have considered methods
for transforming logarithmic forecasts to level forecasts, thus making both
approaches comparable. Granger and Newbold (1976) examine methods for
forecasting the levels of transformed series using the autocovariance structure
of the forecast errors. Employing the Hermite polynomial expansion, they
consider a very general class of instantaneous transformations including the
quadratic and the exponential. Building on these findings, Arino and Franses
(2000) present explicit expressions for the level-forecasts of a time series when
such forecasts are derived from a VAR model in log-transformed data. Van
Garderen (2005) considers unbiased predictions of levels when the time series
are modeled as a random walk with drift and other exogenous factors after
taking logs. He thereby develops unbiased predictors for growth and its
variance. Lopes and Ehlers (1997) apply Bayesian techniques to forecast the
levels of vector autoregressive log-transformed time series. They use a Monte
Carlo simulation of the posterior distribution of the parameters of the VAR
adjusted to the log-transformed data.

3 Estimation and Forecasting

Following Granger and Newbold (1976) we first consider the case of fore-
casting a univariate time series xt and then extend the results to the more
general case of a multivariate VAR(p) model according to Arino and Franses
(2000). The series yt corresponds to the natural logarithmic transformation
of xt, so that yt = log(xt). The log-transformed time series yt can be written
as yt = mt + εt with mt being the conditional expectation of yt, given the
information set at time t, and with εt being a standard white noise process.
The exponential of the forecast of yt+k is referred to as the “naive” forecast
of xt+k:

x̂∗
t+k = exp(m̂t+k). (1)

As shown by Granger and Newbold (1976), this “naive” forecast does not
equal the expected value of the time series xt+k in levels at time t. It is biased
since the expected value of the exponential of the white noise process εt+k

unequals zero. The unbiased forecast x̂t+k of the variable xt+k in levels can
be written as:

x̂t+k = Et[exp(mt+k + εt+k)] = x̂∗
t+kEt[exp(εt+k)]. (2)
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where Et is the expectation operator at time t. Granger and Newbold (1976)
showed that the required correction factor Et[exp(εt+k)] equals exp(σ2

k/2),
where σ2

k is the variance of the k-step ahead forecast error of variable y. In
the more general case of a VAR(p) model, the required covariance matrices
of the k-step ahead forecast errors of the endogenous variables can be derived
starting from the specified equation in logarithms2:

Y (t) = B0 +

p∑
r=1

BrY (t− r) + ε(t) (3)

Y ′(t) = (y1(t), . . . , ym(t)), B′
0 = (b1, . . . , bm) and Br = (bijr)

m
i,j=1 are m-

dimensional vectors and matrices with constant parameters, and ε′(t) =
(ε1(t), . . . , εm(t)) is a vector of m normally identically and independently
distributed random variables with mean zero and covariance matrix Σ, that
is E[εt] = 0, E[εtε

′
t] = Σε and E[εtε

′
s] = 0 for s 6= t. The instantaneous

covariance matrix Σε is assumed to be nonsingular. Recursively inserting
the observed and/or forecasted values of Y in equation 3 yields the k-step
ahead forecasts of the endogenous variables. For a VAR(1) model the one-
step ahead forecast of the vector of the endogenous expressed as a function
of observed values of Y is given by:

Y (t + 1) = B0 + B1Y (t) + ε(t + 1) (4)

Making use of equation 4 the two-step ahead forecast Y (t + 2) is then given
by:

Y (t + 2) = B0 + B1B0 + B2
1Y (t) + B(1)ε(t + 1) + ε(t + 2) (5)

The k-step ahead forecast Y (t + k) of a general VAR(p) model where the
coefficients in front of Y (k), ε(t + k) and the constant terms are written
more compactly as Cr(k), D(i) and C0(k) respectively gives:

Y (t + k) = C0(k) +

p∑
r=1

Cr(k)Y (t− r + 1) +
k∑

i=1

D(i)ε(t + i) (6)

2The estimation and forecasting in levels is analogous
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where

C0(k) = B0 +

p∑
r=1

BrC0(k − r)

Cl(k) =

p∑
r=1

BrCl(k − r)

D(k) =

p∑
r=1

BrD(k − r)

with the initial conditions

C0(j) = 0 for j=0,-1,. . . ,-p+1.

Cl(j) =

{
Im, if j = 1− l, for 1 ≤ l ≤ p,
0, otherwise.

D(j) =

{
0, for j = 0,−1, . . . ,−p + 1,
Im, otherwise.

Im denotes a m-dimensional Identity Matrix. It becomes clear, that the
k-step ahead forecast error

∑k
i=1 D(i)ε(t + i) is a linear combination of nor-

mally distributed variables. The covariance matrix of this error term can be
recursively computed as:

ΣY (k) = ΣY (k − 1) + D(k)ΣεD(k)′ (6)

where ΣY (1) = Σε. The sum of the i’s row of ΣY (k) contains the variance
σi,k of the k-step ahead forecast error of variable yi. Accounting for this
correction factor, equation 2 can be used to obtain the unbiased forecast of
xi,t+k. This is, the “naive” forecast has to be multiplied with exp(σ2

i,k/2).

4 Procedure of the Analysis

For reasons of robustness the analysis of the forecast performance of the
different data transformation approaches for VAR models comprises data of
4 countries, namely those of the G4 group. For each country and for each
data transformation, a total number of 6885 VAR models is specified. The
different models are build permutating a total set of 16 candidate endogenous
variables plus the GDP as the variable of interest, which necessarily forms
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part of all models. Given the limited number of observations in the time
dimension a maximum of up to 5 variables per single model is imposed.
The resulting VAR models are then estimated using a recursive estimation
scheme. The full sample, the end of the sample used in the first recursion as
well as the number of recursions for each country is given in table 2 in the
appendix. Each iteration the estimation sample is expanded one quarter.
The lag length for each VAR model at each estimation step and for each
forecast horizon is dynamically optimized using the AIC information criteria.
Building on the estimated models, the 1 to 8 step ahead pseudo out-of-sample
forecasts are calculated at each period of the recursive estimation scheme.
The forecasts of the log-transformed models and the models estimated in
levels are then compared on basis of their absulute forecast errors using
simple ratios as well as two-sided and one-sided statistical tests. In order to
compare their forecast performance with the models estimated in levels, the
forecasts of the log-transformed models are re-transformed to levels following
the above described ways.

5 Tests

In order to test, whether two forecasts differ significantly, the Wilcoxon
signed-rank test and the sign test, two exact distribution-free, non-parametric
procedures are applied. They test for the null hypothesis, that an indepen-
dently distributed series δt (t = 1, ..., T ) has a zero median. In the current

context, δt is defined as δt = abs(ε̂i
t) − abs(ε̂j

t), .i.e. the difference of the
AFEs of the two approaches. The sign test assumes, that under the null hy-
pothesis the series is independently but not necessarily identically binomially
distributed. Its test statistic is

S =
T∑

t=1

I+(δt) (7)

where

I+ =

{
1, for δt � 0,
0, otherwise.

In large samples the studentized version is asymptotical normal:

S − T
2√

T
4

a∼ N(0, 1) (8)
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Thus the critical values of the binomial or the normal distribution may be
used. Under the assumption of distributional symmetry, the signed-rank test
proposed by Wilcoxon (1945) is a more powerful distribution-free alternative
to the sign test. Distributional symmetry implies, that the median equals
the mean. Under the same null hypothesis as the sign-test, the test statistic
of the signed-rank test is computed as the sum of the ranks of the absolute
values of the positive observations:

W =
T∑

t=1

I+(δt)rank [δt] (9)

where the ranking is such that the largest absolute observation is given rank
T and the other ranks are assigned correspondingly. The test is build on
the idea, that if the underlying distribution is symmetric about zero, a “very
large” (or “very small”) sum of the ranks of the absolute values of the positive
observations is “very unlikely.” The exact finite sample distribution of W
is free from nuisance parameters and independent of the true underlying
distribution. In large samples, the studentized version is standard normal.

W − T (T+1)
4√

T (T+1)(2T+1)
24

a∼ N(0, 1) (10)

To test whether or not two forecasts generated by different models are sig-
nificantly different in one direction, i.e. whether one of them is significantly
superior to the other several procedures have been developed. Diebold and
Mariano (1995) proposed a test (DM test) of the null hypothesis of no dif-
ference in the accuracy of two competing forecasts that is widely applicable.
Their test allows for a wide class of measures of forecast accuracy and is not
restricted to a single loss function, e.g. the AFEs. Following Diebold and
Mariano (1995) the tests considers the null hypothesis H0 : E[δt] = 0 and is
based on the observed sample mean

d̄ =
1

T ∗

T∑
t=T0

dt (11)

with T ∗ = T − T0 + 1. The sequence of the forecast errors follows a moving
average process of order q = (h − 1). If the autocorrelations of order h and
higher are zero, the variance of the loss differential can be heteroscedastic
and autocorrelation consistently (HAC) estimated as

V̄ =
1

T ∗ (γ̂0 + 2
h−1∑
j=1

γ̂j) (12)
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where γ̂j is the estimated j − th autocovariance of the loss differential δt.
Under the null hypothesis of equal forecast accuracy the DM test statistic
can be computed as:

DM =
δ̄√
V̄
∼ N(0, 1) (13)

To test if a model i is not dominated by a model j in terms of forecast accu-
racy a one-sided DM test has to be conducted. The modified null hypothesis
is than given by H0 : E[δt] ≤ 0. If the null is rejected one thus concludes that
model j dominates model i. In order to reduce size distortions that might be
significant in small samples Harvey, Leybourne, and Newbold (1997) suggest
a corrected DM statistic:

HLN = DM [
T ∗ + 1− 2h + h(h− 1)/T ∗

T ∗ ]1/2 (14)

The modified statistic is compared to a Student’s t-distribution with T ∗ − 1
degrees of freedom.

6 The Data

The data entering the VAR-models are standard macroeconomic time-series
most commonly used for forecasting purposes. Additionally to the standard
VAR-setup of the variable of interest, the Gross Domestic Product (GDP),
the Policy Interest Rate and a measure for the Consumer Prices, several
other aggregates and indicators that might explain real GDP are included.
The Real Effective Exchange Rate, the Imports and Exports series as well
as the Commodity Prices cover the external influences. The major Stock-
Price Indices, the Unemployment Rate, Industrial Production, Consumption,
Investment, Hours Worked and several early indicators such as Industrial
Orders, Consumer and Producer Sentiments complete the set. The data,
especially in the case of the early indicators, differ between the countries.
A complete list of the variables included, as well as some basic descriptive
statistics are given in the appendix (see table 4 respectively table 5 to table 8).
The number of observations range from 61 quarters in the case of Germany
to 145 in the case of the United States (see table 2). Given the variable of
interest being GDP, the analysis is restricted to quarterly data.

7 Results

Table 1 compares the accuracy of forecasts based on models estimated in
level data to those based on models estimated in log-transformed data. The
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columns give the single test statistics for the respective countries. The log
forecasts have been re-transformed following Arino and Franses (2000). How-
ever, as Arino and Franses (2000) point out, it is not clear from the outset,
whether the adjustments implemented for the optimal re-transformation yield
more accurate results then the “naive” re-transformation approach. There-
fore, we have repeated the tests for the “naive” re-transformation approach,
as well. These results are given in table 3 in the appendix. However, the
main results of the analysis remain unchanged whether we employ the “naive”
or the optimal re-transformation procedure for the forecasts of models esti-
mated in logarithmic data. The first row in both tables shows the results

Table 1: optimally retransformed log vs. level forecasts

USA Japan Germany UK
Sign 0.32 0.35 0.13 0.35
Wilcoxon 0.37 0.46 0.18 0.43
Relative sq.err. 0.56 0.49 0.53 0.56
DM 0.11 0.17 0.12 0.16
HNL 0.16 0.22 0.11 0.21
DMreversed 0.01 0.09 0.05 0.02
HNLreversed 0.01 0.09 0.04 0.03

for the simple non-parametric sign test and the second row the ones for the
Wilcoxon signed-rank test. As mentioned before, both statistics are two-
sided procedures, testing the null-hypothesis of both competing model types
yielding equally accurate forecasts. The values in the tables report the per-
centage of pairwise comparisons where the median difference between the two
alternatives is statistically significant to the 5 percent level. For the selected
countries between 30 − 40 percent of the pairwise comparisons show signif-
icant differences with respect to forecasting accuracy. Only for Germany,
the percentage is considerably lower. The following rows give statistics that
indicate, which of the two approaches is superior to the other. To start
with, the third row simply gives a descriptive ratio. It shows the number
of times in percent, the models in level data yield lower AFEs than their
log-transformed counterparts. The figures give the average values over all
forecast horizons. Independent of the use of the “naive” re-transformation
approach or the “optimal” approach proposed by Arino and Franses (2000),
forecasts based on level models outperform models in log-transformed data
slightly more often. Only for Japan, when using the unbiased approach of
re-transformation, the figures recommend an estimation and forecasting in
logarithmic data. However, in 49 percent of the cases the level models are
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still better. The rows four and five, respectively six and seven, give the re-
sults of the Diebold and Mariano (1995) test and its refinement proposed
by Harvey, Leybourne, and Newbold (1997). Both statistics are specified as
one-sided tests, exploring, whether one approach significantly outperforms
the alternative. The null hypothesis of both statistics in row four and five
is that the forecasts based on the models in level data are not significantly
more accurate than the ones estimated in log-transformed time series. Rows
six and seven report the results for the test with the null being that the
forecasts based on log-transformed data are not significantly superior. The
figures give the percentage of pairwise comparisons where the Null hypothe-
sis can be rejected at a 5 percent level of significance. On average, 16 percent
of the pairwise comparisons report a statistically higher forecasting accuracy
for models in level data. In contrast, reverting the alternative H1 hypothesis
shows that the percentage of comparisons where the forecasts in levels are
dominated by their logarithmic counterpart only reaches 4. Combining the
results of the different test statistics together with the ratios of the relative
squared errors indicates a predominance of models in level data when fore-
casting out-of sample values for the GDP as variable of interest with VAR
models.

8 Conclusion

VAR models are an essential tool for practitioners when it comes to forecast-
ing macroeconomic variables. Log-transforming the data to improve estima-
tion is common practice. However, as the results of our analysis based on a
broad empirical basis of round about 16 Mio. pseudo-out-of-sample forecasts
demonstrate the automatical transformation of the data is at best harmless.
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Table 2: # of obs per country

Country sample 1st iteration # iterations
Germany 1991:1 - 2006:1 1999:4 18
Japan 1970:1 - 2006:1 1980:1 97
UK 1972:1 - 2006:1 1982:1 89
USA 1970:1 - 2006:1 1980:1 97

Table 3: “Naive” log vs. level forecasts

USA Japan Germany UK
Wilcoxon 0.36 0.46 0.16 0.49
Sign 0.30 0.36 0.11 0.38
Relative MSE 0.56 0.50 0.52 0.59
DM 0.09 0.19 0.10 0.17
HNL 0.14 0.24 0.09 0.23
DMreversed 0.01 0.08 0.06 0.00
HNLreversed 0.01 0.08 0.04 0.00
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Variable Abbreviation seasonal adj. real
Business Confidence BC
Private Consumption C x x
Consumer Confidence CC
Commodity Price Index COM
Consumer Price Index CPI
Government Spending G x x
Gross Domestic Product GDP x x
Housing Index HI
Hours Worked HW
Industrial Production IP x x
Industrial Sales IS x x
Investments INV x x
Imports M x x
Manufacturing Orders MO
Money MON
Policy Rates R
Government Benchmarks, long term RL
Retail Sales RS x x
Real Effektive Exchange rate RER
Stock Index STX
Unemployment rate U x
Hourly Earnings W
Exports X x x

Table 4: Variables and abbreviations
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Variable Mean Max Min Std. Dev.
BC* 52.55 70.43 32.23 6.76
CC* 97.18 118.63 64.97 12.05
COM* 101.10 164.30 36.63 32.90
C** 4651.68 8032.00 2434.40 1592.42
CPI* 116.34 199.30 38.10 48.91
G** 1394.54 2013.30 970.50 313.12
GDP** 6867.64 11381.40 3759.80 2191.83
HW
I** 988.33 2013.40 411.90 439.021
IP‡ 70.35 110.78 41.09 20.27
IS
M** 708.78 1931.00 209.70 490.77
MO
MON
O
R 1.07 1.18 1.01 0.03
RER* 98.09 126.27 81.43 11.36
RL† 1.08 1.15 1.04 0.02
RS
STX* 466.32 1475.51 69.42 430.29
U† 6.20 10.67 3.90 1.38
W‡ 9.46 16.46 3.33 3.79
X 559.15 1252.80 156.10 336.74

Note: * marks variables that represent indices, ** are level
data given in Billion USD, † are percentage variables, and ‡

indicate variables in USD.

Table 5: USA
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Variable Mean Max Min Std. Dev.
BC
CC
COM* 98.04 115.77 56.09 15.91
C** 199270.00 291965.00 36508.40 84632.37
CPI* 81.09 101.61 31.24 21.32
G** 50274.04 90706.20 5036.80 28467.57
GDP** 346051.4 514023.0 69527.00 151179.50
HW
I** 97228.42 151349.00 24695.60 38201.38
IP* 79.29 104.31 43.32 19.15
IS
M** 34155.95 73516.90 6466.60 14515.32
MO** 1567.98 2576.00 478.40 640.18
MON* 134.24 394.27 17.54 102.25
R† 3.56 9.00 0.10 2.65
RER* 73.87 117.01 39.85 18.34
RL† 5.28 9.53 0.66 2.68
RS
STX* 13098.44 37244 2030.33 8145.68
U† 2.83 5.43 1.07 1.20
W* 73.23 100.19 16.33 25.77
X** 39462.50 79025.10 7461.90 16556.18

Note: * marks variables that represent indices, ** are level data
given in Billion YEN, and † are percentage variables.

Table 6: Japan
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Variable Mean Max Min Std. Dev.
BC* 95.24 106.1 86.20 4.76
CC
COM* 100.23 114.80 94.00 4.66
C** 281.32 302.86 245.8 17.12
CPI* 97.56 110.07 80.13 7.51
G
GDP* 95.24 105.26 84.91 6.32
HW‡ 12193.84 13202.10 11645.60 384.03
I** 100.43 111.65 92.36 4.74
IP* 95.23 107.93 85.77 5.50
IS
M* 147.00 222.04 99.11 36.29
MO* 90.24 116.76 73.00 11.50
MON*
R† 3.38 8.58 1.00 2.24
RER* 107.53 119.73 98.01 5.46
RL† 5.51 8.51 3.17 1.47
RS
STX* 3719.63 7359.85 1494.99 1693.72
U† 8.10 10.00 5.53 1.20
W* 209.68 229.89 167.70 17.15
X* 153.23 249.59 95.89 46.29

Note: * marks variables that represent indices, ** are level data
given in Billion EUR, † are percentage variables, and ‡ indicate
variables in hours.

Table 7: Germany
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Variable Mean Max Min Std. Dev.
BC
CC
COM* 86.79 116.91 18.49 24.41
C** 117.76 184.73 74.67 33.21
CPI* 111.30 194.2 21.10 52.98
G** 46.87 62.16 35.78 6.27
GDP** 200.35 296.51 134.24 46.74
HW
INV** 16.67 29.55 8.75 6.73
IP* 86.53 104.10 63.23 11.85
IS* 79.77 104.17 56.89 11.54
M** 41.22 97.00 17.40 21.86
MO* 71.29 103.64 47.10 12.05
MON
R† 8.53 16.06 3.41 3.37
RER* 86.92 104.53 65.75 9.73
RL† 9.39 16.54 3.97 3.36
RS† 76.16 127.80 48.90 22.78
STX* 1597.49 4009.38 180.17 1071.57
U† 7.32 11.87 3.43 2.54
W
X** 41.62 87.01 17.03 18.51

Note: * marks variables that represent indices, ** are level
data given in Billion GBP, and † are percentage variables.

Table 8: United Kingdom
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