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Abstract

The usual credibility formula holds whenever, (i) claim size distribution is a members of the expo-

nential family of distributions, (ii) prior distribution conjugates with claim size distribution, and

(iii) square error loss has been considered. As long as, one of these conditions is violent, the usual

credibility formula is no longer hold. This paper using the mean square error minimization tech-

nique develops a simple and practical approach to the credibility theory. Namely, we approximate

the Bayes estimator with respect to a general loss function and general prior distribution by a con-

vex combination of the observation mean and mean of prior, say, approximate credibility formula.

Adjustment of the approximate credibility for several situations and its form for several important

losses are given.

JEL Classification : C11, C16

Keywords: IM31, loss function, balanced loss function, mean square error technique.

1. Introduction

Credibility theory is the art of combining different collections of data to obtain an accurate overall

estimate. It provides actuaries with techniques to determine insurance premiums for contracts that

belong to a (more or less) heterogeneous portfolio, where is limited or irregular claim experience for
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each contract but ample claim experience for the portfolio. Credibility theory can be seen as one

of quantitative tools that allows the insurers to perform experience rating, that is, to adjust future

premiums based on past experiences. In many cases, a compromise estimator is derived from a con-

vex combination of prior mean and the mean of the current observations. Credibility theory began

with papers by Mowbray (1914) and Whitney (1918). These papers purposed to derive the new

premium with a convex combination of prior mean, say, µ and the mean of the current observations,

say, X̄ by P = zX̄ + (1− z)µ, where z represents the credibility factor, ranging from 0 to 1. Bailey

(1950) showed that the formula P = zX̄ + (1− z)µ may be derived from Bayes’ theorem, either by

using a Bernoulli-Beta model on unkown parameter p, or by the using a Poisson-Gamma model on

unknown parameter λ. Bailey’s work led to the application of Bayesian methodology to credibility

theory. Excellent introduction to credibility theory can be found, e.g., in Goovaerts & Hoogstad

(1996), Herzog (1994), Dannenburg, Kass, & Goovaerts (1996), Klugman, Panjer, & Willmot (2004,

Chapter 16) and Bühlmann & Gisler (2005). See also Norberg (2004) for an overview with useful

references and links to Bayesian statistics and linear estimation. There are many applications of

credibility techniques to various branches of insurance. Rejesus, Coble, Knight, & Jin (2006) pro-

vided a nonstandard application of credibility techniques. Namely, they examined the feasibility of

implementing and experience-based premium rate discount in crop insurance.

However, the credibility restricted by family of distributions, conjugate prior, and square error loss

functions. Neither the claim distributions which are not members of the exponential family of dis-

tributions nor the non-conjugate prior, the predicted mean (Bayes estimator with respect to square

error loss) is no longer linear with respect to the data (see Diaconis & Ylvisker 1997) and the credi-

bility formula is no longer true. Whenever the policyholder is undercharged (and insurance company

loses its money) or the insured is overcharged (and the insurer is at risk of losing the policy), the

square loss assigns similar penalty to over- and undercharge. In order to assign more (or less) penalty

to overcharged, one has to consider a loss function rather than square error loss to reflect such con-

cerns. Loss functions rather than square error and Entropy losses, usually, leads to a Bayes estimator
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which cannot be a linear combination of observation mean and mean of prior distribution. There-

fore, in such cases, the credibility formula is no longer hold. Bühlmann (1967) overcame the prior

limitation and proved that in class of linear estimators with form δLin(X1, · · · , Xn) = c0+
∑n

j=1 cjXj,

an estimator P = zX̄ + (1 − z)µ, is also a distribution free credibility formula, which minimizes

E{µ(θ)− δLin(X1, · · · , Xn)}2, whenever µ(θ) is the mean of an individual risk (or µ(θ) = E(X|θ)),
characterized by risk parameter θ, and X̄ = (X1 + X2 + · · · + Xn)/n. Bühlmann & Straub (1970)

then formalized the least squares derivation of z = n/(n + k), where n is the number of trials or

exposure units and k = v/a, in which v = E(V ar(X|θ)) and a = V ar(E(X|θ)). This new method-

ology is called empirical Bayes credibility, although the Bayesian content of this approach has been

greatly minimized. Landsman (2002) used the second order statistical technique and established a

new approach to the credibility theory. Bühlmann (1967), Bühlmann & Straub (1970), and Lands-

man (2002) overcame restriction of the credibility theory by the exponential family of distinctions

and the conjugate priors. But, restriction by the square error loss function, still, is reminded. An

extension to the credibility formula from the loss viewpoint given by Gomez (2006, 2007). He con-

sidered the balanced square loss function, Lρ,ω,δ0(θ, δ) = ωh(θ)(δ− δ0)
2 +(1−ω)h(θ)(δ− θ)2, where

δ0 is chosen a prior "target" estimator of θ, obtained for instance from the criterion of maximum

likelihood estimator, least-squares, or unbiased among others. He established the credibility theory

for this loss function.

This paper develops a simple and applicable credibility formula which is obtained by approximating

the Bayes estimator by a convex combination of observation mean and mean of prior, say, approx-

imate credibility formula. Adjustment of the approximate credibility for several situations and its

form for several important losses are given.

This paper develops as the following. Section 2 collects some useful elements for other sections.

Section 3 provides a new approach to credibility formula by establishing an approximate credibil-

ity premium, say approximate credibility formula. Adjustment of the approximate credibility for

several important situations and for several important losses are discussed.
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2. Preliminaries

It is useful to recall that, family of densities function {pθ(·) : θ ∈ Θ} is said to have monotone

likelihood ratio (mlr) in T (·), such that for all θ1 > θ2, the densities pθi
(·), for i = 1, 2, are distinct,

and ratio pθ1(x)/pθ2(x) is a nondecreasing function of T (x). The following from Lehmann & Romano

(2005) recalls an important property of a class of density functions which have the mlr property.

Lemma 1. (Kline-Rubin’s lemma) Suppose {pθ(·) : θ ∈ Θ} is a family of density functions with

the mlr in x. Moreover, suppose that ψ(x) is a nondecreasing function in x. Then E(ψ(X)|θ) is

nondecreasing function in θ.

Now, we recall definition of symmetric log-concave density functions.

Definition 1. Random variable X, given location parameter θ, has symmetric log-concave density

function f0 if and only if f0(x, θ) ∝ exp{−k(x − θ)}, where k is a function in class of functions

H∗ := {k : k symmetric about zero, increasing, convex, and k′ concave}.

When the new premium amount is fixed by insurer, two kinds of errors can be arisen: either the

policyholder is undercharged and insurance company loses its money or the insured is overcharged

and the insurer is at risk of losing the policy. In order to penalize large mistakes to a greater

extent, it is usual to consider a nonnegative convex function as a loss function. The loss function

is generally taken to be square error loss, which gives same penalty to undercharge and overcharge.

But in many cases, we may be interested to loss functions which assigned more (less) penalty to

overcharges. In decision theory, Entropy loss function (given by LEnt(θ, δ) = θ/δ− ln(θ/δ)− 1) and

Linex loss function (given by LLinex(θ, δ) = exp{a(δ−θ)}−a(δ−θ)−1 with a > 0) are two popular

losses which consider in situation that overestimation is more considerable than underestimation.

Meanwhile, in the reverse situation (underestimation is more considerable than overestimation)

Stein loss function (given by LStein(θ, δ) = δ/θ − ln(δ/θ) − 1) and Linex loss function (given by

LLinex(θ, δ) = exp{a(δ − θ)} − a(δ − θ)− 1 with a < 0) are more applicable losses.
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In existence of an estimator (say target estimator) with some useful properties, such as admissibility,

maximum likelihood, minimaxity, etc., we may interest to class of loss functions which involve the

target estimator to find a good (in some sense) estimator. Zellner (1994) introduced a class of

loss functions, named balanced losses, which gives weight of ω to penalty of distance from target

estimator δ0 and weight of 1 − ω to distance from true parameter θ. Dey, Ghosh, & Strawderman

(1999) generalized Zellner’s balanced loss function to a class of balanced loss function with form

Lρ,ω,δ0(θ, δ) = ωh(θ)ρ(δ0, δ) + (1− ω)h(θ)ρ(θ, δ), (1)

where δ0 is chosen a prior "target" estimator of θ. Several issues, such as Bayesianity, admissibility,

dominance, and minimaxity studied by Jafari Jozani, Marchand, & Parsian (2006).

The following lemma explores an important property of Bayes estimator.

Lemma 2. Suppose random variable X given location parameter θ has been distributed according

to a symmetric log-concave density function, given by Definition (1). Then, Bayes estimators with

respect to prior π(θ) and square error, Entropy, Stein, and Linex loss functions are nondecreasing

in x.

Proof: Despite theoretical differences between square error and Entropy losses, Bayes estimator

under both loss functions given by posterior mean Eπ(θ|x); while Bayes estimator under Stein and

Linex losses are given by 1/Eπ(1/θ|x) and − ln(Eπ(exp{−aθ}|x))/a, respectively. These observa-

tions along Lemma (1) and the fact that posterior distribution θ given x has the mlr property in θ,

whenever x viewed as a parameter, complete the desire proof. ¤

3. Main results

It is well known that Bayes estimator reflects properties of loss function and prior distribution (see

Payandeh & Marchaned 2009). Therefore, it makes sense to consider a Bayes estimator, under an

appropriate loss and prior distribution, as a suitable and acceptable estimator which reflects our
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concerns about an unknown parameter and biasness of an estimator.

The following lemma considers a Bayes estimator as an appropriate estimator for parameter θ. Then

using the mean square error technique develops a new approach to approximate the Bayes estimator

by the credibility formula.

Lemma 3. Suppose X1, X2, · · · , Xn given risk parameter θ are identical and independent distributed

with µ(θ) = E(X|θ), for i = 1, 2, · · · , n. Moreover, suppose that risk parameter θ has prior distri-

bution π with mean µ, i.e., µ = Eπ(θ), and δπ is a Bayes estimator with respect to loss function ρ

and prior distribution π. Then, in the class of credibility premiums

δ = {δα : where δα(x˜) = αx̄ + (1− α)µ and α ∈ [0, 1]}

an estimator δopt, with

αopt =
E((X̄ − µ)(δπ(X˜ )− µ))

E((X̄ − µ)2)
,

minimizes the mean squared error between δπ and δα, i.e., δopt = argminE(δπ(X˜ )− δα(X˜ ))2, where

X˜ = (X1, X2, · · · , Xn)T and two-folded expectation E(·) stands for Eπ(E(·|θ)).

Proof: Mean square distance between two estimators δπ and δα can be readily observed as

MSE(α) = E(δπ(X˜ )− δopt(X˜ ))2

= E(δπ(X˜ )− αX̄ − (1− α)µ)2.

Taking derivative with respect to α along the fact that second derivative of MSE(α) with respect

to α, MSE′′(α) = 2E(X̄ − µ)2, is nonnegative lead to desire result.

Two-folded expectations in nominator and denominator of αopt given the above can be simplified as

E((X̄ − µ)(δπ(X˜ )− µ)) = Eπ(Cov(X̄, δπ(X˜ )|θ)) + Covπ(E(X̄|θ), E(δπ(X˜ )|θ))

+(µ0 − µ)(µδπ − µ);

E(X̄ − µ)2 = Eπ(V ar(X̄|θ)) + V arπ(E(X̄|θ)) + (µ0 − µ)2,
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where µ = Eπ(θ), µδπ = Eπ(E(δπ(X˜ )|θ)), and µ0 = Eπ(E(Xi|θ)), for i = 1, 2, · · · , n. The following

remark summarizes the above observation along a double applications of the Wald’s identity for

conditional covariance

Remark 1. Under conditions given by Lemma 3, the αopt may be represented as

αopt =
Cov(X̄, δπ(X˜ )) + (µ0 − µ)(µδπ − µ)

V ar(X̄) + (µ0 − µ)2
.

It worth to mention that the optimal α given by Lemma 3 is applicable, whenever 0 ≤ αopt ≤ 1. In

the case that αopt exceed interval [0, 1], it can be modified by projecting into interval [0, 1].

An estimator δopt in Lemma (3) can be criticized, because it gives the claim amounts for all previous

years the same weight; intuitively one should believe that new claims should have more weight than

old claims. However, as the claim amounts given the risk parameter of different years were assumed

to be exchangeable, it was only reasonable that the claim amounts given the risk parameter should

be identically distributed but the risk parameter varies for each year. Atansiu (2008) considered

a model in which the risk parameters for n years have joint prior density π(θ1, · · · , θn). To reflect

the fact that the correlation between claim amount for different years has to decrease as the time

distance between the years increase„ he considered model with assumption that

Cov(E(Xi|θi), E(Xj|θj)) = ρ|i−j|λ, (2)

where 0 < ρ < 1, and λ > 0. Then, he suggest to use α0 +
∑t

j=1 αjXj, where 0 < α1 < α2 < · · · <
αt < 1, as the credibility premium. Same as Atansiu (2008) in such situations, we suggest to replace

the arithmetic mean X̄ by the weighted mean X̄ω =
∑t

j=1 ωjXj, where 0 < ω1 < ω2 < · · · < ωt < 1

and
∑t

j=1 ωj = 1, in Lemma 3.

Often, in particular in reinsurance, one wants to allow for varying risk volumes, and for that purpose

we will introduce the credibility model incorporating risk volumes. We consider a ceded insurance

portfolio. Suppose that the claim amounts Y j
1 , Y j

2 , · · · , Y j
mj

of the risks in year j, where mj some

measure of the risk volume in year j. By the loss ratio of year j, we shall mean Xj = Sj/mj, where
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Sj =
∑mj

k=1 Y j
k . Same as Atansiu (2008) in such cases, we suggest to replace X̄ in Lemma 3 by

∑n
j=1 Xj/

∑n
j=1 mj.

Results given by Lemma 3 are valid for all kinds of risk parameter. But it is difficult to establish

αopt given by Lemma 3 lays in a interval [0, 1]. Therefore, from here to end of this paper, we study

especial case of the location risk parameter. Now, suppose risk parameter, θ, is a location parameter

and claim size random variable, X, given risk parameter, θ, has been distributed according to a

symmetric log-concave density function, given by Definition 1. In situations where the exact credi-

bility premium is not hold, the next theorem, using Lemma 3, provides an approximate credibility

premium.

Theorem 1. Suppose claim size random variables X1, X2, · · · , Xn, given location risk parame-

ter θ, randomly sampled from a symmetric log-concave density function, Definition 1. Moreover,

suppose that risk parameter θ has prior distribution π. Then, credibility factor of the approxi-

mate credibility premium, given in Lemma (3): (i) simplified to αopt = [Eπ(Cov(X̄, δπ(X˜ )|θ)) +

Covπ(θ, E(δπ(X˜ )|θ))]/[V ar(X|θ)/n + V arπ(θ)], (ii) 0 ≤ αopt ≤ 1, whenever δπ is Bayes estimator,

with respect to one of square error, Entropy, Stein, or Linex loss functions.

Proof. Proof (i) obtains from the fact that, for all i = 0, 1, · · · , n, µ0 := Eπ(E(Xi|θ)) = Eπ(θ) =: µ.

For (ii) observe that Bayes estimator, under square error, Entropy, Stein, or Linex losses is an in-

creasing function in x, see Lemma 2, this observation along the fact that covariance between two

nondecreasing functions is nonnegative establish nonnegativity of αopt. To establish αopt ≤ 1, from

Remark 1 observe that αopt = Cov(X̄, δπ(X˜ ))/V ar(X̄). Now, recall that Cov(X̄, δπ(X˜ )) maximizes

whenever δπ(x˜) = a + bx̄. Recent observation valid, whenever the exact credibility premium holds.

Therefore, b ≤ 1, and consequently αopt ≤ 1. ¤

The above theorem provides an approximate credibility premium in situations that the exact credi-

bility premium does not hold. The natural question that arises is that: in the existence of the exact

credibility formula, how the approximate credibility behaves? The following explores this case.

Lemma 4. In the existence of exact credibility premium the approximate credibility premium, given
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by Theorem 1, coincides with exact one.

Proof: If the exact credibility premium holds the Bayes estimator δπ can be written as δπ(x˜) =

zx̄ + (1− z)µ. From this fact, one can observe that

αopt =
E((X̄ − µ)(δπ(X˜ )− µ))

E((X̄ − µ)2)

=
E((X̄ − µ)(zX̄ + (1− z)µ− µ))

E((X̄ − µ)2)

= z. ¤

The following provides an example to realize application of the approximate credibility premium in

such situations, where the exact credibility premium does not applicable.

Example 1. Suppose X|θ has been distributed according to Normal distribution with mean θ vari-

ance σ2 = 1, and unknown parameter θ distributed according to non-conjugate prior Gamma(2,2).

The approximate credibility premiums, respectively, for square error, Entropy, Stein, and Linex

(with a = 0.2 and a = −0.2) losses are δSquare-erroropt (x) = δEntropyopt (x) = 0.2395x̄ + 0.7605, δSteinopt (x) =

0.36475x̄ + 0.6353, δLinex,a=0.2opt (x) = 0.1889x̄ + 0.8111, δLinex,a=-0.2opt (x) = 0.1791x̄ + 0.8209. Figures 1

compares risk of these approximate credibility premiums with their corresponding Bayes estimators

for such loss functions. As all figures show: (i) for small value θ the approximate credibility pre-

miums are closed to Bayes estimators, (ii) in some intervals the approximate credibility estimator

performance better that the Bayes one.

Gomez (2006, 2007) established that, we may have the exact credibility premium for weighted

balanced square error loss functions. Gomez’s result can readily extent to weighted balanced entropy

loss function. The next lemma establishes the approximate credibility formula for weighted balanced

square error and entropy losses.

Theorem 2. Suppose claim size random variables X1, X2, · · · , Xn, given location risk parameter

θ,Definition 1. Moreover, suppose that risk parameter θ has prior distribution π, and δ0(x) is a
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target estimator which nondecreasing in x, which V ar(X̄) ≤ V ar(δ0(X˜ )). Then, credibility factor

of the approximate credibility premium, given in Lemma (3): (i) simplified to

αω
opt = ω

Eπ(Cov(X̄, δπ(X˜ )|θ)) + Covπ(θ, E(δ0(X˜ )|θ))
V ar(X|θ)/n + V arπ(θ)

+(1− ω)
Eπ(Cov(X̄, δπ(X˜ )|θ)) + Covπ(θ, E(δπ(X˜ )|θ))

V ar(X|θ)/n + V arπ(θ)
,

(ii) 0 ≤ αω
opt ≤ 1, where δπ is the Bayes estimator with respect to the balanced square error or

entropy losses.

Proof: Part (i) obtains after a straightforward calculation. Nonnegativity of αω
opt, in part (ii),

follows from nondecreasing in x of δ0(x˜) and δπ(x˜) along the fact that covariance between non-

decreasing functions is nonnegative. To establish αω
opt ≤ 1 from assumptions on δ0 observe that

Cov(X̄, δ0(X˜ )) ≤ V ar(X̄) and with a similar argument with Theorem 1 observe Cov(X̄, δπ(X˜ )) ≤
V ar(X̄). Now, an application of Remark 1 completes desire proof.

4. Conclusion

This paper provides a technique to chose credibility factor αopt such that Bayes estimator δπ, under

an appropriate loss and prior distribution, can be approximated by αoptx̄+(1−αopt)µ. Definitely, to

use such approximation, one has to establish αopt lays in an interval [0, 1]. For a family of symmetric

logconcave distributions with location parameter, under Square error, Entropy, Stein, and Balanced

loss functions, the above requirement on αopt has been established. It is worth to mention that the

idea that develops by Lemma 3 may be employed: (i) For general risk parameter; (ii) The credibility

premium in general setting, for instance: credibility for the chain ladder reserving method (Gisler &

W"uthrich 2008) and credibility premiums for the zero-inflated Poisson model (Bouchera & Denuit

2008), among others.
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