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Abstract

We build a small-scale factor model for the GDP of one of the hard-
est hit economies during the latest recession to study the exact dynamic
versus static factor model performance along a business cycle, with an
emphasis placing on nowcasting performance during a pronounced switch
of business cycle phases due to the latest recession. We compare the
factor models’ nowcasting performance to a random walk, autoregressive
and the best-performing nowcasting models at our hands, which are vec-
tor autoregressive (VAR) models. It is shown that a small-scale static
factor-augmented VAR (FAVAR) model tends to improve upon the now-
casting performance of the VAR models when the model span and the
nowcasting period stretch beyond a single business cycle phase, while ex-
act dynamic factor models tend to fail to detect the timing and depth
of the recession regardless of ARMA specifications. As regards the case
when the model span and the nowcasting period are contained within a
single business cycle phase, static and dynamic factor models appear to
show similar performance with potentially slight superiority of dynamic
factor models if the factor-forming set of variables and factor dynamics
are carefully selected.
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1 Introduction

The choice between static and dynamic factors in now-/forecasting GDP is un-
resolved. Some papers find dynamic factors superior over the static ones (see,
for example, den Reijer (2005)). Other papers find little or no advantage of
dynamic over static factors. For example, Schumacher (2005) finds that dy-
namic factors only slightly outperform static factors. D’Agostino and Giannone
(2007) find static and dynamic factors perform similarly. Marcellino and Schu-
macher (2008), among other results, report that information content of now- and
forecasts hardly change if factors are estimated by static rather than dynamic
principal components analysis. Ajevskis and Davidsons (2008) also find simi-
lar performance between static and dynamic factors. Finally, there are papers
that argue for static over dynamic factors. For example, Boivin and Ng (2005)
state that static factors are easier to construct than dynamic factors, and are
favored on practical grounds. This paper contributes to the now-/forecasting
literature by comparing GDP nowcasting performance of dynamic versus static
factor models along a business cycle. For the fulfillment of the task, we had to
choose the size of factor-forming set of variables, i.e., we had to decide whether
to use a large-scale or a small-scale factor model, and what data to use.

Regarding the choice between large-scale and small-scale factor models, the
following empirical evidence is observed. First, several papers on large-scale
factor models compare the models only to simple benchmarks, instead of the
best-performing models, and find large-scale factor models superior. For exam-
ple, Siliverstovs and Kholodilin (2010) use a large-scale approximate dynamic
factor model from 562 indicators and compare its now-/forecasting performance
to, what they call, a naive constant-growth model, and find the factor model
being superior. As another example, Ajevskis and Davidsons (2008) use large-
scale static and approximate dynamic factor models from 126 indicators, com-
pare them to a benchmark autoregressive model, and find factor models tending
to be superior over the benchmark. There is another kind of papers that finds
that large-scale factor models can not improve GDP now-/forecasting compared
to non-factor models. For example, Banerjee, Marcellino and Masten (2010),
inter alia, forecast the industrial production in Germany, and find that large-
scale factor models extracted from 90 monthly series can not improve upon the
forecasting performance of a simple autoregressive model, and conclude that
factors per se may not increase the forecasting precision of models. Likewise,
Gupta and Kabundi (2008, 2009) although have a misleading abstract, find that
a large-scale factor model performs worse than a vector autoregressive model in
forecasting South Africa’s GDP. Finally, there are papers that argue for small-
scale over the large-scale factor models (see, for example, Schneider and Spitzer
(2004), Boivin and Ng (2003)). Given the lack of empirical evidence or rationale
for clear advantage of large-scale over small-scale factor models in GDP now-
/forecasting, our choice falls to using parsimonious, small-scale factor models.

Considering the choice of data, we choose Latvian data since it possesses
a pronounced switch of business cycle phases - there is a period of high GDP
growth that is followed by a rapid recession. Thus, we are able to compare
nowcasting errors between two cases - when the model span and the nowcasting
period are contained within a single business cycle phase versus the case when
the model span and the nowcasting period stretch beyond a single business cycle
phase. Although our choice falls to the Latvian data, the exercise described in
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the paper might be repeated on any data with a pronounced switch of business
cycle phases, including generated data. Considerations of using other data are
left for further research.

Note that this paper does not discuss the now-/forecasting performance of
Markov-switching factor models (see, among others, Kim and Yoo (1995), Chau-
vet (1998), Kim and Nelson (1998), Chauvet and Hamilton (2005), and Cama-
cho, Perez-Quiros and Poncela (2010)).

The paper is organized as follows. Section 2 describes the methodology of
factor models and their estimation. Section 3 presents the results for the now-
casting performance of static, dynamic and mixed factor models versus a random
walk (RW), autoregressive (AR), and vector autoregressive (VAR) models dur-
ing a smooth growth phase as well as during a pronounced switch of business
cycle phases. Finally, Section 4 concludes.

2 Methodology

This section discusses the estimation of static and exact dynamic factors, and is
mainly in line with Doz and Lenglart (1999) and Dubois and Michaux (2010).

Consider an (n + 1)-dimensional vector autoregressive model of order r,
VAR(r):
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,

(1)
where yt is a scalar dependent variable at time t = 1, . . . , T , xt = (x1t, . . . , xnt)

′

is an n×1 vector of endogenous explanatory variables at time t, ut = (u0t, . . . , unt)
′

is an (n + 1) × 1 vector of innovation processes at time t with E(ut) = 0,
E(utu

′

t) = Σu, E(utu
′

s) = 0 for s 6= t and t = 1, 2, . . .. If n is large, model
(1) incurs in a curse-of-dimensionality problem. A cure for this problem is to
use a relatively small number of factors that are weighted averages of the pre-
dictors. We will consider two types of factor extractions - static and exact
dynamic. Static factors are obtained à la Stock and Watson (1998) as follows.
It is assumed that xt can be represented as

xt = ΛFt + et, (2)

where Ft is a k × 1 vector of common factors at time t, Λ is an n× k matrix of
factor loadings, and et is an n× 1 vector of white noise processes at time t. It
is assumed that

E(yt+1|Ft, xt, yt, Ft−1, xt−1, yt−1, . . .) = E(yt+1|Ft, yt, Ft−1, yt−1, . . .). (3)

The assumption in (3) permits the dimension reduction of the matrix of explana-
tory variables from n to k. Ft is obtained by principal components analysis, i.e.,
by selecting k eigenvectors νj , j = 1, 2, . . . , k (that are of unit length) of x′x,
where x = (x1, . . . , xT )

′, associated with the largest k eigenvalues of x′x and
projecting x on the eigenvectors, Fj = xνj , j = 1, 2, . . . , k; Ft then is the tth
column of (F1, . . . , Fk)

′.
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The dynamic factor model is estimated as in Doz and Lenglart (1999), that
develops an exact dynamic factor model, where factors are extracted from a
relatively small number of variables. The procedure is described as follows. If
n is the number of the variables under study, T the number of observations for
each variable, xit the value taken by the xi variable at time t, and if F1, . . . , Fk,
k < n are the unobservable factors, the model has the following form:

xit = λi1F1t + · · ·+ λikFkt + uit

for i = 1, . . . , n and for all t. Each common factor Fj contributes to the expla-
nation of the xi variable with a loading equal to λij . The idiosyncratic terms
(uit)t∈Z are assumed to be independent of each other and independent of the
common factors:

E(uitujs) = 0 ∀i 6= j, ∀(t, s)

E(uitFjs) = 0 ∀(i, j), ∀(t, s).

In the model designed for individual data, the common and idiosyncratic factors
are assumed to be white noises, i.e.,

E(uituis) = 0 ∀i, ∀t 6= s

E(FitFis) = 0.

The model designed for individual data cannot be directly applied to time series,
which generally show temporal autocorrelations. For this reason, it is called a
static factor model. Using matrix notations

xt = (x1t, . . . , xnt)
′, Ft = (F1t, . . . , Fkt)

′

ut = (u1t, . . . , unt)
′,Λ = (λij) 1≤i≤n

1≤j≤k

,

this model can be written as follows:

xt = ΛFt + ut,

where

E(Ft) = 0

E(ut) = 0

E(utu
′

t) = D = diag(d1, . . . , dn)

E(Ftu
′

s) = 0, ∀(t, s), t 6= s

E(utu
′

s) = 0, ∀(t, s), t 6= s.

It is easy to see that the common factors are only defined up to a linear transfor-
mation, that is, it is always possible to premultiply Ft by any invertible matrix,
as soon as Λ is postmultiplied by the inverse of the same matrix. Generally,
it is assumed that V ar(Ft) = Ik, so that Ft and Λ are defined up to a rota-
tion matrix (at the estimation stage, they are fixed by imposing supplementary
identifying constraints; see below). If it is imposed that V ar(Ft) = Ik, then

V ar(xt) = ΛΛ′ +D,
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such that

V ar(xit) =

k
∑

j=1

λ2
ij + di, i = 1, . . . , n.

Each λ2
ij represents the part of x

′

is variance which is explained by Fj ; thus, h
2
i =

∑k

j=1 λ
2
ij represents the total contribution of the factors to x′

is variance. On the
other hand, V ar(ui) = di is the part of x′

is variance which is not explained by
the common factors.

There are two main methods to estimate the static model: principal com-
ponents analysis (PCA) and the Maximum Likelihood (ML) under a Gaussian
hypothesis. The first one does not need to make preliminary assumption about
the number of factors, while this is necessary for the ML estimation. On the
other hand, the ML gives efficient estimates of the parameters, which is not the
case for PCA. Both methods are implemented as follows. At the first stage, the
PCA is performed. Then, the ML estimation is run for the the appropriately
chosen number of factors. Since we consider exact factor models, it is assumed
that the processes (uit) are uncorrelated with each other at all leads and lags.
In this dynamic framework, the likelihood under the Gaussian assumption is not
equal to the static model’s likelihood. However, Doz and Lenglart (1999) show
that, in a stationary framework, the estimators obtained by the maximization
of the static model’s likelihood are consistent estimators of the parameters. In
brief, it is supposed that each of the real processes (Fit) and (uit) is weakly sta-
tionary and can be autocorrelated, but that the model is estimated by a standard
ML procedure as if those processes were Gaussian and were not autocorrelated.
The stationarity of the processes (Fit) and (uit) implies that the process (xt)
is stationary as well. The parameters of the model can be written in a vector
µ = (vecΛ′, d′)′,where d = (d1, . . . , dn)

′. The estimator µ̂T , which is obtained
this way is then an M-estimator of µ. Doz and Lenglart (1999) show that this
estimator is consistent. Shortly, denote zit = xit − x̄i and zt = (z1t, . . . , znt)

′

for any t, S = 1
T

∑

t ztz
′

t the empirical covariance matrix of the observations
and Σ = ΛΛ′+D the theoretical covariance matrix. The quasi-likelihood of the
model is computed under the Gaussian assumption as if neither the factors, nor
the idiosyncratic components were autocorrelated. Up to a constant term, the
quasi-likelihood can be written as

LT (z, µ) =
1

T

T
∑

t=1

ln It(z, µ)

= −
1

2
ln(det(ΛΛ′ +D)) −

1

2
tr((ΛΛ′ +D)−1S)

Let µ0 be the true value of the parameter µ. It is assumed that µ belongs to a set
of the formRnk×[α,+∞)n, α > 0, which contains µ0. Under this assumption, Σ
is an invertible matrix, so the quasi-likelihood is well defined. The proof that the
M-estimator µ̂T , that maximizes LT (z, µ), is consistent, relies on several steps.
First, Doz and Lenglart (1999) show that, in order to maximize the function on
Rnk × [α,+∞)n, it is sufficient to maximize the function on a compact subset
of Rnp× [α,+∞)n. Then, they show that the function has properties which are
sufficient to ensure the consistency.

Given the consistency of the factor loadings, a dynamic factor model with
the common factors following an ARMA(p, q) process and the idiosyncratic com-
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ponents following an AR(l) process can be written as

xit = mi + λi1F1t + . . .+ λikFkt + uit

(1 − φj1L− . . .− φjpL
p)Fjt = (1 − θj1L− . . .− θjqL

q)εjt

(1− ρi1L− . . .− ρilL
l)uit = ξit (4)

for i = 1, . . . , n, j = 1, . . . , k and for all t, where εjt and ξit are the innovations
of Ft and uit at time t, l is the order of the AR process governing uit, and the
processes (εjt) and (ξit) are mutually independent. For identification purposes,
the variance of the factor idiosyncratic components, εjt, is set to take the value
0.25.

Model (4) can be put into the state-space representation

xt = Zαt + et (5)

αt = Aαt−1 +Rηt, (6)

where the processes (et) and (ηt) are serially uncorrelated and mutually uncor-
related at all leads and lags, and

E(et) = 0

V ar(et) = H

E(ηt) = 0

V ar(ηt) = Q.

In our case, the state-space form of the model, (5) and (6), is the following:

xt =
[

Λ 0n×k(p+q−1) In 0n×n(l−1)

]
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

and is estimated by an ML using the Kalman filter. The initial values for Ft, Λ,
and ut are obtained from performing a static factor analysis, the initial values
for φ and θ are obtained from running an ARMA(p, q) on Ft, and initial values
for ρ and V ar(ξt) are obtained from running an AR process on ut.

3 Results

The dependent variable in the model (1) is Latvia’s quarterly GDP series from
1995Q1 till 2009Q3. The endogenous explanatory variables considered are i) an
aggregate output in mining and quarrying, manufacturing, electricity, gas and
water supply, and construction industries (cp), ii) imports, iii) exports, iv) a
ratio of exports over imports (nx), and v) money supply M1 (m). All series are
quarterly, expressed in logs, and once regularly and once seasonally differenced,
except m, that is not seasonally differenced. Appendix contains a more detailed
description of the data. We produce one-period ahead forecasts for GDP, given
that all explanatory variables are known for the forecasting horizon (we call this
exercise ‘nowcasting’). All calculations are performed in Scilab with the aid of
its econometrics toolbox Grocer (see Dubois and Michaux (2010)).
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Figure 1 shows seasonally unadjusted as well as seasonally adjusted GDP
series. The first five observations get lost to make the seasonally unadjusted
series stationary. If the rest part is divided in halves, the first half contains a
smooth growth (a matter to calculate within-a-business-cycle-phase RMSFEs),
whereas the second half contains a pronounced switch of business cycle phases
from growth to a deep recession (a matter to calculate between-business-cycle-
phases RMSFEs). Table 1 to Table 5 show root mean squared forecast errors
(RMSFE) for the full sample, the first half of the sample (RMSFEwithin

phase ) and

the second half of the sample (RMSFEbetween
phases ) from pseudo real-time nowcasts

beginning at sample size 19 from a random walk (RW), autoregressive (AR) and
vector autoregressive (VAR) models versus static, dynamic and mixed factor-
augmented VAR (FAVAR) models, where factors are formed from various com-
binations of variables cp, imp, exp, nx and m. In these tables, VAR models
are specified by their endogenous variables (first parenthesis) and a lag order
(second parenthesis). FAVAR models are specified by their endogenous vari-
ables (first parenthesis) and a lag order (second parenthesis). Static factors are
specified by a combination of three symbols ‘fsi’, where the first symbol ‘f’ de-
notes that the variable is a factor, the second symbol ‘s’ means that the factor
is obtained in a static manner, and the third symbol ‘i’ denotes the order of
the factor. In this paper, we will use only two kinds of static factors: ‘fs1’ and
‘fs2’, which are static first and second common factors, accordingly. Dynamic
factors are specified by a symbol combination ‘fdij(p,q)’, where ‘f’ stands for
being a factor, ‘d’ stands for being a dynamic one, ‘ij’ stands for being the i-th
out of j simultaneously estimated factors, and the numbers ‘(p,q)’ mean that
the factor’s dynamics in (4) are specified by an ARMA(p,q) process. Note that
for simplicity, the indiosyncratic component in (4) is set to follow an AR(1) for
all dynamic factors, regardless of their ARMA specifications. The least RMSFE
for each sample space is framed.

Table 1 shows the results for the GDP nowcasting performance using en-
dogenous explanatory variables cp, nx, and m. It is shown that it is better
to use FAVAR with two static factors calculated from these three endogenous
variables rather than VAR with the same three variables. It is also shown that
the least nowcasting errors for a within-a-phase period are obtained by a par-
simonious VAR model, whereas for the whole series and for a between-phases
period - by a static FAVAR. Notably, none of the many dynamic and mixed
factor FAVAR models specified by various ARMA dynamics is superior over
the static FAVAR model. Table 2 shows the results for the GDP nowcasting
performance using endogenous explanatory variables cp, imp, and m. One can
see that a dynamic FAVAR with the two factors generated by ARMA(2,1) is
the best nowcasting model for the whole sample as well as for the between-
phases period, being slightly superior over the static FAVAR model with two
factors. Table 3 shows the results for the GDP nowcasting performance using
endogenous explanatory variables cp, exp, and m. It is shown that the best
nowcasting performance for the whole series is obtained by a static one-factor
FAVAR, for the between-phases period - by a static two-factor FAVAR, and
for the within-a-phase period - by a dynamic FAVAR, where the only factor is
the first common factor calculated from a two-factor model with the dynamics
specified by ARMA(2,2). Table 4 shows the results for the GDP nowcasting
performance using four endogenous explanatory variables, cp, imp, exp, and m.
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It is shown that the best nowcasting performance for the within-a-phase period
is obtained by a parsimonious VAR, while for the whole series as well as for
the between-phases period - by a mixed FAVAR, where the first factor is taken
from a dynamic two-factor model with ARMA(1,2), whereas the second factor
is the second static common factor. Finally, Table 5 shows the results for the
GDP nowcasting performance using four endogenous explanatory variables, cp,
imp, nx, and m. This variable combination is interesting because (logged) nx
is a difference between (logged) exp and imp and, thus, might resemble a case
if one used a large number of both disaggregated and aggregated variables to
form factors, since, in that case, some of the variables might be linear combi-
nations of other variables. Thus, Table 5 shows the nowcasting results when
the factor-forming variables are not carefully preselected. It is shown that the
static two-factor FAVAR performs slightly better in this case compared to when
static factors are formed only from a three-variable combination, {cp,nx,m} or
{cp,imp,m} (see Table 1 or Table 2, respectively), giving the best nowcasting
performance for the whole series as well as for the between-phases period. On
the contrary, the best-performing dynamic factor model using a set of endoge-
nous explanatory variables {cp,imp,m} (see Table 2) now performs considerably
worse, when adding nx to the set of variables for factor extraction. The latter
observation might suggest that the performance of dynamic factors is less ro-
bust to a slight change of variables than that of static factors. To examine the
issue, Table 6 to Table 10 show the ranking of the models reported in Table
1 to Table 5. The ranking for a static two-factor FAVAR (model 9) for the
whole series, within-a-phase, and between-phases period is {1,10,1} for variable
set {cp,nx,m}, {5,15,4} for variable set {cp,imp,m}, {2,22,1} for variable set
{cp,exp,m}, {5,9,4} for variable set {cp,imp,exp,m}, and {1,11,1} for variable
set {cp,imp,nx,m}, out of overall 44 models. The ranking for a dynamic two-
factor FAVAR(2,1) (model 33), the model which performs the best in Table 2,
for the whole series, within-a-phase, and between-phases period is {18,5,19} for
variable set {cp,nx,m}, {1,8,1} for variable set {cp,imp,m}, {19,26,20} for vari-
able set {cp,exp,m}, {10,4,14} for variable set {cp,imp,exp,m}, and {44,44,40}
for variable set {cp,imp,nx,m}, out of overall 44 models. We can see that the
ranking of the static FAVAR seems more stable with respect to change of vari-
ables than that of the dynamic FAVAR. Indeed, the dynamic factor model turns
from the best-performing nowcasting model for the set of variables {cp,imp,m},
to the worst nowcasting model for the set of variables {cp,imp,nx,m}, where
the only difference between the variable sets is an addition of a single variable
to the former set. To take into account the changes in factor models’ nowcast-
ing performance with respect to a slight change of the set of variables, from
which factors are extracted, Table 11 shows the models’ ranking based on the
mean rank calculated from the rankings reported in Table 6 to Table 10. It
is shown that, although some of the mixed FAVAR perform decently, static
FAVAR model appears to be the most precise and robust with respect to the
change of the factor-forming set of variables for the whole series as well as for
the between-phases period. Also, if one considers one-factor models, it is shown
that one-factor static FAVAR outperforms one-factor dynamic FAVARs except
for the within-a-phase period, where the performance is similar.

As an alternative to Table 11, Table 12 shows models ranking based on
the root mean squared rank calculated from the rankings reported in Table 6
to Table 10 to penalize unstable nowcasting performance to a higher degree
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compared to the ranking in Table 11. With minor changes, Table 12 shows the
same pattern as Table 11.

Finally, just for illustrative purposes, Figure 3 to Figure 11 show stationary
GDP, static first common factor, and dynamic first common factor formed from
the variable set {cp,nx,m}, where dynamic factors are generated by various
ARMA specifications, starting from ARMA(0,1) and ending at ARMA(2,2). It
is shown that, regardless of dynamics specification, dynamic factors fail to detect
the timing and depth of the latest recession, the period of which is colored gray
in the figures.

4 Conclusions

The choice between static and dynamic factors in now-/forecasting GDP is un-
resolved. Some papers find dynamic factors superior over the static ones. Other
papers find little or no advantage of dynamic over static factors. On top of them,
there are papers that argue for static over dynamic factors. Another debate is
going on regarding large-scale versus small-scale factor models. Given the lack of
empirical evidence or rationale for large-scale factor models in now-/forecasting
GDP, we build a parsimonious, small-scale factor model for the GDP of one of
the hardest hit economies during the latest recession to study the exact dynamic
versus static factor model performance along a business cycle, with an empha-
sis placing on nowcasting performance during a pronounced switch of business
cycle phases due to the latest recession. We compare the factor models’ now-
casting performance to a random walk, autoregressive and the best-performing
nowcasting models at our hands, which are VAR models. It is shown that a
small-scale static FAVAR model tends to improve upon the nowcasting perfor-
mance of the VAR models during the switch business cycle phases (between
business cycle phases), while exact dynamic factor models tend to fail to detect
the timing and depth of the recession regardless of ARMA specifications. As
regards the period of smooth economic growth (within a business cycle phase),
static and dynamic factor models appear to show similar performance with po-
tentially slight superiority of dynamic factor models if the factor-forming set of
variables and factor dynamics are carefully selected.
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Appendix

Figure 1: Latvia’s quarterly GDP series. The first five observations get lost to
make the seasonally unadjusted series stationary. If the rest part is divided in
halves, the first half contains a smooth growth (a matter to calculate within-a-
business-cycle-phase RMSFEs), whereas the second half contains a pronounced
switch of business cycle phases from growth to a deep recession (a matter to
calculate between-business-cycle-phases RMSFEs). Source: Central Statistical
Bureau of Latvia.
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No Model RMSFE RMSFEwithin
phase RMSFEbetween

phases

1 RW 0.0318026 0.0258327 0.0370907
2 AR(1) 0.0289930 0.0174793 0.0375119
3 AR(2) 0.0290639 0.0176315 0.0375493

4 VAR(GDP,cp)(2) 0.0228362 0.0142717 0.0292916
5 VAR(GDP,cp,nx)(2) 0.0220654 0.0167891 0.0265320
6 VAR(GDP,cp,m)(2) 0.0220319 0.0162761 0.0268117
7 VAR(GDP,cp,nx,m)(2) 0.0226704 0.0181780 0.0266128
8 FAVAR(GDP,fs1)(2) 0.0287139 0.0226375 0.0339835

9 FAVAR(GDP,fs1,fs2)(2) 0.0210557 0.0172919 0.0244165
10 FAVAR(GDP,fd11(0,1))(2) 0.0311457 0.0213921 0.0388925
11 FAVAR(GDP,fd11(0,2))(2) 0.0305525 0.0219591 0.0375667
12 FAVAR(GDP,fd11(1,0))(2) 0.0311457 0.0213921 0.0388925
13 FAVAR(GDP,fd11(1,1))(2) 0.0314799 0.0208982 0.0397221
14 FAVAR(GDP,fd11(1,2))(2) 0.0311515 0.0226767 0.0381240
15 FAVAR(GDP,fd11(2,0))(2) 0.0305525 0.0219591 0.0375667
16 FAVAR(GDP,fd11(2,1))(2) 0.0303605 0.0219320 0.0372617
17 FAVAR(GDP,fd11(2,2))(2) 0.0310249 0.0220388 0.0383071
18 FAVAR(GDP,fd12(0,1))(2) 0.0309646 0.0207075 0.0389871
19 FAVAR(GDP,fd12(0,2))(2) 0.0307738 0.0222302 0.0377692
20 FAVAR(GDP,fd12(1,0))(2) 0.0309646 0.0207075 0.0389871
21 FAVAR(GDP,fd12(1,1))(2) 0.0285258 0.0210894 0.0347042
22 FAVAR(GDP,fd12(1,2))(2) 0.0281124 0.0227255 0.0328676
23 FAVAR(GDP,fd12(2,0))(2) 0.0307738 0.0222302 0.0377692
24 FAVAR(GDP,fd12(2,1))(2) 0.0299854 0.0217410 0.0367513
25 FAVAR(GDP,fd12(2,2))(2) 0.0297038 0.0236371 0.0349993
26 FAVAR(GDP,fd12(3,2))(2) 0.0285759 0.0220408 0.0341588
27 FAVAR(GDP,{fd12,fd22}(0,1))(2) 0.0284383 0.0208394 0.0347163
28 FAVAR(GDP,{fd12,fd22}(0,2))(2) 0.0319796 0.0219138 0.0399636
29 FAVAR(GDP,{fd12,fd22}(1,0))(2) 0.0284383 0.0208394 0.0347163
30 FAVAR(GDP,{fd12,fd22}(1,1))(2) 0.0285031 0.0206047 0.0349731
31 FAVAR(GDP,{fd12,fd22}(1,2))(2) 0.0218924 0.0174116 0.0258022
32 FAVAR(GDP,{fd12,fd22}(2,0))(2) 0.0319796 0.0219138 0.0399636
33 FAVAR(GDP,{fd12,fd22}(2,1))(2) 0.0257208 0.0162391 0.0329062
34 FAVAR(GDP,{fd12,fd22}(2,2))(2) 0.0220505 0.0184446 0.0253147
35 FAVAR(GDP,{fd12,fd22}(3,2))(2) 0.0230179 0.0183390 0.0271056
36 FAVAR(GDP,fd12(0,1),fs2)(2) 0.0231555 0.0170880 0.0281907
37 FAVAR(GDP,fd12(0,2),fs2)(2) 0.0226396 0.0161733 0.0278978
38 FAVAR(GDP,fd12(1,0),fs2)(2) 0.0231555 0.0170880 0.0281907
39 FAVAR(GDP,fd12(1,1),fs2)(2) 0.0250382 0.0198881 0.0295278
40 FAVAR(GDP,fd12(1,2),fs2)(2) 0.0214880 0.0176637 0.0249052
41 FAVAR(GDP,fd12(2,0),fs2)(2) 0.0226396 0.0161733 0.0278978
42 FAVAR(GDP,fd12(2,1),fs2)(2) 0.0220661 0.0156102 0.0272847
43 FAVAR(GDP,fd12(2,2),fs2)(2) 0.0217977 0.0179440 0.0252448
44 FAVAR(GDP,fd12(3,2),fs2)(2) 0.0216962 0.0174938 0.0253990

Table 1: A comparison of pseudo real-time nowcasting performance from RW,
AR, VAR, static, dynamic and mixed FAVAR models in terms of RMSFE for
the full sample, first half of the sample (RMSFEwithin

phase ) and second half of the

sample (RMSFEbetween
phases ). Factors are formed from cp, nx and m. The least

RMSFE in each sample space is framed. Source: author’s calculations.
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No Model RMSFE RMSFEwithin
phase RMSFEbetween

phases

1 RW 0.0318026 0.0258327 0.0370907
2 AR(1) 0.0289930 0.0174793 0.0375119
3 AR(2) 0.0290639 0.0176315 0.0375493

4 VAR(GDP,cp)(2) 0.0228362 0.0142717 0.0292916
5 VAR(GDP,cp,imp)(2) 0.0215953 0.0167962 0.0257184
6 VAR(GDP,cp,m)(2) 0.0220319 0.0162761 0.0268117
7 VAR(GDP,cp,imp,m)(2) 0.0224097 0.0186059 0.0258339
8 FAVAR(GDP,fs1)(2) 0.0260125 0.0231283 0.0287528
9 FAVAR(GDP,fs1,fs2)(2) 0.0206503 0.0177169 0.0233581
10 FAVAR(GDP,fd11(0,1))(2) 0.0224924 0.0183811 0.0261502
11 FAVAR(GDP,fd11(0,2))(2) 0.0214698 0.0151657 0.0265611
12 FAVAR(GDP,fd11(1,0))(2) 0.0224924 0.0183811 0.0261502
13 FAVAR(GDP,fd11(1,1))(2) 0.0304735 0.0225634 0.0370518
14 FAVAR(GDP,fd11(1,2))(2) 0.0307515 0.0230551 0.0372039
15 FAVAR(GDP,fd11(2,0))(2) 0.0310795 0.0245940 0.0367185
16 FAVAR(GDP,fd11(2,1))(2) 0.0309126 0.0235684 0.0371382
17 FAVAR(GDP,fd11(2,2))(2) 0.0308145 0.0237475 0.0368485
18 FAVAR(GDP,fd12(0,1))(2) 0.0309637 0.0220093 0.0382229
19 FAVAR(GDP,fd12(0,2))(2) 0.0309430 0.0238684 0.0369872
20 FAVAR(GDP,fd12(1,0))(2) 0.0309637 0.0220093 0.0382229
21 FAVAR(GDP,fd12(1,1))(2) 0.0290716 0.0203661 0.0360673
22 FAVAR(GDP,fd12(1,2))(2) 0.0303737 0.0209814 0.0378587
23 FAVAR(GDP,fd12(2,0))(2) 0.0309430 0.0238684 0.0369872
24 FAVAR(GDP,fd12(2,1))(2) 0.0300290 0.0247287 0.0347714
25 FAVAR(GDP,fd12(2,2))(2) 0.0302149 0.0241580 0.0355197
26 FAVAR(GDP,fd12(3,2))(2) 0.0303710 0.0247376 0.0353711
27 FAVAR(GDP,{fd12,fd22}(0,1))(2) 0.0286298 0.0230006 0.0335768
28 FAVAR(GDP,{fd12,fd22}(0,2))(2) 0.0305384 0.0238844 0.0362770
29 FAVAR(GDP,{fd12,fd22}(1,0))(2) 0.0286298 0.0230006 0.0335768
30 FAVAR(GDP,{fd12,fd22}(1,1))(2) 0.0304164 0.0233809 0.0364130
31 FAVAR(GDP,{fd12,fd22}(1,2))(2) 0.0300896 0.0231319 0.0360204
32 FAVAR(GDP,{fd12,fd22}(2,0))(2) 0.0305384 0.0238844 0.0362770

33 FAVAR(GDP,{fd12,fd22}(2,1))(2) 0.0201239 0.0171694 0.0228393
34 FAVAR(GDP,{fd12,fd22}(2,2))(2) 0.0204244 0.0175510 0.0230802
35 FAVAR(GDP,{fd12,fd22}(3,2))(2) 0.0205891 0.0174345 0.0234715
36 FAVAR(GDP,fd12(0,1),fs2)(2) 0.0230062 0.0177711 0.0274830
37 FAVAR(GDP,fd12(0,2),fs2)(2) 0.0249251 0.0169611 0.0312164
38 FAVAR(GDP,fd12(1,0),fs2)(2) 0.0230062 0.0177711 0.0274830
39 FAVAR(GDP,fd12(1,1),fs2)(2) 0.0276600 0.0218205 0.0327263
40 FAVAR(GDP,fd12(1,2),fs2)(2) 0.0225046 0.0162396 0.0276310
41 FAVAR(GDP,fd12(2,0),fs2)(2) 0.0249251 0.0169611 0.0312164
42 FAVAR(GDP,fd12(2,1),fs2)(2) 0.0204239 0.0176408 0.0230065
43 FAVAR(GDP,fd12(2,2),fs2)(2) 0.0210700 0.0180169 0.0238809
44 FAVAR(GDP,fd12(3,2),fs2)(2) 0.0213406 0.0175809 0.0247054

Table 2: A comparison of pseudo real-time nowcasting performance from RW,
AR, VAR, static, dynamic and mixed FAVAR models in terms of RMSFE for
the full sample, first half of the sample (RMSFEwithin

phase ) and second half of the

sample (RMSFEbetween
phases ). Factors are formed from cp, imp and m. The least

RMSFE in each sample space is framed. Source: author’s calculations.
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No Model RMSFE RMSFEwithin
phase RMSFEbetween

phases

1 RW 0.0318026 0.0258327 0.0370907
2 AR(1) 0.0289930 0.0174793 0.0375119
3 AR(2) 0.0290639 0.0176315 0.0375493
4 VAR(GDP,cp)(2) 0.0228362 0.0142717 0.0292916
5 VAR(GDP,cp,exp)(2) 0.0246127 0.0156999 0.0314042
6 VAR(GDP,cp,m)(2) 0.0220319 0.0162761 0.0268117
7 VAR(GDP,cp,exp,m)(2) 0.0246114 0.0181739 0.0299559

8 FAVAR(GDP,fs1)(2) 0.0203668 0.0152080 0.0246805

9 FAVAR(GDP,fs1,fs2)(2) 0.0210957 0.0172162 0.0245439
10 FAVAR(GDP,fd11(0,1))(2) 0.0259890 0.0215006 0.0300187
11 FAVAR(GDP,fd11(0,2))(2) 0.0259896 0.0215011 0.0300193
12 FAVAR(GDP,fd11(1,0))(2) 0.0259890 0.0215006 0.0300187
13 FAVAR(GDP,fd11(1,1))(2) 0.0215494 0.0143788 0.0271507
14 FAVAR(GDP,fd11(1,2))(2) 0.0265101 0.0213003 0.0310889
15 FAVAR(GDP,fd11(2,0))(2) 0.0259896 0.0215011 0.0300193
16 FAVAR(GDP,fd11(2,1))(2) 0.0265314 0.0212507 0.0311622
17 FAVAR(GDP,fd11(2,2))(2) 0.0265228 0.0213221 0.0310954
18 FAVAR(GDP,fd12(0,1))(2) 0.0280333 0.0179168 0.0357500
19 FAVAR(GDP,fd12(0,2))(2) 0.0304157 0.0193830 0.0388182
20 FAVAR(GDP,fd12(1,0))(2) 0.0280332 0.0179168 0.0357500
21 FAVAR(GDP,fd12(1,1))(2) 0.0256516 0.0133507 0.0341466
22 FAVAR(GDP,fd12(1,2))(2) 0.0215638 0.0143646 0.0271822
23 FAVAR(GDP,fd12(2,0))(2) 0.0218458 0.0151925 0.0271691
24 FAVAR(GDP,fd12(2,1))(2) 0.0245792 0.0150116 0.0317050

25 FAVAR(GDP,fd12(2,2))(2) 0.0255007 0.0131364 0.0340016
26 FAVAR(GDP,fd12(3,2))(2) 0.0218912 0.0148546 0.0274409
27 FAVAR(GDP,{fd12,fd22}(0,1))(2) 0.0250081 0.0212546 0.0284477
28 FAVAR(GDP,{fd12,fd22}(0,2))(2) 0.0274378 0.0202447 0.0334064
29 FAVAR(GDP,{fd12,fd22}(1,0))(2) 0.0250081 0.0212546 0.0284476
30 FAVAR(GDP,{fd12,fd22}(1,1))(2) 0.0220628 0.0157017 0.0272236
31 FAVAR(GDP,{fd12,fd22}(1,2))(2) 0.0221738 0.0168278 0.0266917
32 FAVAR(GDP,{fd12,fd22}(2,0))(2) 0.0227554 0.0154786 0.0285025
33 FAVAR(GDP,{fd12,fd22}(2,1))(2) 0.0239331 0.0176469 0.0291470
34 FAVAR(GDP,{fd12,fd22}(2,2))(2) 0.0215297 0.0155495 0.0264256
35 FAVAR(GDP,{fd12,fd22}(3,2))(2) 0.0227821 0.0148757 0.0288839
36 FAVAR(GDP,fd12(0,1),fs2)(2) 0.0238716 0.0211854 0.0264198
37 FAVAR(GDP,fd12(0,2),fs2)(2) 0.0318656 0.0216314 0.0399390
38 FAVAR(GDP,fd12(1,0),fs2)(2) 0.0238716 0.0211854 0.0264198
39 FAVAR(GDP,fd12(1,1),fs2)(2) 0.0246262 0.0153620 0.0316022
40 FAVAR(GDP,fd12(1,2),fs2)(2) 0.0221364 0.0165884 0.0267862
41 FAVAR(GDP,fd12(2,0),fs2)(2) 0.0226920 0.0174114 0.0271875
42 FAVAR(GDP,fd12(2,1),fs2)(2) 0.0251418 0.0165523 0.0318011
43 FAVAR(GDP,fd12(2,2),fs2)(2) 0.0249269 0.0156704 0.0319256
44 FAVAR(GDP,fd12(3,2),fs2)(2) 0.0229169 0.0170985 0.0277796

Table 3: A comparison of pseudo real-time nowcasting performance from RW,
AR, VAR, static, dynamic and mixed FAVAR models in terms of RMSFE for
the full sample, first half of the sample (RMSFEwithin

phase ) and second half of the

sample (RMSFEbetween
phases ). Factors are formed from cp, exp and m. The least

RMSFE in each sample space is framed. Source: author’s calculations.
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No Model RMSFE RMSFEwithin
phase RMSFEbetween

phases

1 RW 0.0318026 0.0258327 0.0370907
2 AR(1) 0.0289930 0.0174793 0.0375119
3 AR(2) 0.0290639 0.0176315 0.0375493

4 VAR(GDP,cp)(2) 0.0228362 0.0142717 0.0292916
5 VAR(GDP,cp,exp)(2) 0.0246127 0.0156999 0.0314042
6 VAR(GDP,cp,m)(2) 0.0220319 0.0162761 0.0268117
7 VAR(GDP,cp,imp,exp,m)(2) 0.0248828 0.0203759 0.0288985
8 FAVAR(GDP,fs1)(2) 0.0256165 0.0228124 0.0282842
9 FAVAR(GDP,fs1,fs2)(2) 0.0204351 0.0172098 0.0233700
10 FAVAR(GDP,fd11(0,1))(2) 0.0282710 0.0236975 0.0324177
11 FAVAR(GDP,fd11(0,2))(2) 0.0284761 0.0235986 0.0328607
12 FAVAR(GDP,fd11(1,0))(2) 0.0282710 0.0236975 0.0324177
13 FAVAR(GDP,fd11(1,1))(2) 0.0277797 0.0223808 0.0325339
14 FAVAR(GDP,fd11(1,2))(2) 0.0305259 0.0229294 0.0369025
15 FAVAR(GDP,fd11(2,0))(2) 0.0284761 0.0235986 0.0328607
16 FAVAR(GDP,fd11(2,1))(2) 0.0307390 0.0235240 0.0368704
17 FAVAR(GDP,fd11(2,2))(2) 0.0313731 0.0240910 0.0375756
18 FAVAR(GDP,fd12(0,1))(2) 0.0297968 0.0224068 0.0360045
19 FAVAR(GDP,fd12(0,2))(2) 0.0308035 0.0237780 0.0368086
20 FAVAR(GDP,fd12(1,0))(2) 0.0258522 0.0187909 0.0316563
21 FAVAR(GDP,fd12(1,1))(2) 0.0292438 0.0249366 0.0332008
22 FAVAR(GDP,fd12(1,2))(2) 0.0294269 0.0244588 0.0339027
23 FAVAR(GDP,fd12(2,0))(2) 0.0308035 0.0237780 0.0368086
24 FAVAR(GDP,fd12(2,1))(2) 0.0242365 0.0183938 0.0291743
25 FAVAR(GDP,fd12(2,2))(2) 0.0287405 0.0202267 0.0356011
26 FAVAR(GDP,fd12(3,2))(2) 0.0303592 0.0248137 0.0352937
27 FAVAR(GDP,{fd12,fd22}(0,1))(2) 0.0282704 0.0237917 0.0323435
28 FAVAR(GDP,{fd12,fd22}(0,2))(2) 0.0306262 0.0233457 0.0367971
29 FAVAR(GDP,{fd12,fd22}(1,0))(2) 0.0260043 0.0216621 0.0299229
30 FAVAR(GDP,{fd12,fd22}(1,1))(2) 0.0207281 0.0175698 0.0236162
31 FAVAR(GDP,{fd12,fd22}(1,2))(2) 0.0203595 0.0174192 0.0230678
32 FAVAR(GDP,{fd12,fd22}(2,0))(2) 0.0306262 0.0233457 0.0367971
33 FAVAR(GDP,{fd12,fd22}(2,1))(2) 0.0237122 0.0164012 0.0295430
34 FAVAR(GDP,{fd12,fd22}(2,2))(2) 0.0296081 0.0220533 0.0359151
35 FAVAR(GDP,{fd12,fd22}(3,2))(2) 0.0206198 0.0173209 0.0236158
36 FAVAR(GDP,fd12(0,1),fs2)(2) 0.0240083 0.0175455 0.0293386
37 FAVAR(GDP,fd12(0,2),fs2)(2) 0.0245587 0.0170764 0.0305448
38 FAVAR(GDP,fd12(1,0),fs2)(2) 0.0259484 0.0194808 0.0313755
39 FAVAR(GDP,fd12(1,1),fs2)(2) 0.0198448 0.0171102 0.0223790

40 FAVAR(GDP,fd12(1,2),fs2)(2) 0.0196263 0.0174304 0.0217107
41 FAVAR(GDP,fd12(2,0),fs2)(2) 0.0245587 0.0170764 0.0305448
42 FAVAR(GDP,fd12(2,1),fs2)(2) 0.0255631 0.0191685 0.0309247
43 FAVAR(GDP,fd12(2,2),fs2)(2) 0.0267351 0.0211375 0.0315991
44 FAVAR(GDP,fd12(3,2),fs2)(2) 0.0209596 0.0171758 0.0243328

Table 4: A comparison of pseudo real-time nowcasting performance from RW,
AR, VAR, static, dynamic and mixed FAVAR models in terms of RMSFE for
the full sample, first half of the sample (RMSFEwithin

phase ) and second half of the

sample (RMSFEbetween
phases ). Factors are formed from cp, imp, exp and m. The

least RMSFE in each sample space is framed. Source: author’s calculations.
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No Model RMSFE RMSFEwithin
phase RMSFEbetween

phases

1 RW 0.0318026 0.0258327 0.0370907
2 AR(1) 0.0289930 0.0174793 0.0375119
3 AR(2) 0.0290639 0.0176315 0.0375493

4 VAR(GDP,cp)(2) 0.0228362 0.0142717 0.0292916
5 VAR(GDP,cp,nx)(2) 0.0220654 0.0167891 0.0265320
6 VAR(GDP,cp,m)(2) 0.0220319 0.0162761 0.0268117
7 VAR(GDP,cp,imp,nx,m)(2) 0.0248828 0.0203759 0.0288985
8 FAVAR(GDP,fs1)(2) 0.0290343 0.0237453 0.0337427

9 FAVAR(GDP,fs1,fs2)(2) 0.0197060 0.0165628 0.0225618
10 FAVAR(GDP,fd11(0,1))(2) 0.0304416 0.0230029 0.0367102
11 FAVAR(GDP,fd11(0,2))(2) 0.0305231 0.0230925 0.0367898
12 FAVAR(GDP,fd11(1,0))(2) 0.0304416 0.0230029 0.0367102
13 FAVAR(GDP,fd11(1,1))(2) 0.0307994 0.0247906 0.0360872
14 FAVAR(GDP,fd11(1,2))(2) 0.0289453 0.0197760 0.0362057
15 FAVAR(GDP,fd11(2,0))(2) 0.0305231 0.0230925 0.0367898
16 FAVAR(GDP,fd11(2,1))(2) 0.0319682 0.0256426 0.0375209
17 FAVAR(GDP,fd11(2,2))(2) 0.0313462 0.0245974 0.0371799
18 FAVAR(GDP,fd12(0,1))(2) 0.0306933 0.0234999 0.0368082
19 FAVAR(GDP,fd12(0,2))(2) 0.0309543 0.0236157 0.0371779
20 FAVAR(GDP,fd12(1,0))(2) 0.0306933 0.0234999 0.0368082
21 FAVAR(GDP,fd12(1,1))(2) 0.0307451 0.0251624 0.0357175
22 FAVAR(GDP,fd12(1,2))(2) 0.0281373 0.0180688 0.0358371
23 FAVAR(GDP,fd12(2,0))(2) 0.0309543 0.0236157 0.0371779
24 FAVAR(GDP,fd12(2,1))(2) 0.0319632 0.0256678 0.0374939
25 FAVAR(GDP,fd12(2,2))(2) 0.0305662 0.0260846 0.0346860
26 FAVAR(GDP,fd12(3,2))(2) 0.0309303 0.0256625 0.0356699
27 FAVAR(GDP,{fd12,fd22}(0,1))(2) 0.0220867 0.0158666 0.0271622
28 FAVAR(GDP,{fd12,fd22}(0,2))(2) 0.0213687 0.0159650 0.0258888
29 FAVAR(GDP,{fd12,fd22}(1,0))(2) 0.0220867 0.0158666 0.0271622
30 FAVAR(GDP,{fd12,fd22}(1,1))(2) 0.0282545 0.0207398 0.0344696
31 FAVAR(GDP,{fd12,fd22}(1,2))(2) 0.0270338 0.0184717 0.0338138
32 FAVAR(GDP,{fd12,fd22}(2,0))(2) 0.0213687 0.0159650 0.0258888
33 FAVAR(GDP,{fd12,fd22}(2,1))(2) 0.0329777 0.0283760 0.0372353
34 FAVAR(GDP,{fd12,fd22}(2,2))(2) 0.0234946 0.0161173 0.0293499
35 FAVAR(GDP,{fd12,fd22}(3,2))(2) 0.0244488 0.0170426 0.0303828
36 FAVAR(GDP,fd12(0,1),fs2)(2) 0.0208817 0.0163307 0.0248064
37 FAVAR(GDP,fd12(0,2),fs2)(2) 0.0206215 0.0166317 0.0241375
38 FAVAR(GDP,fd12(1,0),fs2)(2) 0.0208817 0.0163307 0.0248064
39 FAVAR(GDP,fd12(1,1),fs2)(2) 0.0219988 0.0171137 0.0261965
40 FAVAR(GDP,fd12(1,2),fs2)(2) 0.0208572 0.0174249 0.0239614
41 FAVAR(GDP,fd12(2,0),fs2)(2) 0.0206215 0.0166317 0.0241375
42 FAVAR(GDP,fd12(2,1),fs2)(2) 0.0217766 0.0180553 0.0251231
43 FAVAR(GDP,fd12(2,2),fs2)(2) 0.0209726 0.0159909 0.0251956
44 FAVAR(GDP,fd12(3,2),fs2)(2) 0.0229908 0.0171765 0.0278543

Table 5: A comparison of pseudo real-time nowcasting performance from RW,
AR, VAR, static, dynamic and mixed FAVAR models in terms of RMSFE for
the full sample, first half of the sample (RMSFEwithin

phase ) and second half of the

sample (RMSFEbetween
phases ). Factors are formed from cp, imp, nx and m. The least

RMSFE in each sample space is framed. Source: author’s calculations.
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No Model Rank Rankwithin
phase Rankbetween

phases

1 RW 42 44 28
2 AR(1) 26 12 30
3 AR(2) 27 14 31

4 VAR(GDP,cp)(2) 13 1 31
5 VAR(GDP,cp,nx)(2) 8 7 7
6 VAR(GDP,cp,m)(2) 6 6 9
7 VAR(GDP,cp,nx,m)(2) 12 17 8
8 FAVAR(GDP,fs1)(2) 25 40 20

9 FAVAR(GDP,fs1,fs2)(2) 1 10 1
10 FAVAR(GDP,fd11(0,1))(2) 38 28 38
11 FAVAR(GDP,fd11(0,2))(2) 31 34 32
12 FAVAR(GDP,fd11(1,0))(2) 38 28 38
13 FAVAR(GDP,fd11(1,1))(2) 41 26 42
14 FAVAR(GDP,fd11(1,2))(2) 40 41 36
15 FAVAR(GDP,fd11(2,0))(2) 31 34 32
16 FAVAR(GDP,fd11(2,1))(2) 30 33 29
17 FAVAR(GDP,fd11(2,2))(2) 37 36 37
18 FAVAR(GDP,fd12(0,1))(2) 35 22 40
19 FAVAR(GDP,fd12(0,2))(2) 33 38 34
20 FAVAR(GDP,fd12(1,0))(2) 35 22 40
21 FAVAR(GDP,fd12(1,1))(2) 23 27 22
22 FAVAR(GDP,fd12(1,2))(2) 19 42 18
23 FAVAR(GDP,fd12(2,0))(2) 33 38 34
24 FAVAR(GDP,fd12(2,1))(2) 29 30 27
25 FAVAR(GDP,fd12(2,2))(2) 28 43 26
26 FAVAR(GDP,fd12(3,2))(2) 24 37 21
27 FAVAR(GDP,{fd12,fd22}(0,1))(2) 20 24 23
28 FAVAR(GDP,{fd12,fd22}(0,2))(2) 43 31 43
29 FAVAR(GDP,{fd12,fd22}(1,0))(2) 20 24 23
30 FAVAR(GDP,{fd12,fd22}(1,1))(2) 22 21 25
31 FAVAR(GDP,{fd12,fd22}(1,2))(2) 5 11 6
32 FAVAR(GDP,{fd12,fd22}(2,0))(2) 43 31 43
33 FAVAR(GDP,{fd12,fd22}(2,1))(2) 18 5 19
34 FAVAR(GDP,{fd12,fd22}(2,2))(2) 7 19 4
35 FAVAR(GDP,{fd12,fd22}(3,2))(2) 14 18 10
36 FAVAR(GDP,fd12(0,1),fs2)(2) 15 8 14
37 FAVAR(GDP,fd12(0,2),fs2)(2) 10 3 12
38 FAVAR(GDP,fd12(1,0),fs2)(2) 15 8 14
39 FAVAR(GDP,fd12(1,1),fs2)(2) 17 20 17
40 FAVAR(GDP,fd12(1,2),fs2)(2) 2 15 2
41 FAVAR(GDP,fd12(2,0),fs2)(2) 10 3 12
42 FAVAR(GDP,fd12(2,1),fs2)(2) 9 2 11
43 FAVAR(GDP,fd12(2,2),fs2)(2) 4 16 3
44 FAVAR(GDP,fd12(3,2),fs2)(2) 3 13 5

Table 6: Model ranking based on the RMSFEs reported in Table 1. The top
rank in each sample space is framed.
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No Model Rank Rankwithin
phase Rankbetween

phases

1 RW 44 44 37
2 AR(1) 24 10 40
3 AR(2) 25 13 41

4 VAR(GDP,cp)(2) 15 1 18
5 VAR(GDP,cp,imp)(2) 9 5 8
6 VAR(GDP,cp,m)(2) 10 4 13
7 VAR(GDP,cp,imp,m)(2) 11 21 9
8 FAVAR(GDP,fs1)(2) 20 31 17
9 FAVAR(GDP,fs1,fs2)(2) 5 15 4
10 FAVAR(GDP,fd11(0,1))(2) 12 19 10
11 FAVAR(GDP,fd11(0,2))(2) 8 2 12
12 FAVAR(GDP,fd11(1,0))(2) 12 19 10
13 FAVAR(GDP,fd11(1,1))(2) 33 27 36
14 FAVAR(GDP,fd11(1,2))(2) 36 30 39
15 FAVAR(GDP,fd11(2,0))(2) 43 41 32
16 FAVAR(GDP,fd11(2,1))(2) 38 34 38
17 FAVAR(GDP,fd11(2,2))(2) 37 35 33
18 FAVAR(GDP,fd12(0,1))(2) 41 25 43
19 FAVAR(GDP,fd12(0,2))(2) 39 36 34
20 FAVAR(GDP,fd12(1,0))(2) 41 25 43
21 FAVAR(GDP,fd12(1,1))(2) 26 22 28
22 FAVAR(GDP,fd12(1,2))(2) 31 23 42
23 FAVAR(GDP,fd12(2,0))(2) 39 36 34
24 FAVAR(GDP,fd12(2,1))(2) 27 42 24
25 FAVAR(GDP,fd12(2,2))(2) 29 40 26
26 FAVAR(GDP,fd12(3,2))(2) 30 43 25
27 FAVAR(GDP,{fd12,fd22}(0,1))(2) 22 28 22
28 FAVAR(GDP,{fd12,fd22}(0,2))(2) 34 38 29
29 FAVAR(GDP,{fd12,fd22}(1,0))(2) 22 28 22
30 FAVAR(GDP,{fd12,fd22}(1,1))(2) 32 33 31
31 FAVAR(GDP,{fd12,fd22}(1,2))(2) 28 32 27
32 FAVAR(GDP,{fd12,fd22}(2,0))(2) 34 38 29

33 FAVAR(GDP,{fd12,fd22}(2,1))(2) 1 8 1
34 FAVAR(GDP,{fd12,fd22}(2,2))(2) 3 11 3
35 FAVAR(GDP,{fd12,fd22}(3,2))(2) 4 9 5
36 FAVAR(GDP,fd12(0,1),fs2)(2) 16 16 14
37 FAVAR(GDP,fd12(0,2),fs2)(2) 18 6 19
38 FAVAR(GDP,fd12(1,0),fs2)(2) 16 16 14
39 FAVAR(GDP,fd12(1,1),fs2)(2) 21 24 21
40 FAVAR(GDP,fd12(1,2),fs2)(2) 14 3 16
41 FAVAR(GDP,fd12(2,0),fs2)(2) 18 6 19
42 FAVAR(GDP,fd12(2,1),fs2)(2) 2 14 2
43 FAVAR(GDP,fd12(2,2),fs2)(2) 6 18 6
44 FAVAR(GDP,fd12(3,2),fs2)(2) 7 12 7

Table 7: Model ranking based on the RMSFEs reported in Table 2. The top
rank in each sample space is framed.
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No Model Rank Rankwithin
phase Rankbetween

phases

1 RW 43 44 40
2 AR(1) 40 24 41
3 AR(2) 41 25 42
4 VAR(GDP,cp)(2) 15 3 21
5 VAR(GDP,cp,exp)(2) 22 15 30
6 VAR(GDP,cp,m)(2) 8 17 8
7 VAR(GDP,cp,exp,m)(2) 21 29 22

8 FAVAR(GDP,fs1)(2) 1 10 2

9 FAVAR(GDP,fs1,fs2)(2) 2 22 1
10 FAVAR(GDP,fd11(0,1))(2) 30 39 23
11 FAVAR(GDP,fd11(0,2))(2) 32 41 25
12 FAVAR(GDP,fd11(1,0))(2) 30 39 23
13 FAVAR(GDP,fd11(1,1))(2) 4 5 9
14 FAVAR(GDP,fd11(1,2))(2) 34 37 27
15 FAVAR(GDP,fd11(2,0))(2) 32 41 25
16 FAVAR(GDP,fd11(2,1))(2) 36 34 29
17 FAVAR(GDP,fd11(2,2))(2) 35 38 28
18 FAVAR(GDP,fd12(0,1))(2) 39 27 38
19 FAVAR(GDP,fd12(0,2))(2) 42 30 43
20 FAVAR(GDP,fd12(1,0))(2) 38 27 38
21 FAVAR(GDP,fd12(1,1))(2) 29 2 37
22 FAVAR(GDP,fd12(1,2))(2) 5 4 11
23 FAVAR(GDP,fd12(2,0))(2) 6 9 10
24 FAVAR(GDP,fd12(2,1))(2) 20 8 32

25 FAVAR(GDP,fd12(2,2))(2) 28 1 36
26 FAVAR(GDP,fd12(3,2))(2) 7 6 14
27 FAVAR(GDP,{fd12,fd22}(0,1))(2) 25 35 17
28 FAVAR(GDP,{fd12,fd22}(0,2))(2) 37 31 35
29 FAVAR(GDP,{fd12,fd22}(1,0))(2) 25 35 16
30 FAVAR(GDP,{fd12,fd22}(1,1))(2) 9 16 13
31 FAVAR(GDP,{fd12,fd22}(1,2))(2) 11 20 6
32 FAVAR(GDP,{fd12,fd22}(2,0))(2) 13 12 18
33 FAVAR(GDP,{fd12,fd22}(2,1))(2) 19 26 20
34 FAVAR(GDP,{fd12,fd22}(2,2))(2) 3 13 5
35 FAVAR(GDP,{fd12,fd22}(3,2))(2) 14 7 19
36 FAVAR(GDP,fd12(0,1),fs2)(2) 17 32 3
37 FAVAR(GDP,fd12(0,2),fs2)(2) 44 43 44
38 FAVAR(GDP,fd12(1,0),fs2)(2) 17 32 3
39 FAVAR(GDP,fd12(1,1),fs2)(2) 23 11 31
40 FAVAR(GDP,fd12(1,2),fs2)(2) 10 19 7
41 FAVAR(GDP,fd12(2,0),fs2)(2) 12 23 12
42 FAVAR(GDP,fd12(2,1),fs2)(2) 27 18 33
43 FAVAR(GDP,fd12(2,2),fs2)(2) 24 14 34
44 FAVAR(GDP,fd12(3,2),fs2)(2) 16 21 15

Table 8: Model ranking based on the RMSFEs reported in Table 3. The top
rank in each sample space is framed.
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No Model Rank Rankwithin
phase Rankbetween

phases

1 RW 44 44 41
2 AR(1) 30 13 42
3 AR(2) 31 16 43

4 VAR(GDP,cp)(2) 9 1 12
5 VAR(GDP,cp,exp)(2) 15 2 20
6 VAR(GDP,cp,m)(2) 8 3 8
7 VAR(GDP,cp,imp,exp,m)(2) 16 22 10
8 FAVAR(GDP,fs1)(2) 18 28 9
9 FAVAR(GDP,fs1,fs2)(2) 4 9 4
10 FAVAR(GDP,fd11(0,1))(2) 25 35 24
11 FAVAR(GDP,fd11(0,2))(2) 27 33 27
12 FAVAR(GDP,fd11(1,0))(2) 25 35 24
13 FAVAR(GDP,fd11(1,1))(2) 23 26 26
14 FAVAR(GDP,fd11(1,2))(2) 37 29 40
15 FAVAR(GDP,fd11(2,0))(2) 27 33 27
16 FAVAR(GDP,fd11(2,1))(2) 40 32 39
17 FAVAR(GDP,fd11(2,2))(2) 43 40 44
18 FAVAR(GDP,fd12(0,1))(2) 35 27 34
19 FAVAR(GDP,fd12(0,2))(2) 41 37 37
20 FAVAR(GDP,fd12(1,0))(2) 19 18 22
21 FAVAR(GDP,fd12(1,1))(2) 32 43 29
22 FAVAR(GDP,fd12(1,2))(2) 33 41 30
23 FAVAR(GDP,fd12(2,0))(2) 41 37 37
24 FAVAR(GDP,fd12(2,1))(2) 12 17 11
25 FAVAR(GDP,fd12(2,2))(2) 29 21 32
26 FAVAR(GDP,fd12(3,2))(2) 36 42 31
27 FAVAR(GDP,{fd12,fd22}(0,1))(2) 24 39 23
28 FAVAR(GDP,{fd12,fd22}(0,2))(2) 38 30 35
29 FAVAR(GDP,{fd12,fd22}(1,0))(2) 21 24 15
30 FAVAR(GDP,{fd12,fd22}(1,1))(2) 6 15 6
31 FAVAR(GDP,{fd12,fd22}(1,2))(2) 3 11 3
32 FAVAR(GDP,{fd12,fd22}(2,0))(2) 38 30 35
33 FAVAR(GDP,{fd12,fd22}(2,1))(2) 10 4 14
34 FAVAR(GDP,{fd12,fd22}(2,2))(2) 34 25 33
35 FAVAR(GDP,{fd12,fd22}(3,2))(2) 5 10 5
36 FAVAR(GDP,fd12(0,1),fs2)(2) 11 14 13
37 FAVAR(GDP,fd12(0,2),fs2)(2) 13 5 16
38 FAVAR(GDP,fd12(1,0),fs2)(2) 20 20 19
39 FAVAR(GDP,fd12(1,1),fs2)(2) 2 7 2

40 FAVAR(GDP,fd12(1,2),fs2)(2) 1 12 1
41 FAVAR(GDP,fd12(2,0),fs2)(2) 13 5 16
42 FAVAR(GDP,fd12(2,1),fs2)(2) 17 19 18
43 FAVAR(GDP,fd12(2,2),fs2)(2) 22 23 21
44 FAVAR(GDP,fd12(3,2),fs2)(2) 7 8 8

Table 9: Model ranking based on the RMSFEs reported in Table 4. The top
rank in each sample space is framed.
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No Model Rank Rankwithin
phase Rankbetween

phases

1 RW 41 42 36
2 AR(1) 25 19 42
3 AR(2) 27 20 44

4 VAR(GDP,cp)(2) 16 1 18
5 VAR(GDP,cp,nx)(2) 13 14 12
6 VAR(GDP,cp,m)(2) 12 8 13
7 VAR(GDP,cp,imp,nx,m)(2) 20 25 17
8 FAVAR(GDP,fs1)(2) 26 35 21

9 FAVAR(GDP,fs1,fs2)(2) 1 11 1
10 FAVAR(GDP,fd11(0,1))(2) 28 27 30
11 FAVAR(GDP,fd11(0,2))(2) 30 29 32
12 FAVAR(GDP,fd11(1,0))(2) 28 27 30
13 FAVAR(GDP,fd11(1,1))(2) 36 37 28
14 FAVAR(GDP,fd11(1,2))(2) 24 24 29
15 FAVAR(GDP,fd11(2,0))(2) 30 29 32
16 FAVAR(GDP,fd11(2,1))(2) 43 39 43
17 FAVAR(GDP,fd11(2,2))(2) 40 36 39
18 FAVAR(GDP,fd12(0,1))(2) 33 31 34
19 FAVAR(GDP,fd12(0,2))(2) 38 33 37
20 FAVAR(GDP,fd12(1,0))(2) 33 31 34
21 FAVAR(GDP,fd12(1,1))(2) 35 38 26
22 FAVAR(GDP,fd12(1,2))(2) 22 22 27
23 FAVAR(GDP,fd12(2,0))(2) 38 33 37
24 FAVAR(GDP,fd12(2,1))(2) 42 41 41
25 FAVAR(GDP,fd12(2,2))(2) 32 43 24
26 FAVAR(GDP,fd12(3,2))(2) 37 40 25
27 FAVAR(GDP,{fd12,fd22}(0,1))(2) 14 2 14
28 FAVAR(GDP,{fd12,fd22}(0,2))(2) 8 4 9
29 FAVAR(GDP,{fd12,fd22}(1,0))(2) 14 2 14
30 FAVAR(GDP,{fd12,fd22}(1,1))(2) 23 26 23
31 FAVAR(GDP,{fd12,fd22}(1,2))(2) 21 23 22
32 FAVAR(GDP,{fd12,fd22}(2,0))(2) 8 4 9
33 FAVAR(GDP,{fd12,fd22}(2,1))(2) 44 44 40
34 FAVAR(GDP,{fd12,fd22}(2,2))(2) 18 7 19
35 FAVAR(GDP,{fd12,fd22}(3,2))(2) 19 15 20
36 FAVAR(GDP,fd12(0,1),fs2)(2) 5 9 5
37 FAVAR(GDP,fd12(0,2),fs2)(2) 2 12 3
38 FAVAR(GDP,fd12(1,0),fs2)(2) 5 9 5
39 FAVAR(GDP,fd12(1,1),fs2)(2) 11 16 11
40 FAVAR(GDP,fd12(1,2),fs2)(2) 4 18 2
41 FAVAR(GDP,fd12(2,0),fs2)(2) 2 12 3
42 FAVAR(GDP,fd12(2,1),fs2)(2) 10 21 7
43 FAVAR(GDP,fd12(2,2),fs2)(2) 7 6 8
44 FAVAR(GDP,fd12(3,2),fs2)(2) 17 17 16

Table 10: Model ranking based on the RMSFEs reported in Table 5. The top
rank in each sample space is framed.
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No Model Rank Rankwithin
phase Rankbetween

phases

1 RW 44 44 40
2 AR(1) 31 13 43
3 AR(2) 34 18 44

4 VAR(GDP,cp)(2) 12 1 17
5 VAR(GDP,cp,...)(2) 11 3 15
6 VAR(GDP,cp,m)(2) 3 2 5
7 VAR(GDP,cp,m,...)(2) 16 22 11
8 FAVAR(GDP,fs1)(2) 18 33 12

9 FAVAR(GDP,fs1,fs2)(2) 1 6 1
10 FAVAR(GDP,fd11(0,1))(2) 26 34 24
11 FAVAR(GDP,fd11(0,2))(2) 24 32 26
12 FAVAR(GDP,fd11(1,0))(2) 26 34 24
13 FAVAR(GDP,fd11(1,1))(2) 30 24 30
14 FAVAR(GDP,fd11(1,2))(2) 39 38 36
15 FAVAR(GDP,fd11(2,0))(2) 37 42 33
16 FAVAR(GDP,fd11(2,1))(2) 41 40 38
17 FAVAR(GDP,fd11(2,2))(2) 42 43 39
18 FAVAR(GDP,fd12(0,1))(2) 40 27 42
19 FAVAR(GDP,fd12(0,2))(2) 43 41 41
20 FAVAR(GDP,fd12(1,0))(2) 38 25 37
21 FAVAR(GDP,fd12(1,1))(2) 31 27 31
22 FAVAR(GDP,fd12(1,2))(2) 23 27 26
23 FAVAR(GDP,fd12(2,0))(2) 35 37 35
24 FAVAR(GDP,fd12(2,1))(2) 25 31 29
25 FAVAR(GDP,fd12(2,2))(2) 33 34 32
26 FAVAR(GDP,fd12(3,2))(2) 28 39 23
27 FAVAR(GDP,{fd12,fd22}(0,1))(2) 22 26 22
28 FAVAR(GDP,{fd12,fd22}(0,2))(2) 36 30 34
29 FAVAR(GDP,{fd12,fd22}(1,0))(2) 21 21 18
30 FAVAR(GDP,{fd12,fd22}(1,1))(2) 19 20 21
31 FAVAR(GDP,{fd12,fd22}(1,2))(2) 12 19 9
32 FAVAR(GDP,{fd12,fd22}(2,0))(2) 29 23 28
33 FAVAR(GDP,{fd12,fd22}(2,1))(2) 19 17 19
34 FAVAR(GDP,{fd12,fd22}(2,2))(2) 9 11 9
35 FAVAR(GDP,{fd12,fd22}(3,2))(2) 6 5 7
36 FAVAR(GDP,fd12(0,1),fs2)(2) 8 15 3
37 FAVAR(GDP,fd12(0,2),fs2)(2) 17 8 19
38 FAVAR(GDP,fd12(1,0),fs2)(2) 14 16 6
39 FAVAR(GDP,fd12(1,1),fs2)(2) 15 13 16
40 FAVAR(GDP,fd12(1,2),fs2)(2) 2 6 2
41 FAVAR(GDP,fd12(2,0),fs2)(2) 5 4 8
42 FAVAR(GDP,fd12(2,1),fs2)(2) 9 10 13
43 FAVAR(GDP,fd12(2,2),fs2)(2) 7 12 14
44 FAVAR(GDP,fd12(3,2),fs2)(2) 4 9 4

Table 11: Model ranking based on the mean rank calculated from the rankings
reported in Table 6 to Table 10. The top rank in each sample space is framed.
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No Model Rank Rankwithin
phase Rankbetween

phases

1 RW 44 44 40
2 AR(1) 31 12 43
3 AR(2) 34 15 44

4 VAR(GDP,cp)(2) 8 1 12
5 VAR(GDP,cp,...)(2) 9 3 14
6 VAR(GDP,cp,m)(2) 3 2 3
7 VAR(GDP,cp,m,...)(2) 13 19 9
8 FAVAR(GDP,fs1)(2) 17 33 10

9 FAVAR(GDP,fs1,fs2)(2) 1 6 1
10 FAVAR(GDP,fd11(0,1))(2) 26 31 25
11 FAVAR(GDP,fd11(0,2))(2) 24 35 24
12 FAVAR(GDP,fd11(1,0))(2) 26 31 25
13 FAVAR(GDP,fd11(1,1))(2) 32 25 33
14 FAVAR(GDP,fd11(1,2))(2) 39 37 36
15 FAVAR(GDP,fd11(2,0))(2) 35 41 32
16 FAVAR(GDP,fd11(2,1))(2) 41 39 37
17 FAVAR(GDP,fd11(2,2))(2) 42 43 39
18 FAVAR(GDP,fd12(0,1))(2) 40 26 42
19 FAVAR(GDP,fd12(0,2))(2) 43 40 41
20 FAVAR(GDP,fd12(1,0))(2) 37 22 38
21 FAVAR(GDP,fd12(1,1))(2) 30 30 29
22 FAVAR(GDP,fd12(1,2))(2) 23 29 27
23 FAVAR(GDP,fd12(2,0))(2) 36 36 34
24 FAVAR(GDP,fd12(2,1))(2) 25 34 28
25 FAVAR(GDP,fd12(2,2))(2) 29 38 30
26 FAVAR(GDP,fd12(3,2))(2) 28 42 23
27 FAVAR(GDP,{fd12,fd22}(0,1))(2) 20 27 19
28 FAVAR(GDP,{fd12,fd22}(0,2))(2) 38 28 35
29 FAVAR(GDP,{fd12,fd22}(1,0))(2) 18 23 16
30 FAVAR(GDP,{fd12,fd22}(1,1))(2) 19 20 20
31 FAVAR(GDP,{fd12,fd22}(1,2))(2) 14 18 11
32 FAVAR(GDP,{fd12,fd22}(2,0))(2) 33 24 31
33 FAVAR(GDP,{fd12,fd22}(2,1))(2) 22 21 21
34 FAVAR(GDP,{fd12,fd22}(2,2))(2) 16 9 13
35 FAVAR(GDP,{fd12,fd22}(3,2))(2) 6 5 7
36 FAVAR(GDP,fd12(0,1),fs2)(2) 7 14 4
37 FAVAR(GDP,fd12(0,2),fs2)(2) 21 17 22
38 FAVAR(GDP,fd12(1,0),fs2)(2) 11 16 6
39 FAVAR(GDP,fd12(1,1),fs2)(2) 15 13 18
40 FAVAR(GDP,fd12(1,2),fs2)(2) 2 7 2
41 FAVAR(GDP,fd12(2,0),fs2)(2) 5 4 8
42 FAVAR(GDP,fd12(2,1),fs2)(2) 12 10 15
43 FAVAR(GDP,fd12(2,2),fs2)(2) 10 11 17
44 FAVAR(GDP,fd12(3,2),fs2)(2) 4 8 5

Table 12: Model ranking based on the root mean squared rank calculated from
the rankings reported in Table 6 to Table 10. This ranking penalizes unstable
model performance with respect to the choice of variables to a higher degree
compared to the ranking reported in Table 11. The top rank in each sample
space is framed.
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Figure 2: Stationary GDP and its explanatory variables, calculated from seasonally unadjusted data. Stationarity is achieved by taking
logs, and applying one seasonal and one regular difference, except for series m, which is not seasonally differenced. Source: Central
Statistical Bureau of Latvia and author’s calculations.

2
6



Figure 3: Once regularly and once seasonally differenced logged seasonally unadjusted GDP series (solid line), static first common factor
(dashed line, short dashes) and a dynamic first common factor (dashed line, long dashes) calculated from a single-factor model using
variables cp, nx and m with the factor subject to an ARMA(0,1) process. Shaded area marks the period of Latvia’s latest recession,
starting from 2008Q1 till the series ends at 2009Q3. It is shown that the dynamic common factor hardly detects the recession period and
never its depth. On the the other hand, the static first common factor is able to detect the recession and its depth and, thus, is considered
a better explanatory variable for now-/forecasting GDP during the switch of business cycle phases. Source: Central Statistical Bureau of
Latvia and author’s calculations.
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Figure 4: Once regularly and once seasonally differenced logged seasonally unadjusted GDP series (solid line), static first common factor
(dashed line, short dashes) and a dynamic first common factor (dashed line, long dashes) calculated from a single-factor model using
variables cp, nx and m with the factor subject to an ARMA(0,2) process. Shaded area marks the period of Latvia’s latest recession,
starting from 2008Q1 till the series ends at 2009Q3. It is shown that the dynamic common factor is unable to detect the recession period.
On the the other hand, the static first common factor is able to detect the recession and its depth and, thus, is considered a better
explanatory variable for now-/forecasting GDP during the switch of business cycle phases. Source: Central Statistical Bureau of Latvia
and author’s calculations.
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Figure 5: Once regularly and once seasonally differenced logged seasonally unadjusted GDP series (solid line), static first common factor
(dashed line, short dashes) and a dynamic first common factor (dashed line, long dashes) calculated from a single-factor model using
variables cp, nx and m with the factor subject to an ARMA(1,0) process. Shaded area marks the period of Latvia’s latest recession,
starting from 2008Q1 till the series ends at 2009Q3. It is shown that the dynamic common factor is unable to detect the recession period.
On the the other hand, the static first common factor is able to detect the recession and its depth and, thus, is considered a better
explanatory variable for now-/forecasting GDP during the switch of business cycle phases. Source: Central Statistical Bureau of Latvia
and author’s calculations.
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Figure 6: Once regularly and once seasonally differenced logged seasonally unadjusted GDP series (solid line), static first common factor
(dashed line, short dashes) and a dynamic first common factor (dashed line, long dashes) calculated from a single-factor model using
variables cp, nx and m with the factor subject to an ARMA(1,1) process. Shaded area marks the period of Latvia’s latest recession,
starting from 2008Q1 till the series ends at 2009Q3. It is shown that the dynamic common factor hardly detects the recession period and
never its depth. On the the other hand, the static first common factor is able to detect the recession and its depth and, thus, is considered
a better explanatory variable for now-/forecasting GDP during the switch of business cycle phases. Source: Central Statistical Bureau of
Latvia and author’s calculations.
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Figure 7: Once regularly and once seasonally differenced logged seasonally unadjusted GDP series (solid line), static first common factor
(dashed line, short dashes) and a dynamic first common factor (dashed line, long dashes) calculated from a single-factor model using
variables cp, nx and m with the factor subject to an ARMA(1,2) process. Shaded area marks the period of Latvia’s latest recession,
starting from 2008Q1 till the series ends at 2009Q3. It is shown that the dynamic common factor is unable to detect the recession period.
On the the other hand, the static first common factor is able to detect the recession and its depth and, thus, is considered a better
explanatory variable for now-/forecasting GDP during the switch of business cycle phases. Source: Central Statistical Bureau of Latvia
and author’s calculations.
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Figure 8: Once regularly and once seasonally differenced logged seasonally unadjusted GDP series (solid line), static first common factor
(dashed line, short dashes) and a dynamic first common factor (dashed line, long dashes) calculated from a single-factor model using
variables cp, nx and m with the factor subject to an ARMA(2,0) process. Shaded area marks the period of Latvia’s latest recession,
starting from 2008Q1 till the series ends at 2009Q3. It is shown that the dynamic common factor is unable to detect the recession period.
On the the other hand, the static first common factor is able to detect the recession and its depth and, thus, is considered a better
explanatory variable for now-/forecasting GDP during the switch of business cycle phases. Source: Central Statistical Bureau of Latvia
and author’s calculations.
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Figure 9: Once regularly and once seasonally differenced logged seasonally unadjusted GDP series (solid line), static first common factor
(dashed line, short dashes) and best-performing (in terms of RMSFE) dynamic first common factor (dashed line, long dashes) calculated
from a single-factor model using variables cp, nx and m with the factor subject to an ARMA(2,1) process. Shaded area marks the period
of Latvia’s latest recession, starting from 2008Q1 till the series ends at 2009Q3. It is shown that even the best-performing (in terms of
RMSFE) dynamic common factor calculated from a single-factor model is unable to detect the recession period. On the the other hand,
the static first common factor is able to detect the recession and its depth and, thus, is considered a better explanatory variable for
now-/forecasting GDP during the switch of business cycle phases. Source: Central Statistical Bureau of Latvia and author’s calculations.
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Figure 10: Once regularly and once seasonally differenced logged seasonally unadjusted GDP series (solid line), static first common factor
(dashed line, short dashes) and a dynamic first common factor (dashed line, long dashes) calculated from a single-factor model using
variables cp, nx and m with the factor subject to an ARMA(2,2) process. Shaded area marks the period of Latvia’s latest recession,
starting from 2008Q1 till the series ends at 2009Q3. It is shown that the dynamic common factor hardly detects the recession period and
never its depth. On the the other hand, the static first common factor is able to detect the recession and its depth and, thus, is considered
a better explanatory variable for now-/forecasting GDP during the switch of business cycle phases. Source: Central Statistical Bureau of
Latvia and author’s calculations.
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Figure 11: Once regularly and once seasonally differenced logged seasonally unadjusted GDP series (solid line), static first common
factor (dashed line, short dashes) and the best-performing (in terms of RMSFE) dynamic first common factor (dashed line, long dashes)
calculated from two-factors model using variables cp, nx and m with each factor subject to an ARMA(1,2) process. Shaded area marks
the period of Latvia’s latest recession, starting from 2008Q1 till the series ends at 2009Q3. It is shown that even the best-performing (in
terms of RMSFE) dynamic common factor calculated from a two-factors model is performing slightly worse than its static counterpart in
detecting the recession period and depth. Thus, the static factor is considered a better explanatory variable for now-/forecasting GDP
during the switch of business cycle phases. Source: Central Statistical Bureau of Latvia and author’s calculations.
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The list of data used in the paper. All national accounts series are chain-priced as of 2000.

Series Definition Source

GDP Gross domestic product Central Statistical Bureau of Latvia
C Output in mining and quarrying industry Central Statistical Bureau of Latvia
D Output in manufacturing industry Central Statistical Bureau of Latvia
E Output in electricity, gas and water supply industry Central Statistical Bureau of Latvia
F Output in construction industry Central Statistical Bureau of Latvia
cp Sum of C,D,E and F Derived by the author

exp Exports Central Statistical Bureau of Latvia
imp Imports Central Statistical Bureau of Latvia
nx Ratio of exports over imports, exp/imp Derived by the author
m Monetary aggregate M1, quarterly average Bank of Latvia3
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