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Abstract

In conditionally heteroskedastic models, the optimal prediction of
powers, or logarithms, of the absolute process has a simple expres-
sion in terms of the volatility process and an expectation involving
the independent process. A standard procedure for estimating this
prediction is to estimate the volatility by gaussian quasi-maximum
likelihood (QML) in a first step, and to use empirical means based on
rescaled innovations to estimate the expectation in a second step. This
paper proposes an alternative one-step procedure, based on an appro-
priate non-gaussian QML estimation of the model, and establishes the
asymptotic properties of the two approaches. Their performances are
compared for finite-order GARCH models and for the ARCH(∞). For
the standard GARCH(p, q) and the Asymmetric Power GARCH(p, q),
it is shown that the ARE of the estimators only depends on the pre-
diction problem and some moments of the independent process. An
application to indexes of major stock exchanges is proposed.
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1 Introduction

The autoregressive conditional heteroscedasticity (ARCH) model introduced
by Engle (1982) and its generalization, the GARCH model proposed by
Bollerslev (1986) have received considerable attention in both applied and
theoretical works. Following Engle’s specification of the volatility as a linear
combination of past squared innovations, an immense number of alternative
formulations, generally motivated by specific features of the financial series,
have been proposed. Most of them can be embedded in the model

{

ǫt = σtηt

σt = σ(ǫt−1, ǫt−2, . . . ; θ0)
(1.1)

where (ηt) is a sequence of independent and identically distributed (iid) ran-
dom variables, with ηt independent of {ǫu, u < t}, θ0 ∈ R

m is a parameter
belonging to a parameter space Θ, and σ : R

∞ ×Θ → (0,∞). The variable
σ2

t is generally referred to as the volatility of ǫt.
A leading model, the most widely used among practitioners, is the

GARCH(1,1) model where σ2
t = ω0 +α0ǫ

2
t−1 +β0σ

2
t−1 and θ0 = (ω0, α0, β0)

′ ∈
(0,∞)× [0,∞)× [0, 1). For this model we have σ2

t =
∑∞

i=1 β
i−1(ω0 + α0ǫ

2
t−i)

which is of the form (1.1). For evident identifiability reasons, a scale con-
straint is required on the sequence (ηt). The standard assumption is Eη2

t = 1
but any other constraint of the form E|ηt|r = 1, with r 6= 0, can be used as
well (provided that the r-th moment exists). Another class of conditionally
heteroskedatic models is the ARCH(∞) introduced by Robinson (1991) and
studied by many authors (see references below). This model is a particular
case of (1.1) in which the function σ2 is linear in the squares of the past
values of ǫt.

In GARCH models, it is generally assumed that Eηt = 0, but we do
not make this assumption. Model (1.1) also includes the Autoregressive
Conditional Duration (ACD) model for positively distributed ηt’s. ACD
models have been introduced by Engle and Russell (1998) for the analysis of
the duration time between events.

Although the literature on GARCH-type models is quite extensive, rel-
atively few papers have examined the issue of forecasting. Engle and Kraft
(1983) considered predictions of ARMA processes with ARCH errors. Engle
and Bollerslev (1986) and Baillie and Bollerslev (1992) studied predictions
in ARMA model with GARCH errors. Andersen and Bollerslev (1998) dis-
cussed the predictive qualities of GARCH, making a clear distinction between
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the prediction of volatility and that of the squared returns. Karanasos (1999)
considered GARCH in mean models. Pascual, Romo and Ruiz (2005) pro-
posed a Bootstrap procedure to obtain prediction densities of returns and
volatilities of GARCH processes.

In this paper, our aim is to investigate the problem of predicting powers
of the process (ǫt), defined as a solution of (1.1). For any real number r such
that E|ηt|r < ∞, the optimal predictor, in the L2 sense, of |ǫt|r given its
entire past is

Et−1(|ǫt|r) = σr
tE|ηt|r, (1.2)

where Et−1 denotes expectation conditional on the infinite past. We will also
consider the optimal prediction of log |ǫt| given by

Et−1(log |ǫt|) = log σt + E log |ηt|, (1.3)

provided that E log |ηt| exists. This case can be seen as the limit of the case
(1.2) when r = 0, via the Box-Cox transformation log |x| = limr→0(|x|r−1)/r.

1.1 The two approaches

Given observations (ǫ1, . . . , ǫn), we consider two approaches for predicting
powers of |ǫn+1|:

• A fully parametric one-step approach in which θ0 is estimated under
the assumption that E|ηt|r = 1 when r 6= 0, and E log |ηt| = 0 when
r = 0. The prediction of |ǫn+1|r (resp. log |ǫn+1|) based on (1.2) (resp.
(1.3)) is then the estimated value of σr

n+1 (resp. log σn+1).

• A mixed (parametric and non parametric) two-step approach in which
θ0 is estimated under the assumption that E|ηt|2 = 1 and E|ηt|r (or
E log |ηt| when r = 0) is estimated non-parametrically. The prediction
of |ǫn+1|r (resp. log |ǫn+1|) based on (1.2) (resp. (1.3)) is the estimated
value of σr

n+1 (resp. log σn+1) multiplied by the estimate of E|ηt|r (resp.
plus the estimate of E log |ηt|).

The mixed approach is standard. The fully parametric approach is novel, to
our knowledge.
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1.2 Non Gaussian QML

For the reparameterized model under the identifiability constraint E|η0|r = 1
with r 6= 2, the Gaussian QML estimator (QMLE) is generally inconsistent.
For our prediction problem with r 6= 2, we therefore consider a generalized
QMLE based on an instrumental density h different from the Gaussian. This
QMLE coincides with the MLE when the error’s distribution f is correctly
specified (that is when h = f). To keep the robustness of the standard QML,
it should also be consistent for any error distribution f satisfying E|η0|r = 1.
This will imply a choice of h depending on the prediction problem, that is
on r. Newey and Steigerwald (1997) studied the identification conditions
required for the consistency of non Gaussian QMLE’s in general conditional
heteroskedastic models. In the case of standard GARCH models, Berkes and
Horváth (2004) derived the asymptotic distribution of such estimators.

1.3 Interest of predicting powers r 6= 2

The prediction of ǫ2t , which is also the prediction of the volatility under the
assumption that Eη2

t = 1, is obviously important for financial applications
but it does not appear to be sufficient.

i) Interest of considering r > 2. The conditional variance of the prediction
errors of the squares involves the prediction of (ǫ4t ). More precisely, in Model
(1.1) under the standard assumption Eη2

t = 1, the quadratic loss for the
prediction of ǫ2t , that is the conditional MSE, is

Et−1(ǫ
2
t − σ2

t )
2 = Et−1(ǫ

4
t ) − σ4

t .

Thus, the evaluation of the MSE requires prediction of |ǫt|r for r = 4. Obvi-
ously, another loss function involving another power r could be used.

ii) Interest of considering 0 ≤ r < 2. When one suspects that second or
fourth-order moments do not exist, it is sensible to consider predictions of
smaller powers of returns as measures of the future price volatility.

iii) Interest of considering r < 0. For some applications, it may be worth
fitting a GARCH-type model to the inverses of the data. For instance, ACD-
type models can be seen as squares of GARCH models applied to duration
data, xt say (where t denotes the t-th transaction, and xt the duration be-
tween the (t − 1)-th and t-th transactions). Such models are appropriate
to capture the clustering of large durations. However, it may be of interest
to capture clustering between small durations. Indeed, such small durations
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are likely to reflect high volatility of prices. It is thus sensible to adjust a
GARCH model to the inverse of such duration data, ǫt = 1/xt. The usual
GARCH methodology allows to optimally predict ǫ2t , but one is mostly inter-
ested in predicting xt or x2

t . To this aim, we need to predict |ǫt|r with r = −1
or r = −2.

1.4 Contributions of this paper

For the general Model (1.1), we consider the prediction of powers of any sign.
The standard method is a two-step procedure which requires estimating the
volatility and also moments of the iid process.

Our main contributions are the following: 1) as an alternative to the two-
step method, we introduce a one-step method, based on a generalized QML,
which is extremely simple to implement; 2) we obtain a complete charac-
terization of the omnibus instrumental densities, that is those which render
the generalized QMLE universally consistent; 3) the asymptotic properties of
the generalized QMLE are studied in a quite general framework (including in
particular the infinite ARCH) under conditions which coincide with the weak-
est conditions in the particular GARCH case; 4) for important subclasses,
we obtain a surprisingly simple expression for the Asymptotic Relative Ef-
ficiency (ARE) of the two methods; 5) in practice it is simple to estimate
this ARE, and therefore it is possible to determine what is the best method,
asymptotically.

1.5 Organization of the paper

Section 2 is devoted to the strong consistency and asymptotic normality
(AN) for generalized QMLE, based on an instrumental density h, in Model
(1.1). The choice of h is solved for the prediction problems (1.2)-(1.3), by
characterizing the functions h for which the consistency is achieved under a
given condition E|ηt|r = 1 or under the condition E log |ηt| = 0. Section 3
is devoted to the asymptotic properties of the two-step approach. Section 4
proposes comparisons of the two approaches, for finite-order GARCH models
and for the ARCH(∞). For the standard GARCH(p, q) and the Asymmetric
Power GARCH(p, q), we show that the ARE of the estimators only depends
on the power r and the moments of the iid process. Section 5 proposes
empirical applications based on financial data. The most technical proofs
are given in Appendix A and Appendix B.
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2 Asymptotic distribution of non-Gaussian

QMLE

The asymptotic results of this paper will be established under the following
assumption, which can be made more explicit for specific forms of the volatil-
ity function σ (for classical GARCH see Nelson (1990), Bougerol and Picard
(1992)).

A0: (ǫt) is a strictly stationary and ergodic solution of (1.1).

Given observations ǫ1, . . . , ǫn, and arbitrary initial values ǫ̃i for i ≤ 0, we
define, under assumptions given below

σ̃t(θ) = σ(ǫt−1, ǫt−2, . . . , ǫ1, ǫ̃0, ǫ̃−1, . . . ; θ).

This random variable will be used as a proxy of

σt(θ) = σ(ǫt−1, ǫt−2, . . . , ǫ1, ǫ0, ǫ−1, . . . ; θ).

We choose an arbitrary integrable and positive function h, in general a den-
sity, which can be called instrumental density, and define the QML criterion

Q̃n(θ) =
1

n

n
∑

t=1

g(ǫt, σ̃t(θ)), g(x, σ) = log
1

σ
h
(x

σ

)

. (2.1)

Let the QMLE
θ̂n,h = arg max

θ∈Θ
Q̃n(θ)

for some compact space Θ. This estimator is the standard gaussian QMLE
when h is the standard gaussian density φ.

2.1 Identifiability conditions

To be able to identify the parameters in Model (1.1) it is necessary to impose
a constraint on (ηt). For the sake of predicting |ǫt|r, a natural constraint in
view of (1.2)-(1.3), is

A1: E|η0|r = 1 when r 6= 0, and E log |η0| = 0 when r = 0.

We make the following assumption on the volatility function, for some ω > 0.
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A2: Almost surely, σt(θ) ∈ (ω,∞] for any θ ∈ Θ. Moreover, σt(θ0)/σt(θ) =
1 a.s. iff θ = θ0.

For the consistency of the estimator θ̂n,h, we assume that the function σ →
Eg(η0, σ) is valued in [−∞,+∞) and has a unique maximum at 1:

A3: Eg(η0, σ) < Eg(η0, 1) ∀σ > 0, σ 6= 1.

Let f denote the density of the distribution of η0, when existing. To interpret
A3, denote by K(f, f ∗) = E log(f/f ∗)(η0) the Kullback-Leibler "distance"
between f and a density f ∗. Let hσ(x) = σ−1h(σ−1x), the density of σY
where Y has the density h. Then A3 can be written

K(f, h) < K(f, hσ), ∀σ > 0, σ 6= 1.

The condition thus signifies that it is impossible to obtain a density closer to
f by scaling h.

It is clear by the Jensen inequality that A3 is always satisfied for the MLE,
that is if h = f . However, in general f is unknown and cannot be chosen
as the instrumental density. When h 6= f, A3 entails a moment condition
on η0, which may be incompatible with A1. For instance when h = φ, we
find that A3 reduces to Eη2

0 = 1. This condition is compatible with A1 only
when r = 2. It is therefore important to characterize the functions h which
make A1 and A3 compatible. This will be done in Section 2.3.

2.2 Asymptotic properties of the generalized QMLE

Apart from identifiability assumptions, technical conditions are required for
the asymptotic properties of the generalized QMLE.

For some constants δ ∈ R and C0 > 0, let

A4: h is differentiable, for all u ∈ R, |uh′(u)/h(u)| ≤ C0(1 + |u|δ) and
E|η0|δ <∞.

For the reader’s convenience, additional technical assumptions, A5-A10, are
reported in Appendix A. The following is an extension of results (Theorems
1.1 and 1.2) proven by Berkes and Horváth (2004) for the standard GARCH.

Theorem 2.1. If A0-A5 hold, for some constants δ ∈ R and C0 > 0, then

θ̂n,h → θ0, a.s.
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where θ0 is the true parameter value in Model (1.1) under the identifiability
condition A1. If, in addition, A6-A10 hold and Eg2(η0, 1) 6= 0 then

√
n
(

θ̂n,h − θ0

)

L→ N (0, 4τ 2
h,fJ

−1)

where

J = J(θ0) = E

(

1

σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θ′
(θ0)

)

and τ 2
h,f =

Eg2
1(η0, 1)

{Eg2(η0, 1)}2 , (2.2)

with g1(x, σ) = ∂g(x, σ)/∂σ and g2(x, σ) = ∂g1(x, σ)/∂σ.

This result contains, as particular cases, the AN for the MLE (when
h = f) and for the QMLE (when r = 2 and h = φ). In the former case we
have

τ 2
f,f =

{

E

(

1 +
f ′(η0)

f(η0)
η0

)}−1

.

We also have τ 2
φ,f = (Eη4

0 − 1)/4 when r = 2 and we retrieve the standard
result.

Remark 2.1. The results of Theorem 2.1 can be compared with those ob-
tained in other articles for the gaussian QMLE of general formulations sim-
ilar to (1.1). Straumann and Mikosch (2006) studied the gaussian QMLE
for conditionally heteroscedastic models where the volatility has the form
σ2

t = g(ǫt−1, . . . , ǫt−p, σ
2
t−1, . . . , σ

2
t−q; θ). More recently Bardet and Winten-

berger (2009) proved the asymptotic properties of the gaussian QMLE for a
general class of multidimensional causal processes encompassing (1.1). How-
ever, their conditions for consistency and asymptotic normality require the
existence of moments of orders 2 and 4, respectively, which we do not need
for the class (1.1).

2.3 Choice of the instrumental density

A given function h can be said to be omnibus for our prediction problem if
Assumptions A1 and A3 are compatible for any distribution of η0. In this
section, we will show that under A4, the class of the omnibus functions h
reduces, for a given r, to the class C(r) of functions of the form











c|x|λ−1 exp (−λ|x|r/r) , if r > 0,
c|x|−λ−1 exp (λ|x|r/r) , if r < 0,
√

λ/π|2x|−1 exp {−λ(log |x|)2} , if r = 0,
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for constants λ, c > 0. The following proposition, whose proof is straight-
forward, shows that, for a given r, the QMLE based on h ∈ C(r) does not
depend on the constants c and λ.

Proposition 2.1. If the instrumental function h belongs to C(r) then the
generalized QMLE is given by

θ̂n,h =







arg minθ∈Θ

∑n
t=1 log σ̃r

t (θ) + |ǫt|r

σ̃r
t (θ)

, if r 6= 0,

arg minθ∈Θ

∑n
t=1

{

log |ǫt|
σ̃t(θ)

}2

, if r = 0.

The previous result shows that when r 6= 0, the non gaussian QMLE can
be interpreted as a standard QMLE obtained by transforming the data ǫ2t in
|ǫt|r. The following proposition shows that A3 can be omitted in Theorem
2.1 when h is chosen in C(r).

Proposition 2.2. Let h such that A4 holds. Then

A3 holds for any distribution of η0 satisfying A1 iff h ∈ C(r).

Proof. If h ∈ C(r) the implication can be obtained by direct verification,
for r > 0, r < 0 and r = 0. For the converse, it will be sufficient to consider
the case r 6= 0, the case r = 0 being treated along the same lines. Note that
under A4,

g1(x, σ) =
∂g(x, σ)

∂σ
= −1

σ
− h′(x/σ)

h(x/σ)

x

σ2

exists for σ > 0, and that E supσ∈V (1) |g1(η0, σ)| <∞, for some neighborhood
V (1) of 1. The dominated convergence theorem shows that A3 entails the
moment condition

E

(

h′(η0)

h(η0)
η0

)

= −1. (2.3)

The problem is to find h satisfying (2.3) for any distribution satisfying A1.
The set of all possible densities h is thus,

H =

{

h density | for any variable η, E|η|r = 1 ⇒ E

(

h′(η)

h(η)
η

)

= −1

}

.

We note that this set contains the set

H′ =

{

h density | ∃λ, h′(x)

h(x)
x+ 1 = λ(|x|r − 1)

}

.
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Table 1: Choice of h depending on the prediction problem.
Problem constraint solution instrumental density h τ2

h,f

Et−1 |ǫt|
r
, r > 0 E |ηt|

r = 1 σr
t c|x|λ−1 exp (−λ|x|r/r) , λ > 0

E|ηt|
2r−1

r2

Et−1 |ǫt|
r
, r < 0 E |ηt|

r = 1 σr
t c|x|−λ−1 exp (λ|x|r/r) , λ > 0

E|ηt|
2r−1

r2

Et−1 log |ǫt| E log |ηt| = 0 log σt

√

λ/π|2x|−1 exp
{

−λ(log |x|)2
}

E(log |ηt|)2

Now we prove that H ⊂ H′. If h 6∈ H′ then for some x1, x2 with |x1| 6= 1,
and λ1 6= λ2

h′(xi)

h(xi)
xi + 1 = λi(|xi|r − 1), i = 1, 2.

Let η such that P (η = xi) = pi > 0 with p1 + p2 = 1, and (|x1|r − 1)p1 +
(|x2|r − 1)p2 = 0. Then E|η|r = 1 and

E

(

h′(η)

h(η)
η

)

+1 = λ1(|x1|r−1)p1+λ2(|x2|r−1)p2 = (λ1−λ2)(|x1|r−1)p1 6= 0.

Then h 6∈ H. We have proven that H = H′. It remains to verify that
H = C(r) by solving the differential equation involved in the definition of H′,
and the proposition follows. �

In view of Propositions 2.1 and 2.2, it is not restrictive to choose h in the
set C(r) with λ = 1. The choice of the instrumental density h is thus entirely
determined by r, that is by the prediction problem. This is summarized in
Table 1. The last column provides the factors τ 2

h,f which, by Theorem 2.1,
measures the impact of h on the asymptotic variance of the QMLE.

The next result characterizes the set of densities f of ηt for which a given h
is optimal.

Corollary 2.1. Let the assumptions of Theorem 2.1 hold for some h ∈ C(r).
Then the generalized QMLE based on h coincides with the MLE when the
density f of ηt belongs to C(r).

Conversely, when f 6∈ C(r) but is such that τ 2
f,f exists, any generalized

QMLE based on h ∈ C(r) is asymptotically inefficient in the sense that τ 2
f,f <

τ 2
h,f .
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Proof. The direct part is straightforward since we have seen that the QMLE
does not depend on the choice of h ∈ C(r).

Now suppose f 6∈ C(r) for r 6= 0. Then, by Cauchy-Schwarz

τ 2
h,f

τ 2
f,f

= Var

(

1 +
f ′(η0)

f(η0)
η0

)

Var

( |η0|r − 1

r

)

≥
{

Cov

(

f ′(η0)

f(η0)
η0,

|η0|r
r

)}2

=

{

E

(

f ′(η0)

f(η0)
η0
|η0|r
r

)

+
1

r

}2

= 1

where the last equality is obtained by integration by part. The inequality is
strict except if

1 +
f ′(η0)

f(η0)
η0 = K(|η0|r − 1), a.s.

for some constant K. The last equality is equivalent to f ∈ C(r), as already
seen. A similar argument holds when r = 0. �

3 Asymptotic properties for the mixed ap-

proach

The mixed approach involves two steps. In a first step, the model is estimated
by the standard QMLE and, in a second step, the expectation involved in
(1.2) (or (1.3)) is estimated using the estimated rescaled innovations. To
obtain the asymptotic properties of this method, it is necessary to derive the
joint asymptotic distribution of the estimators of the two steps.

To be able to apply the standard gaussian QMLE, we need to reparame-
terize the model when A1 holds. Assume that

B0: Eη4
0 <∞ and E|η0|2r <∞ when r 6= 0, E log2 |η0| <∞ when r = 0,

and let
η∗t =

ηt
√

Eη2
t

.

The following assumption is required to reparameterize the model.

B1: There exists a function F such that for any θ ∈ Θ, for any K > 0,
and any (xi)i

Kσ(x1, x2, . . . ; θ) = σ(x1, x2, . . . ; θ
∗), where θ∗ = F (θ,K).
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Standard GARCH models obviously verify this assumption with

F (θ,K) = (K2ω,K2α1, . . . , K
2αq, β1, . . . , βp)

′ (3.1)

and usual notations. Let θ∗0 = F (θ0,
√
µ2) where µs = E|ηt|s for s 6= 0. The

reparameterized model is

{

ǫt = σ∗
t η

∗
t , Eη∗2t = 1,

σ∗
t = σ(ǫt−1, ǫt−2, . . . ; θ

∗
0)

(3.2)

The gaussian QMLE of θ∗0, denoted by θ̂∗n, is defined as a maximizer over Θ
of

1

n

n
∑

t=1

log
1

σ̃t(θ)
φ

(

ǫt
σ̃t(θ)

)

. (3.3)

Let the rescaled residuals

η̂∗t =
ǫt
σ̂∗

t

, where σ̂∗
t = σ(ǫt−1, ǫt−2, . . . , ǫ̃0, ǫ̃−1, . . . ; θ̂

∗
n).

We define

µ̂∗
r =

1

n

n
∑

t=1

|η̂∗t |r, µ∗
r = E|η∗t |r =

1

µ
r/2
2

, for r 6= 0,

µ̂∗
0 =

1

n

n
∑

t=1

log |η̂∗t |, µ∗
0 = E log |η∗t | = −1

2
log µ2, for r = 0,

and κs = E|ηt|s

µ
s/2

2

for any s 6= 0. The next result gives the joint asymptotic

distribution of the QMLE and µ̂∗
r.

Theorem 3.1. If A0-A2, B0, B1 and, with δ = 2, A5, A8-A10 hold, and

θ∗0 ∈
◦

Θ, then

( √
n
(

θ̂∗n − θ∗0

)

√
n(µ̂∗

r − µ∗
r)

)

L→ N (0,Σr), (3.4)

where

Σr =

(

(κ4 − 1)J−1
∗ −λrJ

−1
∗ Ω∗

−λrΩ
′
∗J

−1
∗ σ2

µ∗
r

)

,
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J∗ = E

(

1

σ∗4
t

∂σ2
t (θ

∗
0)

∂θ

∂σ2
t (θ

∗
0)

∂θ′

)

, Ω′
∗ = E

(

1

σ∗2
t

∂σ2
t (θ

∗
0)

∂θ′

)

and

λr =
r

2
κr(κ4 − 1) − (κ2+r − κr), σ2

µ∗
r

= κ2r − κ2
r +

r

2
κr(λr − κ2+r + κr)

for r 6= 0, and

λ0 =
κ4 − 1

2
− Cov

(

log |ηt|,
η2

t

µ2

)

, σ2
µ∗

0

= Var (log |ηt|) + λ0 −
κ4 − 1

4
.

Remark 3.1. In the proof, the following relation, of independent interest,
is established:

Ω′
∗J

−1
∗ Ω∗ = 1. (3.5)

To show this equality we use an argument based on asymptotic results. A
direct proof, based on algebra, will be given in the standard GARCH case
(see the proof of Theorem 4.1).

Remark 3.2. In the proof of (3.5) it is shown that µ̂∗
2 = µ∗

2(= 1), a.s. This
entails that, when r = 2, the two approaches for predicting ǫ2t are the same.
In this case, the asymptotic distribution in (3.4) is degenerate.

Remark 3.3. In the Gaussian case, Σr is block-diagonal. Indeed, assume
that ηt follows a N (0, N

−2/r
r ) distribution where r > 0 and Nr = E|U |r if U

is N (0, 1) distributed. Then κ4 = 3 and κs = (s−1)κs−2 for s ≥ 2. It follows
that λr = 0.

4 Comparison of the predictors based on the

two approaches

By the direct approach, based on the generalized QMLE θ̂n,h, the optimal
prediction En|ǫn+1|r is estimated by

Pn,h = σ̃r(ǫn, ǫn−1, . . . ; θ̂n,h).

By the mixed approach, based on the Gaussian QMLE θ̂∗n in Model (3.2),
the same optimal prediction is estimated by

P ∗
n = σ̃r(ǫn, ǫn−1, . . . ; θ̂

∗
n)µ̂∗

r = σ̃r(ǫn, ǫn−1, . . . ;F (θ̂∗
′

n , {µ̂∗
r}1/r)).
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The optimal prediction En log |ǫn+1| can similarly be estimated by

Pn,h = log σ̃(ǫn, ǫn−1, . . . ; θ̂n,h)

and

P ∗
n = log σ̃(ǫn, ǫn−1, . . . ; θ̂

∗
n) + µ̂∗

0 = log σ̃(ǫn, ǫn−1, . . . ;F (θ̂∗
′

n , e
µ̂∗

0)).

To compare the predictors it suffices to compare the asymptotic distributions
of θ̂n,h and θ̃n = Gr(θ̂

∗′

n , µ̂
∗
r) with Gr(θ̂

∗′

n , µ̂
∗
r) = F (θ̂∗

′

n , {µ̂∗
r}1/r) if r 6= 0, and

G0(θ̂
∗′

n , µ̂
∗
0) = F (θ̂∗

′

n , e
µ̂∗

0)). Under smoothness assumptions on the function F
we have

θ̃n → θ0 = Gr(θ
∗′

0 , µ
∗
r), a.s.

and

√
n
(

θ̃n − θ0

)

L→ N
(

0,

[

∂Gr(θ
∗′

0 , µ
∗
r)

∂(θ′, µ)

]

Σr

[

∂Gr(θ
∗′

0 , µ
∗
r)

′

∂(θ′, µ)′

])

. (4.1)

The problem is thus to compare

4τ 2
h,fJ

−1 and Γr =

[

∂Gr(θ
∗′

0 , µ
∗
r)

∂(θ′, µ)

]

Σr

[

∂Gr(θ
∗′

0 , µ
∗
r)

′

∂(θ′, µ)′

]

.

4.1 The standard GARCH(p, q) case

To our knowledge, the mildest assumptions for the
√
n consistency and AN

of the gaussian QMLE for standard GARCH with iid errors were obtained
by Berkes, Horváth and Kokoszka (2003) and Francq and Zakoïan (2004)
(see Escanciano (2009) for an extension to martingale differences, and Hall
and Yao (2003) for the asymptotic behavior of the QMLE when Eη4

t =
∞). In this section, the results of Theorem 2.1 are applied to the standard
GARCH(p, q) model

{

ǫt = σtηt

σ2
t = ω0 +

∑q
i=1 α0iǫ

2
t−i +

∑p
j=1 β0jσ

2
t−j

(4.2)

where θ0 = (ω0, α01, . . . , β0p)
′ satisfies ω0 > 0, α0i ≥ 0, β0j ≥

0. Let θ̂∗n = (ω̂∗, α̂∗
1, . . . , β̂

∗
p) be the Gaussian QMLE of θ∗0 =

(µ2ω0, µ2α01, . . . , µ2α0q, β01, . . . , β0p)
′. Let Aθ(z) =

∑q
i=1 αiz

i and Bθ(z) =
1 −∑p

j=1 βjz
j . Let γ(A0) denote the top-Lyapunov exponent associated to

Model (4.2) (see e.g. Francq and Zakoïan (2004)). For the standard GARCH,
several assumptions of Section 2 can be made more explicit as follows.
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C: γ(A0) < 0; ∀θ ∈ Θ,
∑p

j=1 βj < 1 and ω > ω for some
ω > 0; |η0| has a non degenerate distribution; if p > 0,
Aθ0

(z) and Bθ0
(z) have no common root, Aθ0

(1) 6= 0, and α0q + β0p 6=
0.

The next two theorems provide the asymptotic distributions of the esti-
mators of θ0 involved in the two methods.

Theorem 4.1 (Standard GARCH(p, q)). Let r 6= 0. For h ∈ C(r), E|η0|r =

1, E|η0|2r <∞ and under C, the one-step estimator of θ0 ∈
◦

Θ satisfies

√
n
(

θ̂n,h − θ0

)

L→ N
{

0,

(

2

r

)2(
κ2r

κ2
r

− 1

)

J−1

}

. (4.3)

Under the same assumptions and Eη4
0 < ∞, the two-step estimator is

given by θ̃n = ({µ̂∗
r}2/rω̂∗, {µ̂∗

r}2/rα̂∗
1, . . . , {µ̂∗

r}2/rα̂∗
q , β̂

∗
1 , . . . , β̂

∗
p) and satisfies

√
n
(

θ̃n − θ0

)

L→ N
{

0, (κ4 − 1)J−1 +

[

(

2

r

)2(
κ2r

κ2
r

− 1

)

− (κ4 − 1)

]

θ0θ
′

0

}

(4.4)

where θ0 =

(

θ
[1:q+1]
0

0p

)

, θ
[1:q+1]
0 = (ω0, α01, . . . , α0q)

′.

It is interesting to note that when applied to the Gaussian QML (r = 2),
the assumptions of this theorem reduce to those of the aforementioned papers.

Theorem 4.2 (Standard GARCH(p, q) when r = 0). For h ∈ C(0),

E log |η0| = 0, E log2 |η0| <∞ and under C, the one-step estimator of θ0 ∈
◦

Θ
satisfies √

n
(

θ̂n,h − θ0

)

L→ N
{

0, 4Var(log |η0|)J−1
}

. (4.5)

Under the same assumptions and Eη4
0 < ∞, the two-step estimator is

given by θ̃n = (e2µ̂∗
0 ω̂∗, e2µ̂∗

0 α̂∗
1, . . . , e

2µ̂∗
0 α̂∗

q , β̂
∗
1 , . . . , β̂

∗
p) and satisfies

√
n
(

θ̃n − θ0

)

L→ N
{

0, (κ4 − 1)J−1 + [4Var(log |η0|) − (κ4 − 1)] θ0θ
′

0

}

.

(4.6)

The link between the two preceding theorems is given by the following
result, showing the continuity at r = 0 of the limiting distribution of the two
estimators θ̃n and θ̂n,h.
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Proposition 4.1 (Continuity of the asymptotic variance at r = 0). Let U
denote a fixed variable (that is independent of r) and assume that

η0
d
=

U

(E|U |r)1/r
.

Then, under the assumptions of Theorems 4.1 and 4.2, we have

lim
r→0

(

2

r

)2(
κ2r

κ2
r

− 1

)

= 4Var(log |η0|).

Proof. Note that EU4 < ∞ and E(log |U |)2 < ∞. Let f(r) = E|U |r.
Then, by application of the Lebesgue theorem, f ′(r) = E(|U |r log |U |) and
f ′′(r) = E(|U |r{log |U |}2) for r small enough. Hence

E|U |r = 1 + rE(log |U |) +
r2

2
E({log |U |}2) + o(r2).

Thus
E|U |2r − (E|U |r)2 = r2Var(log |U |) + o(r2).

Because
κ2r

κ2
r

− 1 =
E|U |2r

(E|U |r)2
− 1,

the result straightforwardly follows. �

The next result allows for a very simple comparison of the efficiencies of
the two methods.

Corollary 4.1 (A criterion for efficiency comparison). Under the assump-
tions of Theorem 4.1 (resp. Theorem 4.2), the asymptotic variance matrices
of the two estimators verify

Varas

{√
n
(

θ̂n,h − θ0

)}

� Varas

{√
n
(

θ̃n − θ0

)}

(4.7)

in the sense of positive semi-definite matrices, if and only if

(

2

r

)2(
κ2r

κ2
r

− 1

)

≥ κ4 − 1 (resp. 4Var(log |η0|) ≥ κ4 − 1). (4.8)
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Proof. It follows from Theorem 4.1 that, for r 6= 0,

Varas{
√
n
(

θ̂n,h − θ0

)

} − Varas{
√
n
(

θ̃n − θ0

)

}

=

[

(

2

r

)2(
κ2r

κ2
r

− 1

)

− (κ4 − 1)

]

(J−1 − θ0θ
′

0)

A similar result holds for r = 0, by Theorem 4.2. It remains to show that

J−1 � θ0θ
′

0. (4.9)

In view of (A.17),

θ
′

0J = E(Zt), Zt =
1

σ2
t (θ0)

∂σ2
t (θ0)

∂θ
.

Thus J − Jθ0θ
′

0J = Var(Zt) is positive semi-definite. It follows that

y′J(J−1 − θ0θ
′

0)Jy = y′(J − Jθ0θ
′
0J)y ≥ 0, ∀y ∈ R

q+1, y 6= 0.

Setting x = Jy, we thus have

x′(J−1 − θ0θ
′

0)x ≥ 0, ∀x ∈ R
q+1, x 6= 0

and (4.9) is proven. �

Note that (4.9) has interest beyond the proof. In particular, it can be used
to obtain a simple lower bound for the asymptotic variance of the generalized
QMLE.

Remark 4.1. It is worth noting that the asymptotic efficiency comparison of
the two approaches only depends on r and some moments of the iid process.
We shall see below that this property also holds for a family of nonlinear
GARCH. The fact that the comparison does not involve the parameter θ0 is
surprising. This result may have crucial importance for practical purposes.
It will allow to select straightforwardly the more efficient method, in function
of r and estimated moments of ηt. The latter can be obtained from stan-
dardized residuals of a standard GARCH estimation. From a single GARCH
estimation, one should be able to decide which method is asymptotically the
best for any value of r. This will be illustrated in Section 5. Of course,
formal tests of the inequalities in (4.8) could be investigated, but this is left
for further research.
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Figure 1 shows the ARE of the one-step QMLE relative to the two step
QMLE as measured by the ratios

(κ4 − 1)/

(

2

r

)2(
κ2r

κ2
r

− 1

)

when r 6= 0, and
κ4 − 1

4Var(log |η0|)
when r = 0

for Student distributions. It is seen that the one-step method outperforms
the indirect one when r ∈ (0.5, 2). On the contrary, for r > 2 and small
or negative values of r, the two-step approach is preferable. The differences
are particularly spectacular for small value of ν. The ARE’s are displayed
as dots in the case r = 0. The continuity property when r approaches zero,
established in Proposition 4.1, can thus be visualized on this graph.

Figure 2 displays the same ratios for the Generalized Error Distribution
(GED) with parameter ν 1. Contrary to the previous graph, it can be seen
that the direct method can be superior to the two-step approach for r > 2.

4.2 The Asymmetric Power GARCH(p, q) case

The following nonlinear GARCH(p, q) model was introduced by Ding,
Granger and Engle (1993). Letting x+ = max(x, 0) and x− = min(x, 0)
we set, for a given δ > 0,

{

ǫt = σtηt

σδ
t = ω0 +

∑q
i=1 α0i+(ǫ+t−i)

δ + α0i−(−ǫ−t−i)
δ +

∑p
j=1 β0jσ

δ
t−j

(4.10)

where α0i+, α0i−, β0j are nonnegative coefficients, and ω0 > 0. This model
allows to capture the so-called "leverage effect", and generalizes models in-
troduced by Higgins and Bera (1992), and Zakoïan (1994).

Pan, Wang and Tong (2008) established that the strict stationarity condi-
tion writes γ(B0) < 0, where γ(B0) is the top-Lyapunov exponent associated
to Model (4.10). This condition entails the invertibility of the polynomial
Bθ0

(z) and allows to write the model under the form (1.1). It also ensures
the existence of E|ǫt|s for some s > 0.

1The density of η0 is of the form f(x) ∝ e−0.5|x|1/ν

.
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Figure 1: Relative efficiency of the one-step QMLE relative to the two step QMLE

for Student distributions with parameter ν.
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With obvious notation, Assumption B1 holds with

F (θ,K) = (Kδω,Kδα1+, K
δα1−, . . . , K

δαq−, β1, . . . , βp)
′.

Hamadeh and Zakoïan (2009) showed that the following assumption en-
tails AN of the Gaussian QMLE of θ0 = (ω0, α01+, . . . , α0q−, β01, . . . , β0p)

′.

D: γ(B0) < 0; ∀θ ∈ Θ,
∑p

j=1 βj < 1 and ω > ω for some ω > 0; if
P (ηt ∈ Γ) = 1 for a set Γ, then Γ has a cardinal |Γ| > 2; P [ηt > 0] ∈
(0, 1); if p > 0, Bθ0

(z) has no common root with Aθ0+(z) and Aθ0−(z).
Moreover Aθ0+(1) + Aθ0−(1) 6= 0 and α0q,+ + α0q,− + β0p 6= 0.

Theorem 4.3 (Asymmetric Power GARCH(p, q)). Let r 6= 0. For h ∈ C(r),

E|η0|r = 1, E|η0|2r < ∞ and under D, the one-step estimator of θ0 ∈
◦

Θ
satisfies (4.3).

Under the same assumptions and Eη4
0 < ∞, the two-step estimator is

given by θ̃n = ({µ̂∗
r}δ/rω̂∗, {µ̂∗

r}δ/rα̂∗
1, . . . , {µ̂∗

r}δ/rα̂∗
q , β̂

∗
1 , . . . , β̂

∗
p) and satisfies

√
n
(

θ̃n − θ0

)

L→ N
{

0, (κ4 − 1)J−1 +

(

δ

2

)2
[

(

2

r

)2(
κ2r

κ2
r

− 1

)

− (κ4 − 1)

]

θ0θ
′

0

}

where θ0 =

(

θ
[1:2q+1]
0

0p

)

, θ
[1:2q+1]
0 = (ω0, α01+, . . . , α0q−)′.

Moreover, the conclusion of Corollary 4.1 holds true for Model (4.10):
the estimator θ̃n is asymptotically more efficient than θ̂n,h iff (4.8) holds.

4.3 The ARCH(∞) case

A process (ǫt) is called an ARCH(∞) if there exists a sequence of constants
ψ00 > 0 and ψ0i ≥ 0, i = 1, . . ., such that

ǫt = σtηt, σ2
t = ψ00 +

∞
∑

i=1

ψ0iǫ
2
t−i. (4.11)

This class of models, which extends that of the GARCH, was introduced
by Robinson (1991). Robinson and Zaffaroni (2006) and Douc, Roueff and
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Soulier (2008) showed that there exists a strictly stationary and non an-
ticipative solution to (4.11) satisfying E|ǫt|2s < ∞ if Asµ2s < 1, for some
s ∈ (0, 1], where As =

∑∞
i=1 ψ

s
0i and µ2s = E|ηt|2s. The reader is referred to

Giraitis, Kokoszka and Leipus (2000), Kazakevičius and Leipus (2007), Gi-
raitis, Leipus and Surgailis (2008), and the references therein, for the other
probabilistic properties of these models. Conditions ensuring consistency
and asymptotic normality of the QMLE have been obtained by Robinson
and Zaffaroni (2006). Parameterizing the coefficients as ψ0i = ψi(θ0) with
known functions ψi(·) : Θ → [0,∞), for s ∈ (0, 1] let us consider the following
assumptions. In these assumptions and in the forthcoming derivations, the
letter C denotes any positive constant whose exact value is unimportant.

E(s): Asµ2s < 1; ∀θ ∈ Θ, we have ψ0(θ) > ω for some ω > 0; if θ 6= θ0
then {ψi(θ)} 6= {ψi(θ0)}; |η0| has a non degenerate distribution; for
all i ≥ 1, supθ∈Θ ψi(θ) ≤ Ci−d−1 for some d such that s(d + 1) > 1;
for k = 1, 2, 3 and all i ≥ 0, ψi(·) has a continuous k-th derivative on
Θ such that, for all i1, . . . , ik ∈ {1, . . . , m},

∣

∣∂kψi(θ)/∂θi1 . . . ∂θik

∣

∣ ≤
Cψ1−ι

i (θ) for all ι > 0 when ψi(θ) > 0 and
∣

∣∂kψi(θ)/∂θi1 . . . ∂θik

∣

∣ = 0
when ψi(θ) = 0; ∀ι > 0, there exists a neighborhood V (θ0) of θ0 such
that supθ∈V (θ0) ψi(θ0)/ψi(θ) ≤ Cψ−ι

i (θ0) and supθ∈V (θ0) ψi(θ)/ψi(θ0) ≤
Cψ−ι

i (θ0); Kψi(θ) = ψi(θ
∗) where θ∗ = H(θ,K) and H is continuously

differentiable.

F(s): There exist V (θ0) neighborhood of θ0 and d0 > 1/2 such that
supθ∈V (θ0) ψi(θ) ≤ Ci−d0−1 and s(d0/2 + 3/4) > 1.

Theorem 4.4 (ARCH(∞)). Let r > 0. When r ∈ (0, 2], assume E(s) for
s = r/2. When r > 2, assume E|ǫ1|r <∞ and E(s) for some s ∈ (0, 1]. For
h ∈ C(r) and E|η0|r = 1 the one-step estimator θ̂n,h tends to θ0 a.s.

If, in addition, E|η0|2r <∞, θ0 ∈
◦

Θ, and F(s) holds, θ̂n,h has the asymp-
totic normal distribution given by (4.3).

Under the same assumptions and Eη4
0 < ∞, the two-step estimator is

given by θ̃n = H(θ̂∗n, µ̂
∗2/r
r ) and satisfies (4.1) with Gr(θ, µ) = H(θ, µ2/r).

Note that, in F(s), the constraints on d0 are exactly those of the Assumption
H of Robinson and Zaffaroni (2006).

Remark 4.2. The simplest ARCH(∞) is obtained for ψi(θ) = c/id+1 when
i ≥ 1 and ψ0(θ) = 1, with θ = (c, d) ∈ Θ = [c, c]× [d, d] where 0 < c < c and
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0 < d < d. In this case E(s) reduces to

c0

∞
∑

i=1

i−(d0+1)sµ2s < 1 and s(d+ 1) > 1

and F(s) to
d0 > 1/2 and s(d0/2 + 3/4) > 1.

5 Empirical Illustration

We now compare the two prediction methods on daily returns of 10 world
stock market indices, namely the CAC, DAX, DJA, DJI, DJT, DJU, FTSE,
Nikkei, SMI and SP500, from January 2, 1990, to January 22, 2009, for the
indices for which such historical data exist. For each series ǫt of length N ,
and for n varying from 250 to N − 1, an "historical" prediction is computed
by the formula

Historicn+1 =
1

250

n
∑

t=n−249

|ǫt+1|r.

The Mean Square Prediction Error (MSPE)

1

N − 250

N−1
∑

n=250

(|ǫn+1|r − Historicn+1)
2

is reported in the column "Historical" of Table 2. The table also dis-
plays the MSPE’s of the parametric and mixed prediction methods based
on GARCH(1,1) models fitted on 250 past values:

1

N − 250

N−1
∑

n=250

(|ǫn+1|r − Pn,h)
2 and

1

N − 250

N−1
∑

n=250

(|ǫn+1|r − P ∗
n)2

where Pn,h = σ̃r(ǫn, . . . , ǫn−249; θ̂n,h) and P ∗
n = σ̃r(ǫn, . . . , ǫn−249; θ̂

∗
n)µ̂∗

r. In
almost all cases, the historical method is outperformed by the approaches
based on the GARCH(1,1) model. For r = 1, r = 1.5 and r = 0.5, the direct
approach is superior to the two-step method (with some cases of equality,
mostly for r = 0.5) in terms of MSPE. This is not surprising in view of
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Corollary 2.1 and the efficiency comparisons displayed Figures 1 and 2. 2

For r = 0, that is for the prediction of log |ǫt|, the results are more balanced:
for five assets the direct approach is better, while the indirect one is preferable
for the remaining five assets. Finally, the two-step approach provides better
results when r = −0.5, in all cases except two. Again, this is not surprising
from the theoretical results of Section 4.

Another comparison of the two approaches can be done, based on the
results of Section 4. Figure 3 presents the estimated relative efficiencies of
the one-step QMLE relative to the two step QMLE for the ten stock index
returns. A standard GARCH(1,1) model is estimated by Gaussian QML
in a first step. In a second step, the standardized residuals η̂∗t = ǫt/σ̂

∗
t

are computed. Finally, the generalized kurtosis coefficients are estimated to
compute the ARE’s

(κ̂4 − 1)/

(

2

r

)2(
κ̂2r

κ̂2
r

− 1

)

, κ̂s =
1

n

n
∑

t=1

|η̂∗t |s.

The conclusions are similar to those drawn from the MSPE: the direct ap-
proach is superior for r ∈ (0.5, 2); the indirect one is preferable for r > 2 or
r < −0.5. For r ∈ (−0.5, 0.5) the results are more balanced.

6 Conclusion

We have shown that, in a general conditionally heteroskedastic models, the
optimal predictions of powers (or the logarithm) of the observed process can
be estimated in one step, using a non gaussian QML method applied to a
reparameterization of the model. By comparison, the traditional approach
requires estimating moments of the latent independent process.

We obtained a complete characterization of the omnibus instrumental
densities h which render the generalized QMLE universally consistent. The
asymptotic properties of the generalized QMLE are studied in a quite general
framework (including in particular the ARCH(∞)) under conditions which

2Of course, for these assets the underlying error distribution is unknown but many
empirical studies have shown that distributions such as the Student or GED are plausible
for stock returns.
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Figure 3: Estimated relative efficiency of the one-step QMLE relative to the two

step QMLE for stock index returns.
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Table 2: Mean square prediction error of |ǫn+1|r for 10 series of daily returns
(ǫt) and different powers r. For the column "Historic", the predictions are
rolling averages of the r-powers the last 250 returns. The two other predic-
tions methods are obtained from GARCH(1,1) models fitted on the last 250
values.
r -0.5 -0.5 -0.5 0 0 0 0.5 0.5 0.5

Historic Pn,h P ∗
n Historic Pn,h P ∗

n Historic Pn,h P ∗
n

CAC 4.405 4.405 4.384 1.357 1.322 1.317 0.181 0.169 0.169
DAX 5.514 5.478 5.484 1.382 1.322 1.328 0.188 0.172 0.173
DJA 4.033 4.018 4.026 1.399 1.360 1.367 0.137 0.127 0.128
DJI 4.564 4.544 4.538 1.381 1.340 1.344 0.142 0.132 0.133
DJT 5.296 5.323 5.275 1.322 1.303 1.298 0.179 0.173 0.173
DJU 6.208 6.233 6.176 1.322 1.272 1.270 0.144 0.130 0.130
FTSE 3.899 3.888 3.878 1.312 1.267 1.263 0.143 0.131 0.131
Nikkei 6.459 6.454 6.431 1.431 1.381 1.379 0.210 0.194 0.195
SMI 5.896 5.883 5.864 1.340 1.271 1.274 0.156 0.139 0.140
SP500 8.524 8.522 8.503 1.412 1.371 1.372 0.146 0.135 0.135

r 1 1 1 1.5 1.5 1.5 2 2 2
Historic Pn,h P ∗

n Historic Pn,h P ∗
n Historic Pn,h P ∗

n

CAC 0.896 0.805 0.806 4.418 3.919 3.925 26.181 23.671 23.671
DAX 0.972 0.861 0.867 4.944 4.391 4.407 29.561 27.106 27.106
DJA 0.534 0.474 0.475 2.323 2.018 2.026 13.280 11.871 11.871
DJI 0.583 0.521 0.523 2.666 2.337 2.347 15.931 14.375 14.375
DJT 0.909 0.865 0.870 4.859 4.726 4.840 36.731 40.754 40.754
DJU 0.659 0.550 0.551 3.558 2.903 2.908 26.030 22.396 22.396
FTSE 0.600 0.524 0.526 2.623 2.252 2.257 14.311 12.487 12.487
Nikkei 1.119 0.989 0.991 5.950 5.060 5.069 40.025 33.775 33.775
SMI 0.686 0.584 0.584 3.022 2.526 2.525 15.985 13.588 13.588
SP500 0.632 0.557 0.557 3.078 2.654 2.654 19.682 17.395 17.395
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reduce to the weakest ones in the particular case of the standard GARCH.
We also derived the asymptotic properties of the two-step approach. It is im-
portant to note that the technical assumptions required for the two methods
are not exactly the same. In particular, the existence of a fourth moment for
the iid errors is required for the AN of the gaussian QMLE. It follows that
the validity of the standard two-step approach is questionable for predicting
|ǫt|r with r < 2 when Eη4

t = ∞. The one-step approach allows to handle this
situation.

In the case of finite-order GARCH models, we obtained a surprisingly sim-
ple expression for the ARE of the two methods. The latter does not depend
on the parameter value, but vary with the power r and some characteristics
of the distribution of the iid process. In practice it is simple to estimate this
ARE, and therefore it is possible to determine which method is asymptoti-
cally the best. Numerical comparisons for two classes of distributions and an
empirical study showed that the one-step approach is in general preferable
when r is neither too large nor too small. Future work will propose tests
for the superiority of one method over the other based on a single gaussian
QMLE of the model.

A Technical assumptions and proofs

Let ∆t(θ) = σ̃t(θ) − σt(θ) and let at = supθ∈Θ |∆t(θ)|.

A5: The function θ 7→ σ(x1, x2, . . . ; θ) is continuous. When δ > 0 we have E|ǫ0|s < ∞
and

∑∞
t=1(Ea

s/δ
t )1/2 <∞ for some s > 0, when δ ∈ [−1, 0] we have

∑∞
t=1(Ea

s
t )

1/2 <

∞ for some s ∈ (0, 1), when δ < −1 we have
∑∞

t=1(Ea
−s/(δ+1)
t )1/2 < ∞ and

E supθ∈Θ σ
s
0(θ) <∞ for some s ∈ (0,min {−2(1 + δ), δ(1 + δ)}) .

A6: θ0 belongs to the interior
◦

Θ of Θ.

A7: h is twice differentiable with |u2 (h′(u)/h(u))
′ | ≤ C0(1 + |u|δ) for all u ∈ R and

E|η0|2δ <∞.

A8: For any real sequence (xi), the function θ 7→ σ(x1, x2, . . . ; θ) has continuous second-
order derivatives. We have Eas1

t < ∞ for some s1 ∈ (0, 1). There exists a neigh-
borhood V (θ0) of θ0 and a positive number s2 such that

∑∞
t=1(Eb

s1s2
t )1/2 <∞ and

E|ǫ0|2δs1s2 <∞ where

bt = sup
θ∈V (θ0)

∥

∥

∥

∥

∂∆t(θ)

∂θ

∥

∥

∥

∥

, s1s2 ∈ (0, 1), 2δs2 > −1.
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A9: There exists a neighborhood V (θ0) of θ0 such that, the following variables

sup
θ∈V (θ0)

∥

∥

∥

∥

1

σt(θ)

∂σt(θ)

∂θ

∥

∥

∥

∥

4

, sup
θ∈V (θ0)

∥

∥

∥

∥

1

σt(θ)

∂2σt(θ)

∂θ∂θ′

∥

∥

∥

∥

2

, sup
θ∈V (θ0)

∣

∣

∣

∣

σt(θ0)

σt(θ)

∣

∣

∣

∣

2δ

have finite expectations.

A10: Let ct = supθ∈V (θ0) |∆t(θ)| where V (θ0) is a neighborhood of θ0. When δ > 0

we have E|ǫ0|s < ∞ and
∑∞

t=1(Ec
s/2δ
t )1/2 < ∞ for some s ∈ (0, 4δ), when

δ ∈ [−1, 0] we have
∑∞

t=1(Ec
s/2
t )1/2 < ∞ for some s ∈ (0, 1), when δ < −1

we have
∑∞

t=1(Ec
−s/2(δ+1)
t )1/2 < ∞ and E supθ∈Θ σ

s
0(θ) < ∞ for some s ∈

(0,min {−4(1 + δ), 2δ(1 + δ)}) .

Let C and ρ be generic constants, whose values will be modified along the proofs, such
that C > 0 and 0 < ρ < 1.

A.1 Proof of Theorem 2.1.

The consistency is a consequence of the following intermediate results:

i) lim
n→∞

sup
θ∈Θ

|Qn(θ) − Q̃n(θ)| = 0 , a.s.

ii) if θ 6= θ0 , Eg(ǫ1, σ1(θ)) < Eg(ǫ1, σ1(θ0)) ,

iii) any θ 6= θ0 has a neighborhood V (θ) such that

lim sup
n→∞

sup
θ∗∈V (θ)

Q̃n(θ∗) < lim sup
n→∞

Q̃n(θ0) , a.s.

where

Qn(θ) =
1

n

n
∑

t=1

g(ǫt, σt(θ)).

The asymptotic normality is proven by means of the following intermediate results: for
some neighboorhood V (θ0) of θ0,

iv) lim
n→∞

√
n sup

θ∈V (θ0)

∥

∥

∥

∥

∂

∂θ
Qn(θ) − ∂

∂θ
Q̃n(θ)

∥

∥

∥

∥

= 0 , in probability,

v)
∂2

∂θ∂θ′
Qn(θ∗) → Eg2(η0, 1)

4
J , in probability,

vi)
√
n
∂

∂θ
Qn(θ0)

L→ N
(

0,
Eg2

1(η0, 1)

4
J

)

,

for any θ∗ between θ̂n,h and θ0.
To save place, we only give the proof of i) and iv) which deal with the effect of the

initial values. These points constitute the most delicate parts of the proof, and illustrate
the necessity of assumptions of the form A4, A5 and A8-A10.
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We begin to show i). Using a Taylor expansion, almost surely

sup
θ∈Θ

|Qn(θ) − Q̃n(θ)| ≤ n−1
n
∑

t=1

sup
θ∈Θ

|g(ǫt, σt(θ)) − g(ǫt, σ̃t(θ))|

≤ n−1
n
∑

t=1

sup
θ∈Θ

|g1(ǫt, σ∗
t (θ))||∆t(θ)|

≤ n−1
n
∑

t=1

at sup
θ∈Θ

∣

∣

∣

∣

1

σ∗
t

ǫt
σ∗

t

h′

h

(

ǫt
σ∗

t

)∣

∣

∣

∣

+
1

ω
n−1

n
∑

t=1

at

≤ n−1
n
∑

t=1

at|ǫt|δ sup
θ∈Θ

∣

∣

∣

∣

1

σ∗
t

∣

∣

∣

∣

1+δ

+
C

n

n
∑

t=1

at (A.1)

where σ∗
t (θ) is between σ̃t(θ) and σt(θ). The last two inequalities rest on Assumptions A4

and A2. First suppose δ ≥ −1. Then the last supremum is bounded by C. If δ > 0, by
the Markov and Cauchy-Schwarz inequalities and A5, we deduce

∞
∑

t=1

P(at|ǫt|δ > ε) ≤
∞
∑

t=1

(

Ea
s/δ
t E|ǫt|s

)1/2

ε
s
2δ

<∞ (A.2)

and thus at|ǫt|δ → 0 a.s by the Borel-Cantelli lemma. The first term in (A.1) thus
tends to zero a.s., when δ > 0, by the Cesàro lemma. Now, if δ ∈ [−1, 0], we note that
E|ǫt|δ < ω−δE|ηt|δ <∞. Note also that, for s ∈ (0, 2), the cr inequality (see Loève, 1977)
entails

(

n−1
n
∑

t=1

at|ǫt|δ
)s/2

≤ n−s/2
∞
∑

t=1

a
s/2
t |ǫt|δs/2.

The last sum is a.s. finite since its expectation is finite by A5, Cauchy-Schwarz’s inequality
and E|ǫt|δs < ∞ (because s ∈ (0, 1)). Hence the first term in (A.1) tends to zero a.s.
when δ ∈ [−1, 0]. Now suppose δ < −1. Observe that supθ∈Θ σ

∗
t (θ) ≤ supθ∈Θ σt(θ) + at.

It follows that the first term in (A.1) can be bounded by

C

n

n
∑

t=1

at|ηt|δ{sup
θ∈Θ

σt(θ) + at}−(1+δ)

≤ C

n

n
∑

t=1

at|ηt|δ{sup
θ∈Θ

σt(θ)}−(1+δ) +
C

n

n
∑

t=1

a−δ
t |ηt|δ. (A.3)

Now by A5,

∞
∑

t=1

P(at|ηt|δ{sup
θ∈Θ

σt(θ)}−(1+δ) > ε)

≤
∞
∑

t=1

(

Ea
s

−(1+δ)

t E supθ∈Θ σ
s
0(θ)

)1/2

E|ηt|
sδ

−2(1+δ)

ε
s

−2(1+δ)

<∞. (A.4)
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Thus, the first term in the right-hand side of (A.3) tends to zero a.s. by the Cesàro Lemma.
The second term is treated similarly. We have shown that the first term in the right-hand
side of (A.1) tends to zero a.s. whatever the value of δ. By the Borel-Cantelli lemma, we
show that the second term in (A.1) tends to zero a.s. noting that, in A5, the powers of
at are positive whatever the value of δ. Thus i) follows.

Now we prove iv). We have

∂

∂θ
Qn(θ) =

1

n

n
∑

t=1

g1(ǫt, σt(θ))
∂σt(θ)

∂θ
,

∂

∂θ
Q̃n(θ) =

1

n

n
∑

t=1

g1(ǫt, σ̃t(θ))
∂σ̃t(θ)

∂θ
.

It follows that

sup
θ∈V (θ0)

√
n

∥

∥

∥

∥

∂

∂θ
Qn(θ) − ∂

∂θ
Q̃n(θ)

∥

∥

∥

∥

≤ sup
θ∈V (θ0)

1√
n

n
∑

t=1

|g1(ǫt, σt(θ)) − g1(ǫt, σ̃t(θ))|
∥

∥

∥

∥

∂σt(θ)

∂θ

∥

∥

∥

∥

+ sup
θ∈V (θ0)

1√
n

n
∑

t=1

|g1(ǫt, σ̃t(θ))|
∥

∥

∥

∥

∂σt(θ)

∂θ
− ∂σ̃t(θ)

∂θ

∥

∥

∥

∥

. (A.5)

Similarly to (A.1), the last term is bounded on V (θ0) by

C√
n

n
∑

t=1

bt

{

|ǫt|δ sup
θ∈V (θ0)

∣

∣

∣

∣

1

σ̃t(θ)

∣

∣

∣

∣

1+δ

+ 1

}

≤ C√
n

n
∑

t=1

bt|ηt|δ sup
θ∈V (θ0)

∣

∣

∣

∣

σt(θ0)

σ̃t(θ)

∣

∣

∣

∣

δ

+
C√
n

n
∑

t=1

bt. (A.6)

We will prove that

sup
t
E sup

θ∈V (θ0)

{

σt(θ0)

σ̃t(θ)

}δs1s2

<∞. (A.7)

A Taylor expansion gives, for σ∗
t (θ) between σt(θ0) and σ̃t(θ),

{

σt(θ0)

σ̃t(θ)

}2δs2

=

{

σt(θ0)

σt(θ)

}2δs2

− 2δs2at{σt(θ0)}2δs2

{

1

σ∗
t (θ)

}2δs2+1

≤
{

σt(θ0)

σt(θ)

}2δs2

+ Cat{σt(θ0)}2δs2

since 2δs2 + 1 > 0. Hence, by the cr-inequality

{

σt(θ0)

σ̃t(θ)

}δs2s1

≤
{

σt(θ0)

σt(θ)

}δs2s1

+ Ca
s1/2
t {σt(θ0)}δs2s1

The first term in the right-hand side admits a finite expectation using A9 and s2s1 < 1.
The second term admits a finite expectation by the Cauchy-Schwarz inequality and A8.
Hence (A.7) is proved.
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We have E|ηt|δs1s2 <∞ because s1s2 ∈ (0, 1). Therefore

E

(

∞
∑

t=1

b
s1s2/2
t |ηt|δs1s2/2 sup

θ∈V (θ0)

∣

∣

∣

∣

σt(θ0)

σ̃t(θ)

∣

∣

∣

∣

δs1s2/2
)

<∞

by A8, (A.7) and Cauchy-Schwarz’s inequality, and thus the random variable inside the
bracket is finite almost surely. It follows that

(

n−1/2
n
∑

t=1

bt|ηt|δ sup
θ∈V (θ0)

∣

∣

∣

∣

σt(θ0)

σ̃t(θ)

∣

∣

∣

∣

δ
)s1s2/2

≤ n−s1s2/4
∞
∑

t=1

b
s1s2/2
t |ηt|δs1s2/2 sup

θ∈V (θ0)

∣

∣

∣

∣

σt(θ0)

σ̃t(θ)

∣

∣

∣

∣

δs1s2/2

→ 0

which shows that the first term in the right-hand side of (A.6) goes to zero a.s. as n tends
to infinity. The second term is handled in a straightforward way. Thus the last term in
(A.5) converges to zero a.s. as n tends to infinity. Now note that

g2(x, σ) :=
∂g1(x, σ)

∂σ
=

1

σ2

[

1 +
x

σ

{

2
h′

h
+
x

σ

(

h′

h

)′
}

(x

σ

)

]

. (A.8)

The first term in the right-hand side of (A.5) is bounded by

1√
n

n
∑

t=1

|g2(ǫt, σ∗
t )||∆t(θ)|

∥

∥

∥

∥

∂σt(θ)

∂θ

∥

∥

∥

∥

≤ C√
n

n
∑

t=1

ct

(

1 + |ǫt|δ sup
θ∈V (θ0)

∣

∣

∣

∣

1

σ∗
t

∣

∣

∣

∣

1+δ
)

sup
θ∈V (θ0)

∥

∥

∥

∥

1

σt(θ)

∂σt(θ)

∂θ

∥

∥

∥

∥

(A.9)

where σ∗
t = σ∗

t (θ) is between σ̃t(θ) and σt(θ). For δ > 0 and s ∈ (0, 4δ) we have, by the cr
and Cauchy-Schwarz inequalities

E

(

∞
∑

t=1

ct(1 + |ǫt|δ) sup
θ∈V (θ0)

∥

∥

∥

∥

1

σt(θ)

∂σt(θ)

∂θ

∥

∥

∥

∥

)s/4δ

≤
∞
∑

t=1

{Ecs/2δ
t }1/2{E(1 + |ǫ0|s)}1/4







E

(

sup
θ∈V (θ0)

∥

∥

∥

∥

1

σ0(θ)

∂σ0(θ)

∂θ

∥

∥

∥

∥

)s/δ






1/4

<∞

by A10 and A9. For δ ∈ [−1, 0] and s ∈ (0, 1) we have, similarly,

E

(

∞
∑

t=1

ct(1 + |ǫt|δ) sup
θ∈V (θ0)

∥

∥

∥

∥

1

σt(θ)

∂σt(θ)

∂θ

∥

∥

∥

∥

)s/4

≤
∞
∑

t=1

{Ecs/2
t }1/2{E(1 + |ǫ0|sδ)}1/4

{

E

(

sup
θ∈V (θ0)

∥

∥

∥

∥

1

σ0(θ)

∂σ0(θ)

∂θ

∥

∥

∥

∥

)s}1/4

<∞.
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The case δ < −1 is treated in the same fashion, using an inequality similar to (A.3). By
arguments already used, we conclude that the first term in the right-hand side of (A.5)
goes to zero a.s. as n tends to infinity. Thus iv) is established.

A.2 Proof of Theorem 3.1

It will be sufficient to derive the advanced results for r 6= 0. The same arguments can be
used for r = 0.

Because Eη∗2t = 1, the identifiability condition A3, with η0 replaced by η∗0 , is satisfied
when h is the standard gaussian density. Note also that A4 and A7 hold with δ = 2. It
follows that, by Theorem 2.1,

√
n
(

θ̂∗n − θ∗0

)

= −J−1
∗

1√
n

n
∑

t=1

(

1 − η2
t

Eη2
t

)

1

σ∗2
t

∂σ2
t (θ∗0)

∂θ
+ oP (1)

L→ N (0, (κ4 − 1)J−1
∗ ). (A.10)

Let

ηt(θ) = ǫtσ
−1
t (ǫt−1, ǫt−2, . . . ; θ), η̃t(θ) = ǫtσ

−1
t (ǫt−1, . . . , ǫ1, ǫ̃0, ǫ̃−1, . . . ; θ),

µr(θ) =
1

n

n
∑

t=1

|ηt(θ)|r , for r 6= 0, µ0(θ) =
1

n

n
∑

t=1

log |ηt(θ)|, for r = 0.

We similarly define µ̃r(θ), obtained by replacing ηt(θ) by η̃t(θ). By A5, it can be shown
that

µ̂∗
r = µ̃r(θ̂

∗
n) = µr(θ̂

∗
n) + oP (n−1/2).

By (A.10) and arguments similar to those used to prove (4.26)-(4.29) in Francq and Zakoïan
(2004), a Taylor expansion gives

µr(θ̂
∗
n) = µr(θ

∗
0) +

∂µr(θ
∗
0)

∂θ′
(θ̂∗n − θ∗0) + oP (n−1/2)

with
∂µr(θ

∗
0)

∂θ′
=

−r
2n

n
∑

t=1

|η∗t |r
1

σ∗2
t

∂σ2
t (θ∗0)

∂θ′
=

−r
2
E|η∗t |rΩ′

∗ + oP (1).

It follows that

√
n(µ̂∗

r − µ∗
r) =

√
n{µr(θ

∗
0) − µ∗

r} −
r

2
E|η∗t |rΩ′

∗

√
n(θ̂∗n − θ∗0) + oP (1)

=
1√
n

n
∑

t=1

(|η∗t |r − µ∗
r) −

r

2
E|η∗t |rΩ′

∗

√
n(θ̂∗n − θ∗0) + oP (1)

=
1√
n

n
∑

t=1

(|ηt|r − 1)

µ
r/2
2

− r

2
κrΩ

′
∗

√
n(θ̂∗n − θ∗0) + oP (1). (A.11)
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Noting that Cov(|ηt|r, η2
t ) = µ

1+r/2
2 (κ2+r − κr) , we have

Cov

(

√
n
(

θ̂∗n − θ∗0

)

,
1√
n

n
∑

t=1

(|ηt|r − 1)

µ
r/2
2

)

= (κ2+r − κr)J
−1
∗ Ω∗ + oP (1).

It follows from (A.11) that

Cov
(√

n
(

θ̂∗n − θ∗0

)

,
√
n(µ̂∗

r − µ∗
r)
)

= −λrJ
−1
∗ Ω∗ + oP (1). (A.12)

We also have

Var
(√
n(µ̂∗

r − µ∗
r)
)

= κ2r − κ2
r +

r

2
κr{λr − (κ2+r − κr)}Ω′

∗J
−1
∗ Ω∗ + oP (1).

Finally, the CLT for martingale differences and the Wold-Cràmer device entail (3.4), pro-
vided that (3.5) holds.

Now we prove (3.5). First note that λ2 = 0. Because µ∗
2 = 1, the previous expansion

writes, when r = 2,

Var
(√
n(µ̂∗

2 − 1)
)

= (κ4 − 1)(1 − Ω′
∗J

−1
∗ Ω∗) + oP (1).

Note that by B1, for any c > 0, cσ̃(θ̂∗n) = σ̃(F (θ̂∗n, c)). Then the maximum of the function

c 7→ Q̃n(F (θ̂∗n, c)), where Q̃n is defined in (2.1) with h = φ, is uniquely obtained for
c = µ̂∗

2. Because c = 1 also yields a maximum, by definition of the QMLE, we must have
µ̂∗

2 = 1, a.s. The conclusion follows. �

A.3 Proof of Theorem 4.1

To prove (4.3) we note that Assumptions A4 and A7 are satisfied with δ = r. Assumptions
A5 and A8 are satisfied because the strict stationarity implies the existence of a moment
of order s, for some s > 0 (see Berkes et al (2003), Lemma 2.3), and because at, bt and ct
decrease at an exponential rate when t goes to infinity. More precisely, max{at, bt, ct} ≤
Kρt whereK is a random variable, measurable with respect to {ǫu, u ≤ 0}, and ρ ∈ (0, 1) is
a constant (see Francq and Zakoïan (2004), Equations (4.6) and (4.33)). The latter paper
also established the second part of A2 and A9. The conclusion follows from Theorem 2.1.

The expression of the two-step estimator θ̃n follows from (3.1). The convergence in
distribution (4.4) follows from Theorem 3.1. Let Γr denote the asymptotic variance in
(4.4). To derive an explicit expression for Γr we use (4.1) and the following calculations.
Denote by L the lag operator. The derivatives of σ2

t (θ) verify

Bθ(L)
∂σ2

t

∂ω
(θ) = 1, Bθ(L)

∂σ2
t

∂αi
(θ) = ǫ2t−i, i = 1, . . . , q,

Bθ(L)
∂σ2

t

∂βj
(θ) = σ2

t−j(θ), j = 1, . . . , p. (A.13)

In view of (3.1), Bθ0(L) = Bθ∗

0
(L). Moreover σ2

t−j(θ
∗
0) = µ2σ

2
t−j(θ0). Thus

∂σ2
t (θ∗0)

∂θ
= A

∂σ2
t (θ0)

∂θ
, A =

(

Iq+1 0
0 µ2Ip

)

. (A.14)
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It follows that

J∗ = µ−2
2 AJA, Ω∗ = µ−1

2 AΩ, (A.15)

where Ω = E
(

1
σ2

t

∂σ2
t (θ0)
∂θ

)

. Hence, the asymptotic variance of Theorem 3.1 is given by

Σr =

(

(κ4 − 1)µ2
2A

−1J−1A−1 −λrµ2A
−1J−1Ω

−λrµ2Ω
′J−1A−1 σ2

µ∗

r

)

Moreover, in view of Gr(θ
∗′

0 , µ
∗
r) =

(

(µ∗
r)

2/rω∗
0 , . . . , (µ

∗
r)

2/rα∗
0q, β

∗
01, . . . , β

∗
0p

)′
we have

[

∂Gr(θ
∗′

0 , µ
∗
r)

∂(θ′, µ)

]

=

[

1

µ2
A

2

r
µ

r
2
2 θ0

]

.

Hence the asymptotic variance of the reparameterized QMLE of the two-step approach

Γr = (κ4 − 1)J−1 − λr
2

r
µ

r
2
2

(

θ0Ω
′J−1 + J−1Ωθ

′

0

)

+ σ2
µ∗

r

(

2

r
µ

r
2
2

)2

θ0θ
′

0.

Now we will show that

J−1Ω = θ0, Ω′J−1Ω = 1 (A.16)

The second equality follows from (A.15) and (3.5) but we give a direct proof. In view of
(A.13), we have

Bθ(L)
∂σ2

t (θ)

∂θ[1:q+1]′
θ[1:q+1] = ω +

q
∑

i=1

αiǫ
2
t−i = Bθ(L)σ2

t (θ),

Because, by assumption C and the positivity of the βj , the roots of the polynomial Bθ(L)
are outside the unit circle, it follows that

∂σ2
t (θ0)

∂θ[1:q+1]′
θ
[1:q+1]
0 =

∂σ2
t (θ0)

∂θ′
θ0 = σ2

t (θ0), (A.17)

The first equality in (A.16) follows. We also have Ω′θ0 = 1. The second equality in (A.16)

follows. Because µ
r/2
2 = 1/κr, we thus have, by (A.16)

Γr = (κ4 − 1)J−1 +

[

σ2
µ∗

r

(

2

rκr

)2

− 4

rκr
λr

]

θ0θ
′

0

= (κ4 − 1)J−1 +

(

2

rκr

)2
[

κ2r − κ2
r +

r

2
κr(λr − κ2+r + κr) − rκrλr

]

θ0θ
′

0

= (κ4 − 1)J−1 +

(

2

rκr

)2
[

κ2r − κ2
r −

r

2
κr

{r

2
κr(κ4 − 1)

}]

θ0θ
′

0,

which completes the proof of (4.4). The theorem is established. �
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B Complementary proofs

B.1 Complementary results for the proof of Theorem
2.1

For the consistency, it remains to show ii) and iii), and for the asymptotic normality it
remains to show v) and vi).

To prove ii), it suffices to use A2-A3 and

g(ǫt, σt(θ)) = g

(

ηt,
σt(θ)

σt(θ0)

)

− log σt(θ0).

Indeed, we have

E{g(ǫ1, σ1(θ)) − g(ǫ1, σ1(θ0))} = E

{

g

(

ηt,
σt(θ)

σt(θ0)

)

− g(ηt, 1)

}

≤ 0,

with equality if and only if θ = θ0.
Now we will show iii). For any θ ∈ Θ and any positive integer k, let Vk(θ) be the open

ball with center θ and radius 1/k. We have,

lim sup
n→∞

sup
θ∗∈Vk(θ)∩Θ

Q̃n(θ∗)

≤ lim sup
n→∞

sup
θ∗∈Vk(θ)∩Θ

Qn(θ∗) + lim sup
n→∞

sup
θ∈Θ

|Qn(θ) − Q̃n(θ)|

≤ lim sup
n→∞

n−1
n
∑

t=1

sup
θ∗∈Vk(θ)∩Θ

g(ǫt, σt(θ
∗)) a.s.

where the second inequality comes from i). Note that since h is integrable and differen-
tiable, h is bounded. It follows, by A2, that

E sup
θ∗∈Vk(θ)∩Θ

g(ǫt, σt(θ
∗)) < log

1

ω
+ C <∞. (B.1)

Using an ergodic theorem for stationary and ergodic processes (Xt) such that E(Xt) exists
in R ∪ {−∞,+∞} (see Billingsley, 1995, p. 284 and 495), it follows that

lim sup
n→∞

sup
θ∗∈Vk(θ)∩Θ

Q̃n(θ∗) ≤ EXt,k(θ), Xt,k(θ) = sup
θ∗∈Vk(θ)∩Θ

g(ǫt, σt(θ
∗)) .

When k tends to infinity, the sequence {Xt,k(θ)}k decreases to Xt(θ) = g(ǫt, σt(θ)).
Thus {X−

t,k(θ)}k increases to X−
t (θ). By the Beppo-Levi theorem, EX−

t,k(θ) ↑ Eθ0X
−
t (θ)

when k ↑ +∞. By (B.1), the fact that the sequence {X+
t,k(θ)}k is decreasing, and the

Lebesgue theorem, EX+
t,k(θ) ↓ EX+

t (θ) when k ↑ +∞. Thus we have shown that EXt,k

converges to E{Xt(θ)} when k → ∞. By ii), iii) is proved.
As in the proof of Theorem 2.1 in Francq and Zakoïan (2004), the consistency is a

consequence of a standard compactness argument and of the intermediate results i-iii.
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Now we establish v). In view of A4 and A7, we have

∥

∥

∥

∥

∂2Qn(θ)

∂θ∂θ′

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

1

n

n
∑

t=1

∂2g(ǫt, σt(θ))

∂θ∂θ′

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

1

n

n
∑

t=1

g2(ǫt, σt(θ))
∂σt(θ)

∂θ

∂σt(θ)

∂θ′
+ g1(ǫt, σt(θ))

∂2σt(θ)

∂θ∂θ′

∥

∥

∥

∥

∥

≤ C

n

n
∑

t=1

(

1 +

∣

∣

∣

∣

σt(θ0)ηt

σt(θ)

∣

∣

∣

∣

δ
)

(
∥

∥

∥

∥

1

σt(θ)

∂2σt(θ)

∂θ∂θ′

∥

∥

∥

∥

+

∥

∥

∥

∥

1

σ2
t (θ)

∂σt(θ)

∂θ

∂σt(θ)

∂θ′

∥

∥

∥

∥

)

.

Hence

E sup
θ∈V (θ0)

∥

∥

∥

∥

∂2Qn(θ)

∂θ∂θ′

∥

∥

∥

∥

≤ C

by the Hölder inequality, A7 and A9. The ergodic theorem then implies that

lim
n→∞

sup
θ∈V (θ0)

∥

∥

∥

∥

∂2Qn(θ)

∂θ∂θ′
− ∂2Qn(θ0)

∂θ∂θ′

∥

∥

∥

∥

≤ E sup
θ∈V (θ0)

∥

∥

∥

∥

∂2g(ǫt, σt(θ))

∂θ∂θ′
− ∂2g(ǫt, σt(θ0))

∂θ∂θ′

∥

∥

∥

∥

, a.s.

By the dominated convergence theorem, the last expectation tends to zero when the neigh-
borhood V (θ0) tends to the singleton {θ0}. The consistency of θ̂n,h thus entails

lim
n→∞

∣

∣

∣

∣

∂2Qn(θ∗)

∂θ∂θ′
− ∂2Qn(θ0)

∂θ∂θ′

∣

∣

∣

∣

= 0, a.s.

In view of (2.3),

Eg1(ǫt, σt(θ0))
∂2σt(θ0)

∂θ∂θ′
= 0

and by (A.8), g2(ǫt, σt(θ0)) = g2(ηt, 1)σ−2
t (θ0). By the ergodic theorem

lim
n→∞

∂2Qn(θ0)

∂θ∂θ′
=
Eg2(ηt, 1)

4
J, a.s.

and v) is established.
To prove vi) it suffices to note that

√
n
∂

∂θ
Qn(θ0) =

1√
n

n
∑

t=1

g1 (ηt, 1)
1

2σ2
t (θ0)

∂σ2
t (θ0)

∂θ

and to apply a CLT for square integrable stationary martingale differences (see Billingsley
(1961)).
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Now, from A6 and the consistency of θ̂n,h, a Taylor expansion yields

0 =
√
n
∂

∂θ
Qn(θ̂n,h) +

√
n
∂

∂θ
Q̃n(θ̂n,h) −√

n
∂

∂θ
Qn(θ̂n,h)

=
√
n
∂

∂θ
Qn(θ0) +

∂2

∂θ∂θ′
Qn(θ∗)

√
n(θ̂n,h − θ0)

+
√
n

(

∂

∂θ
Q̃n(θ̂n,h) − ∂

∂θ
Qn(θ̂n,h)

)

,

where θ∗ is between θ̂n,h and θ0. Applying iv), v), vi), the proof of the asymptotic
normality is complete.

B.2 Proof of Theorem 4.2

We note that (4.5) does not straightforwardly follow from Theorem 2.1 because Assump-
tions A4 and A7 are not satisfied when r = 0 and h ∈ C(0). However, tedious computation
shows that the conclusion of Theorem 2.1 continues to hold under the assumptions of The-
orem 4.2.

To prove (4.6), observe that
[

∂G0(θ
∗′

0 , µ
∗
0)

∂(θ′, µ)

]

=

[

1

µ2
A 2θ0

]

.

The conclusion follows along the same lines as in the proof of Theorem 4.1. �

B.3 Proof of Theorem 4.3

To prove the AN, we have already seen in the proof of Theorem 4.1 that Assumptions
A4 and A7 are satisfied with δ = r. Assumptions A5 and A8 are satisfied by the same
arguments as in Theorem 4.1 and using Pan, Wang and Tong (2008), and Hamadeh and
Zakoïan (2009). The latter paper also established the second part of A2 and A9. The
AN follows from Theorem 2.1.

Because Gr(θ
∗′

0 , µ
∗
r) =

(

(µ∗
r)

δ/rω∗
0 , . . . , (µ

∗
r)

δ/rα∗
0q−, β

∗
01, . . . , β

∗
0p

)′
we have

[

∂Gr(θ
∗′

0 , µ
∗
r)

∂(θ′, µ)

]

=

[

µ
− δ

2
2 Aδ

δ

r
µ

r
2
2 θ0

]

, Aδ =

(

I2q+1 0

0 µ
δ
2
2 Ip

)

.

Similarly to (A.13), the derivatives of σδ
t (θ) verify

Bθ(L)
∂σδ

t

∂ω
(θ) = 1,

Bθ(L)
∂σδ

t

∂αi+
(θ) = (ǫ+t−i)

δ, Bθ(L)
∂σδ

t

∂αi−
(θ) = (−ǫ−t−i)

δ, i = 1, . . . , q,

Bθ(L)
∂σδ

t

∂βj
(θ) = σδ

t−j , j = 1, . . . , p.
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It follows that, similarly to (A.16)

J−1
δ Ωδ = θ0, Ω′

δJ
−1
δ Ωδ = 1 (B.2)

where

Jδ = E

(

1

σ2δ
t

∂σδ
t

∂θ

∂σδ
t

∂θ′
(θ0)

)

=

(

δ

2

)2

J, Ωδ = E

(

1

σδ
t

∂σδ
t

∂θ
(θ0)

)

=
δ

2
Ω.

Thus

J−1Ω =
δ

2
θ0, Ω′J−1Ω = 1 (B.3)

Moreover, similarly to (A.14), we have

∂σ2
t (θ∗0)

∂θ
= µ

1− δ
2

2 Aδ
∂σ2

t (θ0)

∂θ
. (B.4)

It follows that, similar to (A.15),

J∗ = µ−δ
2 AδJAδ, Ω∗ = µ

−δ/2
2 AδΩ. (B.5)

Hence, the asymptotic variance of Theorem 3.1 is given by

Σr =

(

(κ4 − 1)µδ
2A

−1
δ J−1A−1

δ −λrµ
δ/2
2 A−1

δ J−1Ω

−λrµ
δ/2
2 Ω′J−1A−1

δ σ2
µ∗

r

)

Therefore, the asymptotic variance of the reparameterized QMLE of the two-step approach

Γr =

[

µ
− δ

2
2 Aδ

δ

r
µ

r
2
2 θ0

]

Σr

[

µ
− δ

2
2 A′

δ
δ
rµ

r
2
2 θ

′

0

]

= (κ4 − 1)J−1 − λr
δ

r
µ

r
2
2

(

θ0Ω
′J−1 + J−1Ωθ

′

0

)

+ σ2
µ∗

r

(

δ

r
µ

r
2
2

)2

θ0θ
′

0.

In view of (B.3), the asymptotic variance follows.
Finally, the conclusion of Corollary 4.1 holds true for Model (4.10), since

Varas

{√
n
(

θ̂n,h − θ0

)}

− Varas

{√
n
(

θ̃n − θ0

)}

=

[

(

2

r

)2(
κ2r

κ2
r

− 1

)

− (κ4 − 1)

](

J−1 −
(

δ

2

)2

θ0θ
′

0

)

and

J−1 �
(

δ

2

)2

θ0θ
′

0.

�
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B.4 Proof of Theorem 4.4

We verify the conditions of Theorem 2.1. The first condition in E(s) entails A0 (see
Theorem 1 in Douc et al. (2008)). The first part of A2 is already in E(s). To show the
second part, note that if

σ2
t (θ0) − σ2

t (θ) = ψ0(θ0) − ψ0(θ) +

∞
∑

i=1

{ψi(θ0) − ψi(θ)} ǫ2t−i = 0 a.s.

and if ψi(θ0) 6= ψi(θ) for some i ≥ 1, then for i0 ≥ 1, ǫ2t−i0
can be written as a linear

combination of the ǫ2t−i’s for i > i0. In that case, η2
t−i0

would be measurable with respect
to a σ-field independent of η2

t−i0 . This is impossible because the distribution of η2
t−i0 is

assumed to be nondegenerate. Thus A2 is shown. Because h ∈ C(r), Assumption A3

holds true, and Assumption A4 is satisfied with δ = r.
Note that Assumption A5 is only used to show the point i) in the proof of Theorem

2.1. We therefore directly prove i) by showing that the right-hand side of (A.1) tends to
zero a.s. For simplicity, the proof is written with the initial values ǫ̃i = 0 for i ≤ 0. We
have

at = sup
θ∈Θ

∣

∣

∣

∣

σ̃2
t (θ) − σ2

t (θ)

σ̃t(θ) + σt(θ)

∣

∣

∣

∣

≤ C

∞
∑

i=t

sup
θ∈Θ

ψi(θ)ǫ
2
t−i ≤ Cat,

at =

∞
∑

i=t

1

id+1
ǫ2t−i =

∞
∑

i=0

1

(t+ i)d+1
ǫ2−i.

Note that at is a.s. finite because

E (at)
s ≤

∞
∑

i=0

1

(t+ i)(d+1)s
E |ǫ−i|2s ≤ C

t(d+1)s−1
. (B.6)

Moreover, the dominated convergence theorem entails that the decreasing sequence at, and
thus at, converge to zero a.s. as t→ ∞. By Cesàro’s lemma, it follows that the second term
in (A.1) tends to zero a.s. The first term tends to zero a.s. by Toeplitz’s lemma because

supθ∈Θ |σ∗
t |−1−r

< C, at → 0 a.s. as t → ∞ and n−1
∑n

t=1 |ǫt|
r → E |ǫ0|r < ∞ a.s. as

n → ∞. For the last inequality, we note that Eǫ2s
1 < ∞ under E(s) (see Robinson and

Zaffaroni (2006) Page 1062 and Douc et al. (2008) Theorem 1). The proof of i) follows.
Thus, in view of Theorem 2.1 and its proof, the consistency of the one-step estimator is
shown.

Turning to the asymptotic normality, note that Assumption A6 is satisfied and A7

is satisfied with δ = r. In order to show A9, we first establish an inequality similar to
that given in Robinson and Zaffaroni (2006) Page 1067. To lighten the notation, write
ψi = ψi(θ) and ψ0i = ψi(θ0). We also use the convention ψk

i = 0 for all k ∈ R when
ψi = 0. By Hölder’s inequality, for all k > s∗ and all s∗ ∈ (0, 1] we have

σ2
t (θ0) = ψ00ψ

s∗/k−1
0 × ψ

1−s∗/k
0 +

∞
∑

i=1

ψ0iψ
s∗/k−1
i ǫ

2s∗/k
t−i × ψ

1−s∗/k
i ǫ

2(1−s∗/k)
t−i

≤
{

ψ
k/s∗

00 ψ
1−k/s∗

0 +

∞
∑

i=1

ψ
k/s∗

0i ψ
1−k/s∗

i ǫ2t−i

}s∗/k
{

σ2
t (θ)

}1−s∗/k
. (B.7)
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Since
{

σ2
t (θ)

}−s∗/k ≤ C, we obtain

{

σ2
t (θ0)

σ2
t (θ)

}k

≤ C

(

1 +

∞
∑

i=1

ψk
0iψ

s∗−k
i ǫ2s∗

t−i

)

.

Thus, for all ι > 0 there exists a neighborhood V (θ0) of θ0 such that for all θ ∈ V (θ0)

{

σ2
t (θ0)

σ2
t (θ)

}k

≤ C

(

1 +

∞
∑

i=1

ψs∗

i ψ−kι
0i ǫ2s∗

t−i

)

≤ C

(

1 +

∞
∑

i=1

1

i(d+1)s∗−kι
ǫ2s∗

t−i

)

and
{

σ2
t (θ0)

σ2
t (θ)

}k

≤ C

(

1 +

∞
∑

i=1

1

i(d+1)s∗−kι
ǫ2s∗

t−i

)

.

The same inequality holds when the left-hand side is replaced by its inverse. Since (d +
1)s > 1 and E|ǫ2s

1 | <∞, it follows that for some neighborhood V (θ0)

E sup
θ∈V (θ0)

{

σ2
t (θ0)

σ2
t (θ)

}k

<∞, ∀k ∈ R. (B.8)

The last result of A9 follows. Similarly to (B.7), for k > s∗ and s∗ ∈ (0, 1] we have

∣

∣

∣

∣

∂σ2
t (θ)

∂θj

∣

∣

∣

∣

≤
(

∣

∣

∣

∣

∂ψ0

∂θj

∣

∣

∣

∣

k/s∗

ψ
1−k/s∗

0 +
∞
∑

i=1

∣

∣

∣

∣

∂ψi

∂θj

∣

∣

∣

∣

k/s∗

ψ
1−k/s∗

i ǫ2t−i

)s∗/k
{

σ2
t (θ)

}1−s∗/k
.

Thus we have

∣

∣

∣

∣

1

σt(θ)

∂σt(θ)

∂θj

∣

∣

∣

∣

k

≤ C

(

1 +

∞
∑

i=1

∣

∣

∣

∣

∂ψi

∂θj

∣

∣

∣

∣

k

ψs∗−k
i ǫ2s∗

t−i

)

≤ C

(

1 +

∞
∑

i=1

1

i(d+1)s∗−kι
ǫ2s∗

t−i

)

for all ι > 0, all k > s∗ and all s∗ ∈ (0, 1]. Choosing s∗ = s and ι such that (d+1)s−kι > 1
in the last sum, it follows that

E sup
θ∈Θ

∥

∥

∥

∥

1

σt(θ)

∂σt(θ)

∂θ

∥

∥

∥

∥

k

<∞, ∀k > 1. (B.9)

The same result holds when the first-order derivatives are replaced by second-order deriva-
tives, which completes the proof of A9.

Note that Assumptions A8 and A10 are only used to show the point iv) in the proof
of Theorem 2.1. We therefore directly prove iv) by showing that the right-hand sides of
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(A.6) and (A.9) tend to zero in probability. We have

bt = sup
θ∈V (θ0)

∥

∥

∥

∥

1

2σt(θ)

∂σ2
t (θ)

∂θ
− 1

2σ̃t(θ)

∂σ̃2
t (θ)

∂θ

∥

∥

∥

∥

≤ sup
θ∈V (θ0)

|σt(θ) − σ̃t(θ)| sup
θ∈V (θ0)

σt(θ)

σ̃t(θ)
sup

θ∈V (θ0)

∥

∥

∥

∥

1

σt(θ)

∂σt(θ)

∂θ

∥

∥

∥

∥

+C sup
θ∈V (θ0)

∥

∥

∥

∥

∂σ2
t (θ)

∂θ
− ∂σ̃2

t (θ)

∂θ

∥

∥

∥

∥

≤ Cb
(0)
t (b

(0)
t + 1) sup

θ∈V (θ0)

∥

∥

∥

∥

1

σt(θ)

∂σt(θ)

∂θ

∥

∥

∥

∥

+ Cb
(ι)
t ,

b
(ι)
t =

∞
∑

i=0

1

(t+ i)(d0+1)(1−ι)
ǫ2−i

and

sup
θ∈V (θ0)

∣

∣

∣

∣

ǫt
σ̃t(θ)

∣

∣

∣

∣

r

= sup
θ∈V (θ0)

∣

∣

∣

∣

ǫt
σt(θ)

∣

∣

∣

∣

r ∣
∣

∣

∣

1 +
σt(θ) − σ̃t(θ)

σ̃t(θ)

∣

∣

∣

∣

r

≤ 2r(1 + crt ) sup
θ∈V (θ0)

∣

∣

∣

∣

ǫt
σt(θ)

∣

∣

∣

∣

r

≤ C sup
θ∈V (θ0)

∣

∣

∣

∣

ǫt
σt(θ)

∣

∣

∣

∣

r

,

where C does not vary with t and only depends on {ǫu, u ≤ 0}, since ct ≤ c0. For the
convergence of the right-hand side of (A.6) and (A.9), it therefore suffices that

1√
n

n
∑

t=1

b
(0)
t sup

θ∈V (θ0)

∥

∥

∥

∥

1

σt(θ)

∂σt(θ)

∂θ

∥

∥

∥

∥

P→ 0, (B.10)

1√
n

n
∑

t=1

b
(ι)
t

P→ 0, (B.11)

1√
n

n
∑

t=1

b
(0)
t sup

θ∈V (θ0)

∣

∣

∣

∣

ǫt
σt(θ)

∣

∣

∣

∣

r

sup
θ∈V (θ0)

∥

∥

∥

∥

1

σt(θ)

∂σt(θ)

∂θ

∥

∥

∥

∥

P→ 0, (B.12)

1√
n

n
∑

t=1

b
(ι)
t sup

θ∈V (θ0)

∣

∣

∣

∣

ǫt
σt(θ)

∣

∣

∣

∣

r
P→ 0. (B.13)

The expectation of the left-hand side of (B.12) to the power s∗ ∈ (1/(d0 + 1), s) is bounded
by

1

ns∗/2

n
∑

t=1

E|ηt|rs∗

E

{

(b
(0)
t )s∗

sup
θ∈V (θ0)

∣

∣

∣

∣

σt(θ0)

σt(θ)

∣

∣

∣

∣

rs∗

sup
θ∈V (θ0)

∥

∥

∥

∥

1

σt(θ)

∂σt(θ)

∂θ

∥

∥

∥

∥

s∗
}

≤ C

ns∗/2

n
∑

t=1

‖(b(0)t )s∗‖p0

∥

∥

∥

∥

∥

sup
θ∈V (θ0)

∣

∣

∣

∣

σt(θ0)

σt(θ)

∣

∣

∣

∣

rs∗

sup
θ∈V (θ0)

∥

∥

∥

∥

1

σt(θ)

∂σt(θ)

∂θ

∥
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s∗
∥

∥

∥

∥
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q0

≤ C

ns∗/2

n
∑

t=1

‖(b(0)t )s∗‖p0 ≤ C

ns∗/2

n
∑

t=1

1

t(d0+1)s∗−1
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where p−1
0 + q−1

0 = 1, p0 > 1 such that E|ǫt|2s∗p0 < ∞, by Hölder’s inequality,
(B.8), (B.9) and (B.6). If (d0 + 1)s > 2, s∗ can be chosen sufficiently close to s such
that

∑n
t=1 t

−(d0+1)s∗+1 < ∞. If (d0 + 1)s ≤ 2, we have n−s∗/2
∑n

t=1 t
−(d0+1)s∗+1 ≤

Cn−s∗/2+2−(d0+1)s∗

, which tends to zero because s∗(d0 + 3/2) > 2 for s∗ sufficiently close
to s. The convergence in (B.12) is thus established. The convergences in (B.10), (B.11)
and (B.13) are obtained by the same arguments. Having shown iv), the asymptotic nor-
mality of the one-step estimator then follows from Theorem 2.1. For the last rest on the
two-step estimator, it suffices to show that (3.4) holds true by a straightforward adaptation
of the proof of Theorem 3.1. �
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