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Abstract

Bounds on the distribution function of the sum of two random vari-
ables with known marginal distributions obtained by Makarov (1981) can
be used to bound the cumulative distribution function (c.d.f.) of indi-
vidual treatment effects. Identification of the distribution of individual
treatment effects is important for policy purposes if we are interested in
functionals of that distribution, such as the proportion of individuals who
gain from the treatment and the expected gain from the treatment for
these individuals. Makarov bounds on the c.d.f. of the individual treat-
ment effect distribution are pointwise sharp, i.e. they cannot be improved
in any single point of the distribution. We show that the Makarov bounds
are not uniformly sharp. Specifically, we show that the Makarov bounds
on the region that contains the c.d.f. of the treatment effect distribution
in two (or more) points can be improved, and we derive the smallest set
for the c.d.f. of the treatment effect distribution in two (or more) points.
An implication is that the Makarov bounds on a functional of the c.d.f.
of the individual treatment effect distribution are not best possible.
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1 Introduction

The key problem when estimating the effect of a treatment or intervention on
a population is that we cannot observe both the treated and non-treated out-
comes for a unit in the population, but at most either its treated or non-treated
outcome. As a consequence, we can only identify treatment effect parameters
that depend on the marginal distributions of the treated and control outcomes
and, in general, not parameters that depend on the distribution of individual
treatment effects. The only exception is the mean of the individual treatment
effect distribution, the Average Treatment Effect (ATE), which, given linearity
of expectations, can be identified from the marginal distributions of treated and
control outcomes.

Under the assumption that the social welfare function (SWF) is a functional
of the distribution of outcomes, gains or losses in social welfare due to an in-
tervention can be measured as the difference of functionals on the marginal
distributions of treated and non-treated outcomes. For instance, we may be
interested in the effect of a program on the inequality of outcomes in the pop-
ulation. If we choose some inequality measure, say the variance, then the effect
of the program on the variance is equal to the difference of the variances of the
marginal distributions of the treated and control outcomes. Such an approach
has been used, for example, in Imbens and Rubin (1997), Abadie, Angrist Im-
bens (2002), Abadie (2002, 2003) and Firpo (2007). Therefore, if our goal is to
assess the effect of an intervention on social welfare and not individual welfare,
then the marginal outcome distributions suffice.

There are some other treatment effect parameters that are defined as func-
tionals of the distribution of individual treatment effects. Examples of func-
tionals of the distribution of individual treatment effects are the fraction of the
population that benefits from a program, the total and average gains of those
who benefit from the program, the fraction of the population that has gains or
losses in a specific range, and the median (or other quantile) of the treatment
effect distribution.1 Heckman, Smith and Clements (1997) discuss a number of
parameters that depend on the distribution of individual treatment effects.

We show that a general reason why we should be interested in functionals
of the distribution of individual treatment effects is that individuals in a pop-
ulation may be loss averse. Loss aversion has been shown to be a feature of
individual preferences if an individual faces an uncertain outcome (e.g. Tversky
and Kahneman (1991) and the large literature on non-expected utility). With
loss aversion at the individual level a utilitarian social welfare function will ex-
hibit aversion to redistribution. As a consequence the social welfare function
depends on the distribution of individual treatment effects.

Point identification of parameters that depend on the distribution of individ-
ual treatment effects requires knowledge of the joint distribution of treated and
non-treated outcomes, as the marginal themselves do not contain enough infor-

1Because the difference of quantiles is not equal to the quantile of the difference, we can-
not estimate this parameter by the difference of the medians of the treated and non-treated
outcome distributions.
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mation to identify the distribution of the difference. If the treatment effect is the
same for all members of the population or of subpopulations characterized by
a vector of observable variables, this (conditional) joint distribution is singular
and the (conditional) distribution of individual treatment effects is degenerate.
However, in most cases the observed (conditional) marginal distributions are not
related by a simple location shift. In that case we can either introduce addi-
tional information that allows us to point identify the distribution of treatment
effects, or we can as e.g. Heckman, Smith and Clements (1997) derive bounds
on the distribution of treatment effects.

Bounds on the cumulative distribution function (c.d.f.) of the sum of two
random variables with known marginal distributions were first obtained by
Makarov (1981) and the generalization to the difference is trivial. Fan and Park
(2007) were the first to apply these bounds to the distribution of treatment
effects with an emphasis on the statistical inference for these bounds.

This paper will disregard inference completely and will focus instead on the
nature of the Makarov bounds. An important property of a bound is whether it
is sharp or best possible. Our results show that Makarov bounds are pointwise
but not uniformly sharp. This implies that Makarov bounds on functionals
of the distribution of individual treatment effects are in general not sharp. In
the case of a scalar parameter bounds are defined by a set of restrictions on
the parameter. Assume for simplicity that these restrictions imply that the
parameter is in a closed connected interval. A lower bound on the parameter
is sharp if every parameter value that satisfies the restrictions is not smaller
than the bound and the bound itself satisfies all the restrictions. In the case
that we bound a function defined on some domain the definition of a sharp
bound is not as simple. Again the bounds are defined by a set of restrictions.
In our case we consider all c.d.f. of a distribution of Y1−Y0 where Y0, Y1 have a
joint distribution with given marginal distributions. If the bounding functions
satisfy all the restrictions we call them uniformly sharp. This corresponds to
the usual definition of sharpness for a scalar parameter. The Fréchet (1951) (see
also Hoeffding (1940)) bounds on the joint distribution of two random variables
with given marginal distributions are uniformly sharp. It is however possible
that the bounding functions do not satisfy all the restrictions. This is the case
with the Makarov bounds. In that case it is possible that the bounds are best
possible in a point (and every point) of the domain. This occurs if there is a
function that satisfies all the restrictions and is equal to the bounding function
at that point (and such a function exists at every point)2. We call such a bound
pointwise sharp. The Makarov bounds are pointwise, but not uniformly sharp.

If a bound is uniformly sharp, then the joint bound on the set of function
values in two (or more) points on the domain derived from the uniformly sharp
bound and possible other restrictions like monotonicity is also sharp. This is
not true if the bounds are pointwise sharp.

In this paper, we show that a joint bound of c.d.f. points using the Makarov
bounds is not best possible. Moreover, we derive more informative joint bounds,

2The supporting function cannot intersect the bound, but touches the bound at the point.
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i.e. a smaller region, for the c.d.f. of the individual treatment effect in two
(or more) points. This result is not at odds with the sharpness of the Makarov
bounds in a single point, because the projections of the smaller higher-dimensional
region coincides with the one-dimensional Makarov bounds. Bounds on the
treatment effect c.d.f. in two (or more) points imply bounds on functions of
the treatment effect c.d.f in those points. We consider linear functionals of the
treatment effect c.d.f. and derive conditions under which the bounds on this
functional can be improved.

A second contribution of this paper is that we show that if the outcomes are
correlated with covariates, then averaging the bounds obtained from the condi-
tional (on these covariates) outcome distributions gives bounds that are more
informative than the bounds obtained from the unconditional outcome distribu-
tions. This result holds both for the one-dimensional pointwise Makarov bounds
and for the improved higher dimensional regions. Hence, even if treatment is
randomly assigned it is useful to have covariates that are correlated with the
outcomes in order to improve the bounds on (functionals of) the distribution of
the individual treatment effects.

There is a small literature on bounds on the treatment effect c.d.f. in a
point for given marginal outcome distributions. None of it considers bounds
on the c.d.f. in two or more points or bounds on functionals of the c.d.f. We
already mentioned Fan and Park (2007) who use the pointwise sharp Makarov
bounds. Most papers introduce additional restrictions, as a factor structure or
rank preservation that narrow the bounds or even lead to point identification
of the treatment effect distribution. In chronological order contributions can be
found in Heckman and Smith (1993, 1998) and in particular Heckman, Smith
and Clements (1997), Aakvik, Heckman and Vytlacil (2005), Carneiro, Hansen
and Heckman (2003), and Wu and Perloff (2006). Djebbari and Smith (2008) use
the Heckman-Smith-Clements bounds3 in an empirical study of the distribution
of treatment effects in a conditional cash transfer program in Mexico.

The plan of he paper is as follows. In section 2 we show that if individuals are
loss averse then the social welfare function is a functional of the distribution of
individual treatment effects. In section 3 we discuss the Makarov bounds on the
cdf of treatment effects and we introduce the concepts of pointwise and uniformly
sharp bounds. Section 4 establishes that the Makarov bounds are pointwise,
but in general not uniformly sharp. In section 5 we show that averaging over
covariates that are correlated with the outcomes improves the bounds. In section
6 we obtain higher dimensional Makarov bounds and we derive a necessary
condition for a vector of function values to be compatible with a treatment
effect distribution. We then use this necessary condition to show that the higher
dimensional Makarov bounds are in general not sharp and we derive improved
bounds. In section 7 we use these improved bounds to obtain improved bounds
on functionals of the treatment effect distribution. Section 8 concludes.

3These bounds are derived from the Fréchet-Hoeffding bounds on the joint distribution of
treated and non-treated outcomes and are not best possible.
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2 Welfare and the distribution of treatment ef-
fects

Consider an intervention with potential outcomes Y0i and Y1i for individual
i of the population. The individual has a vector of characteristics Xi. An
experiment is performed in a randomly selected sample from this population
and treatment assignment Ti in the sample is either random or unconfounded
given X. Hence, if the sample is large we can identify F0(.|x) and F1(.|x) for all
x ∈ X with X the support of the distribution of X. Let us define Di = Y1i−Y0i

and assume that all i know Y0i, their non-treated or status quo outcome, but
not necessarily Y1i, their treated outcome at the time of treatment. In general
Y1i can be thought of as a function of Xi and εi, where Xi is a vector of
characteristics that is known to the individual and εi is a random term that
may or may not be known to individual i at the time of the intervention. We
assume that Y0i is known to the individual at the time of the intervention even
if i undergoes the intervention. If i undergoes the intervention, then Y0i is not
known to the econometrician or the social planner. The vector Xi is observed
irrespective of treatment assignment (and not affected by that).

Note that the treated and control outcomes are treated asymmetrically. Of-
ten individuals can predict their outcome under the status quo accurately but
not necessarily their outcome under the treatment. We consider both the case
that Y1i is known at the time of the treatment and the case that this outcome
is not known at that time. Moreover, we consider two types of preferences. The
first type corresponds to expected utility in the case that Y1i is unknown to i
at the time of the treatment. The second type assumes that individuals are
loss averse, as introduced by Tversky and Kahneman (1991) and extensively
discussed by Rabin (1998). For the second type of preferences we need the dis-
tribution of D at the time of treatment. We also consider the utilitarian social
welfare functions corresponding to these individual preferences.

The social welfare functions are our main focus in this section. They are the
same irrespective which assumption we make on knowledge of Y1 at the time
of treatment (we consider the unknown Y1 case only for expositional purposes).
If we start from individual preferences that exhibit loss aversion we obtain a
social welfare function that has redistribution aversion. In particular, if we
fix the average benefit of an intervention, i.e. the Average Treatment Effect
(ATE), then society will prefer an intervention that spreads the gains evenly
in the population over an intervention that achieves the same ATE with large
losses for some and slightly larger gains for others in the population. Easterlin
(2008) discusses the relevance of the distribution of gains and losses for social
welfare in a transition economy.

First, we assume that Y1i is not known (but Y0i is) to i at the time of the
treatment. Both outcomes are net of the private cost of treatment and non-
treatment. If the utility of outcome Y is u(Y ) with u concave if i is risk averse,
then the expected utility of treatment for i is E[u(Y1i)|Y0i, Xi] and the expected
utility of the status quo is u(Y0i). The utilitarian social welfare that sums these
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individual preferences over all members of the population is

W1 = E[E[u(Y1)|Y0, X]] = E[u(Y1)]

and
W0 = E[u(Y0)]

Both individual and social welfare only depend on the marginal distributions
of Y0 and Y1 (given X). If we assume that both Y0i and Y1i are known to
i at the time of treatment then the individual utilities of treatment and non-
treatment are u(Y0i) and u(Y1i), respectively. Therefore, the utilitarian social
welfare function assigns W1 and W0 to treatment and non-treatment, which are
the same values as in the case that Y1i is not known at the time of treatment.
The obvious conclusion is that utilitarian social welfare depends only on the
marginal outcome distributions and the distribution of D does not play a role4.

As Tversky and Kahneman (1991) have pointed out, individual preferences
are actually not as in the standard expected utility theory. In (cumulative)
prospect theory preferences exhibit the so-called “framing effect”, because peo-
ple tend to think of possible outcomes relative to a reference value. In the
simple potential outcome model the natural choice for the reference value is
the status quo outcome Y0i. Moreover, individuals have different risk atti-
tudes towards gains Y1i − Y0i > 0 and losses Y1i − Y0i < 0 and the disutil-
ity of a loss is in general larger than the utility of an equal gain. This is
called loss aversion. If we denote the valuation function of gains/losses by
v(Y1 − Y0) = v+(Y1 − Y0)1(Y1 − Y0 > 0) + v−(Y1 − Y0)1(Y1 − Y0 ≤ 0) then
the utility of non-treatment is 0 (essentially a normalization) and the utility of
treatment is5

E
[
v+(Y1i − Y0i)1(Y1i − Y0i > 0)|Y0i, Xi

]
+E

[
v−(Y1i − Y0i)1(Y1i − Y0i ≤ 0)|Y0i, Xi

]
.

Hence the utilitarian social welfare is V0 = 0 and

V1 = E
[
v+(Y1 − Y0)1(Y1 − Y0 > 0)

]
+ E

[
v−(Y1 − Y0)1(Y1 − Y0 ≤ 0)

]
.

Two interesting particular cases of valuation functions are the following. If
v+(Y1−Y0) = 1 and v−(Y1−Y0) = −1 then V1 is the difference of the fractions
of the population with a positive and a negative treatment effect respectively.
This majority parameter is mentioned by Heckman, Smith and Clements (1997).
If

v+(Y1 − Y0) = v−(Y1 − Y0) = u(Y1)− u(Y0),

then the expected utility and loss aversion social welfare functions are the same
(up to normalization).

In general, the valuation functions are such that v+(0) = v−(0) = 0, v+(z) ≥
0 for z ≥ 0, v−(z) ≤ 0 for z < 0, and v+(z) < −v−(−z), where the final

4We could also let the utility function depend on X, i.e., consider u(Y,X). In that case
knowledge of the conditional distributions of Y0 and Y1 given X is sufficient.

5In cumulative prospect theory we would also weight the cdf of gains and losses with a
weighting function. This is not essential for our argument.
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condition is loss aversion. Also, it is often assumed that v+ is concave and v−

is convex, and both are increasing in z.
Now, suppose we want compare two possible treatments, A and B. Both

treatments have the same ATE, E[Y1]− E[Y0]. However, for treatment A every
individual has a gain equal to the ATE and for treatment B some individuals
have a large loss while an equal fraction of the population has a gain that
exceeds the (opposite of the) loss by the ATE. It is obvious that treatment A is
preferred over treatment B if individuals are loss averse. Treatment A does not
involve any redistribution of gains while under treatment B gains and losses are
unequal. Therefore we can say that a social welfare function derived from loss
averse individual preferences shows redistribution aversion.

The loss aversion social welfare function is also relevant if individual treat-
ment effects are nonnegative, i.e. if all individuals benefit from the treatment.
Individuals may still use the status quo outcome as a reference. As a conse-
quence, society may prefer less variation in the distribution of individual gains.

Although we derived the social welfare function on the assumption that
individuals use the known non-treated outcome as a reference, the analysis is also
relevant in the case that treated individuals only learn Y1 (so that the reference
value is unknown) and control individuals only learn Y0. Let us first assume
that the identified F0 and F1 are known. For individuals who are in the control
group the expected utility under loss aversion is as above (the expectation is
over F1). For individuals who are treated the expected utility is of the same
form except that the expectation is over F0. The social welfare function does not
change. If individuals only learn Y0 or Y1 and not their marginal distributions,
then the social planner may still care about the distribution of gains and use the
redistribution averse social welfare function. Of course, because only F0 and F1

are identified the social planner can only prefer treatment A over treatment B
if the lower bound on the social welfare of A exceeds the upper bound on the
social welfare of B. If the bounds overlap the social planner has to use some
criterion to rank the treatments, e.g. the largest lower bound.

The social welfare function that assumes that individual preferences exhibit
loss aversion depends in general on the distribution of the individual treatment
effect D. By partial integration we find

V1 =
∫ ∞

0

v+′(z) · (1−G(z))dz −
∫ 0

−∞
v−′(z) ·G(z)dz

where v+′(z), v−′(z) are the derivatives of v+(z), v−(z) and G is the cdf of D. As
noted, the functions v+ and v− are in general nonlinear increasing functions. An
obvious specification is a linear spline with nodes 0 = d0 < d1 < . . . < dK =∞
and v+

0 = 0, v+
k > 0

v+(z) =
K∑
k=1

[v+
k (z − dk−1) + v+

k−1dk]1(dk−1 ≤ z < dk)

and a similar specification for v−. With this specification the derivatives of v+
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and v− are step functions so that∫ ∞
0

v+′(z)(1−G(z))dz =
K∑
k=1

v+
k

∫ dk

dk−1

(1−G(z))dz

In section 7 we consider bounds on integrals
∫ dk

dk−1
(1−G(z))dz.

3 Pointwise and uniformly sharp bounds on the
distribution of treatment effects

Let G be a set of distribution functions on <, i.e. a set of non-decreasing and
right-continuous functions on < that are 0 in −∞ and 1 in ∞. All distribution
functions in G satisfy a set of restrictions. In this paper the restriction is that
each G ∈ G is the c.d.f. of D = Y1 − Y0 for given marginal c.d.f. of Y1, de-
noted by F1, and Y0, denoted by F0, but unspecified joint distribution of Y0, Y1.
We are interested in bounds on the distribution functions in G, which is the
set of distributions of individual treatment effects for given marginal outcome
distributions. We often have a vector of covariates X with a distribution with
support X that are correlated with Y1 and Y0, so that in the statement above we
can replace the treatment effect distribution by the conditional treatment effect
distribution given X and the outcome distributions by conditional outcome dis-
tributions. The bounds on the distribution of the treatment effect are obtained
by averaging the conditional bounds over the distribution of X. Sometimes it is
convenient to ignore the fact that we are dealing with conditional distributions
and only to introduce the covariates in the final result. In general, averaging
makes the bounds more informative.

An upper and lower bound on G(d) for G ∈ G was derived by Makarov (1981)
(see also Frank, Nelsen, and Schweizer, 1987). Note that this is a bound for the
c.d.f. in a single point. We extend the Makarov bound to the case that we
observe conditional marginal distributions of the outcomes F0(.|x) and F1(.|x).

Theorem 3.1 (Makarov, 1981) Let the conditional c.d.f. of Y0|X and Y1|X
be F0(.|X) and F1(.|X) and G ∈ G be the c.d.f. of D = Y1 − Y0, then for
−∞ < d <∞

GML(d) ≡ E
[
sup
t

max{F1(t|X)− F0(t− d|X)−, 0}
]
≤ G(d) ≤

E
[
inf
t

min{F1(t|X)− F0(t− d|X)− + 1, 1}
]
≡ GMU (d)

(1)
with F0(.)− the function of left-hand limits of the c.d.f.. The bounds GML(d), GMU (d)
are c.d.f., i.e. non-decreasing, right-continuous, and 0 and 1 for d ↓ −∞ and
d ↑ ∞, respectively.
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Proof:See Appendix B.

Are the Makarov bounds on the treatment effect c.d.f. the best possible
bounds? The answer to this question depends on our definition of best possible
bounds. Because we are bounding a function we can consider bounds in each
point d or joint bounds for all d. If we consider bounds in a single point d,
then the relevant notion is pointwise sharpness. To keep the notation simple
the discussion is for unconditional c.d.f. but it applies directly to conditional
c.d.f.

Definition 3.1 (Pointwise sharp bounds on a c.d.f.) Let G be a set of c.d.f.
and let GL(d) ≤ G(d) ≤ GU (d) for all d ∈ < and G ∈ G. We say that GL is a
pointwise sharp lower bound on G, if for all d0 there is a c.d.f. Gd0L ∈ G such
that GL(d0) = Gd0L(d0). GU is a pointwise sharp upper bound on G, if for all
d0 there is a c.d.f. Gd0U ∈ G such that GU (d0) = Gd0U (d0).6

Note that the c.d.f. that supports the lower bound may depend on d0. If
for all d0 the supporting c.d.f. does not depend on d0 we call the lower bound
uniformly sharp. A uniformly sharp upper bound is defined analogously.

Definition 3.2 (Uniformly sharp bounds on a c.d.f.) Let G be a set of c.d.f.
and let GL(d) ≤ G(d) ≤ GU (d) for all d ∈ < and G ∈ G. We say that GL is a
uniformly sharp lower bound on G, if GL ∈ G. GU is a uniformly sharp upper
bound on G, if GU ∈ G.

It should be noted that if the bounds are uniformly sharp they have all the
properties of the set G. If they are pointwise sharp, the bounds will have some
but not all properties of G.

Theorem 3.2 If G is a set of c.d.f. with pointwise sharp bounds GL, GU , then
GL, GU are non-decreasing, right-continuous and 0 and 1 at −∞ and ∞, re-
spectively, i.e. the bounds are themselves c.d.f.7

Proof:See Appendix B.

4 Makarov bounds are pointwise sharp

We are now able to answer the question whether the Makarov bounds are best
possible. Frank, Nelsen, and Schweitzer (FNS) (1981) construct for any d0 joint
distributions Hd0L and Hd0U of Y0, Y1 such that

GML(d0) =
∫ ∞
−∞

∫ v+d0

−∞
dHd0L(u, v) GMU (d0) =

∫ ∞
−∞

∫ v+d0

−∞
dHd0U (u, v)

6Although we define these concepts for sets of c.d.f. they apply to any set of functions on
<.

7The same argument as in Theorem 2.1. can be used to find bounds on the distribution of
the sum of three or more random variables with given (marginal) distributions (see Kreinovich
and Ferson (2005)). These bounds are in general not a c.d.f. and hence are not pointwise
sharp.
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i.e. these joint distributions support the lower and upper bounds. It is instruc-
tive to show the result of the construction, because it clearly illustrates that
the supporting c.d.f. are local, i.e. they depend on d0, so that the Makarov
bounds are pointwise sharp. To keep the notation simple we consider the case
that the marginal c.d.f. F0 and F1 are strictly increasing on the respective sup-
ports. We only consider the supporting c.d.f. Gd0L of the lower Makarov bound
in d0. Instead of the joint c.d.f. of Y1, Y0, Hd0L, we consider that of Y1,−Y0,
H̃d0L that has a simpler form. Define u0 = F−1

1 (GML(d0)) , v0 = d0 − u0, and
v1 = −F−1

0 (1 − GML(d0)) where v1 ≤ v0. The supporting c.d.f. is obtained
from

H̃d0L(u, v) = F1(u) u < u0, v > v0

= min{F1(u), 1− F0(−v)} u ≤ u0, v ≤ v0
= min{1− F0(−v), GML(d0)} u > u0, v ≤ d0 − u
= max{F1(u)− F0(−v), GML(d0)} u ≥ u0, v ≥ v0 or u ≥ d0 − v, v1 ≤ v < v0

= 1− F0(−v) u ≥ d0 − v, v < v1

The regions are as in Figure 1. Using this figure it is easily checked that the
c.d.f. has the correct marginal distributions F0(y) and 1− F1(−y).

The joint distribution of Y1,−Y0 is singular, because all probability is con-
centrated on two curves

S1 = {(u, v)|v = −F−1
0 (1− F1(u)), u ≤ u0}

and
S2 = {(u, v)|v = −F−1

0 (F1(u)−GML(d0)), u > u0}

If GML(d0) > 0 (we only consider this case; if GML(d0) = 0 the analysis is
slightly different), the curve S1 is increasing in u and is equal to v1 if u = u0.
The curve S2 is ∞ if u = u0 and converges to v1 as u → ∞. Moreover if
ũ minimizes F1(u) − F0(−(d0 − u)) (the minimand need not be unique), then
F1(ũ)− F0(−(d0 − ũ)) = GML(d0)) so that

d0 − ũ = −F−1
0 (F1(ũ)−GML(d0))

and we conclude that S2 touches the line u + v = d0 at all minimands ũ. The
same argument shows that S2 cannot be below the line u + v = d0. The two
curves are drawn in Figure 1 for the case that there is a unique minimand ũ.

The c.d.f. Gd0L(d) that supports the lower Makarov bound in d0 is obtained
by computing the probability mass in the set {(u, v)|u+ v ≤ d}. For d ≤ d0

Gd0L(d) = GML(d0) u0 + v1 ≤ d ≤ d0

= F1(u(d)) d < u0 + v1 (2)

with u(d) the solution to

F1(u(d)) = 1− F0(−(d− u(d))) (3)
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Fig 1. Definition and support of Gd0L if there is a unique minimand.

i.e. S1 intersects u + v = d at u = u(d), v = d − u(d). Note that Gd0L(d) is
constant if u0 + v1 ≤ d ≤ d0, because the line u + v = u0 + v1 intersects S1 at
u = u0, v = v1 and

Gd0L(u0 + v1) = H̃d0L(u0, v1) = F1(u0) = GML(d0)

For d > d0

Gd0L(d) = F1(u2(d))− F0(−(d− u1(d))) (4)

where u1(d) ≤ u2(d) are the two solutions to

u = d+ F−1
0 (F1(u)−GML(d0))

i.e. the two points of intersection of S2 and d− u.
Note that for d0, d1 Gd0L(d) = Gd1L(d) for all d ∈ < iffGML(d0) = GML(d1).

Therefore

Theorem 4.1 The lower Makarov bound GML is uniformly sharp on a set
where GML is constant. The same holds for the upper Makarov bound. On sets
where the bounds are not constant the bounds are pointwise, but not uniformly
sharp.
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Although according to Theorem 2.2 pointwise sharp bounds are c.d.f. they
need not have all the properties of G. We show this in an example which we
will use as an illustration throughout this paper.

Example 1: Difference of normals with the same variance.

Consider
Yk ∼ N(µk, σ2) k = 0, 1

Define the ATE by θ = µ1−µ0. The lower bound on the c.d.f. of the treatment
effect is

GML(d) = 0 if d < θ

= 2Φ
(
d− θ

2σ

)
− 1 if d ≥ θ

The corresponding density is

gML(d) = 0 if d < θ

=
1
σ
φ

(
d− θ

2σ

)
if d ≥ θ

Note that this is the density of a halfnormal distribution with begin point θ.
Hence the mean of the lower bound distribution is

θ + σ
2
√

2√
π
> θ

and the mean of the lower bound distribution is strictly larger that the mean of
the distribution of Y1 − Y0. The upper bound is

GMU (d) = 2Φ
(
d− θ

2σ

)
if d < θ

= 1 if d ≥ θ

The corresponding density is

gMU (d) =
1
σ
φ

(
d− θ

2σ

)
if d < θ

= 0 if d ≥ θ

which is the density of a halfnormal distribution distribution with end point θ,
so that the mean of the upper bound distribution is equal to

θ − σ 2
√

2√
π
< θ.

The bounds are drawn in Figure 2 for θ = 1 and σ = 3. Note that the bounds
are not informative if d = θ.

12



Fig 2. Makarov bounds on the treatment effect c.d.f.: Normal outcome distri-
butions with equal variance θ = 1, σ = 3.

It is also illustrative to give the supporting c.d.f. that passes through the
lower bound GML(d0). For d ≤ d0 from (3)8

u(d) =
d+ µ0 + µ1

2

Also

u0 = µ1 + σΦ−1(GML(d0)) v0 = d0 − u0 v1 = −µ0 − σΦ−1(1−GML(d0))

8This holds for all symmetric outcome distributions.
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Therefore

Gd0L(d) = Φ
(
d− θ

2σ

)
d < u0 + v1

= 2Φ
(
d0 − θ

2σ

)
− 1 u0 + v1 ≤ d ≤ d0

= Φ
(
u2(d)− µ1

σ

)
− Φ

(
−(d− u1(d))− µ0

σ

)
d > d0

with u1(d) < u2(d) the solutions to

u = d+ µ0 + σΦ−1

(
Φ
(
u− µ1

σ

)
−GML(d0)

)
2.

The conclusion is that although all c.d.f. in the set of treatment effect
distributions have mean θ, the c.d.f. that correspond to the lower and upper
Makarov bounds have a mean that is strictly larger and smaller than θ. Hence
they do not have all the properties of the set of c.d.f. that they bound. The
Makarov bounds are envelopes of the c.d.f. that support them, i.e. the c.d.f. in
(2) and (4). These envelopes need not have a mean equal to θ.

5 Averaging over covariates

The conditional onX Makarov bounds on the conditional treatment effect distri-
bution in a point d are pointwise sharp. If we average these conditional pointwise
sharp bounds over X we obtain pointwise sharp bounds on the unconditional
treatment effect distribution. To see this we construct the supporting joint
c.d.f. conditional on X as in the previous section where we substitute condi-
tional outcome distributions for unconditional ones. Averaging this supporting
conditional joint c.d.f. over X we obtain the unconditional joint c.d.f. that has
marginal distributions equal to the given (unconditional) outcome distributions
of Y0 and Y1. The distribution of Y1 − Y0 derived from this average supporting
c.d.f. has a c.d.f. that is equal to the lower or upper average Makarov bounds
in d, depending on which supporting c.d.f. we use.

The pointwise sharp average Makarov bounds improve on the bounds derived
from the average, i.e. unconditional, outcome distributions.

Theorem 5.1 Averaging over covariates gives tighter bounds, that is,

sup
t

max{E[F1(t|X)]−E[F0(t−d|X)]−, 0} ≤ E
[
sup
t

max{F1(t|X)− F0(t− d|X)−, 0}
]

(5)
E
[
inf
t

min{F1(t|X)− F0(t− d|X)− + 1, 1}
]
≤ inf

t
min{E[F1(t|X)]−E[F0(t−d|X)]−+1, 1}

(6)

14



Proof:See Appendix B.

The theorem shows that the average Makarov bounds are more informative
than the Makarov bounds on the average distribution. This means that even
in a randomized experiment covariate information can be useful in narrowing
the bounds on the c.d.f.. The next example illustrates the role of averaging for
normal outcome distributions.

Example 2: Conditional normal outcome distributions.

The conditional outcome distributions are

Yk|X ∼ N(αk + βkX,σ
2) k = 0, 1

i.e. they are obtained from linear regression models with normal errors with
the same variance that does not depend on X. The ATE given X is θ(X) =
α1 − α0 + (β1 − β0)X. The conditional lower Makarov bound is

GML(d|X) = 0 if d < θ(X)

= 2Φ
(
d− θ(X)

2σ

)
− 1 if d ≥ θ(X)

and the conditional upper Makarov bound is

GMU (d|X) = 2Φ
(
d− θ(X)

2σ

)
if d < θ(X)

= 1 if d > θ(X)

Hence the average lower bound is

E[GML(d|X)] = E
[
I(d ≥ θ(X))

(
2Φ
(
d− θ(X)

2σ

)
− 1
)]

and the average upper bound is

E[GMU (d|X)] = E
[
2I(d ≤ θ(X))Φ

(
d− θ(X)

2σ

)
+ I(d > θ(X))

]
If X is itself normally distributed then the unconditional outcome distributions
are normal

Yk ∼ N(αk + βkµX , β
2
kσ

2
X + σ2)

The Makarov bounds for normal outcome distributions with different variances
have an explicit expression that is given in Appendix A. In Figure 3 we plot
the average bounds (dashed line) and the bounds for the average (solid line)
population for α0 = 0, α1 = 1, β0 = 1, β1 = 1.5, σ = 1. The mean and standard
deviation of the normal distribution of X 1 and .8, respectively. The implied
R2 in the two outcome distributions are .39 (control) and .59 (treatment). Note
that the average bounds show that less than half of the population has a negative
treatment effect, but that the bounds on the average outcome distributions do
not allow such a conclusion.

15



Fig 3. Average Makarov bounds and Makarov bounds for the average population:
conditional Normal outcome distributions with Normally distributed covariate.

6 Bounds on the distribution function of treat-
ment effects in two points

6.1 A necessary condition for being compatible with a
treatment effect c.d.f. in two points

Because the Makarov bounds are pointwise, but not uniformly sharp, the region
that these bounds imply for the vector of values of the treatment effect c.d.f.
in a vector of points is not necessarily best possible. Let d1 < . . . < dK be
K ordered real numbers. We are interested in obtaining bounds on the set of
K-vectors B(d1, . . . , dK) = {((G(d1) · · ·G(dK))′, G ∈ G} with as before G the
set of c.d.f. of treatment effect distributions for given (conditional) outcome
distributions. To keep the notation simple we consider unconditional outcome
distributions and the case K = 2. Because G(d1) ≤ G(d2) and both G(d1) and
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G(d2) are within the Makarov bounds we have that

B(d1, d2) ⊆M(d1, d2) =

{(G(d1), G(d2))|GML(d1) ≤ G(d1) ≤ GMU (d1), GML(d2) ≤ G(d2) ≤ GMU (d2), G(d1) ≤ G(d2)}

The set M(d1, d2) is drawn in the bottom panel of Figure 5. It is the
region bounded by the extreme points A,B,C,D,E. For obvious reasons we call
M(d1, d2) the two-dimensional Makarov bounds on G(d1), G(d2). The analysis
is somewhat different for the case that d1 < d2 are ‘close’ in the sense that
GMU (d1) ≥ GML(d2). If d1, d2 are not close in this sense, the two-dimensional
Makarov bounds are a rectangle, because the monotonicity restriction is not
binding. Because we are interested in functionals of the treatment effect c.d.f.
that can be approximated by the value of that functional in a finite (but possibly
large) number of points on the support of the treatment effect c.d.f. the case
that GMU (dk) ≥ GML(dk+1) is the most relevant case.

The two-dimensional Makarov bounds M on the treatment effect c.d.f. in
d1 < d2 contain B. The two-dimensional Makarov bounds are sharp if and
only if M = B. Therefore they are not best possible, if we can find points in
M that are not in B. To establish that a point, e.g. point C in Figure 5 is
in B, we would have to construct a joint c.d.f. of Y0, Y1 with given marginal
distributions, such that the c.d.f. of Y1 − Y0, i.e. the supporting c.d.f. GC ,
satisfies GC(d1) = GMU (d1) and GC(d2) = GMU (d2). A simpler procedure is
to find necessary conditions for the existence of a supporting c.d.f. GC . If these
conditions do not hold in C, then C /∈ B. The same is true for all points in
M where the necessary conditions do not hold. Therefore, the set B is strictly
smaller thanM and by eliminating all points where the necessary condition does
not hold, we obtain the maximal reduction relative to the necessary condition.
We have been unable to show that our necessary condition for membership of
B is also sufficient. So strictly speaking we cannot call our improved bounds
sharp.

To derive the necessary condition for C ∈ B, we note that if GC ∈ G, then
GML(d) ≤ GC(d) ≤ GMU (d) for all d and the corresponding treatment ef-
fect distribution has mean E(Y1) − E(Y0). In addition, if GC exists it is larger
than the smallest c.d.f. GML ≤ GCK ≤ GMU and smaller than the largest
c.d.f. GML ≤ GCG ≤ GMU with GCK(d1) = GCG(d1) = GMU (d1) and
GCK(d2) = GCG(d2) = GMU (d2). A c.d.f. F is smaller than a c.d.f. G if
G first-order stochastically dominates F . Of course, this implies that the mean
of the distribution of G cannot be smaller than the mean of the distribution of
F . Combining these observations we conclude that if GC exists, then the mean
of GCK is not greater than E(Y1) − E(Y0) and the mean of GCG not smaller
than E(Y1)− E(Y0). If this necessary condition does not hold then C /∈ B. We
show how to check the necessary condition and find the smallest set inM where
this condition is satisfied.

As a first step in the derivation of the necessary condition we derive the
stochastically smallest distribution Gd0K that is within the Makarov bounds and
passes through GML(d0) and the stochastically largest distribution Gd0G that
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is within the Makarov bounds and passes through GMU (d0). The construction
is illustrated in Figure 4.

Gd0K(d) = GMU (d) d < G−1
MU (GML(d0))

= GML(d0) G−1
MU (GML(d0)) ≤ d < d0 (7)

= GMU (d) d ≥ d0

Gd0G(d) = GML(d) d < d0

= GMU (d0) d0 ≤ d < G−1
ML(GMU (d0)) (8)

= GML(d) d ≥ G−1
ML(GMU (d0))

Note that Gd0K(d0) = GMU (d0) > GML(d0) = Gd0K(d0)−. However, Gd0K is

Fig 4. The smallest c.d.f. Gd0K through the lower Makarov bound, the largest
c.d.f. Gd0G through the upper Makarov bound and the c.d.f. Gd0L, Gd0U that
support the bounds.

smaller than all c.d.f. that have Gd0K′(d0) = GML(d0) and calling Gd0K the
smallest c.d.f. that passes through GML(d0) is appropriate.
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Because Gd0K is the smallest c.d.f. within the Makarov bounds that passes
through GML(d0), it is first-order stochastically dominated by the c.d.f. Gd0L
that supports the lower bound GML(d0). Because this distribution has a mean
equal to E(Y1)− E(Y0) we conclude that the mean of the distribution of Gd0K
cannot be larger than E(Y1) − E(Y0). In the same way the mean of the distri-
bution of Gd0G cannot be smaller than E(Y1)− E(Y0). Therefore the necessary
condition is met for the Makarov bounds in a single point, because the largest
c.d.f. corresponding to GML(d0) and the smallest corresponding to GMU (d0)
are the Makarov bounds GML and GMU . Note that Gd0K and Gd0G are mixed
discrete-continuous distributions with a support that is the union of two disjoint
sets and an atom in d0.

Stochastically smallest and largest c.d.f. that are within the Makarov bounds
and pass through a particular point can also be constructed in the two-dimensional
case.

Lemma 6.1 Let d1 < d2 be such that GMU (d1) ≥ GML(d2). The mean of the
smallest c.d.f. that passes through B,C,D, and E and is within the Makarov
bounds is smaller than or equal to E(Y1)−E(Y0). The mean of the largest c.d.f.
that passes through A,B,D and E and is within the Makarov bounds is larger
than or equal to E(Y1)− E(Y0).

Proof:See Appendix B.
Consider a point in B(d1, d2) which is equal to G(d1), G(d2) for some G ∈ G.

The c.d.f. G first-order stochastically dominates the smallest c.d.f. that passes
through G(d1) and G(d2) and is within the Makarov bounds, Gd1d2K , and it
is first-order stochastically dominated by the largest c.d.f. that passes through
G(d1) and G(d2) and is within the Makarov bounds, Gd1d2G. Hence a necessary
condition for (G(d1), G(d2)) ∈ B(d1, d2) is that Gd1d2K has a mean that does
not exceed the ATE and Gd1d2G has a mean that is not smaller than the ATE.

Theorem 6.1 If (G(d1), G(d2)) ∈ B(d1, d2) for some G ∈ G, then the mean
of the distribution with c.d.f. Gd1d2K is less than or equal to E(Y1) − E(Y0)
and the mean of the distribution with c.d.f. Gd1d2G is greater than or equal to
E(Y1)− E(Y0).

Lemma 6.1 implies that B,D, and E are in B(d1, d2). However, it is not
obvious that A and C are in this set. To decide this we construct the smallest
c.d.f. that passes through A (see Figure 5). We only need to consider the
smallest c.d.f. because the largest c.d.f. that passes through A is equal to the
lower Makarov bound and has a mean that is larger than or equal to the ATE.
If d1 < d2 are close so that GMU (d1) ≥ GML(d2), the smallest c.d.f. that passes
through A is

GAK(d) = GMU (d) d < G−1
MU (GML(d1))

= GML(d1) G−1
MU (GML(d1)) ≤ d < d1

= GML(d2) d1 ≤ d < d2 (9)
= GMU (d) d ≥ d2
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We show that this c.d.f. can have a mean that is larger than the ATE and in
that case A /∈ B(d1, d2). For C the smallest c.d.f. that passes through this point
and is within the Makarov bounds is the c.d.f. of the upper Makarov bound
with a mean that is smaller than or equal to the ATE. The largest c.d.f. within
the Makarov bounds that passes through C is (if d1 < d2 are close as defined
above)

GCG(d) = GML(d) d < d1

= GMU (d1) d1 ≤ d < d2

= GMU (d2) d2 ≤ d < G−1
ML(GMU (d2)) (10)

= GML(d) d ≥ G−1
ML(GMU (d2))

and this c.d.f. may have a mean that is less than or equal to the ATE, and in
that case C /∈ B(d1, d2).

We compute the mean of the distribution in (9) by subdividing the sup-
port in the interval (−∞, G−1

MU (GML(d1))), the point d1, the point d2 and the
interval [d2,∞). The distribution corresponding to the c.d.f. assigns positive
probability to these points and intervals and zero probability elsewhere. By
partial integration we find

µAK =
∫ G−1

MU (GML(d1))

−∞
sdGMU (s) +

∫ ∞
d2

sdGMU (s) + (11)

d1[GML(d2)−GML(d1)] + d2[GMU (d2)−GML(d2)] =

GML(d1)G−1
MU (GML(d1))−

∫ G−1
MU (GML(d1))

−∞
GMU (s)ds+

∫ ∞
d2

(1−GMU (s))ds

+d1[GML(d2)−GML(d1)] + d2[1−GML(d2)]

An analogous argument gives the mean of GCG

µCG =
∫ d1

−∞
sdGML(s) +

∫ ∞
G−1

ML(GMU (d2))

sdgML(s) + (12)

d1[GMU (d1)−GML(d1)] + d2[GMU (d2)−GMU (d1)] =

G−1
ML(GMU (d2))(1−GMU (d2)) +

∫ ∞
G−1

ML(GMU (d2))

(1−GML(s))ds−
∫ d1

−∞
GML(s)ds

+d1GMU (d1) + d2[GMU (d2)−GMU (d1)]

Example 1, continued: Difference of normals with the same variance.
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Because the density gMU is the density of a halfnormal distribution with
endpoint θ, we can use the truncated normal mean formula9 to derive∫ b

−∞
sdGMU (s) =

{
2θΦ

(
b−θ
2σ

)
− 4σφ

(
b−θ
2σ

)
if b < θ

θ − 4σφ (0) if b ≥ θ

and∫ θ

a

sdGMU (s) = 2θ
(

1
2
− Φ

(
a− θ

2σ

))
+4σ

(
φ

(
a− θ

2σ

)
− φ (0)

)
if a < θ

In this example GMU (d1) ≥ GML(d2) iff d2 ≥ d1 ≥ θ or d1 ≤ d2 ≤ θ or
d1 < θ < d2 and

d1

σ
− 2Φ−1

(
Φ
(
d2 − θ

2σ

)
− 1

2

)
≥ θ

σ

This restriction is assumed to hold in the rest of the example.
Upon substitution of the integrals above in (11) we obtain the mean of

the smallest distribution that passes through A. If d1 < d2 ≤ θ, then be-
cause GML(d1) = GML(d2) = 0, so that in the truncated mean formula b =
G−1
MU (GML(d1)) = −∞ and a = d2

µAK = 2θ
(

1
2
− Φ

(
d2 − θ

2σ

))
+ 4σ

(
φ

(
d2 − θ

2σ

)
− φ(0)

)
+ 2d2Φ

(
d2 − θ

2σ

)
.

Thus, because d2 − θ ≤ 0, we have that µAK ≤ θ since

µAK − θ = 4σ
(
φ

(
d2 − θ

2σ

)
− φ(0) +

(
d2 − θ

2σ

)
· Φ
(
d2 − θ

2σ

))
≤ 0.

Therefore if d1 ≤ d2 < θ, then A ∈ B(d1, d2).
If θ ≤ d1 < d2, we have GMU (d2) = 1, b = G−1

MU (GML(d1)) = θ +
2σΦ−1

(
Φ
(
d1−θ
2σ

)
− 1

2

)
≤ θ and a = d2 > θ. Thus

µAK = 2θ
[
Φ
(
d1 − θ

2σ

)
− 1

2

]
− 4σφ

(
Φ−1

(
Φ
(
d1 − θ

2σ

)
− 1

2

))
+2d1

[
Φ
(
d2 − θ

2σ

)
− Φ

(
d1 − θ

2σ

)]
+ 2d2

[
1− Φ

(
d2 − θ

2σ

)]
If for example, θ = 1, σ = 3 and d1 = 1.5, d2 = 2.5, then µAK = 1.3814 > 1 = θ
so that A /∈ B(d1, d2).

9If Y has a normal distribution with mean µ and variance σ2, then

E(Y |a ≤ Y ≤ b) = µ+ σ
φ

(
a−µ
σ

)
− φ

(
b−µ
σ

)
Φ

(
b−µ
σ

)
− Φ

(
a−µ
σ

)
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Finally, if d1 < θ < d2 then because GML(d1) = 0, GMU (d2) = 1 and in the
truncated mean formula b = G−1

MU (GML(d1)) = −∞ and a = d2 > θ (so that
the truncated means are 0)

µAK = d1

[
2Φ
(
d2 − θ

2σ

)
− 1
]

+ 2d2

[
1− Φ

(
d2 − θ

2σ

)]
If, for example, θ = 1, σ = 3 and d1 = −1 and d2 = 2, then µAK = 1.60290 >
1 = θ so that A /∈ B(d1, d2).

The density gML is the density of halfnormal distribution with support [θ,∞)
and again using the truncated normal mean formula∫ ∞

a

sdgML(s) =
{

θ + 4σφ (0) if a ≤ θ
2θ
(
1− Φ

(
a−θ
2σ

))
+ 4σφ

(
a−θ
2σ

)
if a > θ

and ∫ b

θ

sdgML(s) = 2θ
(

Φ
(
b− θ
2σ

)
− 1

2

)
+ 4σ

(
φ(0)− φ

(
b− θ
2σ

))
If we substitute these expressions in (10) we obtain an expression for µCG. We
distinguish between the cases that d1 < d2 ≤ θ, that θ < d1 ≤ d2, and that d1 <
θ < d2. We maintain the restrictions that ensure that GMU (d1) ≥ GML(d2).

If θ < d1 ≤ d2, we have GMU (d2) = 1, GMU (d1) = 1, a = G−1
ML(GMU (d2)) =

∞, b = d1, so that

µCG = 2θ
[
Φ
(
d1 − θ

2σ

)
− 1

2

]
+4σ

[
φ(0)− φ

(
d1 − θ

2σ

)]
+2d1

[
1− Φ

(
d1 − θ

2σ

)]
and therefore
µCG − θ

2σ
= 2

[
φ(0)− φ

(
d1 − θ

2σ

)]
+2
(
d1 − θ

2σ

)
−2
(
d1 − θ

2σ

)
Φ
(
d1 − θ

2σ

)
≥ 0

Hence if θ < d1 < d2, then C ∈ B(d1, d2).
If d1 < d2 ≤ θ, we have GML(d1) = 0 and in the truncated means a =

G−1
ML(GMU (d2)) = θ + 2σΦ−1

(
Φ
(
d2−θ
2σ

)
+ 1

2

)
, b = d1 < θ, so that

µCG = 2θ
[

1
2
− Φ

(
d2 − θ

2σ

)]
+ 4σφ

(
Φ−1

(
Φ
(
d2 − θ

2σ

)
+

1
2

))
+2d2

[
Φ
(
d2 − θ

2σ

)
− Φ

(
d1 − θ

2σ

)]
+ 2d1Φ

(
d1 − θ

2σ

)
If for example, θ = 1, σ = 3 and d1 = −0.5, d2 = 0.5, then µCG = 0.6186 < 1 = θ
and C /∈ B(d1, d2).

Finally, if d1 < θ < d2 thenGML(d1) = 0, GMU (d2) = 1, a = G−1
ML(GMU (d2)) =

∞, and b = d1 < θ, so that

µCG = 2d1Φ
(
d1 − θ

2σ

)
+ d2

[
1− 2Φ

(
d1 − θ

2σ

)]
If, for example, θ = 1, σ = 3 and d1 = −1, d2 = 2, then µCG = −0.2166 < 1 = θ
and C /∈ B(d1, d2).2
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6.2 More informative bounds on the treatment effect c.d.f.
in two points

The example shows that µAK can be larger and µCG can be smaller than the
ATE so that either A or C (or both) are not in B(d1, d2). By continuity, if
e.g. A /∈ B(d1, d2), then the points in a neighborhood of A are also not in that
set. We will determine the (largest) subset ofM(d1, d2) that is not in B(d1, d2).
That subset is drawn in Figure 5, i.e. the region bounded by A,F and G. If
C /∈ B(d1, d2), then the largest subset of M(d1, d2) that is not in B(d1, d2) is
bounded by I,H, and C in Figure 6.

Theorem 6.2 If the smallest c.d.f. GML ≤ GAK ≤ GMU that passes through
GML(d1) and GML(d2) has a mean µAK > E(Y1) − E(Y0) then all points in
M(d1, d2) below the convex curve G2 = P (G1) defined by

E(Y1)− E(Y0) =
∫ G−1

MU (G1)

−∞
sgMU (s)ds+ d1[min{G2, GMU (d1)} −G1] (13)

+
∫ G−1

MU (G2)

d1

sgMU (s)ds+ d2[GMU (d2)−G2] +
∫ ∞
d2

sgMU (s)ds

= G−1
MU (G1)G1 −

∫ G−1
MU (G1)

−∞
GMU (s)ds

+1(G2 > GMU (d1))

[
G−1
MU (G2)− d1GMU (d1)−

∫ G−1
MU (G2)

d1

GMU (s)ds

]

+d1[min{G2, GMU (d1)} −G1] + d2[1−G2] +
∫ ∞
d2

(1−GMU (s))ds

(where we adopt the convention that an integral is 0 if the upper integration limit
is smaller than the lower integration limit and 1(.) is the indicator function) are
not in B(d1, d2).

If the largest c.d.f. GML ≤ GCG ≤ GMU that passes through GMU (d1) and
GMU (d2) has a mean µCG < E(Y1)− E(Y0) then all points in M(d1, d2) above
the concave curve H2 = Q(H1) defined by

E(Y1)− E(Y0) =
∫ d1

−∞
sgML(s)ds+ d1[H1 −GML(d1)] +

∫ d2

G−1
ML(H1)

sgML(s)ds+

(14)

d2[H2 −max{H1, GML(d2)}] +
∫ ∞
G−1

ML(H2)

sgML(s)ds =

−
∫ d1

−∞
GML(s)ds+d1H1+1(GML(d2) > H1)

[
d2GML(d2)−G−1

ML(H1)H1 −
∫ d2

G−1
ML(H1)

GML(s)ds

]
+

d2[H2 −max{H1, GML(d2)}] +G−1
ML(H2)(1−H2) +

∫ ∞
G−1

ML(H2)

(1−GML(s))ds
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are not in B(d1, d2). The set C(d1, d2) bounded by M(d1, d2) and the curves
(13) and (14) is convex.

Proof:See Appendix B.
If G2 ≤ GMU (d1) the curve P has an explicit expression

P (G1) =
−(E(Y1)− E(Y0)) + d2 +

∫∞
d2

(1−GMU (s))ds− d1G1 +G−1
MU (G1)G1 −

∫ G−1
MU (G1)

−∞ GMU (s)ds

d2 − d1

and the same is true for Q if H1 ≥ GML(d2)

Q(H1) =
−(E(Y1)− E(Y0)) + d2H2 −

∫∞
G−1

ML(H2)
(1−GML(s))ds+G−1

ML(H2)(1−H2)−
∫ d1
−∞GML(s)ds

d2 − d1

Theorem 6.2 defines a subset C(d1, d2) ofM(d1, d2) that contains B(d1, d2).
If the mean of the smallest c.d.f. that passes through A is larger than the
ATE and/or the largest c.d.f. that passes through C is smaller than the ATE,
then C(d1, d2) is a strict subset ofM(d1, d2) and we have bounds that are more
informative than the two-dimensional Makarov bounds.

It follows directly from the construction that GF̃K(d1) ≤ GH̃G(d2) so that
in Figures 5 and 6 G is below I. This implies that the projection of C(d1, d2)
are the original Makarov bounds in d1 and d2, respectively. In other words,
although C(d1, d2) may be smaller thanM(d1, d2), the projections are equal to
the Makarov bounds in a single point.

All results until now hold also for the conditional (on X) bounds. We now
show that the specific shape of the improved bounds implies that averaging
over X makes them more informative. By Theorem 6.2 C(d1, d2) is bounded
by the one-dimensional Makarov bounds (vertical and horizontal bounds) , the
curves (13) and (14), and the 45 degree line. If the bounds are obtained from
conditional outcome distributions, then it follows from Theorem 5.1 that the
horizontal and vertical lower bounds cannot decrease if we average, that the
horizontal and vertical upper bounds cannot increase if we average. Finally, by
Jensen’s inequality the convex curve (13) cannot decrease and the concave curve
(14) cannot increase if we average. Together with the observation that the 45
degree line is unaffected by averaging, we have

Theorem 6.3 Let C(d1, d2)(X) be the convex set defined in Theorem 6.2 as
derived from the conditional outcome distributions, then E[C(d1, d2)(X)] cannot
be larger than C(d1, d2) that is derived from the unconditional outcome distribu-
tions.

Example 1, continued: Difference of normals with the same variance.

We found that for θ = 1, σ = 3 and d1 = 1.5, d2 = 2.5 A /∈ B(d1, d2). For
these values µCG = 1.4834 > 1 so that C ∈ B(d1, d2). Therefore we only have a
more informative lower bound. This bound is drawn in Figure 7.
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For d1 = −0.5, d2 = 0.5, we found that C /∈ B(d1, d2). However, µAK =
.5166 so that A ∈ B(d1, d2) and we only have a more informative upper bound
that is drawn in Figure 8.

Finally, for d1 = −1 and d2 = 2, A /∈ B(d1, d2) and C /∈ B(d1, d2). Both
the lower and upper Makarov bound can be improved and the more informative
bounds are in Figure 9. 2

7 Bounds on functions of the distribution of treat-
ment effects

The bounds C(d1, d2) on the c.d.f. of the treatment effect distribution in d1 and
d2 imply bounds on functions of the treatment effect c.d.f. in d1 < d2. Here we
consider linear functions of G(d1), G(d2)

B(G(d1), G(d2)) = b1G(d1) + b2G(d2)

If b1 = 1, b2 = −1 this function is equal to the interval probability G(d2)−G(d1).
Another parameter that can be approximated by B is the total net gain for those
individuals whose net gain is between 0 and C.∫ C

0

(1−G(s))ds

If we divide the integration region in two intervals [0, c) and [c, C], then an
approximation is

C − cG(c/2)− (C − c)G((c+ C)/2)

If we pick d1 = c/2, d2 = (c+C)/2, b1 = c, b2 = C − c we obtain bounds on the
total gain from bounds on B. In the sequel we can, without loss of generality,
assume that b2 > 0.

Manski (1997b), (2003) introduces the concept of a D parameter which is
some increasing functional of a c.d.f. where the c.d.f. are ordered according
to first-order stochastic dominance. The linear functional that we consider is
a D parameter iff b1, b2 ≥ 0. An interval probability, and in general the linear
functional with b1 ≥ 0 and b2 < 0, is not a D parameter, but it can be expressed
a difference of D parameters. Manski derives bounds for D parameters and
differences of D parameters. These bounds are different from ours, because he
assumes that outcomes are weakly increasing in the level of treatment. We
do not make his assumption, in particular we do not assume that everybody
benefits from the treatment.

In Figure 10 we draw the set C(d1, d2). In the sequel we use the notation
G1 ≡ G(d1) and G2 ≡ G(d2). The bounds on B(G1, G2) depend on whether
µAK R θ and µCG R θ. B(G1, G2) is minimal in D, E or A if µAK ≤ θ and in
D, E, a point at which B touches P (G1), F or G if µAK > θ. The latter is a
direct consequence of the convexity of P (G1). If µAK ≤ θ the point at which
B(G1, G2) is minimal is determined by the slope of B(G1, G2), i.e. − b1b2 . If
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µAK > θ, then the point at which B(G1, G2) is minimal is determined by the
slope of B(G1, G2) and the slope of P (G1) in F and G. The upper bound of
B(G1, G2) is determined in a similar way. Therefore we define

P ′F ≡ P ′(P−1(GML(d2)))

P ′G ≡ P ′(GML(d1))

Q′H ≡ Q′(GMU (d1))

Q′I ≡ Q′(Q−1(GMU (d2)))

The bounds on B(G1, G2) that we denote by BL ≤ BU are given in the following
theorem.

Theorem 7.1 If µAK ≤ θ, then the lower bound on B(G1, G2) is

BL = b1GMU (d1) + b2GMU (d1) if b1 < −b2
= b1GML(d2) + b2GML(d2) if − b2 ≤ b1 < 0
= b1GML(d1) + b2GML(d2) if b1 > 0

If µAK > θ, then the lower bound on B(G1, G2) is

BL = b1GMU (d1) + b2GMU (d1) if b1 < −b2
= b1GML(d2) + b2GML(d2) if − b2 ≤ b1 < 0
= b1P

−1(GML(d2)) + b2GML(d2) if 0 < b1 ≤ −b2P ′F
= b1G̃1 + b2P (G̃1) if − b2P ′F < b1 < −b2P ′G
= b1GML(d1) + b2P (GML(d1)) if b1 ≥ −b2P ′G

where G̃1 is the unique solution to

P ′(G̃1) = −b1
b2

If µCG ≥ θ then the upper bound is

BU = b1GML(d1) + b2GMU (d2) if b1 < 0
= b1GMU (d1) + b2GMU (d2) if b1 > 0

and if µCG < θ

BU = b1GML(d1) + b2GMU (d2) if b1 < 0
= b1Q

−1(GMU (d2)) + b2GMU (d2) if 0 < b1 < −b2Q′H
= b1H̃1 + b2Q(H̃1) if − b2Q′H < b1 ≤ −b2Q′I
= b1GMU (d1) + b2Q(GMU (d1)) if b1 ≥ −b2Q′I

where H̃1 is the unique solution to

Q′(H̃1) = −b1
b2
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Example 1, continued: Difference of normals with the same variance.

We consider bounds on the functions

B1(G1, G2) = G2 −G1

and
B2(G1, G2) = G1 +G2

If θ = 1, σ = 3 and d1 = 1.5, d2 = 2.5 the bound in Figure 7 implies that

0 ≤ B1(G1, G2) ≤ .934

with no improvement over the Makarov bounds. For B2(G1, G2)

.298 ≤ B2(G1, G2) ≤ 2

and this improves on the Makarov bounds that are

.263 ≤ B2(G1, G2) ≤ 2

For d1 = −0.5, d2 = 0.5 we obtain from the bound that is drawn in Figure 8

0 ≤ B1(G1, G2) ≤ .934

with no improvement and

0 ≤ B2(G1, G2) ≤ 1.703

where the upper bound improves on the Makarov bound that is 1.737. Finally,
for d1 = −1 and d2 = 2 the bound are in Figure 9 gives

0 ≤ B1(G1, G2) ≤ 1

which is noninformative and

.617 ≤ B2(G1, G2) ≤ 1.630

which improves considerably on the Makarov bounds

.132 ≤ B2(G1, G2) ≤ 1.739

2

8 Conclusion

If a function is not non-parametrically identified we may be able to bound the
set to which it belongs. Bounds on sets of functions can be best possible just as
bounds on sets of finite dimensional parameters. If we can establish that these
bounds are best possible, it may be that the bounds are pointwise or uniformly
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sharp with the latter implying the former, but the former not implying the
latter. Uniformly sharp bounds are members of the set that is being bounded.
Pointwise sharp bounds share some of the properties of the set, but not all.
This fact implies that K dimensional bounds on the value of the function in K
points may not be best possible. We consider bounds on the set of treatment
effect c.d.f. with given marginal outcome distributions. The Makarov bounds on
this set are pointwise sharp but in general10 not uniformly sharp, because their
mean is in general not equal to the Average Treatment Effect. We have shown
that this allows us to narrow the higher dimensional Makarov bounds. Because
the set bounded by the improved bounds is convex, it is straightforward to use
these bounds obtain bounds on linear functionals. In some cases the improved
higher dimensional bounds narrow the bounds on the functionals substantially.
We give explicit expressions for the bounds on the set and on linear functionals
for K = 2. These expressions can be generalized to arbitrary K. Moreover,
because the set is convex, averaging over covariates that are correlated with the
outcomes will narrow the bounds even further.
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A Makarov bounds on the treatment effect dis-
tribution if the marginal outcome distribu-
tions are normal with unequal variances

If Yk ∼ N(µk, σ2
k), k = 0, 1, then with θ = µ1 − µ0

GML(d) = Φ

−σ1(d− θ) + σ0

√
(d− θ)2 + 2(σ2

0 − σ2
1) ln σ0

σ1

σ2
0 − σ2

1

−
Φ

−σ0(d− θ) + σ1

√
(d− θ)2 + 2(σ2

0 − σ2
1) ln σ0

σ1

σ2
0 − σ2

1


GMU (d) = Φ

−σ1(d− θ)− σ0

√
(d− θ)2 + 2(σ2

0 − σ2
1) ln σ0

σ1

σ2
0 − σ2

1

−
Φ

−σ0(d− θ)− σ1

√
(d− θ)2 + 2(σ2

0 − σ2
1) ln σ0

σ1

σ2
0 − σ2

1

+ 1

B Proofs

Proof of Theorem 3.1:
First consider the lower bound. We have for all v, u with v+u = d and using

the Bonferroni inequality

G(d|x) = Pr(Y1 + (−Y0) ≤ d|X = x) ≥ Pr(Y1 ≤ u,−Y0 ≤ v|X = x) ≥

max{Pr(Y1 ≤ u|X = x)+Pr(−Y0 ≤ v|X = x)−1, 0} = max{F1(u|x)−F0(−v|x)−, 0}

Hence if we define t ≡ u, d ≡ u+ v

G(d) ≥ E
[
sup
t

max{F1(t|X)− F0(t− d|X)−, 0}
]

For the upper bound we have

1−G(d|x) = Pr(Y1 + (−Y0) > d|X = x) ≥ Pr(Y1 > u,−Y0 > v|X = x) ≥

max{Pr(Y1 > u|X = x) + Pr(−Y0 > v|X = x)− 1, 0}

Taking the opposite on both sides of the equation, adding 1, substituting t ≡
u, d ≡ u+ v, and taking the expectation gives

G(d) ≤ E
[
inf
t

min{F1(t|X)− F0(t− d|X)− + 1, 1}
]
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We show that the bounds are themselves c.d.f. Consider the lower bound for
G(d|x)

GML(d|x) = sup
t

max{F1(t|x)− F0(t− d|x)−, 0}

Now if d′ ≥ d, then for all t

max{F1(t|x)− F0(t− d′|x)−, 0} ≥ max{F1(t|x)− F0(t− d|x)−, 0}

so that GML(d′|x) ≥ GML(d|x). Next we show that GML(d|x) is right continu-
ous. Consider a sequence dn ↓ d. First the sequence GML(dn|x) is nonincreasing
and bounded from below, so that it has a limit. Obviously 0 ≤ dn − d < ε iff
0 ≤ (t − d) − (t − dn) < ε independent of t. Hence for all δ > 0 and n large
enough

F0(t− dn|x) ≥ F0(t− d|x)− − δ

because t − dn ↑ t − d and F0(.)− is the left-hand limit. Using this inequality
we have for all t

F1(t|x)−F0(t− d|x)− ≤ F1(t|x)−F0(t− dn|x)− ≤ F1(t|x)−F0((t− d)|x)−+ δ

Taking the sup over t from right to left we obtain

GML(d|x) ≤ GML(dn|x) ≤ GML(d|x) + δ

Taking the limit we obtain, because δ is arbitrary, that limn→∞GML(dn|x) =
GML(d|x), so that the lower bound is right-continuous. Note that

GML(d|x) ≥ F1(d/2|x)− F0(−d/2|x)

so that limd→∞GML(d|x) = 1. Taking the expectation over X we conclude
that the lower bound is indeed a c.d.f. (by dominated convergence limits and
expectations can be interchanged). The proof that the upper bound is also a
c.d.f. is analogous. �

Proof of Theorem 3.2:
Let GL be decreasing in d0, so that for some d′ < d0 GL(d′) > GL(d0). The

supporting c.d.f. Gd0L is such that Gd0L(d0) = GL(d0). Therefore Gd0L(d′) <
GL(d′) which implies that Gd0L /∈ G. In the same way we show that the lower
bound is 0 and 1 at −∞ and ∞, respectively. If GL is discontinuous at d0

and not right-continuous, then GL(d0) < GL(d0)+. The supporting c.d.f. Gd0L
satisfies Gd0L(d0) = GL(d0) and because Gd0L ∈ G also Gd0L(d) ≥ GL(d0)+
for d > d0. Therefore the supporting c.d.f. is not right-continuous in d0, a
contradiction. We prove in the same way that GU is a c.d.f. 2

Proof of Theorem 5.1:
For all x ∈ X and all s ∈ <

sup
t

max{F1(t|X = x)−F0(t−d|X = x)−, 0} ≥ max{F1(s|X = x)−F0(s−d|X = x)−, 0}
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Hence for all x ∈ X and all s ∈ <

sup
t

max{F1(t|X = x)−F0(t−d|X = x)−, 0} ≥ F1(s|X = x)−F0(s−d|X = x)−

and
sup
t

max{F1(t|X = x)− F0(t− d|X = x)−, 0} ≥ 0

Averaging over the distribution of X gives that for all s ∈ R

E
[
sup
t

max{F1(t|X)− F0(t− d|X)−, 0}
]
≥ E[F1(s|X)]− E[F0(s− d|X)−]

and

E
[
sup
t

max{F1(t|X)− F0(t− d|X)−, 0}
]
≥ 0

Hence for all s ∈ R

E
[
sup
t

max{F1(t|X)− F0(t− d|X)−, 0}
]
≥ max{E[F1(s|X)]−E[F0(s−d|X)−], 0}

so that we obtain (5), because by dominated convergence E[F0(s − d|X)−] =
E[F0(s− d|X)]−. The proof of inequality (6) is analogous. 2

Proof of Lemma 6.1:
We only prove the first part of the lemma. The proof of the second part

is analogous. First, consider C. The top panel of Figure 5 draws the smallest
c.d.f. that is within the Makarov bounds and passes through C (labeled by C).
Note that it is just GMU that has a mean that cannot be larger than the ATE.
Next, consider B. The smallest c.d.f., labeled by B, is the smallest c.d.f. that
passes through the lower bound GML(d1) on G(d1). Because this corresponds
to the construction for the one-dimensional case as in (7), such a c.d.f. has a
mean that does not exceed the ATE. The smallest c.d.f. that passes through E
is the smallest c.d.f. that passes through the lower bound GML(d2) on G(d2)
and therefore it is like (7) and has a mean that is not larger than the ATE.
Finally, the smallest c.d.f. that passes through D is stochastically dominated by
a c.d.f. that is the smallest c.d.f. that is within the Makarov bounds and passes
through the lower Makarov bound at d = G−1

ML(GMU (d1)), again a c.d.f. as in
(7) and has a mean that cannot be larger than the ATE, so that c.d.f. labeled
D has a mean that cannot exceed the ATE. 2

Proof of Theorem 6.2:
First we show that the smallest c.d.f. that passes through F and G, GFK and

GGK respectively, have a mean equal to the ATE. Moreover F is to the left of E
and G is below B. We have GFK(d2)− = GML(d2) and GML(d1) < GFK(d1)− ≤
GEK(d1) with GML ≤ GEK ≤ GMU the smallest c.d.f. that passes through E.
GFK(d1)− > GML(d1) because the smallest c.d.f. that passes trough A has a
mean strictly larger than the ATE and GFK(d1)− ≤ GEK(d1) because GEK is
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the smallest c.d.f. that passes through E and by Lemma 6.1 has a mean that
is less than or equal to the ATE. Because the mean of GFK is decreasing in
GFK(d1)− there is a value GML(d1) < GFK(d1)− ≤ GEK(d1) such that the
mean of GFK is equal to the ATE. For G we have GGK(d1)− = GML(d1) and
GML(d2) < GGK(d2)− ≤ GMU (d2). Note that if GGK(d2)− = GML(d2) then
GGK = GAK with a mean that is strictly larger than the ATE. If GGK(d2)− =
GMU (d2) then GGK = GBK and by Lemma 6.1 GBK has a mean less than or
equal to the ATE. Because the mean of GGK is decreasing in GGK(d2)− there is
a value of GGK(d2)− such that the mean of GGK is equal to the ATE. Note that
GGK(d2)− can be larger than GMU (d1 and in that case GGK has continuous
support on three disjoint sets.

We now find an expression for the curve that connects F and G. The smallest
c.d.f. that passes through F̃ on the curve is determined by G1 ≡ GF̃K(d1)− and
G2 ≡ GF̃K(d2)− with GFK(d1)− ≤ G1 ≤ GGK(d1)− and GFK(d2)− ≤ G2 ≤
GGK(d2)−. The curve is the solution to the equation that sets the mean of GF̃K
equal to the ATE. The expression for the mean is different if G2 > GMU (d1),
because there is an additional disjoint interval in the support. The expression
is given in (13). The distribution corresponding to GF̃K is continuous up to
G−1
MU (G1), has an atom at d1, possibly is continuous between d1 and G−1

MU (G2)
if GMU (d1) < G2, has an atom at d2, and finally a continuous part on the
interval [d2,∞).

The derivative is

P ′(G1) = −
G−1
MU (G1)− d1

max{G−1
MU (G2), d1} − d2

≤ 0

because G1 ≤ GMU (d1) and G2 ≤ GMU (d2). The second derivative if G2 ≤
GMU (d1) is

P ′′(G1) =
1

(d2 − d1)gMU (G−1
MU (G1))

≥ 0

and if G2 > GMU (d1)

P ′′(G1) =
1

(d2 −G−1
MU (G2))gMU (G−1

MU (G1))
+

P ′(G1)2

(d2 −G−1
MU (G2))gMU (G−1

MU (G2))
≥ 0

so that the curve is convex. The extreme points F and G in Figure 5 are found by
setting G2 = GML(d2) (and solving for G1) for F, and by setting G1 = GML(d1)
(and solving for G2) for G.

If µCG strictly smaller than the ATE, then C is not in B(d1, d2). The same
reasoning as above shows that we can find c.d.f. marked by H and I in Figure
6 that have a mean equal to the ATE. The c.d.f. corresponding to H̃ on the
curve in Figure 6 is characterized by H1 ≡ GH̃G(d1) and H2 ≡ GH̃G(d2).
The corresponding distribution is continuous up to d1, has an atom at d1, if
H1 < GML(d2), a continuous part between G−1

ML(H1) and d2, an atom at d2,
and finally a continuous part on [G−1

ML(H2),∞). Hence the curve as in (14).
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The derivative is

Q′(H1) = −
min{G−1

ML(H1), d2} − d1

G−1
ML(H2)− d2

≤ 0

because H1 ≥ GML(d1) and H2 ≥ GML(d2). The second derivative is if
GML(d2) ≤ H1

Q′′(H1) = − Q′(H1)2

G−1
ML(H2)gML(G−1

ML(H2))
≤ 0

and if GML(d2) > H1

Q′′(H1) = − 1
G−1
ML(H2)gML(G−1

ML(H1))
− Q′(H1)2

G−1
ML(H2)gML(G−1

ML(H2))
≤ 0

so that the curve is concave. 2
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Fig 5. The smallest c.d.f. that passes through A,B,C,D,E.
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Fig 6. The largest c.d.f. that passes through A,B,C,D,E.
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Fig 7. Improved lower bound on G(d1) and G(d2) for d1 = 1.5, d2 = 2.5.
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Fig 8. Improved upper bound on G(d1) and G(d2) for d1 = −.5, d2 = .5.
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Fig 9. Improved upper and lower bound on G(d1) and G(d2) for d1 = −1,
d2 = 2.
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Fig 10. Bounds on the sum and difference of the treatment effect c.d.f. in two
points
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