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Set Inference for Semiparametric Discrete Games

Kyoo il Kim�

School of Economics and Social Sciences
Singapore Management University

September 26, 2006

Abstract

We consider estimation and inference of parameters in discrete games allowing for multiple equilibria,
without using an equilibrium selection rule. We do a set inference while a game model can contain
in�nite dimensional parameters. Examples can include signaling games with discrete types where the type
distribution is nonparametrically speci�ed and entry-exit games with partially linear payo¤s functions.
A consistent set estimator and a con�dence interval of a function of parameters are provided in this
paper. We note that achieving a consistent point estimation often requires an information reduction.
Due to this less use of information, we may end up a point estimator with a larger variance and have a
wider con�dence interval than those of the set estimator using the full information in the model. This
�nding justi�es the use of the set inference even though we can achieve a consistent point estimation. It
is an interesting future research to compare these two alternatives: CI from the point estimation with
the usage of less information vs. CI from the set estimation with the usage of the full information.

Keywords: Semiparametric Estimation, Set Inference, In�nite Dimensional Parameters, Inequality
Moment Conditions, Signaling Game with Discrete Types

JEL Classi�cation: C13, C14, C35, C62, C73

1 Introduction

The econometric modeling of game theories has been of signi�cant interest over the last decade including
simultaneous games with complete information (Bjorn and Vuong (1984, 1985), Bresnahan and Reiss (1990,
1991), Tamer (2003), Bajari, Hong and Ryan (2004)) or with incomplete information (Brock and Durlauf
(2001, 2003), Seim (2002), Sweeting (2004), Aradillas-Lopez (2005)), dynamic games (Aguirregabiria and
Mira (2003), Bajari, Benkard, and Levin (2003), Berry, Ovstrovsky, and Pakes (2003), Pesendorfer and
Schmidt-Dengler (2003)), and signaling games (Kim (2006)). Here we focus on static discrete games. For
these games, depending on the equilibrium properties, a researcher can face with the issue of multiple equi-
libria. Several resolutions have been proposed such as imposing equilibrium selection rules1 and rede�ning
the space of outcomes in a game2 .

�Correspondence: Kyoo il Kim, School of Economics and Social Sciences, Singapore Management University, 90 Stamford
Road, Singapore 178903, Tel: +65 6828�0876, Fax: +65 6828-0833, E-mail: kyookim@smu.edu.sg.

1Examples include Bjorn and Vuong (1984, 1985), Kooreman (1994), and Bajari, Hong and Ryan (2004) for games with
complete information, Sweeting (2004) for a game with incomplete information, and Kim (2006) for signaling games with
discrete types.

2See Bresnahan and Reiss (1990, 1991).
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Alternatively, inspired by important work by Manski and co-authors (Manski (1990), Horowitz and
Manski (1995), and Manski and Tamer (2002)) on bound analysis, some researchers have started to develop
set inferences rather than a point estimation, without attempting to resolve the equilibrium selection (Sutton
(2000), Ciliberto and Tamer (2003), and Andrews, Berry, Jia (2004) [ABJ]). In particular, we consider the
model where some asymptotic inequalities may de�ne a region of parameters rather than a single point in
the parameter space. By de�nition, when there are multiple equilibria, there exist regions of unobservables
that are consistent with the necessary conditions for more than one equilibrium. Therefore, the probability
implied by the necessary condition for a given event is greater than or equal to the true probability of the
event and a set inference including this paper utilizes these inequality conditions.
Another thing we note in the literature of the set inference is that parameters allowed in game models are

only �nite dimensional even though in�nite dimensional parameter is naturally included in the model (For
example, see Kim (2006)) or misspeci�cation of a fully parametric model is concerned. This paper considers
a set inference with in�nite dimensional parameters. A consistent set estimator and a con�dence interval
are provided in the paper.
Our proposed set estimation and inference requires a consistent pro�led estimator for the in�nite dimen-

sional parameters. An interesting case we note in this paper is that sometimes we can achieve a consistent
point estimation of all the parameters including �nite and in�nite dimensional ones by losing some infor-
mation in the model. For example, in Bresnahan and Reiss (1990, 1991), we disregard the information
about which �rms enter the market since we rede�ne the outcome space in terms of how many �rms in the
market. Due to this omitted information, we may end up point estimators whose variances are larger and
thus have wider con�dence intervals than those of the set estimator using the full information in the model.
Comparison of these two will be also interesting.
The organization of this paper is as follows. Section 2 introduces the model we study. In Section 3,

we extend the set estimator of ABJ to the semiparametric case and provide two examples of such models.
In Section 4, we show the consistency of the set estimator. In Section 5, we propose a set inference. We
conclude in Section 6. Technical details and mathematical proofs are presented in Appendix.

2 Model

Let Yp be player p�s action (or strategy) and Xp be a vector of player p�s characteristics for p = 1; : : : ; p.
Let "p be player p�s unobservable to econometricians, which is a part of player p�s payo¤ functions. We let
Y = (Y 01 ; Y

0
2 ; : : : ; Y

0
p)
0 2 Rl1+:::+lp , X = (X 0

1; X
0
2; : : : ; X

0
p)
0 2 Rk and let " = ("1; "2; : : : ; "p)0 2 Rp . Also let

�0 � (�0; h0) be the parameters of interest in a game. Then, payo¤s of the game are given as functions
of (Y;X; "; �0) and an equilibrium of the game can be characterized comparing those payo¤s for di¤erent
actions or strategies. �0 consists of a vector of �nite dimensional unknown parameters, denoted by �0 and a
vector of in�nite dimensional unknown functions, denoted by h0. Here we let h0 be functions of X or subset
of X alone without loss of generality since Y is discrete. We allow h0 can depend on the parameters �. We
also let S(W ) denote the support of the distribution of random variable W .
Now denote 
(Y = y;X = x; �) to be the region of " under which Y takes the value y given X = x and

�. To be precise, 
(y; x; �) � 
(Y = y;X = x; �) = f"jY1 = y1; Y2 = y2; : : : ; Yp = yp given X = x and
�g. Then, the probability that the necessary conditions for Y = y holds, denoted by P (yjx; �), will equal
the probability that " belongs to 
(y; x; �) given X = x and �. Depending on the game of interest and the
equilibrium property of the game, a researcher can construct 
(y; x; �) accordingly. Examples can be found
in ABJ for entry games and Kim (2006) for signaling games. Note that

P (yjx; �) = Pr (" 2 
(y; x; �)) (1)

and thus the analytic form of P (yjx; �) will be given as long as the distribution of " is assumed to be known.
When � = �0, this is a simple "-orthant probability. Note that at the true parameter value � = �0, the
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probabilities of the necessary conditions must be at least as large as the true probabilities of the events
y 2 S(Y ) given X = x, denoted by P0(yjx) :

P (yjx; �0) � P0(yjx); 8(y; x) 2 S(Y )� S(X). (2)

Notice that this inequality follows from the fact that the outcome y implies the necessary conditions for y
but the necessary condition need not imply the outcome y. Note that the inequalities in (2) are satis�ed for
the true �0 and possibly for other values. It is possible that only one � satis�es the inequalities and that if
the necessary conditions are derived from an incorrect model, then perhaps no � will satisfy the inequalities.
Now let A0 � �0 �H0 denote the asymptotically identi�ed set of parameters that satisfy the inequality

restrictions in (2). This A0 is the object we are trying to estimate from the model3 . We may estimate both
the �nite dimensional parameters and the in�nite dimensional parameters simultaneously. Alternatively, we
may obtain consistent pro�led estimates of h0(�; �) from the model or an auxiliary model and then estimate
�0 (thus �0 = (�0; h0(�; �0)) in the main estimation. Here we adopt the second approach where consistent
estimates of h(�; �) for all � 2 � are available. We will suppress the arguments of h0 for notational convenience
such that (�; h) � (�; h(�; �)), (�; h0) � (�; h0(�; �)), and (�0; h0) � (�0; h0(�; �0)).

3 Set Estimator

Here we take the approach by ABJ. Noting ABJ only allows for �nite dimensional parameters by construc-
tion4 , we adopt the second step estimation for in�nite dimensional parameters where pro�led estimates
for in�nite dimensional parameters are available in the pre-step and thus in the main estimation, we only
deal with �nite dimensional parameters. To focus on the treatment of the in�nite dimensional parameters
in this paper, we simplify discussions regarding the construction of estimators and related issues. Such
issues can be found in ABJ. Here we assume that the model probabilities fP (yjXi; �g : i = 1; : : : ; ng
have analytic closed form solutions.5 Now we brie�y review the data-dependent construction of X cells
following ABJ6 . Noting the data-dependent selection of X cells7 will a¤ect the asymptotic distribution
of the statistics, we account for this dependency in the determination of the critical values later. Con-
sider a set fq :  2 �g of real-valued weight functions on S(X), where  is a subset of S(X) and �
is a collection of subsets of S(X). In particular, for each y(j) 2 S(Y ) = fy(1); : : : ; y(J)g, we consider
such Mj subsets of S(X) indexed by j;m, m = 1; : : : ;Mj . We let � =

�
j;m � S(X) : (j;m)�IJ;M

	
,

where IJ;M = f(j;m) : m = 1; : : : ;Mj ; j = 1; : : : ; J with J = l1 � : : :� lpg. The functions fq :  2 �g ag-
gregate and/or weight the necessary condition for an equilibrium over di¤erent values of x. Now let b�n =�bn;j;m � S(X) : (j;m) 2 IJ;M	, where bn;j;m is a random subset of S(X). For the consistency of the set esti-
mator, we require b�n !

p
�0 under certain metric described later where �0 =

�
0;j;m � S(X) : (j;m) 2 IJ;M

	
.

Now we extend ABJ to the semiparametric case where a pro�led consistent estimator of h0(�; �), denoted by
3Note that A0 could be (i) the null set, (ii) a single point, (iii) a strict subset of the parameter space consisting of more than

one point, or (iv) the entire parameter space. ABJ refers that the model is (i) rejected, (ii) point identi�ed, (iii) set identi�ed,
or (iv) completely uninformative.

4 It is because ABJ utilizes �nite numbers of cells to facilitate the estimation, which is not compatible with in�nite dimensional
parameters. Simply it violates the order condition for identi�cation.

5The model probabilities induced by the games may not have analytic closed form expressions. In that case we need to
consider the simulated version of the probabilities which are not hard to construct in many cases. The analysis here can easily
adopt the simulated version of model probabilities.

6We may also need to consider such cells for Y when the dimension of Y is high but here we implicitly assume that we do
not have such a problem.

7Examples of constructing these cells and some e¢ ciency issue can be found in ABJ.
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bh(�; �), is available for all � 2 �. De�ne
c0(j; ; �; h) =

Z �
P (y(j)jx; �; h(�; �))� P0(y(j)jx)

�
q(x)dFX(x) and (3)

bcn(j; ; �; h) = n�1
nX
i=1

�
P (y(j)jXi; �; h(�; �))� 1[Yi = y(j)]

�
q(Xi):

Note that E [bcn(j; ; �; h)] = c0(j; ; �; h) for all (j; ; �; h) by construction. Hence, with iid observations, we
have bcn(j; ; �; h)!

p
c0(j; ; �; h) provided that c0(j; ; �; h) is well-de�ned. Necessary conditions for � to be

the true parameters are

P (yjx; �; h0(�; �))� P0(yjx) � 0, 8(y; x) 2 S(Y )� S(X) (4)

which implies that
c0(j; 0;k;m; �; h0(�; �)) � 0, 8(j;m) 2 IJ;M. (5)

De�ne
�0 = f� 2 � : (4) holdsg and �+ = f� 2 � : (5) holdsg.

By de�nition, the set �0 is the smallest set of parameter values that necessarily includes the true value �0
(and thus �0 2 �0 �H0). By construction, �+ � �0 since (4) implies (5). Now suppose that we have an
initial nonparametric estimator bh(�; �) of h0(�; �) for each �. Then we de�ne a set estimator b�n of �+ in the
spirit of ABJ. To do that, we �rst de�ne the estimator criterion function

Qn(�; h) =
X

(j;m)2IJ;M

��bcn(j; bn;j;m; �; h)�� � 1[bcn(j; bn;j;m; �; h) � 0] (6)

whose population version of the criterion function is given by

Q(�; h) =
X

(j;m)2IJ;M

��c0(j; 0;j;m; �; h)�� � 1[c0(j; 0;j;m; �; h) � 0]. (7)

Note that the function Q(�; h) is minimized and equals zero for all values (�; h) which satisfy the necessary
conditions c0(j; 0;j;m; �; h) � 0 for all (j;m) 2 IJ;M, which implies that

�+ = f� 2 � : � minimizes Q(�; h0(�; �)) over �g . (8)

This justi�es the construction of the set estimator b�n to be
b�n = n� 2 � : � minimizes Qn(�;bh(�; �)) over �o ; (9)

where bh(�; �) 2 Hn and Hn is a space of sieves that approximates H satisfying Hn � Hn+1 � H for all n � 1.
Note that if there exists a value of (�;bh(�; �)) for which bcn(j; bn;j;m; �;bh) � 0 for all (j;m) 2 IJ;M, then b�n
equals to n

� 2 � : bcn(j; bn;j;m; �;bh(�; �)) � 0, 8(j;m) 2 IJ;Mo : (10)

It is possible that the set de�ned in (10) is empty by the randomness in the estimator of bcn (�). We will
let A0 � �0 � H0, A+ � �+ � H+, and bAn � b�n � bHn where H0 = fh 2 H : h = h0(�; �) and � 2 �0g,
H+ = fh 2 H : h = h0(�; �) and � 2 �+g and bHn = fh 2 Hn : h = bh(�; �) and � 2 b�ng, respectively.
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The existence of b�n (i.e. the existence of bAn) is guaranteed since b�n is de�ned as the collection of
arguments that minimize a continuous function on a compact set8 as in (9). In Section 4, we establish the
convergence of bAn to A+ in probability under a certain metric with suitable assumptions. We develop our
discussion under some higher level assumptions which should be justi�ed for each example on hand. In the
following, before going into the asymptotics of our estimator, we present semiparametric versions of two
discrete games providing the inequality conditions of (2) which we are based on for our set estimation and
inference.

3.1 Example1: Two Firms Entry-Exist Game

Suppose there are two potential entrants in a market whose pro�ts depend on the existence of its rival. Let
�j denote the pro�t of the �rm j = 1; 2 as

�j(y1; y2jx) = �j(Y1 = y1; Y2 = y2jX = (x01; x
0
2)
0) + "j

where we let �1(1; 0jx) = a+x01�c�1+h1(x1c), �2(0; 1) = a+x02�c�2+h2(x2c), �1(1; 1) = b+x01�c�1+h1(x1c),
�2(1; 1) = b + x02�c�2 + h2(x2c), and �1(0; �) = �2(�; 0) = 0 with a > b since a monopoly pro�t tends to
be higher than a duopoly pro�t. " = ("1; "2) are known to each �rm but not to econometricians. Here the
payo¤s functions of players are given as partially linear forms. We let Xjc \Xj�c = ? and Xjc [Xj�c = Xj
for j = 1; 2 and let h1(0) = h2(0) for the identi�cation of parameters. Now assume that "j follows a normal
distribution and "1 ? "2. Then, the probability of being a monopolist will be �(�aj � a+x

0
j�c�j+hj(xjc)) =

Pr("j > ��aj ) and that of being a duopolist will be �(�bj � b + x
0
j�c�j + hj(xjc)) = Pr("j > ��bj ). For

this game, we note that multiple Nash equilibria exist depending on the realization of ("1; "2) and that the
necessary conditions of the Nash equilibria give us the following four inequality conditions comparing the
true probabilities of events and the model probabilities as the form of (2):

P (0; 0j�a1 ; �a2 ; �b1 ; �b2) = (1� �(�a1))(1� �(�a2)) � P0(0; 0jx);
P (0; 1j�a1 ; �a2 ; �b1 ; �b2) = �(�a2)(1� �(�b1)) � P0(0; 1jx);
P (1; 0j�a1 ; �a2 ; �b1 ; �b2) = �(�a1)(1� �(�b2)) � P0(1; 0jx); and
P (1; 1j�a1 ; �a2 ; �b1 ; �b2) = �(�b1)�(�b2) � P0(1; 1jx).

This game model includes both �nite dimensional parameters (a, b, and �j , j = 1; 2) and in�nite dimensional
parameters (hj(�), j = 1; 2) of interest.

3.1.1 Construction of the Pro�led Estimator

Now let � = (a; b; �01; �
0
2)
0 and h = (h1; h2) and rewrite P (Y1; Y2jX; �; h) = P (Y1; Y2j�a1 ; �a2 ; �b1 ; �b2). Under

the correct model speci�cation with true parameters of (�0; h0), we have P (0; 0jX; �0; h0) = P0(0; 0jX),
1�P (0; 0jX; �0; h0)�P (1; 1jX; �0; h0) = P0(0; 1jX)+P0(1; 0jX), and P (1; 1jX; �0; h0) = P0(1; 1jX) regardless
of the multiplicity of the Nash equilibria9 . Using this fact and the method of sieve MLE10 similarly with
Kim (2006), we estimate h0 as a pro�led estimate of the form bh(�; �) such that

bh(�; �) = argmax
h2Hn

1

n

nX
i=1

l(yi; xi; �; h)

8Qn(�; h) is continuous in � as long as h is continuous in � and bcn(�) is continuous in (�; h), which is also continuous as long
as P (yjx; �; h) is continuous in (�; h).

9Thus, we have rede�ned the outcome space in terms of the number of �rms in the market.
10Alternatively, we can obtain a pro�led estimator using the Sieve Minimum Distance estimator proposed by

Ai and Chen (2003) noting that the model can be characterized in terms of the moment conditions: 0 =
E [(1� Y1)(1� Y2)� P (0; 0jX; �0; h0)jX] and 0 = E [Y1Y2 � P (1; 1jX; �0; h0)jX].

5



where l(yi; xi; �; h) � 1 [y1i + y2i = 0] logP (0; 0jxi; �; h) + 1 [y1i + y2i = 1] log(1� P (0; 0jxi; �; h)� P (1; 1jxi;
�; h)) +1 [y1i + y2i = 2] logP (1; 1jxi; �; h). Under some regularity conditions similar with those in Kim
(2006), we can show that sup�2� supxjc2S(Xjc) jbhj(�; �)� hj0(�; �)j = op(1) for j = 1; 2. Interestingly, here we
note that we may estimate the parameters simultaneously as

�b�;bh� such that�b�;bh� = argmax
�2�;h2Hn

1
n

Pn
i=1 l(yi; xi; �; h).

The consistency and the asymptotic normality of functional of parameters for such estimators can be
also found in Kim (2006). However, we note that to achieve this consistent point estimation, we have to
disregard the information about which �rm enters the market since we rede�ne the outcome space in terms
of how many �rms in the market. Due to this omitted information, we may end up a point estimator whose
variance is larger and thus we may have wider con�dence interval for a parameter of interest than that of the
set estimator using the full information in the model. It will be an interesting future research to compare
these two alternatives: CI from the point estimation with the usage of less information vs. CI from the set
estimation with the usage of the full information.

3.2 Example 2: Signaling Game with Two Discrete Types

The following example is a simple version of Kim (2006). Consider the beer-quiche game in Cho and Kreps
(1987) where we have two players. Player 1 has either of two types fstrong; weakg with the probability of
being the strong type equal to pu,11 and knows her type. After observing her type, Player 1 moves �rst
sending one of two messages fBeer;Quicheg to Player 2. Then, Player 2 chooses an action �Fight�or �No
Fight�after observing the signal sent by Player 1. After the play, a payo¤ is realized depending on actions
chosen by two players and Player 1�s type. The structure and the payo¤s of this game is given in Figure 1.
Here '1 denotes the cost of mimicking the other type of Player 1 (cost of signalling falsely) and '2 measures
Player 2�s incentive to single out a particular type of Player 1. In the payo¤s functions, Players can observe
each other�s " but econometricians only know the distribution of " such as normal distribution.
In this game we have four possible observable outcomes: Player 1 chooses beer but Player 2 decides to

�ght, Player 1 chooses beer and Player 2 decides not to �ght, Player 1 chooses quiche and Player 2 decides
to �ght, or Player 1 chooses quiche but Player 2 decides not to �ght. We let Y1 = 1 if Player 1 chooses Beer
and Y1 = 0 otherwise and let Y2 = 1 if Player 2 chooses No Fight and Y2 = 0 otherwise. From the result
of Kim (2006)12 , using the Perfect Bayesian Equilibrium (PBE), we can characterize the equilibrium of the
game as summarized in Figure 2. As illustrated in the �gure, depending on the realizations of ("1; "2), we
can have Pooling equilibria, Separating equilibria, or Semi-separating equilibria. Then, we obtain the model
probabilities for each four possible outcome by integrating regions of " for each particular observable outcome
as below13 . We let �1 � X 0

1�1, �2 � X 0
2�2, and p � p(Z) where p(Z) is the conditional probability of being a

strong type conditional on the public signal Z regarding Player 1�s type, which are available to both Player
2 and econometricians.
11Note that pu is the unconditional probability while p(�) denotes the conditional probability.
12When PBE is adopted as the equilibrium concept, Kim (2006) shows that this signaling game has multiple equilibria depend-

ing on the realizations of ("1; "2). In the region E1 �
�
("1; "2) : "1 � �+X0

1�1 + '1 & X0
2�2 + (2p� 1)'2 � "2 � X0

2�2 + '2
	
,

we can have two equilibria: Pooling equilibrium with Beer & Fight or Pooling equilibrium with Quiche & Fight while in
E2 �

�
("1; "2) : "1 � �+X0

1�1 � '1 & X0
2�2 � '2 � "2 � X0

2�2 + (2p� 1)'2
	
, we can have two equilibria: Pooling with Beer

& No Fight or Pooling with Quiche & No Fight. Kim (2006) also shows that we can still achieve the uniqueness of equilibrim
by strenghtening the concept of equilibrim such as Cho and Kreps (1987)�s Intuitive Criterion. Only allowing equilibrium that
survives this Intuitive Criterion, Kim (2006) shows that only (Quiche, Fight) survives in E1 and only (Beer, No Fight) survives
in E2.
13For details how to derive the equilibria of the game and the resulting model probabilities, see Kim (2006).
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P (1; 1jp; �1; �2; '1; '2) =
� (�1 � '1) (� (�2 + (2p� 1)'2)� � (�2 � '2)) + p� (�2 � '2)
+p(� (�1 + '1)� � (�1 � '1))(� (�2 + '2)� � (�2 � '2))
+
R 1
0
�
�
�2 +

�
p�!(1�p)
p+!(1�p)

�
'2

�
2p(1�p)'2
p+(1�p)! d!

R 1
0
�
�
�1 �

'1
!

� '1
! d!

+
R 1
0
p!�

�
�2 +

�
(1�!)p�(1�p)
(1�!)p+(1�p)

�
'2

�
2p(1�p)'2
(1�!p)2 d!

R 1
0
!�
�
�1 +

'1
1�!

�
'1

(1�!)2 d!

P (1; 0jp; �1; �2; '1; '2) =
(1� � (�1 + '1)) (� (�2 + '2)� � (�2 + (2p� 1)'2)) + p (1� � (�2 + '2))
+
R 1
0
�
�
�2 +

�
p�!(1�p)
p+!(1�p)

�
'2

�
2p(1�p)'2
p+(1�p)! d!

R 1
0
(1� !)�

�
�1 �

'1
!

� '1
!2 d!

+
R 1
0
p!�

�
�2 +

�
(1�!)p�(1�p)
(1�!)p+(1�p)

�
'2

�
2p(1�p)'2
(1�!p)2 d!

R 1
0
�
�
�1 +

'1
1�!

�
'1
1�!d!

P (0; 1jp; �1; �2; '1; '2) =
� (�1 � '1) (� (�2 + (2p� 1)'2)� � (�2 � '2)) + (1� p) � (�2 � '2)
+
R 1
0
(1� p) (1� !)�

�
�2 +

�
p�!(1�p)
p+!(1�p)

�
'2

�
2p(1�p)'2
(p+!(1�p))2 d!

R 1
0
�
�
�1 �

'1
!

� '1
! d!

+
R 1
0
�
�
�2 +

�
(1�!)p�(1�p)
(1�!)p+(1�p)

�
'2

�
2p(1�p)'2
1�!p d!

R 1
0
!�
�
�1 +

'1
1�!

�
'1

(1�!)2 d!

P (0; 0jp; �1; �2; '1; '2) =
(1� � (�1 + '1))(�(�2 + '2)� �(�2 + (2p� 1)'2)) + (1� p) (1� � (�2 + '2))
+ (1� p) ((� (�1 + '1)� � (�1 � '1)) (� (�2 + '2)� � (�2 � '2)))
+
R 1
0
(1� p) (1� !)�

�
�2 +

�
p�!(1�p)
p+!(1�p)

�
'2

�
2p((1�p)'2
(p+!(1�p))2 d!

R 1
0
(1� !)�

�
�1 �

'1
!

� '1
!2 d!

+
R 1
0
�
�
�2 +

�
(1�!)p�(1�p)
(1�!)p+(1�p)

�
'2

�
2p(1�p)'2
1�!p d!

R 1
0
�
�
�1 +

'1
1�!

�
'1
1�!d!.

This game model also includes both �nite dimensional parameters ('j , pu, and �j , j = 1; 2) and in�nite
dimensional parameters (p(�)) of interest. The estimation and inference of this signaling game model will
be based on the four inequality conditions as the form of (2): P (y1; y2jp; �1; �2; '1; '2) � P0 (y1; y2jX = x)
where X = X1 [X2 [ Z and y1, y2 = f0; 1g.

weak

B

Q Q

B

NF FNF F

NF FNF F

strong
11

2

2

{ } { }' '
1 1 1 1 2 2 2 2 1,   ,0X Xθ ε ϕ θ ε ϕ ϕ− − − + − { } { }' '

1 1 1 2 2 2 2,  0,X Xθ ε θ ε ϕ− −

1 up−up

{ } { }' '
1 1 1 2 2 2 2,   0,0X Xθ ε θ ε ϕ− − + { } { }' '

1 1 1 1 2 2 2 1 2,   ,X Xθ ε ϕ θ ε ϕ ϕ− − − −

Figure 1: Signaling Game with Two Discrete Types
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3.2.1 Construction of the Pro�led Estimator

Now let14 � = ('1; '2; �
0
1; �

0
2)
0 and h = L�1(p(Z)) with L (�) = exp(�)=(1+exp(�)) under the logit speci�cation

of p(�). Rewrite P (Y1; Y2jX; �; h) = P (Y1; Y2jp(�); �1; �2; '1; '2). To obtain a consistent estimate of h0(�; �),
we again consider a rede�nition of outcome space. From Figure 2, we note that regardless of the multiple
equilibria in the regions of E1 � f("1; "2) : "1 � �+X 0

1�1 + '1 & X
0
2�2 + (2p� 1)'2 � "2 � X 0

2�2 + '2g and
E2 � f("1; "2) : "1 � �+X 0

1�1 � '1 & X 0
2�2 � '2 � "2 � X 0

2�2 + (2p� 1)'2g, we have a well-de�ned likeli-
hood function when we rede�ne the outcomes of the game in terms of whether a �ght is raised or not. Figure
315 shows the resulting rede�nition of outcome space. From this observation, we have

P (Y2 = 0jX; �; h) = P (0; 0jX; �; h) + P (1; 0jX; �; h)� Pr (" 2 E1)
P (Y2 = 1jX; �; h) = P (0; 1jX; �; h) + P (1; 1jX; �; h)� Pr (" 2 E2)

where Pr (" 2 E1) = (1�� (�1 + '1)) (� (�2 + '2)� � (�2 + (2p� 1)'2)) and Pr (" 2 E2) = � (�1 � '1) (�(
�2+(2p�1)'2)�� (�2 � '2)). Then, we obtain a consistent pro�led estimator, bh(�; �), using the sieve MLE
similarly with Example 1 such that

bh(�; �) = argmax
h2Hn

1
n

Pn
i=1 l(yi; xi; �; h) � f1 [y2i = 1] logP (0jxi; �; h) + 1 [y2i = 0] logP (1jxi; �; h)g

Under some regularity conditions similar with those in Kim (2006), we can also show that sup�2� supz2S(z)���bh� h0��� = op(1). As in Example 1, here we can also estimate the parameters simultaneously as �b�;bh� such
that

�b�;bh� = argmax
�2�;h2Hn

1
n

Pn
i=1 l(yi; xi; �; h). However, this consistent point estimation again requires the

information reduction. We do not use the information regarding Player 1�s actions. Because of this, we may
obtain a point estimator with larger variance and thus we may have wider con�dence interval than that of
the set estimator considered in this paper. This concern justi�es the use of the set inference even though we
can achieve a consistent point estimation.

ε2

( , : )B NF p

ε1

'
1 1 1X θ ϕ+

'
2 2 2X θ ϕ+

'
2 2 2(2 1)X pθ ϕ+ −

'
2 2 2X θ ϕ−

Separating

PoolingSeparating

Pooling

Separating

Semi separating−

Semi separating−

( , : )B F p

( , : 1 )Q F p−

( , : 1 )Q F p−

( , )Q F

( , : )B F σ
( , : )Q F σ

( , : 1 )Q NF p−

( , : )Q NF σ

( , )B NF

( , : )B NF σ

'
1 1 1X θ ϕ−

( , )Q NF

( , : )B NF p

( , )B F

( , : )B F σ( , : )Q F σ

( , : )Q NF σ
( , : )B NF σ

Figure 2: Equilibrium of the Game

ε2

ε1

'
1 1 1X θ ϕ+

'
2 2 2X θ ϕ+

'
2 2 2(2 1)X pθ ϕ+ −

'
2 2 2X θ ϕ−

( :1 )F p−

( )F

'
1 1 1X θ ϕ−

( : )NF p

( )NF

( : )NF σ

( : )F σ

( : )NF σ

( : )F σ

Figure 3: Rede�nition of Outcome Space

14We note that in the conditional probabilities of observed outcomes, implied by the model, pu does not appear separately
from p(Z). Nontheless, we can still estimate pu as a functional of p(Z). We will discuss this in Section 4.1.
15The dotted area is for �Fight�and the solid area is for �No Fight�. ���denotes the Semi-Separating Equilibria
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4 Probability Limit of the Set Estimator

We use a version of the Hausdor¤ metric measuring the distance between two sets whose elements are
(e1; e2)�s such that e1 2 � and e2 = (e21; : : : ; e2v) belongs to a class of vector of continuous functions
de�ned on S (Z1)� : : :� S (Zv) where Zv�s are subsets of X. For two such sets A and B whose elements are
a = (a1; a2) and b = (b1; b2) respectively, let the maximum distance between any points in A and B be given
by �(AjB) = supa2A �(ajB), where �(ajB) = inf fka� bks = ka1 � b1kE + ka2 � b2kH : b 2 Bg for a 2 A and

a pseudo metric k�kH is de�ned by k�kH � sup
ka01�b01k �E�ka1�b1kE ;a01;b012�

(Pv
v=1 sup

zv2S(Zv)
ja2v(zv)� b2v(zv)j

)
.

Notice that �(ajB) is the distance from an element a to the set B. By de�nition, if A = ? and B 6= ?,
then �(AjB) = 0 while �(AjB) = 1 if B = ?. The Hausdor¤ metric distance between A and B is
given by d(A;B) = max f�(AjB); �(BjA)g. For completeness, we also let ka� bks = ka1 � b1kE and de�ne
the Hausdor¤ metric accordingly when we have only the �nite dimensional parameters. Also note that

k�kH = sup�2�

nPv
v=1 supzv2S(Zv) ja2v(zv)� b2v(zv)j

o
when a1 = b1. Here we provide some conditions

under which
(i) �( bAnjA+)!

p
0 and (ii) �(A+j bAn)!

p
0 (11)

and thus we establish the conditions for d( bAn;A+) !
p
0. Note that (11)(i) ensures that bAn is not larger

than A+ asymptotically while (11)(ii) ensures that bAn is not smaller than A+ asymptotically. Also note
that (11)(ii) alone ensures that the distance of the true value �0 (2 A0 � A+) from the set estimator bAn
satis�es �(�0j bAn)!

p
0.

Let �all be a class of subsets of S(X) that includes all possible realizations of bn;j;m for all (j;m) 2 IJ;M
and n � 1. Also let IJ = f1; : : : ; Jg. We use �wpa1�to denote �with probability that approaches to one�.
The following assumptions are su¢ cient to establish the result (11)(i).

Assumption 4.1 f(Yi; Xi)gni=1 are iid.

Assumption 4.2 The true parameter �0 satis�es P (yjx; �0)� P0(yjx) � 0, 8(y; x) 2 S (Y )� S(X).

Assumption 4.3 (i) � �H is compact under the metric k�ks; (ii) Hn � Hn+1 � H for all n � 1 and for
any h 2 H, there exists �nh 2 Hn such that k�nh� hkH = o(1); (iii)

bh� h0
H
= op(1); (iv) h(�; �) is

continuous in � for all h s.t. kh� h0kH = o(1).

Assumption 4.4 (i) P (yjx; �) is Hölder continuous in � on A; (ii) jq(x)j <1 for all  2 �all uniformly
over x 2 S (X).

To establish the second result (11) (ii), we need additional assumptions. The following conditions are in
the line with ABJ. Let int(A) and cl(A) denote the interior and closure of a set A, respectively.

Assumption 4.5 Either (i) �+ = f�0g or
(ii) (a) �+ =cl(int (�+)) and (b) 8� 2int(�+), inf(j;m)�IJ;M c0

�
j; 0;j;m; �; h0(�; �)

�
> 0.

Assumption 4.2 states that the model (conditional probabilities implied by the game) is correctly speci�ed,
which ensures that A0 and A+ are not empty. Note that Assumptions 4.3 and 4.4 are standard assumptions
in the semi-nonparametric literature. Note that Assumption 4.5 (i) holds when the necessary conditions (5)
are strong enough that A+ only contains the true parameter �0 = (�0; h0). Assumption 4.5 (ii) (a) implies
that �+ has a non-empty interior and does not contain isolated points. Assumption 4.5 (ii) (b) requires that
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for any � 2int(�+), the necessary conditions (5) hold with a strict inequality. We also need some consistency
results for bcn(�) and b�n under certain metrics. First, de�ne H�n � fh 2 H : kh(�; �)� h0(�; �)kH � �n,
� 2 �g, Hn;�n � fh 2 Hn : kh(�; �)� h0(�; �)kH � �n, � 2 �g with �n = o(1), and for any two real functions
c1 and c2 on IJ��all���H�n , de�ne kc1 � c2kUn � sup(j;;�;h)2IJ��all���H�n

jc1(j; ; �; h)� c2(j; ; �; h)j.
The following is the semiparametric version of Assumption 5 in ABJ.

Assumption 4.6 kbcn(�)� c0(�)kUn !p 0.
Let F� =

�
� (y; x; j; ; �; h) =

�
P (y(j)jx; �; h)� 1[y = y(j)]

�
q(x) : (j; ; �) 2 IJ � �all ���H

	
denote

the class of measurable functions indexed by (j; ; �; h). Assumption 4.6 will hold when F� is a P-Glivenko-
Cantelli class as presented in van der Vaart and Wellner (1996). Now de�ne a semi-norm k�k as follows. For
1 and 2 2 �all, we let

k1 � 2k � (
Z ��q1(x)� q2(x)��2 dFX(x))1=2 and k�1 � �2k � max

(j;m)2IJ;M

1;j;m � 2;j;m (12)

where �1 =
�
1;j;m 2 �all : (j;m) 2 IJ;M

	
and �2 =

�
2;j;m 2 �all : (j;m) 2 IJ;M

	
. We assume

Assumption 4.7
b�n � �0!

p
0 (Assumption 6 of ABJ).

Now we are ready to present the consistency result of the set estimator bAn.
Theorem 4.1 (i) Suppose Assumptions 4.1, 4.2, 4.3, 4.4, 4.6, and 4.7 hold. Then, �(b�nj�+)!

p
0.

(ii) Under Assumptions 4.3, 4.4, 4.5, 4.6,and 4.7, �(�+jb�n)!
p
0. Thus, we have d( bAn;A+)!

p
0.

In Section 5, we discuss how to construct the con�dence interval of a real functional �n(�) of �. In
particular, we may restrict our interests to real functions such that �n(�) = rn(�) where rn(�) is a real
function of �. For example, we can have �n(�) = �(k) where �(k) is the k-th element of �. When constructing
the con�dence interval of the real functional �n(�), its largest and smallest values are of interest. The largest
and smallest values of �n(�) across all � 2 A+ de�ned by

�n;U = sup f�n(�) : � 2 A+g and �n;L = inf f�n(�) : � 2 A+g ; (13)

respectively. We estimate these values, respectively, byb�n;U = supn�n(�) : � 2 bAno and b�n;L = inf n�n(�) : � 2 bAno . (14)

The consistency of b�n;U for �n;U and b�n;L for �n;L is obtained from Corollary 4.1 as long as �n(�) has
some continuity property (with respect to the metric k�ks). We note that if f�n(�) : n � 1g is stochastically
equicontinuous on A, the consistency results hold.
Assumption 4.8 f�n(�) : n � 1g is stochastically equicontinuous on A, i.e. for any given " > 0 and any

� 2 A, there exists � > 0 such that lim sup
n!1

P
�
supke���ks�� j�n(e�)� �n(�)j > "� < ".

In particular, when �n (�) is (pointwise) Lipschitz continuous with respect to �, primitive su¢ cient
conditions for stochastic equicontinuity can be found in Andrews (1994) or Newey and McFadden (1994).
Even when �n (�) is (pointwise) Lipschitz continuous with respect to h but not in �, we can still apply
the results in Andrews (1994) for certain cases. Chen, Linton, and van Keilegom (2003) also provide some
stochastic equicontinuity results even when �n (�) is not (pointwise) continuous with respect to h and �.
From the result of Theorem 4.1, d( bAn;A+)!

p
0, we obtain

Corollary 4.1 Under Assumptions 4.1-4.8, b�n;U � �n;U !
p
0 and b�n;L � �n;L !

p
0.
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4.1 Example: Set Estimation of the Type Distribution

We note that in the conditional probabilities of observed outcomes, implied by the model, pu does not
appear separately from p(Z) in Section 3.2 as originally noted in Kim (2006). However, using the law
of iterated expectation pu = E[p(Z)], we can still identify the type distribution parameter pu. Recalling
p(Z) = L(h(Z)) � exp(h(Z))=(1 + exp(h(Z))), we obtain a set estimator of pu such that

bPn = npu : pu = 1
n

Pn
i=1 L(h(zi)) =

1
n

Pn
i=1

exp(h(zi))
1+exp(h(zi))

for each h 2 bHn

o
.

We note that as long as d( bAn;A+) = op(1), bPn converges to its population counterpart P+ de�ned by
P+ = fpu : pu = E [L(h)] = E

h
exp(h)
1+exp(h)

i
for each h 2 H+g.

Proposition 4.1 Suppose fZigni=1 are iid and d( bAn;A+) = op(1). Then, d( bPn;P+) = op(1).
5 Con�dence Intervals

In this section, we construct a CI16 for the true value �0 = �n(�0), where �n(�) is a known real functional
of �0. Note that we suppress the potential dependence of �0 on n for notational simplicity. In the spirit
of Imbens and Manski (2003), the CI we consider is for the true value �0, not for the set values �n(�) for
� 2 A+. The CI provided here is an extension of ABJ to the semiparametric case. Now let

bAn;U = f� 2 bAn : �n(�) = b�n;Ug: (15)

Note that bAn;U is not empty since bAn is compact under a metric k�ks. The compactness of bAn under k�ks
comes from (i) An is compact under k�ks and (ii) bAn is de�ned using the non-strict inequality. We choose a
unique value b�n;U such that b�n;U = argminnk�ks : � 2 bAn;Uo : (16)

Again note that the existence of b�n;U is guaranteed since bAn;U is compact under k�ks. The solution of (16)
may not be unique. In that case, a researcher can choose a particular value of b�n;U according to certain
criterion. We de�ne bAn;L and b�n;L analogously replacing b�n;U with b�n;L. Note that by construction, we have
�n(b�n;U ) = b�n;U and �n(b�n;L) = b�n;L. Now let bBn;U and bBn;L be collections of (j;m) 2 IJ;M such that the

corresponding constraints bind at b�n;U and b�n;L, respectively, which are the boundary points of bAn. Thus, we
have bBn;U = �(j;m) 2 IJ;M : bcn(j; bn;j;m; b�n;U ) = 0	 and bBn;L = �(j;m) 2 IJ;M : bcn(j; bn;j;m; b�n;L) = 0	.
Now we are ready to present the (1� a)-CI of the true value �0. We consider several versions of CI�s

depending on the choice of the sieve spaces that are used for constructing upper and lower bounds of CI�s. We
have not considered a speci�c function space and a sieve space for the estimation stage but in the inference
stage, we need to do so since the construction of CI�s critically depend on the choice of the function space for h.
A Hölder space, denoted by ��(S(Z)), is a space of functions g : S(Z)! R such that the �rst � derivatives are
bounded, and the �-th derivatives are Hölder continuous with the exponent ��� 2 (0; 1], where � is the largest
integer smaller than �. The Hölder space becomes a Banach space when endowed with the Hölder norm:
jjgjj�� = supz jg(z)j+maxa1+a2+:::adz=� supz 6=z0

jrag(z)�rag(z0)j
(jjz�z0jjE)��� <1; whererag(z) � @

a1+a2+:::adz

@z
a1
1 :::@z

adz
dz

g(z). The

Hölder ball (with radius c) ��c (S(Z)) is de�ned accordingly as ��c (S(Z)) � fg 2 ��(S(Z)) : jjgjj�� � c <1g.
16We may consider the CI for identi�ed set of �n(�) alternatively. Such CI can be found in ABJ. The asymptotic justi�cation

of the semiparametric version of this can be given similary with Theorem 5.1. In this paper, we provide the CI for the true
value only since our focus here is in extending ABJ to the semiparametric models.
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Now let H � H1 � : : : � Hv = ��1c1 (S(Z1)) � : : : � �
�v
cv (S(Zv)). Then, it is well known that functions in

H can be approximated well by power series, Fourier series, splines, and wavelets17 . For example, we may
let H1 = fh1 : h1(z1) =

P1
k=1 [ak cos(kz1) + bk sin(kz1)] ; jjh1jj��1 � c1g where h1(z1) is given as an in�nite

Fourier series and its derivative with a fractional power is also de�ned in terms of Fourier series.
The (1� a)-CI of the true value �0 is given by

CIn(1� a) = [e�n;L; e�n;U ] (17)

for some upper and lower bounds, e�n;U and e�n;L such that
lim inf
n!1

P (�0 � CIn(1� a)) = lim inf
n!1

P (e�n;L � �0 � e�n;U ) � 1� a. (18)

We will consider three alternatives. First, de�ne bH�n � fh 2 H :
h� bh(�; �)

H
� �n, � 2 �g andbHl;�n � fh 2 Hl :

h� bh(�; �)
H
� �n, � 2 �g18 with �n = o(1) where Hl is a �nite dimensional sieve

space such that Hl � Hl+1 � H for all l � 1. Then, the upper and lower bounds, e�n;U and e�n;L for three
alternative CI�s are given as the following form:

� Alternative CI1: CI over the whole in�nite dimensional space (��H): e�n;U � e�(1)n;U and e�n;L � e�(1)n;L
such that e�(1)n;U = supn�n(�) : � 2 ��H;ecn;U (j; bn;j;m; �) � 0, 8(j;m) 2 bBn;Uoe�(1)n;L = inf n�n(�) : � 2 ��H;ecn;L(j; bn;j;m; �) � 0, 8(j;m) 2 bBn;Lo , (19)

� Alternative CI2: CI over the in�nite dimensional space around the true value h0 (�� bH�n): e�n;U � e�(2)n;U
and e�n;L � e�(2)n;L such that

e�(2)n;U = supn�n(�) : � 2 �� bH�n ;ecn;U (j; bn;j;m; �) � 0, 8(j;m) 2 bBn;Uoe�(2)n;L = inf n�n(�) : � 2 �� bH�n ;ecn;L(j; bn;j;m; �) � 0, 8(j;m) 2 bBn;Lo , (20)

� Alternative CI3: CI over the �nite dimensional sieve space around the true value h0 (� � bHl;�n):e�n;U � e�(3)l;n;U and e�n;L � e�(3)l;n;L such that
e�(3)l;n;U = supn�n(�) : � 2 �� bHl;�n ;ecn;U (j; bn;j;m; �) � 0, 8(j;m) 2 bBn;Uoe�(3)l;n;L = inf n�n(�) : � 2 �� bHl;�n ;ecn;L(j; bn;j;m; �) � 0, 8(j;m) 2 bBn;Lo , (21)

For Alternative CI3, we require l � n so that bHl;�n � bH. This guarantees that e�(3)l;n;U � b�n;U ande�(3)l;n;L � b�n;L, which are necessary to justify the proposed CI asymptotically. Here ecn;U is an upper bound
on c0 for those

�
y(j); bn;j;m� sets for which (j;m) belongs to bBn;U at a particular value � = b�n;U and,

17For detailed discussions regarding �nite dimensional or in�nite dimensional sieve spaces, see Chen (2005) and Shen (1997,
1998).
18Note that with some abuse of notation, when we consider bHl;�n as a sequence of sets indexed by l, we treat bh(�; �) is �xed.

In other words, the degree of approximation of the sieve space for the estimation stage does not have to agree with that of the
sieve space for the inference, which we can let arbitrary large regardless of the sample size.
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analogously, ecn;L is an upper bound on c0 for (j;m) 2 bBn;L at � = b�n;L. Thus, ecn;U and ecn;L are given as
random real functions on A:

ecn;U (j; bn;j;m; �) = bcn(j; bn;j;m; �) + bwn(j; bn;j;m; �)��n;U (j;m; a)=pn andecn;L(j; bn;j;m; �) = bcn(j; bn;j;m; �) + bwn(j; bn;j;m; �)��n;L(j;m; a)=pn; (22)

where bwn(j; ; �) is a positive weight function19 and ��n;U (j;m; a)&��n;L(j;m; a) are non-negative critical
values that are constructed by the bootstrap procedure described in the following section.
Now we compare the three alternative CI�s. Alternative CI1 is most computationally demanding since

we construct the bounds over the whole in�nite dimensional parameter space. However, we note that this
is not too demanding compared to the estimation stage since the construction of the bounds do not involve
the optimization. Moreover, we do not require some slackness variable such as �n. For Alternative CI2, we
include the slackness variable �n in constructing e�n;L and e�n;U so that while reducing the functional space
for such construction from ��H to �� bH�n , we make sure �+�H+ is included in �� bH�n with probability
approaching to one. This is critical in justifying the proposed CI asymptotically. In practice, we can let
�n be some �xed number since �xed �n does not a¤ect the asymptotics for the CI. We still have a valid CI
with a �xed �n. However, the choice of �n will a¤ect the cost of computation and thus we want to let �n be
small as long as the sample size is relatively large. Alternative CI3 requires the least computation among
three alternatives since the CI is constructed over the �nite dimensional sieve space but we need to admit
the possibility that the coverage probability is smaller than 1 � a with a �nite l. However, in practice, we
can let l be arbitrary large noting the sieve space for the construction of the bounds can be larger than that
for the estimation stage and thus the size of data does not restrict the smoothness of the sieve space for the
inference stage. In consequence, we can make the smallest value of coverage probability arbitrary close to
1� a.
Now we consider how to obtain the critical values ��n;U (j;m; a) and �

�
n;L(j;m; a) using the standard

nonparametric bootstrap.

5.1 Bootstrap Critical Values

Here we brie�y review the bootstrap procedure to obtain the critical values following ABJ. Most of their dis-
cussions hold by replacing their � and b� with the in�nite dimensional parameter � and b�. The purpose of our
paper is to provide some conditions under which the bootstrap critical values can be justi�ed asymptotically
for the semiparametric case.
Let f(Y �i ; X�

i ) : i = 1; : : : ; ng denote a standard nonparametric bootstrap sample conditional on the
original sample f(Yi; Xi) : i = 1; : : : ; ng. First, we obtain the bootstrap conditional probabilities implied by
the model using the bootstrap sample such that P �(y(j)jX�

i ; �; h(��i )) = P (y(j)jX�
i ; �; h(��i )). Similarly, we

de�ne bc�n(j; ; �), b�n;j;m, b��n, and bw�n(j; ; �) using the bootstrap sample as we de�ne bcn(j; ; �), bn;j;m, b�n,
and bwn(j; ; �), respectively. De�ne

D�
n;U (j;m) =

p
n
��bc�n(j; b�n;j;m; b�n;U )� bcn(j; bn;j;m; b�n;U )��w�n �j; b�n;j;m; b�n;U�� and

D�
n;L(j;m) =

p
n
��bc�n(j; b�n;j;m; b�n;L)� bcn(j; bn;j;m; b�n;L)��w�n �j; b�n;j;m; b�n;L�� .

Note that when we construct D�
n;U (j;m) and D

�
n;L(j;m), in the arguments of bc�n(�), we use b�n;U and b�n;L

not b��n;U and b��n;L, respectively. This ensures that E� �bc�n(j; b�n;j;m; b�n;U )� bcn(j; bn;j;m; b�n;U )� = 0 and
E�
�bc�n(j; b�n;j;m; b�n;L)� bcn(j; bn;j;m; b�n;L)� = 0 where E� is the expectation operator taken conditional on

the original sample. We denote P �(�) to be the probability with respect to the bootstrap sample conditional
19The weight function is used to make bcn(j; bn;j;m; �)= bwn(j; bn;j;m; �) have comparable distributions across di¤erent (j;m).

Examples of such weight functions can be found in ABJ.
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on the original sample. Now we obtain the critical values ��n;U (j;m; a) for (j;m) 2 bBn;U and ��n;L(j;m; a)
for (j;m) 2 bBn;L as non-negative constants satisfying the condition

P �

 
D�
n;U (j;m) + �

�
n;U (j;m; a) � 0 for (j;m) 2 bBn;U ) and

D�
n;U (j;m) + �

�
n;L(j;m; a) � 0 for (j;m) 2 bBn;L)

!
= 1� a (23)

and the same condition with U and L interchanged.20 We summarize the procedure to construct the CI�s.

1 Obtain the following objects in the order that they are presented:b�n, bcn(j; bn;k;m; �), bAn, b�n;U ; b�n;L, b�n;U ; b�n;L, bBn;U ; bBn;L, bwn(j; bn;k;m; b�n;U ), bwn(j; bn;k;m; b�n;L):
2 Obtain the bootstrap critical values as described in this section:
��n;U (j;m; a) for (j;m) 2 bBn;U and ��n;L(j;m; a) for (j;m) 2 bBn;L

3 Construct the con�dence intervals de�ned in (17):
Obtain ecn;U (j; bn;k;m; b�n;U ), ecn;L(j; bn;k;m; b�n;L), e�n;U , and e�n;L from (22) and (19), (20), or (21),
respectively.

Under some higher level assumptions presented in the Appendix, the following theorem justi�es the
con�dence intervals suggested in (17) asymptotically for all the three alternatives.

Theorem 5.1 Suppose Assumptions B.1-B.6 in the Appendix are satis�ed. Further suppose Assumptions

4.1, 4.2, 4.3, and 4.7 hold. Then, Alternative CI1 satis�es (18) with e�n;U = e�(1)n;U and e�n;L = e�(1)n;L. Further
suppose d( bAn;A+) !

p
0. Then, (18) with e�n;U = e�(2)n;U and e�n;L = e�(2)n;L holds for Alternative CI2. Further

suppose e�(3)l;n;� has a well-de�ned cdf whose derivative is uniformly bounded over its support. Then, we have
lim inf

l;n!1;l�n
P (�0 � CIn(1� a)) = lim inf

l;n!1;l�n
P (e�(3)l;n;L � �0 � e�(3)l;n;U ) � 1� a.

6 Concluding Remarks

This paper considers estimation and inference of parameters in discrete games with multiple equilibria, with-
out using an equilibrium selection rule, while the game model can contain in�nite dimensional parameters.
In particular, we adopt a set inference approach popularized recently. Noting the literature only allows for
�nite dimensional parameters in the model even though in�nite dimensional parameter is naturally included
in the model or misspeci�cation of a fully parametric model is concerned, this paper extends a current liter-
ature to a set inference with in�nite dimensional parameters where a consistent pro�led estimator of in�nite
dimensional parameters is available. A consistent set estimator and con�dence intervals are provided. Ex-
amples of signaling games with discrete types where the type distribution is nonparametrically speci�ed and
entry-exit games with partially linear payo¤s functions are considered.
In this paper, we note that achieving a consistent point estimation often requires some information

reduction (For example, rede�nition of outcome spaces). Due to this less use of information than available
in the model, we may end up a point estimator with larger variances and have wider con�dence intervals
than those of the set estimator using the full information in the model. This �nding justi�es the use of
the set inference even though we can achieve a consistent point estimation in some cases. It is also an
interesting future research to compare these two alternatives: CI from the point estimation with the usage
of less information vs. CI from the set estimation with the usage of the full information.
20Though the requirement of (23) for ��n;L (�; �; �) and ��n;U (�; �; �) is enough to justify the CI asymptotically, it does not

uniquely determine these values. Also in principle, these bootstrapped critical values can be obtained analytically but in
practice, they need to be simulated. See some related issues in ABJ. We omit these discussions since our focus here is to provide
an asymptotic justi�cation for the semiparameric version of the CI proposed in ABJ.
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Appendix

A Consistency Proofs

For any real functional c on IJ � �all � � � H�n and any collection of
PJ

j=1Mj subsets of � of S(X), de�ne
�(c;�; h) = f� 2 � : c(j; j;m; �; h (�; �)) � 0; 8(j;m) 2 IJ;Mg and note that �(c0;�0; h0) = �+ and that if

�
�bcn; b�n;bh� is non-empty, we have ��bcn; b�n;bh� = b�n, which implies that ��bcn; b�n;bh� � b�n. To prove Theorem

4.1, we need the following lemma which extends Lemma 4 in ABJ to the semiparametric case.

Lemma A.1 Under Assumptions 4.4 and 4.5 (ii), � (� (c0;�0; h0) j�(c;�; h)) ! 0 as c ! c0, � ! �0, h ! h0
under k�kUn , k�k, and k�kH.

Proof. For any � 2 �, we have

lim sup
(c;�;h)!(c0;�0;h0)

��min(j;m)2IJ;M c(j; j;m; �; h)�min(j;m)2IJ;M c0(j; j;m; �; h)
��

� lim sup
c!c0

sup
h2H�n

supj2IJ ;2�all jc(j; ; �; h)� c0(j; ; �; h)j = 0;

because c! c0 with respect to the uniform metric over IJ � �all ���H�n . It follows that for any � 2 �,

lim inf
(c;�;h)!(c0;�0;h0)

min
(j;m)2IJ;M

c(j; j;m; �; h) = lim inf
�!�0;h!h0

min
(j;m)2IJ;M

c0(j; j;m; �; h). (24)

Next, consider that for any � 2 ��H�n , we have

lim sup
�!�0

��min(j;m)2IJ;M c0(j; j;m; �)�min(j;m)2IJ;M c0(j; 0;j;m; �)
��

� lim sup
�!�0

max(j;m)2IJ;M 2
R ��qj;m(x)� q0;j;m(x)�� dFX(x) = 0;

where the inequality holds by the de�nition of c0 in (3) and the equality holds by the de�nition of � ! �0 in (12)
and the Cauchy-Schwarz inequality. Also note for any � � �all and � 2 �, we have

lim sup
h!h0

��min(j;m)2IJ;M c0(j; j;m; �; h(�; �))�min(j;m)2IJ;M c0(j; j;m; �; h(�; �))
��

� lim sup
h!h0

 
sup

x2S(X)
max(j;m)2IJ;M

��qj;m(x)��
!
kh� h0kH = 0,

where the inequality holds by the construction of c0(�) and Assumption 4.4 (i) and the equality holds by the de�nition
of the metric k�kH and Assumption 4.4 (ii). It follows that for any � 2int(�+),

lim inf
�!�0;h!h0

min
(j;m)2IJ;M

c0(j; j;m; �; h) = min
(j;m)2IJ;M

c0(j; 0;j;m; �; h0) > 0; (25)

where the last result holds by Assumption 4.5 (ii). From (24) and (25), we conclude that for any � 2int(�+), it also
holds that � 2 �(c;�; h) for (c;�; h) su¢ ciently close to (c0;�0; h0). Now suppose � (� (c0;�0; h0) j�(c;�; h)) 9 0
as (c;�; h) ! (c0;�0; h0). Then, by de�nition of � (� (c0;�0; h0) j�(c;�; h)) = sup

�2�(c0;�0;h0)
� (�j�(c;�; h)), there

exists (i) a constant " > 0, (ii) a sequence of functions on IJ � �all � � � H�n , fcj : j � 1g, and a sequence of
collections of

PJ
j=1Mj sets in �all, f�j : j � 1g, s.t. (cj ;�j ; hj) ! (c0;�0; h0), and (iii) a sequence of parameters�

�cj 2 �(c0;�0; h0) : j � 1
	
s.t. �

�
�cj j�(cj ;�j ; hj)

�
� " for all j � 1. The sequence

�
�cj 2 �(c0;�0; h0) : j � 1

	
has a subsequence, say

n
�cjl : l � 1

o
, that converges to a point �(c0;�0; h0) because �(c0;�0; h0) is compact (This

is because � is compact and �(c0;�0; h0) is de�ned from the non-strict inequality.). That is,
�cjl � ��E !

0 as l ! 1 for some �� 2 �(c0;�0; h0). For all l su¢ ciently large satisfying
�cjl � ��E < "=2, we have
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������cjl j�(cjl ;�jl ; hjl)�� � (��j�(cjl ;�jl ; hjl))��� � �cjl � ��E < "=2 by the triangle inequality. Thus, for all l

su¢ ciently large,

� (��j�(cjl ;�jl)) � �
�
�cjl j�(cjl ;�jl)

�
� "=2 � "=2. (26)

If �� 2int(�+), (26) contradicts to the fact that for any � 2int(�+), � 2 �(c;�; h) for (c;�; h) su¢ ciently close to
(c0;�0; h0). If �� =2int(�+), then by Assumption 4.5 (ii)(a), there exists a �int 2int(�+) such that k�� � �intkE < "=4.
Applying the triangle inequality to (26), we obtain � (�int j�(cjl ;�jl ; hjl)) � "=4 for all l su¢ ciently large. This is
also a contradiction. We conclude that � (� (c0;�0; h0) j�(c;�; h))! 0 as (c;�; h)! (c0;�0; h0).

A.1 Proof of Theorem 4.1
We �rst prove part (i) by extending a consistency result of a class of extremum estimator. Under Assumption 4.4,
Q(�; h) de�ned in (7) is continuous (with respect to the metric k�ks). Note that this holds even though Q(�; h)
contains an indicator function because jb(�; h)j � 1[b(�; h) � 0] is continuous as long as b(�; h) is continuous (with
respect to the metric k�ks), which follows from the fact that jb(�1; h1)j � 1[b(�1; h1) � 0] � jb(�2; h2)j � 1[b(�2; h2) �
0] � jjb(�1; h1)j � jb(�2; h2)jj for all (�1; h1), (�2; h2). Because Q(�; h) is continuous and ��H is compact under k�ks,
Q(�; �) attains its minimum value zero at points in the set A+ by de�nition in (8). Now we claim that for all " > 0,
there exists a � > 0 such that

inf
�=2E(�+;");�2�;kh�h0kH��n;h2H

Q(�; h) � � > 0 (27)

where E (�+; ") = f� 2 � : �(�j�+) < "g. Suppose not. Then, for some " > 0 and h s.t. kh� h0kH � �n, there
is a sequence f�l 2 ��E (�+; ") : l � 1g for which lim

l!1
Q(�l; h(�; �l)) = 0. Because � is compact and E (�+; ") is

open, the set ��E (�+; ") is compact. Hence, f�l : l � 1g has a convergent subsequence, say
�
�lj : j � 1

	
, that con-

verges to a point in ��E (�+; "), say �1. Continuity of Q(�; �) and h(�; �) 2 H�n in � imply that Q (�1; h(�; �1)) =
lim
j!1

Q
�
�lj ; h(�; �lj )

�
= 0. This implies that �1 2 �+, which is a contradiction. This proves (27). From Hn �

Hn+1 � H by Assumption 4.3 (ii) (note also Hn is compact) and the fact that Q(�; h) and h(�; �) are contin-
uous in (�; h) and �, respectively, we note that there is an N � 1 such that inf�=2E(�+;");�2�;h2Hn;�n

Q(�) �
inf�=2E(�+;");�2�;h2H�n

Q(�) for all n � N , recalling H�n � fh 2 H : kh(�; �)� h0(�; �)kH � �n, � 2 �g and
Hn;�n � fh 2 Hn : kh(�; �)� h0(�; �)kH � �n, � 2 �g with �n = o(1). From this result and (27), it follows that

inf
�=2E(�+;");�2�;h2Hn;�n

Q(�) � � > 0 for all n � N . (28)

This is a version of the identi�cation condition. Now we derive the uniform convergence of Qn(�; h) de�ned in (6) to
Q(�; h) uniformly over ��H�n . Consider

sup
�2�;h2H�n

jQn(�; h)�Q(�; h)j � sup
�2�;h2H�n

�
max

(j;m)2IJ;M

��bcn(j; bn;j;m; �; h)� c0(j; 0;j;m; �; h)���
� sup
�2�;h2H�n

�
max

(j;m)2IJ;M

��bcn(j; bn;j;m; �; h)� c0(j; bn;j;m; �; h)���
+ sup
�2�;h2H�n

�
max

(j;m)2IJ;M

��c0(j; bn;j;m; �; h)� c0(j; 0;j;m; �; h)���
� sup
(j;;�;h)2IJ��all���H�n

jbcn(j; ; �; h)� c0(j; ; �; h)j+2 max
(j;m)2IJ;M

R ���qbn;j;m(x)� q0;j;m(x)��� dFX(x)!p 0
(29)

where the �rst inequality holds by the de�nitions of Qn(�; h) and Q(�; h), the second inequality is from the triangle
inequality, the third inequality is obtained using the de�nition of c0(j; ; �; h) in (3), and last result holds by Assump-
tions 4.6 (i) and 4.7 using the de�nitions of the metric k�kUn and k�k. Now we are ready to prove Theorem 4.1 (i).

Note that the set �+ is not empty by Assumption 4.2 and b�n is not empty by construction. Let �n+ = (�+; hn+)
denote some element of �+ �

�
h 2 Hn : kh(�; �)� h0(�; �)kH � �n; � 2 �+

	
. Then, there exist �+ 2 A+ such that

k�n+ � �+ks = o(1) and thus Q(�n+)� �=2 � Q(�+) for n � 9N by the continuity of Q(�; �). It follows that

�Q(�n+) � ��=2 for n � 9N (30)
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since Q(�+) = 0 for every �+ 2 A+. (28) and the fact that �+ and b�n are not empty imply that for all " > 0 there
exists a � > 0 such that

P
�
�
�b�nj�+� > "� = P �b�n \ (��E (�+; ")) 6= ?�

� P
�
sup�2b�n;h2Hn;�n

Q(�) � �
�
= P

�
sup�2b�n;h2Hn;�n

(Q(�)�Qn(�) +Qn(�)) � �
�

� P
�
sup�2b�n;h2Hn;�n

(Q(�)�Qn(�) +Qn(�n+)�Q(�n+) + o(1)) � �=2
�

� P
�
2 sup�2�;h2H�n

jQn(�)�Q(�)j � �=2
�
! 0

where the �rst inequality holds by (28), the second inequality holds because (i) Qn(�) � Qn(�n+) for each � 2 bAn

since each � 2 bAn minimizes Qn(�) over ��H�n and (ii) �Q(�n+) + o(1) � ��=2 as noted in (30). The last result
comes from (29) and Hn � Hn+1 � H for all n. This completes the proof of part (i).

Now we turn to part (ii). Suppose Assumption 4.5 (ii) holds. Then, by Lemma A.1, given " > 0, there exists
� > 0 such that kc� c0kUn < �, k�� �0k < �, and kh� h0kH < � imply that � (�(c0;�0; h0)j�(c;�; h)) < " as
n!1. It follows that

P
�
�
�
�(c0;�0; h0)j�(bcn; b�n;bh)� < "� � P �kbcn � c0kUn < �;b�n � �0 < �;bh� h0H�! 1; (31)

where the convergence holds by Assumption 4.3 (iii), 4.6, and 4.7. From �
�bcn; b�n;bh� � b�n, it follows that

P
�
�
�
�(c0;�0; h0)jb�n� < "� � P ����(c0;�0; h0)j�n(bcn; b�n;bh)� < "� : (32)

Combining (31) and (32), we establish the part (ii) of Theorem 4.1 under Assumption 4.5 (ii).

Next, suppose Assumption 4.5 (i) holds. Then, �
�
�jb�n� = �

�
f�0g jb�n� � �

�b�nj f�0g� !
p
0 where the

inequality holds since (i) the distance from a point to a non-empty set is less than or equal to the distance from the
set to the point by de�nition of � (�j�) and (ii) the set b�n is not empty. The convergence result holds by the proof of
part (i).

Now we show that Assumption 4.3 (iv) and d(b�n;�+)! 0 imply d( bAn;A+)! 0. Note for any � = (�; h(�; �)) 2bAn, we can �nd 9�0 = (�0; h0(�; �0)) 2 A+ s.t. k�� �0ks = k� � �
0kE + kh(�; �)� h0(�; �

0)kH ! 0 since k� � �0kE ! 0

by d(b�n;�+)! 0 and since kh(�; �)� h0(�; �0)kH � kh(�; �)� h0(�; �)kH+kh0(�; �
0)� h0(�; �)kH ! 0 because h(�; �) 2bHn � H�n by de�nition and because h0(�; �) is continuous in � and d(b�n;�+) ! 0. It follows that �( bAnjA+) ! 0.

Similarly for any � = (�; h0(�; �)) 2 A+, we can �nd 9�0 = (�0; h(�; �0)) 2 bAn such that k�� �0ks ! 0, which implies
�(A+j bAn)! 0. This completes the proof of Theorem 4.1.

A.2 Consistency of b�n;U and b�n;L (Proof of Corollary 4.1)
The following proof is essentially the same with that of Theorem 2 in ABJ and can be omitted.

For any two sets of real numbers B1 and B2, let b�j = sup fb 2 Bjg for j = 1; 2 and note that21 jb�1 � b�2j �
d(B1; B2). Now de�ne bBn = n

�n(�) : � 2 bAn

o
and Bn;+ = f�n(�) : � 2 A+g. Then, from the result above, it

follows that ���b�n;U � �n;U ��� � d� bBn; Bn;+� (33)

by de�nitions of b�n;U and �n;U given in (13) and (14), respectively. Now we note that
P (d( bBn; Bn;+) > ") � P (�( bBnjBn;+) > ") + P (�(Bn;+j bBn) > ") (34)

21To prove this, suppose b�1 > b�2. Then,
��b�1 � b�2�� = �

�
b�1jB2

�
� sup

b2B1
� (bjB2) = � (B1jB2) � d (B1; B2). Analogously, we

can show this is true for b�1 < b
�
2.
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from the de�nition of d(�; �). Let p� = P (d( bAn;A+) > �) and consider

P (�( bBnjBn;+) > ") � P (�( bBnjBn;+) > "; d( bAn;A+) � �) + p�
= P (sup�2 bAn

inf fj�n(�)� �n(�+)j : �+ 2 A+g > "; d( bAn;A+) � �) + p�
(35)

where the equality holds by de�nitions of �(�j�), bBn, and Bn;+. Now consider that if d( bAn;A+) � �, then �( bAnjA+) �
� and for any � 2 bAn, there exists �++ 2 A+ such that k�� �++ks � �. It follows that

sup�2 bAn
inf fj�n(�)� �n(�+)j : �+ 2 A+g

� sup�2 bAn;k���++ks��
j�n(�)� �n(�++)j � supk�1��2ks�� j�n(�1)� �n(�2)j

(36)

where the second inequality holds since k�� �++ks � � for any � 2 bAn. From (35), (36), and Assumption 4.8, it
follows that for su¢ cient large n, P (sup�2 bAn

inf fj�n(�)� �n(�+)j : �+ 2 A+g > "; d( bAn;A+) � �) � " and thus

P (�( bBnjBn;+) > ") � "+ P (d( bAn;A+) > �): (37)

An analogous argument provides the same result as (37) but replacing �( bBnjBn;+) & �( bAnjA+) with �(Bn;+j bBn) &
�(A+j bAn), respectively. To be precise, P (�(Bn;+j bBn) > ") � "+ P (d( bAn;A+) > �). Combining this with (33), (34),
and (37), we obtain P (jb�n;U � �n;U j > ") � P (d( bBn; Bn;+) > ") � 2" + 2P (d( bAn;A+) > �). This proves Corollary

4.1 since " > 0 is arbitrary and P (d( bAn;A+) > �)! 0 by Theorem 4.1.

A.3 Estimation of the Type Distribution: Proof of Proposition 4.1

We derive the consistency for the set estimator of the type distribution parameter. We let pu;n(�) = 1
n

nP
i=1

L(h(zi))

with � = (�; h) 2 bAn and let pu(�) = E [L(h)] with � = (�; h) 2 A+. Now note that for any " > 0,

P (d( bPn;P+) > ") � P (�( bPnjP+) > ") + P (�(P+j bPn) > ") (38)

from the de�nition of d(�; �). Let �� = P (d( bAn;A+) > �) and consider

P (�( bPnjP+) > ") � P (�( bPnjP+) > "; d( bAn;A+) � �) + ��
= P (sup�2 bAn

inf fjpu;n(�)� pu(�+)j : �+ 2 A+g > "; d( bAn;A+) � �) + ��
(39)

where the equality holds by de�nitions of �(�j�), bPn, and P+. Now consider that if d( bAn;A+) � �, then �( bAnjA+) � �
and for any � 2 bAn, there exists �++ 2 A+ such that k�� �++ks � �. We let � = (�; h) and �++ = (�++; h++). It
follows that for any � 2 bAn such that k�� �++ks � �, we have

pu;n(�)� pu(�++)
= 1

n

Pn
i=1 (L(h(Zi))� L(h++(Zi))) +

1
n

Pn
i=1 (L(h++(Zi))� E [L(h++(Zi))])

= 1
n

Pn
i=1 L(

eh(Zi))(1� L(eh(Zi)))(h(Zi)� h++(Zi)) + 1
n

Pn
i=1 (L(h++(Zi))� E [L(h++(Zi))])

� 1
4
kh� h++kH + op(1) �

1
4
k�� �++ks + op(1) � � for su¢ ciently large n � 9N;

where the second equality is obtained applying the mean value theorem and the �rst inequality holds since L(1�L) �
1=4 uniformly and since we bound the second right-hand side (RHS) term of the second equality by op(1) applying
the LLN (fZigni=1 are iid and jL(h)j < 1 uniformly). From this result, we have
sup�2 bAn

inf fjpu;n(�)� pu(�+)j : �+ 2 A+g � sup�2 bAn;k���++ks��
jpu;n(�)� pu(�++)j � � for all su¢ ciently large

n � 9N . From this, it follows that for su¢ cient large n,

P (sup�2 bAn
inf fjpu;n(�)� pu(�+)j : �+ 2 A+g > "; d( bAn;A+) � �) � " (40)

and thus from (39) and (40), we obtain P (�( bPnjP+) > ") � "+P (d( bAn;A+) > �). An analogous argument provides
P (�(P+j bPn) > ") � "+ P (d( bAn;A+) > �). Combining these two results with (38), we conclude P (d( bPn;P+) > ") �
2"+ 2P (d( bAn;A+) > �). This proves Proposition 4.1 since " > 0 is arbitrary and d( bAn;A+) = op(1).
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B Large Sample Theory for CI

B.1 High-level Assumptions and Primitive Conditions
Here we provide a semiparametric version of high-level assumptions given in ABJ to justify the CI�s asymptotically.
We also provide sets of su¢ cient conditions that satisfy some of such high-level assumptions. De�ne H� � fh 2 H :
kh(�; �)� h0(�; �)kH � �, � 2 �g for some small � > 0 and let A� � � � H�. This section provides the high-level
assumptions that justify the CI�s introduced in Section 5. Let

b�n(j; ; �; h) =
p
n(bcn(j; ; �; h)� c0(j; ; �; h)) and (41)bZn(j;m; �; h) =

p
n(c0(j; bn;j;m; �; h)� c0(j; 0;j;m; �; h)): (42)

Viewed as a function of (j; ; �; h), b�n(j; ; �; h) is a stochastic process on IJ � �all �A�. Under suitable conditions,b�n(j; ; �; h) converges weakly to a mean zero Gaussian process �0(j; ; �; h) on IJ��all�A�. The covariance function
of �0(�; �; �; �) is given by

V0((j1; 1; �1; h1); (j2; 2; �2; h2)) � Cov(�0(j1; 1; �1; h1); �0(j2; 2; �2; h2))

= E

24 ��
P (y(j1)jX; �1; h1)� 1[Y = y(j1)]

�
q1(X)� c0(j1; 1; �1; h1)

�
�
��
P (y(j2)jX; �2; h2)� 1[Y = y(j2)]

�
q2(X)� c0(j2; 2; �2; h2)

� 35 . (43)

for (�1; h1) ; (�2; h2) 2 A�. Now let bZn(�; h) denote thePJ
j=1Mj�1 column vector whose elements are f bZn(j;m; �; h) :

(j;m) 2 IJ;Mg such that bZn(1; 1; �; h) is the �rst element and bZn(1; 2; �; h) is the second element, etc. At last, let )
denote weak convergence of a sequence of stochastic processes. The following assumptions extend the assumptions
in ABJ allowing for in�nite dimensional parameters.

Assumption B.1 b�n(�; �; �; �) ) �0(�; �; �; �), where �0(�; �; �; �) is a mean zero Gaussian process indexed by (j; ; �; h)
2 IJ � �all �A� with bounded and continuous sample paths a.s. (with respect to k�k on �all and the metric k�ks on
A�) with covariance function V0(�) de�ned in (43).

We note that the following stochastic equicontinuity condition is su¢ cient for Assumption B.1:

sup
k(�0;h0)�(�;h)ks��n;k0�k��n

��b�n(j; 0; �0; h0)� b�n(j; ; �; h)�� = op(1); for any given (; �; h) 2 �all �A� (44)

for any positive sequence �n tending to zero.
Recall that A� is compact (with respect to k�ks). When X is discrete, then it is obvious �all is �nite. When

X is continuous, we construct �s such that they have non-empty interior. Then, �all is still a �nite set since the
number of all subsets (with nonempty interior) of S(X) is �nite due to the compactness of S(X) (any compact
set is totally bounded). Thus, �all is totally bounded with respect to k�k. Therefore,

�
(A�;�all); (k�ks ; k�k)

�
is a

totally bounded pseudometric space. It is not di¢ cult to show the �nite dimensional (�di) convergence holds, i.e,
all the �nite subsets ((�1; h1; 1); : : : ; (�J ; hJ ; J)) of (A�;�all), (b�n(j; 1; �1; h1); : : : ;b�n(j; J ; �J ; hJ))0 converge in
distribution. Therefore, as long as the condition (44) holds, Assumption B.1 holds by the weak convergence theorem
(see Pollard (1990) or van der Vaart and Wellner (1996)). (44) can be proved under suitable conditions similarly with
Chen, Linton, and van Keilegom (2003) as in the following lemma.

Lemma B.1 Suppose Assumptions 4.1 and 4.4 hold. Further suppose that
(a) � is a compact subset of Rd� and

R1
0

p
logN(";H; k�ks)d" < 1; and that (b) (Lipschitz Condition) (i) For

P (Y = y(j)jX; �; h), j = 1; : : : ; J , the pathwise derivative at the direction [(e�;eh)� (�; h)] exists for all (e�;eh); (�; h) 2
� �H� and hence for 9M1(j;X; �; h) � dP (Y=y(j)jX;�;h)

d�0 and 9m2(�; �; �; �), we have dP (Y=y(j)jX;�;h)
d(�;h)

[(e�;eh) � (�; h)] =
M1(j;X; �; h)

�e� � ��+Pv
v=1m2v(j;X; �; h)

�ehv � hv�; (ii) sup(�;h)2��H�
jM1(j;X; �; h)j � C1(X) <1 and

sup(�;h)2��H�
jm2v(j;X; �; h)j � C2v(X) <1 for all j = 1; : : : ; J and v = 1; : : : ;v. Then, Condition (44) holds.

Assumption B.2 bZn(�; h) !
d
Z0(�; h), where Z0(�; �) is a mean zero Gaussian process indexed by (�; h) 2 A� with

bounded and continuous sample paths a.s. (with respect to the metric k�ks) and the convergence holds jointly with that
in Assumption B.1 with the joint limit being Gaussian.
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Assumption B.3 (i) sup(j;;�;h)2IJ��all�A�
j bwn(j; ; �; h)� w0(j; ; �; h)j !

p
0 for some non-random positive func-

tional w0 on IJ � �all �A� that is bounded and bounded away from zero. (ii) w0(j; ; �; h) is continuous in (; �; h)
(with respect to the product of k�k on �all and the metric k�ks on A�) at

�
0;j;m; �; h

�
, 8(�; h) 2 A�, 8(j;m) 2 IJ;M.

To develop the asymptotics, we need to de�ne the population analogues of b�n;U and b�n;L de�ned in (16) replacingbAn;U and b�n;U with A+ and �n;U , respectively. We let
22

�n;U = argmin
�
k�ks : � 2 A+; �n(�) = �n;U

	
(45)

and de�ne �n;L analogously with �n;L in place of �n;U .

Assumption B.4 (i) �n(�) !
p
�0(�) uniformly over � 2 A� for some non-random continuous functional �0(�) on

A�. (ii) k�n;U � �+;Uks !p 0 and k�n;L � �+;Lks !p 0, where �+;U = argmin
�
k�ks : � 2 A+; �0(�) = �+;U

	
,

�+;U = sup f�0(�) : � 2 A+g, �+;L is de�ned analogously with sup replaced by inf, and �+;L is de�ned with �+;U
replaced by �+;L.

Note that if �n(�) is non-random and does not depend on n, Assumption B.4 immediately holds by construction.
Now de�ne

Bn;U =
�
(j;m) 2 IJ;M : c0(j; 0;j;m; �n;U ) = 0

	
, B+;U =

�
(j;m) 2 IJ;M : c0(j; 0;j;m; �+;U ) = 0

	
, (46)

and de�ne Bn;L & B+;L analogously replacing �n;U and �+;U with �n;L and �+;L, respectively. We assume

Assumption B.5 (i) b�n;U � �n;U !
p
0 and b�n;L � �n;L !

p
0; (ii) P ( bBn;U � Bn;U � B+;U ) ! 1 and P ( bBn;L �

Bn;L � B+;L)! 1:

Theorem 4.1 provides su¢ cient conditions for Assumption B.5 (i). ABJ note that by allowing the estimated
binding constraints sets bBn;U and bBn;L to be smaller than the population versions Bn;U and Bn;L23 , a researcher can
consider more constraints in the estimation stage then in the CI construction stage. Lastly, we assume that when
employing the CI for �0, the critical values �

�
n;U (j;m; a) and �

�
n;L(j;m; a) de�ned in (23) converge in probability to

non-negative constants �0;U (j;m; a) and �0;L(j;m; a) that satisfy

P

�
�0(j; 0;j;m; �+;U ) + Z0(j;m; �+;U ) + w0(j; 0;j;m; �+;U )�0;U (j;m; a) � 0 for (j;m) 2 B+;U
& �0(j; 0;j;m; �+;U ) + Z0(j;m; �+;U ) + w0(j; 0;j;m; �+;U )�0;L(j;m; a) � 0 for (j;m) 2 B+;L

�
= 1� a (47)

and the same condition holds with U and L interchanged.

Assumption B.6 For the CI of the true value �0, �
�
n;U (j;m; a) !

p
�0;U (j;m; a) � 0 for all (j;m) 2 B+;U and

��n;L(j;m; a)!
p
�0;L(j;m; a) � 0 for all (j;m) 2 B+;L where �0;U (j;m; a) and �0;L(j;m; a) satisfy (47).

Suppose that

p
n

 bcn(j; bn;j;m; b�n;U )� c0(j; 0;j;m; b�n;U )bwn �j; bn;j;m; b�n;U�
!
!
d

�0(j; 0;j;m; �+;U ) + Z0(j;m; �+;U )

w0
�
j; 0;j;m; �+;U

� (48)

and suppose the same condition holds with U replaced by L. Then, Assumption B.6 will be satis�ed if

p
n

 bc�n(j; b�n;j;m; b�n;U )� bcn(j; bn;j;m; b�n;U )
w�n
�
j; b�n;j;m; b�n;U�

!
!
d

�0(j; 0;j;m; �+;U ) + Z0(j;m; �+;U )

w0
�
j; 0;j;m; �+;U

� (49)

in P �-probability and the same condition holds with U replaced by L. Lemma B.2 provides su¢ cient conditions for
(48) and Lemma B.3 provides su¢ cient conditions for (49). Analogous su¢ cient conditions for (48) and (49) with U
replaced by L can be found in Lemma B.2 and Lemma B.3 with L in replace of U .

22Here we assume that �n;U is unique. If it is not unique, then we select one of those functions that satisfy (45) according
to a certain criterion.
23Note that the use of fewer constraints cannot reduce the coverage probability of the CI.
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Lemma B.2 Suppose that A+ satis�es the condition (5), that d( bAn;A+)!
p
0, and that

(i) kb�n;U � �n;Uks = op(1); (ii) (44) holds; (ii) Assumptions B.2, B.3, B.4, and 4.7 hold. Then, (48) is satis�ed.
Note that Assumptions B.2, B.3 and 4.7 can be veri�ed for a particular choice of b�n and a weight function bwn(�).

Thus, they are directly assumed in this paper. To prove Lemma B.3, we need the following condition:

supk�0��ks��n;k0�k��n
��bc�n(j; 0; �0)� bcn(j; 0; �0)� (bc�n(j; ; �)� bcn(j; ; �))�� = oP�(n�1=2) (50)

for any given (; �) 2 �all�A�. This is a bootstrap version of the stochastically equicontinuity condition of (44) and
will be satis�ed under the same su¢ cient conditions for (44).

Lemma B.3 Suppose that A+ satis�es the condition (5), that d( bAn;A+)! 0 a.s., and that
(i) kb�n;U � �n;Uks = o(1) a.s.; (ii) sup(j;;�)2IJ��all�A�

j bw�n (j; ; �)� bwn (j; ; �)j = oP�(1); (iii) (50) holds; (iv)
(44) and Assumptions B.3, B.4, and 4.7 hold with �in probability� replaced by �almost surely�.
Then, (49) holds in P �-probability.

B.2 Asymptotics for Con�dence Interval
The proof of Theorem 5.1 and the proofs of lemmas in Appendix B use the following lemma, which extends Lemma
5 of ABJ to the semiparametric case.

Lemma B.4 Suppose Assumptions B.1-B.3, B.6, 4.2, 4.3 (i), 4.4 (i), and 4.7 for all (j;m) 2 IJ;M hold. Then, for
any � 2 A� such that k�� �+;Uks ! 0, we have
(i) b�n(j; bn;j;m; �)!

d
�0(j; 0;j;m; �+;U ); (ii) bZn(j;m; �)!

d
Z0(j;m; �+;U );

(iii) bwn(j; bn;j;m; �) !
d
w0(j; 0;j;m; �+;U ); (iv) b�n(j; bn;j;m; �) + bZn(j;m; �) + bwn(j; bn;j;m; �)��n;U (j;m; a) !

d
�0(j;

0;j;m; �+;U ) + Z0(j;m; �+;U ) + w0(j; 0;j;m; �+;U )�0;U (j;m; a); and (v) the results of parts (i)-(iv) hold with U
replaced by L and all the convergence results of the lemma hold jointly.

Proof. Combining Assumptions B.1 and 4.7, we obtain for any � 2 A� s.t. k�� �+;Uks ! 0, (b�n(�; �; �); b�n; �) )
(�0(�; �; �);�0; �+;U ) as processes indexed by (j; ; �) 2 IJ � �all � A� and this convergence is joint with that in
Assumption B.2. Note that the function g (�(�; �; �);�; �) = �(j; j;m; �) is continuous at (�0(�; �; �);�0; �+;U ) because
�0(j; �; �) has continuous sample paths a.s. with respect to the product of the k�k norm and the k�ks metric. Thus,
applying the continuous mapping theorem (e.g., see Pollard (1984)), for any � 2 A� such that k�� �+;Uks ! 0, we
�nd b�n(j; bn;j;m; �)!

d
�0(j; 0;j;m; �+;U ), which proves part (i).

Similarly with part (i), we see part (ii) holds by Assumptions B.2 from the continuous mapping theorem.
Next, we prove part (iii). Using the triangle inequality and Assumption B.3, we have for any � 2 A� such that

k�� �+;Uks ! 0,�� bwn �j; bn;j;m; ��� w0 �j; 0;j;m; �+;U���
�
�� bwn �j; bn;j;m; ��� w0 �j; bn;j;m; ����+ ��w0 �j; bn;j;m; ��� w0 �j; 0;j;m; �+;U���

� sup(j;;�)2IJ��all�A�
j bwn (j; ; �)� w0 (j; ; �)j+ ��w0 �j; bn;j;m; ��� w0 �j; 0;j;m; �+;U���!

p
0

where the �rst RHS term in the second inequality goes to zero by Assumption B.3 (i) and the second term goes to
zero by the continuity assumed in Assumption B.3 (ii). Combining parts (i)-(iii) of the lemma and Assumption B.6
proves part (iv).

For the proof of Theorem 5.1, we also need

Lemma B.5 Suppose e�(3)l;n;� has a well-de�ned conditional cdf (conditional on �n;�) whose derivative is uniformly
bounded over its support. Then, for any small �,� > 0, we have P (�n;U � e�(3)l;n;U + �) � P (�n;U � e�(3)l;n;U ) < � and

P (�n;L � e�(3)l;n;L � �)� P (�n;L � e�(3)l;n;L) < � uniformly over �n;U and �n;L.
Proof. We treat �n;L non-random without loss of generality. By the mean value theorem, for some & 2 [0; 1], we

have P (�n;U � e�(3)l;n;U + �)� P (�n;U � e�(3)l;n;U ) = 1�G(�n;U � �)� (1�G(�n;U )) = �
G
�
�n;U � & � �

�
� where G (�) is

the cdf of e�(3)l;n;U and �
G (�) is its derivative. Thus, the �rst claim follows as long as

�
G (�) is uniformly bounded. The

second claim can be proved similarly.
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B.2.1 Proof of Theorem 5.1
By Assumption B.4 (i), �0 = �n(�0) !

p
�0(�0). We let �0;0 = �0(�0) denote the asymptotic true value. The

following cases are considered separately: (i) �+;L < �0;0 < �+;U , (ii) �+;L < �0;0 = �+;U , (iii) �+;L = �0;0 < �+;U ,

and (iv) �+;L = �0;0 = �+;U . The proofs are given for all three alternative CI�s. We let e�n;L and e�n;U denote the
generic lower bound and the generic upper bound for three alternative CI�s, which suppress l in Alternative CI3 for
notational convenience.

Case (i): We have ecn;U (j; bn;j;m; �) � bcn;U (j; bn;j;m; �) for all (j;m; �), since bwn(j; ; �) > 0 and ��n;U (j;m; a) �
0. For all the three alternative CI�s, this implies that e�n;U � b�n;U by constructions of b�n;U and e�n;U in (14) and

(19), (20), or (21) (note bAn � � � bHl;�n � � � bH�n � � �H by construction), respectively. Combining this with
Theorem 4.1 and Assumption B.4 (i) gives e�n;U � �0 � b�n;U � �0 !

p
�+;U � �0;0 > 0 and P (�0 � e�n;U )! 1. By an

analogous argument, we can show that P (�0 � e�n;L)! 1, which establishes the result of Theorem 5.1 for case (i).

Case (ii): From �0;0 > �+;L and the same argument as above, it follows that P (�0 � e�n;L)! 1. It remains to

show that lim inf
n!1

P (�0 � e�(1)n;U ) � 1 � a for Alternative CI1, lim inf
n!1

P (�0 � e�(2)n;U ) � 1 � a for Alternative CI2, and

lim inf
l;n!1;l�n

P (�0 � e�(3)l;n;U ) � 1�a for Alternative CI3. We start with Alternative CI1. From de�nition of �n;U in (45),

we have �n(�n;U ) = �n;U . Also note that if ecn;U (j; bn;j;m; �n;U ) � 0 8(j;m) 2 bBn;U , then e�(1)n;U cannot be smaller

than �n;U by constructions of e�(1)n;U and �n;U (�n;U becomes an element of the set to which we take the sup operator
to obtain e�(1)n;U ). Moreover, �0 � �n;U by de�nition of �n;U in (13) and the fact that �0 2 A+. Combining these
results, we obtain

P (�0 � e�(1)n;U ) � P (�n;U � e�(1)n;U ) � P (ecn;U (j; bn;j;m; �n;U ) � 0 8(j;m) 2 bBn;U ) (51)

for all n � 9N . Now note that

lim inf
n!1

P (ecn;U (j; bn;j;m; �n;U ) � 0 8(j;m) 2 bBn;U )
= lim inf

n!1
P (ecn;U (j; bn;j;m; �n;U ) � c0(j; 0;j;m; �n;U ) 8(j;m) 2 bBn;U and bBn;U � Bn;U )

+ lim inf
n!1

P (ecn;U (j; bn;j;m; �n;U ) � 0 8(j;m) 2 bBn;U and bBn;U * Bn;U )
� lim inf

n!1
P (ecn;U (j; bn;j;m; �n;U ) � c0(j; 0;j;m; �n;U ) 8(j;m) 2 Bn;U )

(52)

where the equality holds because c0(j; 0;j;m; �n;U ) = 0 8(j;m) 2 Bn;U by de�nition of Bn;U in (46), the inequality
holds by Assumption B.5 (ii) and the fact that a set can not be larger when it is de�ned using more restrictions.

Let Qn;U = P
�ecn;U (j; bn;j;m; �n;U ) � c0(j; 0;j;m; �n;U ) 8(j;m) 2 Bn;U�. This can be rewritten as Qn;U =

P
�b�n(j; bn;j;m; �n;U ) + bZn(j;m; �n;U ) + bwn(j; bn;j;m; �n;U )��n;U (j;m; a) � 0 8(j;m) 2 Bn;U� using the de�nitions ofecn;U (j; ; �), b�n (j; ; �), and bZn (j;m; �). From Lemma B.4 (iv) (note �n;U 2 A+ � A�) and Assumption B.5 (ii),

it follows that

lim inf
n!1

Qn;U � P
�
�0(j; 0;j;m; �+;U ) + Z0(j;m; �+;U ) + w0(j; 0;j;m; �+;U )�0;U (j;m; a) � 0 8(j;m) 2 B+;U

�
. (53)

Note that the strict inequality in (53) is allowed since Assumption B.5 (ii) allows Bn;U to be a strict subset of B+;U
wpa1. If �n (�) is non-random and does not depend on n, we have Bn;U = B+;U by de�nition and hence, (53) holds
with equality. Now note that by de�nition of �0;U (j;m; a) in (47), the RHS of (53) is greater than or equal to 1� a.
This completes the proof of Theorem 5.1 for case (ii) with Alternative CI1.

Now we turn to Alternative CI2. Note that �+ � H+ is included in � � bH� wpa1 because d( bAn;A+) ! 0

and bAn � � � bH�. Thus, if ecn;U (j; bn;j;m; �n;U ) � 0 8(j;m) 2 bBn;U , then e�(2)n;U cannot be smaller than �n;U by
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constructions of e�(2)n;U and �n;U wpa1 since wpa1, �n;U 2 �� bH�n . Similarly with Alternative CI1, we obtain

P (ecn;U (j; bn;j;m; �n;U ) � 0 8(j;m) 2 bBn;U )
= P

�necn;U (j; bn;j;m; �n;U ) � 0 8(j;m) 2 bBn;Uo and
n
�n;U 2 �� bH�n

o�
+ P

�necn;U (j; bn;j;m; �n;U ) � 0 8(j;m) 2 bBn;Uo and
n
�n;U =2 �� bH�n

o�
� P (�n;U � e�(2)n;U ) + P (�n;U =2 �� bH�n) � P (�0 � e�(2)n;U ) + op(1)

(54)

where the last inequality holds by the same reason with Alternative CI1 and �n;U 2 �� bH�n wpa1. The remaining
proof exactly follows that of Alternative CI1 and thus this completes the proof of Theorem 5.1 for case (ii) with
Alternative CI2.

Now we turn to Alternative CI3. Recall that e�(3)l;n;U = supf�n(�) : � 2 �� bHl;�n ;ecn;U (j; bn;j;m; �) � 0, 8(j;m) 2bBn;Ug and e�(3)1;n;U = sup
n
�n(�) : � 2 �� bH�n ;ecn;U (j; bn;j;m; �) � 0, 8(j;m) 2 bBn;Uo. Then, by construction ofe�l;n;U , we have e�(3)l;n;U � e�(3)l+1;n;U � e�(3)1;n;U for all l � 1 since � � bHl;�n � � � bHl+1;�n � � � bH�n

24 for all l � 1

and thus e�(3)l;n;U !
l!1

e�(3)1;n;U by the monotone convergence theorem (note
���e�(3)l;n;U ��� < 1 for all l). Similarly with

Alternatives CI1 and CI2, it follows that if ecn;U (j; bn;j;m; �n;U ) � 0 8(j;m) 2 bBn;U , then e�(3)1;n;U cannot be smaller

than �n;U wpa1 by de�nition of e�(3)1;n;U since wpa1, �n;U 2 � � bH�. Also note e�(3)l;n;U � e�(3)1;n;U � � for arbitrary
small number � > 0 for all large l since e�(3)l;n;U !

l!1
e�(3)1;n;U . We will let �l;U = e�(3)1;n;U � e�(3)l;n;U . Then, we have wpa1,e�(3)l;n;U � �n;U � �l;U . Combining these results with Lemma B.5 and noting �l;U = op;l (1) by construction, similarly

with CI1 and CI2, we obtain

P (�0 � e�(3)l;n;U ) + op;l (1) + op(1) � P (�n;U � e�(3)l;n;U ) +Op (�l;U ) + op(1)
� P (�n;U � e�(3)l;n;U + �l;U ) + op(1) � P (ecn;U (j; bn;j;m; �n;U ) � 0 8(j;m) 2 bBn;U ) (55)

for all n � 9N and op;l (1) denotes some random sequences that go to zero as l!1.
The remaining proof exactly follows that of Alternative CI1&CI2 and thus this completes the proof of Theorem

5.1 for case (ii) with Alternative CI3. Case (iii): It can be proved analogously to case (ii).
Case (iv): Note that analogous results of each (51), (54), and (55) for L in replace of U throughout holds s.t.

P (e�(1)n;L � �0)� P (e�(1)n;L � �n;L)� P (ecn;L(j; bn;j;m; �n;L) � 0 8(j;m) 2 bBn;L);
P (e�(2)n;L � �0)+op(1) � P (e�(2)n;L � �n;L)+op(1) � P (ecn;L(j; bn;j;m; �n;L) � 0 8(j;m) 2 bBn;L);
P (e�(3)l;n;L � �0)+op;l(1) + op(1) � P (e�(3)l;n;L � �n;L)+Op (�l;L)+op(1)
� P (ecn;L(j; bn;j;m; �n;L) � 0 8(j;m) 2 bBn;L)

(56)

by the same argument as in (51), (54), and (55), alternatively. Combining (51), (54), or (55) with (56), we obtain

P (e�(1)n;L � �0 � e�(1)n;U )� P (e�(1)n;L � �n;L; �n;U � e�(1)n;U )
� P (ecn;U (j; bn;j;m; �n;U ) � 0 8(j;m) 2 bBn;U ;ecn;L(j; bn;j;m; �n;L) � 0 8(j;m) 2 bBn;L),
P (e�(2)n;L � �0 � e�(2)n;U )+op(1) � P (e�(2)n;L � �n;L; �n;U � e�(2)n;U )+op(1)
� P (ecn;U (j; bn;j;m; �n;U ) � 0 8(j;m) 2 bBn;U ;ecn;L(j; bn;j;m; �n;L) � 0 8(j;m) 2 bBn;L),
P (e�(3)l;n;L � �0 � e�(3)l;n;U )+op;l(1) + op(1) � P (e�(3)l;n;L � �n;L; �n;U � e�(3)l;n;U )+Op(maxf�l;L; �l;Ug)+op(1)
� P (ecn;U (j; bn;j;m; �n;U ) � 0 8(j;m) 2 bBn;U ;ecn;L(j; bn;j;m; �n;L) � 0 8(j;m) 2 bBn;L).

(57)

Analogous results to those of (52)-(53) holds with L in place of U throughout. Note that the lim inf of the RHS of
the second inequality in (57) for each alternative CI is at least as large as the RHS of (53) because �+;U = �+;L
implies that �+;U = �+;L and B+;U = B+;L by the de�nitions of �+;U , �+;U , and B+;U in Assumption B.4 and (46),
respectively. We have shown Theorem 5.1 holds for all four cases.

24Note that with some abuse of notation, when we consider bHl;� as a sequence of sets indexed by l, we treat bh(�; �) is �xed
even though l � n!1.
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B.2.2 Proof of Lemma B.1

For each j 2 IJ , let F�j = f�j (y; x; ; �; h) =
�
P (y(j)jx; �; h)� 1[y = y(j)]

�
q(x)�c0(j; ; �; h) : (; �; h) 2 �all���

Hg denote the class of measurable functions indexed by (; �; h). Note that b�n(j; ; �; h) = 1p
n

Pn
i=1 �j (yi; xi; ; �; h).

Also note that E[�j (Y;X; ; �; h)] = 0 for all (j; ; �; h) 2 IJ � �all � � �H by construction. To prove this lemma,
�rst, we extend Lemma 1 of Chen, Linton, and van Keilegom (2003) to �t our case.

Lemma B.6 Let fYi; Xigni=1 be iid with E[�j(Y;X; ; �; h)] = 0 for all (j; ; �; h) 2 IJ ��all���H�. Suppose that

F�j = f�j(y; x; ; �; h) : (; �; h) 2 �all � � �Hg is P-Donsker (or satis�es
R1
0

r
logN[]

�
";F�j ; k�kL2(P )

�
d" < 1);

and that �j(y; x; ; �; h) is L2(P )-continuous at all (; �; h) 2 �all ���H�. Then, (44) and (50) hold.

Proof. Noting b�n(j; ; �; h) = 1p
n

Pn
i=1 �j (yi; xi; ; �; h) by de�nition, (44) is obtained by extending Pakes and

Pollard (1989)�s Lemma 2.17 from the case m(�; �) to our case �j(Y;X; ; �; h). Its proof is essentially the same with
theirs. Now (50) is obtained from Giné and Zinn (1990).

Now we prove Lemma B.1. From Lemma B.6, it su¢ ces to show
R1
0

r
logN[]

�
";F�j ; k�kL2(P )

�
d" <1. Note���j (y; x; 1; �1; h1)� �j (y; x; 2; �2; h2)��

�
���j (y; x; 1; �1; h1)� �j (y; x; 1; �2; h2)��+ ���j (y; x; 1; �2; h2)� �j (y; x; 2; �2; h2)��

�
���P (y(j)jx; �1; h1)� P (y(j)jx; �2; h2)��� q1(x) + ���R �P (y(j)jx; �1; h1)� P (y(j)jx; �2; h2)� q1(x)dFX(x)���
+
���P (y(j)jx; �2; h2)� 1[y = y(j)]��� jq1(x)� q2(x)j

and hence we have���j (y; x; 1; �1; h1)� �j (y; x; 2; �2; h2)��2
� 3

�
P (y(j)jx; �1; h1)� P (y(j)jx; �2; h2)

�2
q1(x)

2 + 3
R �
P (y(j)jx; �1; h1)� P (y(j)jx; �2; h2)

�2
q1(x)dFX(x)

+ 3
�
P (y(j)jx; �2; h2)� 1[y = y(j)]

�2
(q1(x)� q2(x))

2

� (C1(X) + C2)
�
k�1 � �2k2E + kh1 � h2k

2
H
�
+ 3 (q1(x)� q2(x))

2

for some C1(X) <1 and C2 <1 by Assumption 4.4 and the condition (b). Thus, it follows that 
E

"
sup

k1�2k<�;k�1��2kE<�;kh1�h2kH<�

���j (Y;X; 1; �1; h1)� �j (Y;X; 2; �2; h2)��2
#!1=2

� C� (58)

from the de�nition of the semi-norm k1 � 2k. Therefore, �j (y; x; ; �; h) is locally uniformly L2(P )-continuous with
respect to (; �; h) 2 �all � � � H� by Theorem 6 in Andrews (1994a). The remaining proof is obtained similarly
with the proof of the theorem 3 in Chen, Linton, and van Keilegom (2003). Now let fk : k = 1; : : : ; N1g be a �-cover
for (�all; k�k), f�k : k = 1; : : : ; N2g be a �-cover for

�
�; k�kE

�
, fhk : k = 1; : : : ; N3g be a �-cover for

�
H; k�kH

�
. Also

let N1 � f1; : : : ; N1g, N2 � f1; : : : ; N2g, and N3 � f1; : : : ; N3g. Then, by (58), for any �j (y; x; ; �; h), there exist
k1 2 N1, k2 2 N2, and k3 2 N3 such that

���j (y; x; ; �; h)� �j �y; x; k1 ; �k2 ; hk3��� is bounded by
sup(;�;h) s.t. k�k1k<�;k���k2kE<�;kh�hk3k1<�

���j (y; x; ; �; h)� �j �y; x; k1 ; �k2 ; hk3��� � bj(y; x; k1 ; �k2 ; hk3 ; �).
It follows that �j

�
y; x; k1 ; �k2 ; hk3

�
� bj(y; x; k1 ; �k2 ; hk3 ; �) � �j (y; x; ; �; h) � �j

�
y; x; k1 ; �k2 ; hk3

�
+ bj(y; x;

k1 ; �k2 ; hk3 ; �) and that
�
E
�
bj(Y;X; k1 ; �k2 ; hk3 ; �)

2
��1=2 � C� for all �k1 ; �k2 ; hk3� and all positive sequence tend-

ing to zero � = o(1). Therefore, an " = 2C�-bracket for
�
F�j ; k�kL2(P )

�
is formed as�

�j
�
y; x; k1 ; �k2 ; hk3

�
� bj(y; x; k1 ; �k2 ; hk3 ; �); �j

�
y; x; k1 ; �k2 ; hk3

�
+ bj(y; x; k1 ; �k2 ; hk3 ; �)

: k1 2 N1, k2 2 N2, and k3 2 N3

�
:

It follows that N[]

�
";F�j ; k�kL2(P )

�
� N

�
"
2C
;�; k�kE

�
�N

�
"
2C
;H; k�kH

�
�N

�
"
2C
;�all; k�k

�
. Combining this result,

the condition (a), and the arguments following (44), we complete the proof.
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B.2.3 Proof of Lemma B.2
We can rewrite

p
n
�bcn(j; bn;j;m; b�n;U )� c0(j; 0;j;m; b�n;U )�

=
p
n
�bcn(j; bn;j;m; b�n;U )� c0 �j; bn;j;m; b�n;U��+pn �c0(j; bn;j;m; b�n;U )� c0(j; 0;j;m; b�n;U )�

= b�n(j; bn;j;m; b�n;U ) + bZn (j;m; b�n;U )
using the de�nitions of bvn (�; �; �) and bZn (�; �; �) in (41) and (42), respectively. From the results of part (i) and part
(ii) in Lemma B.4, we have

b�n(j; bn;j;m; b�n;U )!
d
�0(j; 0;j;m; �+;U ) and bZn (j;m; b�n;U )!

d
Z0 (j;m; �+;U ) (59)

since kb�n;U � �+;Uks !p 0 by the condition (i) and Assumption B.4 (ii) and since bn;j;m � 0;j;m!p 0 by Assump-
tion 4.7. Finally, note Assumption B.3, Assumption 4.7, and the condition (i) imply that�� bwn �j; bn;j;m; b�n;U�� w0 �j; 0;j;m; �+;U���

�
�� bwn �j; bn;j;m; b�n;U�� w0 �j; bn;j;m; b�n;U���+ ��w0 �j; bn;j;m; b�n;U�� w0 �j; 0;j;m; �+;U���

� sup
(j;;�)2IJ��all�A�

j bwn(j; ; �)� w0(j; ; �)j+ ��w0 �j; bn;j;m; b�n;U�� w0 �j; 0;j;m; �+;U��� = op(1): (60)

Combining (59) and (60), the claim follows.

B.2.4 Proof of Lemma B.3
Consider

p
n
�bc�n(j; b�n;j;m; b�n;U )� bcn(j; bn;j;m; b�n;U )�

=
p
n
�bc�n(j; b�n;j;m; b�n;U )� bcn(j; b�n;j;m; b�n;U )� c�n(j; bn;j;m; b�n;U ) + bcn(j; bn;j;m; b�n;U )� (61)

+
p
n
�bcn(j; b�n;j;m; b�n;U )� bcn(j; bn;j;m; b�n;U )� c0(j; b�n;j;m; b�n;U ) + c0(j; bn;j;m; b�n;U )� (62)

+
p
n
�
c�n(j; bn;j;m; b�n;U )� bcn(j; bn;j;m; b�n;U )�+pn �c0(j; b�n;j;m; b�n;U )� c0(j; bn;j;m; b�n;U )� (63)

Now note that (61) is oP�(1) by the condition (i) and (iii). Note that from the de�nition of b�n(�; �; �), we have
p
n
�bcn(j; b�n;j;m; b�n;U )� bcn(j; bn;j;m; b�n;U )� c0(j; b�n;j;m; b�n;U ) + c0(j; bn;j;m; b�n;U )�

= b�n(j; b�n;j;m; b�n;U )� b�n(j; bn;j;m; b�n;U ).
and hence (62) is o(1) a.s. by (44) (a.s. version). From Giné and Zinn (1990), we know that

p
n
�
c�n(j; bn;j;m; b�n;U )� bcn(j; bn;j;m; b�n;U )� = pn �bcn(j; bn;j;m; b�n;U )� c0(j; bn;j;m; b�n;U )�+ oP�(1)

and note also that
p
n
�bcn(j; bn;j;m; b�n;U )� c0(j; bn;j;m; b�n;U )� = b�n(j; bn;j;m; b�n;U ) !

d
�0(j; 0;j;m; �+;U ) by the

part (i) of Lemma B.4 (note that b�n;U 2 bAn � A� wpa1) and since kb�n;U � �+;Uks = o(1) a:s: by the con-
dition (i) and Assumption B.4 (ii) (a.s. version). From these results, it follows that for the �rst term in (63),p
n
�
c�n(j; bn;j;m; b�n;U )� bcn(j; bn;j;m; b�n;U )� !

d
�0(j; 0;j;m; �+;U ) + oP�(1). Finally, we note that for the second

term in (63),
p
n
�
c0(j; b�n;j;m; b�n;U )� c0(j; bn;j;m; b�n;U )� !

d
Z0 (j;m; �+;U ) + oP�(1) by the part (ii) of Lemma B.4

and since kb�n;U � �+;Uks = o(1) a:s:. Therefore, we have
p
n
�bc�n(j; b�n;j;m; b�n;U )� bcn(j; bn;j;m; b�n;U )�!

d
�0(j; 0;j;m; �+;U ) + Z0 (j;m; �+;U ) + oP�(1). (64)

Now it remains to show that bw�n �j; b�n;j;m; b�n;U� = w0 �j; 0;j;m; �+;U�+ oP�(1). This holds because�� bw�n �j; b�n;j;m; b�n;U�� w0 �j; 0;j;m; �+;U���
�
�� bw�n �j; b�n;j;m; b�n;U�� bwn �j; b�n;j;m; b�n;U���+ �� bwn �j; b�n;j;m; b�n;U�� w0 �j; b�n;j;m; b�n;U���
+
��w0 �j; b�n;j;m; b�n;U�� w0 �j; 0;j;m; �+;U���

� sup(j;;�)2IJ��all�A�
j bw�n (j; ; �)� bwn (j; ; �)j+ sup(j;;�)2IJ��all�A�

j bwn (j; ; �)� w0 (j; ; �)j
+
��w0 �j; b�n;j;m; b�n;U�� w0 �j; 0;j;m; �+;U��� = o�P (1)

where the last result holds by Assumptions B.3 and 4.7 (a.s. version), by the condition (ii), and by kb�n;U � �+;Uks =
o(1) a:s:. Therefore, from this result and (64), the claim follows.
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