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1 Introduction

In recent years there has been increased interest in using nonparametric methods

to deal with various aspects of financial data. The paper by Fan overviews some

nonparametric techniques that have been used in the financial econometric literature,

focusing on estimation and inference for diffusion models in continuous time and

estimation of state price and transition density functions.

Continuous time specifications have been heavily used in recent work, partly be-

cause of the analytic convenience of stochastic calculus in mathematical finance and

partly because of the availability of high frequency data sets for many financial series.

While the early work in continuous time finance began in the 1970s with the work

of Merton (1973) and Black and Scholes (1973), economists have been looking at the

econometric problems of fitting continuous time systems for much longer. The idea of

statistically fitting diffusion models and continuously distributed lagged dependencies

with discretely observed data has a long history, dating back to some original work in

econometrics by Koopmans (1950) and subsequent work by Phillips (1959), Bergstrom

(1966), Sims (1971), Phillips (1972) and Sargan (1974). Bartlett and Rajalaksman

(1953) and Bartlett (1955) are two references in the early statistical literature on fit-

ting linear diffusions. Bergstrom (1988) provides a short history of some of this early

work. Also, the history of mathematical finance and stochastic integration prior to

1970 has recently been overviewed in an interesting historical review by Jarrow and

Protter (2004).

Our comments on Fan’s paper will concentrate on two issues that relate in im-

portant ways to the paper’s focus on misspecification and discretization bias and the

role of nonparametric methods in empirical finance. The first issue deals with the
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finite sample effects of various estimation methods and their implications for asset

pricing. A good deal of recent attention in the econometric literature has focused on

the benefits of full maximum likelihood (ML) estimation of diffusions and mechanisms

for avoiding discretization bias in the construction of the likelihood. However, many

of the problems of estimating dynamic models that are well known in discrete time

series, such as the bias in ML estimation, also manifest in the estimation of continuous

time systems and affect subsequent use of these estimates, for instance in derivative

pricing. In consequence, a relevant concern is the relative importance of the estima-

tion and discretization biases. As we will show below, the former often dominates

the latter even when the sample size is large (at least 500 monthly observations, say).

Moreover, it turns out that correction for the finite sample estimation bias continues

to be more important when the diffusion component of the model is itself misspecified.

Such corrections appear to be particularly important in models that are nonstationary

or nearly nonstationary.

The second issue we discuss deals with a very different nonparametric technique,

which is not discussed by Fan, but which has recently attracted much attention in

financial econometrics and empirical applications. This method involves the use of

quadratic variation measures of realized volatility using ultra high frequency financial

data. Like other nonparametric methods, empirical quadratic variation techniques

also have to deal with statistical bias, which in the present case arises from the presence

of microstructure noise. The field of research on this topic in econometrics is now very

active.
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2 Finite Sample Effects

In his overview of diffusion equation estimation, Fan discusses two sources of bias,

one arising from the discretization process and the second from misspecification. We

review these two bias effects and then discuss the bias that comes from finite sample

estimation effects.

The attractions of Ito calculus have made it particularly easy to work with stochas-

tic differential equations driven by Brownian motion. Diffusion processes in particular

have been used widely in finance to model asset prices, including stock prices, interest

rates, and exchange rates. Despite their mathematical attractability, diffusion pro-

cesses present some formidable challenges for econometric estimation. The primary

reason for the difficulty is that sample data, even very high frequency data, are always

discrete and for many popular nonlinear diffusion models the transition density of the

discrete sample does not have a closed form expression, as noted by Fan. The problem

is specific to nonlinear diffusions, as consistent methods for estimating exact discrete

models corresponding to linear systems of diffusions have been available since Phillips

(1972). A simple approach discussed in the paper is to use the Euler approximation

scheme to discretize the model, a process which naturally creates some discretization

bias. This discretization bias can lead to erroneous financial pricing and investment

decisions. In consequence, the issue of discretization has attracted a lot of attention

in the literature and many methods have been proposed to reduce the bias that it

causes. Examples are Pedersen (1995), Kessler (1997), Durham and Gallant (2002),

Aı̈t-Sahalia (1999, 2002), Elerian, Chib and Shephard (2001), among many others.

Next, many diffusion models in practical use are specified in a way that makes

them mathematically convenient. These specifications are typically not derived from
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any underlying economic theory and are therefore likely to be misspecified. Potential

misspecifications, like discretization, can lead to erroneous financial decisions. Accord-

ingly, specification bias has attracted a great deal of attention in the literature and has

helped to motivate the use of functional estimation techniques that treat the drift and

diffusion coefficients nonparametrically. Important contributions include Aı̈t-Sahalia

(1996), Stanton (1997), Bandi and Phillips (2003), and Hong and Li (2005).

While we agree that both discretization and specification bias are important issues,

finite sample estimation bias can be of equal or even greater importance for financial

decision making, as noted by Phillips and Yu (2005) in the context of pricing bonds

and bond options. The strong effect of the finite sample estimation bias in this

context can be explained as follows. In continuous time specifications, the prices

of bonds and bond options depend crucially on the mean reversion parameter in the

associated interest rate diffusion equation. This parameter is well known to be subject

to estimation bias when standard methods like ML are used. The bias is comparable

to, but generally has larger magnitude than, the usual bias that appears in time series

autoregression. As the parameter is often very close to zero in empirical applications

(corresponding to near martingale behavior and an autoregressive root near unity in

discrete time), the estimation bias can be substantial even in very large samples.

To reduce the finite sample estimation bias in parameter estimation as well as the

consequential bias that arises in asset pricing, Phillips and Yu (2005) proposed the

use of jackknife techniques. Suppose a sample of n observations is available and that

this sample is decomposed into m consecutive sub-samples each with ` observations

(n = m× `). The jackknife estimator of a parameter θ in the model is defined by

θ̂jack =
m

m− 1
θ̂n −

∑m
i=1 θ̂`i

m2 −m
, (1)
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where θ̂n and θ̂`i are the extreme estimates of θ based on the entire sample and the

i’th sub-sample, respectively. The parameter θ can be a coefficient in the diffusion

process, such as the mean reversion parameter, or a much more complex function of the

parameters of the diffusion process and the data, such as an asset price or derivative

price. Typically, the full sample extreme estimator has bias of order O(n−1), whereas

under mild conditions the bias in the jackknife estimate is of order O(n−2).

The following simulation illustrates these various bias effects and compares their

magnitudes. In the experiment, the true generating process is assumed to be the

following commonly used model (CIR hereafter) of short term interest rates due to

Cox et al. (1985)

dr(t) = κ(µ− r(t))dt + σr1/2(t)dB(t). (2)

The transition density of the CIR model is known to be ce−u−v(v/u)q/2Iq(2(uv)1/2)

and the marginal density is ww2
1 rw2−1e−w1r/Γ(w2), where c = 2κ/(σ2(1 − e−κ∆)),

u = cr(t)e−κ∆, v = cr(t + ∆), q = 2κµ/σ2 − 1, w1 = 2κ/σ2, w2 = 2κµ/σ2, ∆ is

the sampling frequency, and Iq(·) is the modified Bessel function of the first kind of

order q. The transition density together with the marginal density can be used for

simulation purposes as well as to obtain the exact ML estimator of θ (= (κ, µ, σ)′).

In the simulation, we use this model to price a discount bond, which is a three-year

bond with a face value of $1 and initial interest rate of 5%, and a one-year European

call option on a three-year discount bond which has a face value of $100 and a strike

price of $87. The reader is referred to Phillips and Yu (2005) for further details.

In addition to exact ML estimation, we may discretize the CIR model via the Euler

method and estimate the discretized model using (quasi-) ML. The Euler scheme leads
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to the following discretization:

r(t + ∆) = κµ∆ + (1− κ∆)r(t) + σN(0, ∆r(t)). (3)

1000 samples, each with 600 monthly observations (ie ∆ = 1/12), are simulated

from the true model (2) with (κ, µ, σ)′ being set at (0.1, 0.08, 0.02)′, which are set-

tings that are realistic in many financial applications. To investigate the effects of

discretization bias, we estimate model (3) by the (quasi-) ML approach. To investi-

gate the finite sample estimation bias effects, we estimate model (2) based on the true

transition density. To examine the effects of bias reduction in estimation, we apply

the jackknife method (with m = 3) to the mean reversion parameter κ, the bond price

and the bond option price.

To examine the effects of specification bias, we fit each simulated sequence from

the true model to the misspecified Vasicek model (Vasicek, 1977) to obtain the exact

ML estimates of κ, the bond price and the option price from this misspecified model.

The Vasicek model is given by the simple linear diffusion

dr(t) = κ(µ− r(t))dt + σdB(t). (4)

We use this model to price the same bond and bond option. Vasicek (1977) derived

the expression for bond prices and Jamshidian (1989) gave the corresponding formula

for bond option prices. The transition density for the Vasicek model is

r(t + ∆)|r(t) ∼ N(µ(1− e−κ∆) + e−κ∆rt, σ
2(1− e−2κ∆)/(2κ)). (5)

This transition density is utilized to obtain the exact ML estimates of κ, the bond price

and the bond option price, all under the mistaken presumption that the misspecified

model (4) is correctly specified.
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Table 1 reports the means and root mean square errors (RMSEs) for all these

cases. It is clear that the finite sample estimation bias is more substantial than the

discretization bias and the specification bias for all three quantities, at least in this

experiment. In particular, κ is estimated by the exact ML method with the 84.5%

upward bias, which contributes towards the -0.76% bias in the bond price and the

-24.39% bias in the option price. Relative to the finite sample bias, the bias in κ due

to the discretization is almost negligible since the total bias in κ changes from 84.5%

to 90.5%.1 The total bias changes from -0.76% to -0.82% in the bond price and from -

24.39% to -26.03% in the option price. These changes are marginal. Similarly, relative

to the finite sample bias, the bias in κ due to misspecification of the drift function is

almost negligible since the total bias changes from 89.8% to 74.6%.2 The total bias

changes from -0.76% to -0.69% in the bond price and from -24.39% to -21.25% in the

option price. Once again, these changes are marginal. When the jackknife method is

applied to the correctly specified model, the estimation bias is greatly reduced in all

cases (from 89.8% to 8.9% for κ; from -0.76% to -0.18% for the bond price; and from

-24.39% to -10.23% for the option price).

Even more remarkably, when the jackknife method is applied to the incorrectly

specified model (see the final row of Table 1), the estimation bias is also greatly re-

duced in all cases (from 89.8% to 2.3% for κ; from -0.76% to -0.18% for the bond price;

and from -24.39% to -6.01% for the option price). These figures reveal that dealing

with estimation bias can be much more important than ensuring correct specification

in diffusion equation estimation, suggesting that general econometric treatment of the

1The increase in the total bias indicates that the discretization bias effect is in the same direction
as that of the estimation bias.

2The decrease in the total bias indicates that the misspecification bias effect is in the opposite
direction to that of the estimation bias.
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diffusion through nonparametric methods may not address the major source of bias

effects on financial decision making.

Although the estimation bias is not completely removed by the jackknife method,

the bias reduction is clearly substantial and the RMSE of the jackknife estimate is

smaller in all cases than that of exact ML. In sum, it is apparent from Table 1 that

the finite sample estimation bias is larger in magnitude than either of the biases due

to discretization and misspecification and correcting this bias is therefore a matter of

importance in empirical work on which financial decisions depend.

Although this demonstration of the relative importance of finite sample estimation

bias in relation to discretization bias and specification bias is conducted in a para-

metric context, similar results can be expected for some nonparametric models. For

example, in the semiparametric model examined in Aı̈t-Sahalia (1996), the diffusion

function is nonparametrically specified and the drift function is linear, so that the

mean reversion parameter is estimated parametrically as in the above example. In

such cases, we can expect substantial finite sample estimation bias to persist and to

have important practical implications in financial pricing applications.

3 Realized Volatility

As noted in Fan’s overview, many models used in financial econometrics for modelling

asset prices and interest rates have the fully functional scalar differential form

dXt = µ(Xt)dt + σ(Xt)dBt, (6)

where both drift and diffusion functions are nonparametric and where the equation

is driven by Brownian motion increments dBt. For models such as (6), we have
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(dXt)
2 = σ2(Xt)dt a.s., and hence the quadratic variation of Xt is

[X]T =

∫ T

0

(dXt)
2dt =

∫ T

0

σ2(Xt)dt, (7)

where
∫ T

0
σ2(Xt)dt is the accumulated or integrated volatility of X. Were Xt observed

continuously, [X]T and, hence integrated volatility, would also be observed. For dis-

cretely recorded data, estimation of (7) is an important practical problem. This can

be accomplished by direct nonparametric methods using an empirical estimate of the

quadratic variation that is called realized volatility. The idea has been discussed for

some time, an early reference being Maheswaran and Sims (1993), and it has recently

attracted a good deal of attention in the econometric literature now that very high

frequency data has become available for empirical use. Recent contributions to the

subject are reviewed in Andersen et al. (2005) and Bandi and Russell (2005).

Suppose Xt is recorded discretely at equispaced points (∆, 2∆, · · · , n∆∆(≡ T ))

over the time interval [0, T ]. Then, [X]T can be consistently estimated by the realized

volatility of Xt defined by

[X∆]T =

n∆∑
i=2

(Xi∆ −X(i−1)∆)2, (8)

as ∆ → 0, as is well known. In fact, any construction of realized volatility based on an

empirical grid of observations where the maximum grid size tends to zero will produce

a consistent estimate. It follows that the integrated volatility can be consistently

estimated by this nonparametric approach, regardless of the form of µ(Xt) and σ(Xt).

The approach has received a great deal of attention in the recent volatility literature

and serves as a powerful alternative to the methods discussed by Fan, especially when

ultra-high frequency data are available.
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While this approach is seemingly straightforward, it is not without difficulties.

First, in order for the approach to be useful in empirical research, it is necessary

to estimate the precision of the realized volatility estimates. Important contribu-

tions on the central limit theory of these empirical quadratic variation estimates by

Jacod (1994) and Barndorff-Nielson and Shephard (2002, 2004) has facilitated the

construction of suitable methods of inference. Second, in practical applications, real-

ized volatility measures such as (8) are usually contaminated by microstructure noise

bias, especially at ultra high frequencies and tick-by-tick data. Noise sources arise

from various market frictions and discontinuities in trading behavior that prevent

the full operation of efficient financial markets. Recent work on this subject (e.g.

Bandi and Russell, 2005; Hansen and Lunde, 2004; Zhang, Mykland and Aı̈t-Sahalia,

2005; Barndorff-Nielson, Hansen, Lunde and Shephard, 2004) has developed vari-

ous methods, including nonparametric kernel techniques, for reducing the effects of

microstructure noise bias.

4 Additional Issues

Given efficient market theory, there is good reason to expect that diffusion models like

(6) may have nonstationary characteristics. Similar comments apply to term structure

models and yield curves. In such cases, nonparametric estimation methods lead to

the estimation of the local time (or sojourn time) of the corresponding stochastic

process and functionals of this quantity, rather than a stationary probability density.

Moreover, rates of convergence in such cases become path dependent and the limit

theory for nonparametric estimates of the drift and diffusion functions in (6) is mixed

normal. Asymptotics of this type require an enlarging time span of data as well as
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increasing in-fill within each discrete interval as n →∞. An overview of this literature

and its implications for financial data applications is given in Bandi and Phillips

(2005). Nonparametric estimates of yield curves in multifactor term structure models

are studied in Jeffrey et al (2004).

Not all models in finance are driven by Brownian motion. In some cases, one can

expect noise to have to have some memory and, accordingly, models such as (6) have

now been extended to accommodate fractional Brownian motion increments. The

stochastic calculus of fractional Brownian motion, which is not a semi-martingale,

is not as friendly as that of Brownian motion and requires new constructs, involving

Wick products and versions of the Stratonovich integral. Moreover, certain quantities,

such as quadratic variation, that have proved useful in the recent empirical literature

may no longer exist and must be replaced by different forms of variation, although

the idea of volatility is still present. Developing a statistical theory of inference to

address these issues in financial econometric models is presenting new challenges.
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Table 1. Finite sample properties of ML and jackknife estimates of κ, bond

price and option price for the (true) CIR model using a (correctly specified)

fitted CIR model and a (misspecified) fitted Vasicek model (Sample size

n= 600)

Parameter κ Bond Price Option Price
True Value 0.1 0.8503 2.3920

Exact ML Mean 0.1845 0.8438 1.8085
of CIR RMSE 0.1319 0.0103 0.9052

Euler ML Mean 0.1905 0.8433 1.7693
of CIR RMSE 0.1397 0.0111 0.9668

Jackknife (m=3) of Mean 0.0911 0.8488 2.1473
CIR RMSE 0.1205 0.0094 0.8704

ML of Vasicek Mean 0.1746 0.8444 1.8837
(misspecified) RMSE 0.1175 0.0088 0.7637

Jackknife (m=2) of Mean 0.0977 0.8488 2.2483
Vasicek (misspecified) RMSE 0.1628 0.0120 1.0289
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