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Summary

Malaria remains a major epidemiological problem in many developing countries. Malaria

is defined as the presence of parasites and symptoms (usually fever) due to the parasites. In

endemic areas, an individual may have symptoms attributable either to malaria or to other

causes. From a clinical point of view, it is important to correctly diagnose an individual

who has developed symptoms so that the appropriate treatments can be given. From an

epidemiologic and economic point of view, it is important to determine the proportion of

malaria affected cases in individuals who have symptoms so that policies on intervention

programmes can be developed. Once symptoms have developed in an individual, the diag-

nosis of malaria can be based on analysis of the parasite levels in blood samples. However,

even a blood test is not conclusive as in endemic areas, many healthy individuals can have

parasites in their blood slides. Therefore, data from this type of studies can be viewed as

coming from a mixture distribution, with the components corresponding to malaria and non-

malaria cases. A unique feature in this type of data, however, is the fact that a proportion

of the non-malaria cases have zero parasite levels. Therefore, one of the component distribu-
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tions is itself a mixture distribution. In this article, we propose a semi-parametric likelihood

approach for estimating the proportion of clinical malaria using parasite level data from a

group of individuals with symptoms. Our approach assumes the density ratio for the para-

site levels in clinical malaria and non-clinical malaria cases can be modeled using a logistic

model. We use empirical likelihood to combine the zero and non-zero data. The maximum

semi-parametric likelihood estimate is more efficient than existing non-parametric estimates

using only the frequencies of zero and non-zero data. On the other hand, it is more robust

than a fully parametric maximum likelihood estimate that assumes a parametric model for

the non-zero data. Simulation results show that the performance of the proposed method

is satisfactory. The proposed method is used to analyze data from a malaria survey carried

out in Tanzania.

KEY WORDS: Attributable fraction; Density ratio model; Empirical likelihood; Malaria;

Mixture methods.

Introduction

Recent reviews (“World Health Organization, Practical chemotherapy of malaria: re-

port of a WHO scientific group”, WHO Technical Report Series 805, Geneva, 1990) suggest

that malaria causes around 110 million sickness episodes and one million deaths each year

throughout the world. One of the symptoms of malaria is fever. In an endemicity, a per-

son who has developed fever will be tested for parasite levels in his/her blood. However,

the test is often not conclusive as healthy individuals living in endemic areas often tolerate

malaria parasites. Furthermore, fever can be due to causes other than malaria. In other

words, in individuals who have developed fever, there are some with low parasite levels but

are truly malaria cases while there are some with high parasite levels but are non-malaria

cases. Therefore, in analyzing parasite level data from individuals who have developed fever,

the data can be viewed as coming from a two component mixture distribution, with the
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components corresponding to the malaria and non-malaria population. A unique feature of

this type of data is that, within the non-malaria population, there are some who have zero-

parasite level. Therefore, the distribution of parasite level in the non-malaria population

is itself a mixture distribution. More specifically, suppose a sample of parasite levels from

n febrile individuals is collected from an endemicity. We let x1, x2, ..., xn be independent

and identically distributed (i.i.d.) random variables representing the parasite levels. Then,

x1, x2, ..., xn follow a two-component mixture distribution with density

f(x) = (1 − λ)f ∗
1 (x) + λf2(x), (1)

where f ∗
1 and f2 are the densities of parasite levels in the non-malaria and malaria popu-

lations, respectively. The mixing parameter λ is the proportion of individuals with clinical

malaria in the endemicity. It is also called the malaria attributable fraction in epidemiologic

terminology. Furthermore, f ∗
1 can be decomposed as

f ∗
1 (x) = pI(x = 0) + (1 − p)f1(x)I(x > 0),

where p is the proportion in the non-malaria population with zero parasite level, f1 is a

density on (0,∞) and I is an indicator function. As a result, f can be written as

f(x) = p(1 − λ)I(x = 0) + {(1 − λ)(1 − p)f1(x) + λf2(x)}I(x > 0)

= p(1 − λ)I(x = 0) + [1 − p(1 − λ)]{(1 − λ∗)f1(x) + λ∗f2(x)}I(x > 0), (2)

where λ∗ = λ/{1− p(1− λ)} can be interpreted as the probability of an individual carrying

malaria given he/she has positive parasite level from the endemicity. Based on (2), we can

consider the distribution as a kind of “compound” mixture distribution. A partitioning of a

typical set of data in an endemicity is given in Table 1.

In general, without specifying the forms of f ∗
1 and f2, the mixture model (1) is not

identifiable. However, the identifiability problem can be solved if additional information

about these distributions can be obtained. Vounatsou, Smith and Smith (1998) described
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a cross-sectional survey study of parasitaemia and fever among children up to one year old

in a village in the Kilombero district in Tanzania (Kiua et al. 1996) where this is the case.

In that study, in addition to data from the mixture distribution that were obtained in the

endemicity, a secondary set of data z1, ..., zm from f ∗
1 was obtained from the community. The

secondary data can thus be considered as a training sample. Define the parasite prevalence

probabilities in the endemicity and the community, respectively, as pf = 1 − p(1 − λ) and

pa = 1 − p, then Vounatsou et al (1998) and Smith, Schellenberg and Hayes (1994) showed

that

λ = (pf − pa)/(1 − pa). (3)

Based on (3), a natural estimator of λ is to replace pf and pa by sample proportions. However,

as Vounatsou et al (1998) pointed out, in general, pa is very high and the proportion of

community children without parasitaemia is low. As a result, the estimator of λ using the

sample proportions can be either negative or imprecise when pa is close to one. Also the

estimator does not utilize the quantitative nature of the parasite level data. Another method

to estimate λ is to use the binomial counts of zero and non-zero parasite level data. Finally,

Vounatsou et al. (1998) suggested a multinomial likelihood by grouping the observations

from the mixture and the training samples into a number of ordered categories. In this

paper, we explore a method that makes use of the quantitative nature of the data and also

does not require grouping of the data.

Let m0 and m1, respectively, be the numbers of observations with zero and non-zero

parasite level in the training sample, z1, z2, ...., zm. Similar definitions of n0 and n1 are

applied to the mixture sample, x1, x2, ..., xn. Without loss of generality, we assume the

non-zero observations from the training sample and the mixture sample are z1, ..., zm1
and

x1, .., xn1
, respectively. Therefore,

z1, z2, ..., zm1
∼ f1(z),

x1, ..., xn1
∼ g(x) = (1 − λ∗)f1(x) + λ∗f2(x),
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so that the density f1 is the same in the endemicity and the training sample. The log-

likelihood is

` = `1 + `2, (4)

where

`1 = m0 log p + m1 log(1 − p) + n0 log{(1 − λ)p} + n1 log{1 − (1 − λ)p} (5)

and

`2 =
m1
∑

i=1

log f1(zi) +
n1
∑

j=1

log{(1 − λ∗)f1(xj) + λ∗f2(xj)}. (6)

In (5) and (6), `1 is the marginal log-likelihood of the number of zeros in the data and `2

is the conditional likelihood given that the data are greater than zero. Furthermore, the

parameter λ appears in both `1 and `2.

If inference is based on `1 alone, the method is that of making use of the binomial data of

presence/absence of parasites. On the other hand, if inference is based only on `2, Lancaster

and Imbens (1996) called this problem a case-control problem with contaminated controls.

Applications can be found in econometrics literature, where, for example, the training sample

is a random sample of female labor force participants and the mixture sample is a random

sample of working age women whose labor force participating statuses are unknown. One

can expect that the conditional log-likelihood `2 may contain information on λ∗ (or λ).

Unfortunately, if the forms of f1 and f2 are un-specified and λ∗ is unknown, then the mixture

model is not identifiable based on `2 alone. If there is an additional sample from f2 beside

the mixture and the training samples, then it is possible to estimate λ∗ non-parametrically

(Hall, 1981, Murray and Titterington, 1978, Hall and Titterington, 1984). Alternatively, if

parametric models are assumed for f1 and f2, then maximum likelihood method for standard

mixture model can be employed to find the underlying parameters (Titterington, Smith and

Makov, 1985, Lindsay, 1995, McLachlan and Krishnan, 1997, McLachlan and Peel, 2001).

In exploring robust and efficient estimation methods, Smith et al (1994) considered a

model-based approach, in which the relationship between parasite level and malaria fever
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is modeled as a smooth function using a logistic regression. This model has been used

for different applications of mixture models in fisheries, econometrics, clinical and genetics

studies (Anderson, 1979, Imben and Lancaster, 1996, Qin, 1999, Nagelkerke, Borgdorff and

Kim, 2001, Zou, Fine and Yandell, 2002). The logistic regression method is equivalent to

a two sample semi-parametric modeling assumption, where the log density ratio is linearly

related to the observed data,

log
f2(x)

f1(x)
= α + xβ, or f2(x) = exp(α + βx)f1(x), (α, β) 6= (0, 0), (7)

and the form of f1(x) is not specified. Using model (7) in the setting described here, we

have a two-sample problem:

z1, z2, ..., zm1
∼ f1(x),

x1, x2, ..., xn1
∼ g(x) = [(1 − λ∗) + λ∗ exp(α + βx)]f1(x),

This may be considered as a biased sample problem with weights w1(x) = 1, w2(x) = (1 −

λ∗) + λ∗ exp(α + βx), which depend on parameters (α, β) and λ. In this paper, we propose

using (7) to model the density ratio of the malaria and non-malaria populations.

A nice property of model (7) is that it is semi-invariant in the sense that if the data is

transformed using a monotone increasing function h(·), the density ratio of the transformed

data becomes exp[α + βT{h−1(x)}] with h−1(·) being the inverse function of h(·). In other

words, the new density ratio has the same form as the original one except for h−1(x) in place

of x. Kay and Little (1987) discussed various choices of density ratio model for some well

known distributions. For example, if f1 and f2 are normal densities with different means

and variances, then the model (7) includes a quadratic term. White and Thompson (2003)

have used model (7) to compare treatment effects in clinical trials. In a number of medical

studies, it was found that many well known distributions did not fit the observed data well

(Qin and Zhang, 1997, Qin et al., 2002, Zhang, 2001), whereas model (7) provided good fits.

Therefore, we expect that a semi-parametric approach based on (7) to be more robust than
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a parametric approach. On the other hand, a semi-parametric approach should be more

efficient than a nonparametric approach.

The rest of this paper is organized as follows. In section 2, we consider estimation in

a mixture model. Based on the assumption that the component densities are related by (7),

we propose a semi-parametric method using empirical likelihood (Owen, 1988) and biased

sampling estimating technique (Vardi, 1982, 1985). In section 3, we apply the proposed

method to the malaria survey data. Simulation results are given in section 4. Concluding

remarks are given in section 5. Proofs are relegated to the Appendix.

2. Main results

In this section we consider estimating the parameters (p, λ∗, α, β) in the mixture model

when the component densities are related by model (7). Note that we have suppressed the

parameter λ because it is a function of p, λ∗.

As defined in Section 1, m0 =
∑m

i=1 I(zi = 0), m1 = m − m0 and n0 =
∑n

i=1 I(xi =

0), n1 = n − n0. Under (7), the log-likelihood (4) becomes

` = `1 + `2, (8)

where

`1 = m0 log p + m1 log(1 − p) + n0 log{(1 − λ)p} + n1 log{1 − (1 − λ)p}

and

`2 =
m1
∑

i=1

log f1(zi) +
n1
∑

j=1

[log{(1 − λ∗) + λ∗ exp(α + βxj)} + log f1(xj)].

As suggested in Section 1, a naive method is to estimate λ and p by using `1 alone.

This is essentially using the binomial counts of the zero and non-zero data. We can easily
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derive the maximum binomial likelihood estimators:

p̂B =
m0

m
, λ̂B = 1 − n0

np̂B
. (9)

Clearly these estimators do not use the information provided by the quantitative part of

the non-zero data. Next we will develop a method that utilizes the non-zero data in the

conditional log-likelihood, `2.

In order to maximize `2, we only need to concentrate on those distribution functions

with jumps at the observed data values. Let (t1, ..., tN1
) = (z1, .., zm1

, x1, ..., xn1
), N1 =

m1 + n1 and qi = dF1(ti), i = 1, 2, ..., N1, be the non-negative jump sizes at the N1 data

values so that the total of all the jump sizes is unity. The semi-parametric likelihood of the

data can be written as

m1
∏

i=1

dF1(zi)
n
∏

k=1

[(1 − λ∗) + λ∗ exp{α + βxk}]dF1(xk) (10)

= {
N1
∏

i=1

qi}{
n1
∏

k=1

[(1 − λ∗) + λ∗ exp{α + βxk}]}.

We will maximize the likelihood in two steps, as follows:

Step 1. For fixed (λ∗, α, β), maximize
N1
∏

i=1

qi

subject to the constraints

N1
∑

i=1

qi = 1,
n1
∑

k=1

qk{exp(α + βtk) − 1} = 0, qi ≥ 0, i = 1, ..., N1.

Note that the second constraint comes from the fact that F2(t) =
∫ t
−∞ exp(α + βx)dF1(x)

is a cumulative distribution function. Therefore EF1
{exp(α + βx)} = 1. After maximizing

over the qi’s, we have (Qin and Lawless, 1994)

q̂i =
1

N1

1

1 + ν[exp(α + βti) − 1]
, i = 1, 2, ..., N1,

where ν is a Lagrange multiplier determined by

N1
∑

i=1

1

N1

exp(α + βti) − 1

1 + ν[exp(α + βti) − 1]
= 0. (11)
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It can be proved that in an O(N
−1/3
1 ) neighborhood of (α, β), ν = ν(α, β) is an implicit

function of (α, β). Therefore the conditional log-likelihood is

`2(λ
∗, α, β, ν) = −

N1
∑

i=1

log{1 + ν[exp(α + βti) − 1]} +
n1
∑

k=1

log{(1 − λ∗) + λ∗ exp(α + βxk)}.

Since, λ = (λ∗ − λ∗p)/(1 − λ∗p), we can change the variable from λ to λ∗, and the full

semi-parametric log-likelihood becomes

`(p, λ∗, α, β, ν) = `1(p, λ
∗) + `2(λ

∗, α, β, ν), (12)

where

`1(p, λ
∗)

= m0 log p + m1 log(1 − p) + n0 log{p(1 − λ∗)/(1 − λ∗p)} + n1 log{1 − p(1 − λ∗)/(1 − λ∗p)}

= (m0 + n0) log p + (m1 + n1) log(1 − p) + n0 log(1 − λ∗) − n log(1 − λ∗p).

Step 2. Maximize the semi-parametric log-likelihood `(p, λ∗, α, β, ν) with respect to

(p, λ∗, α, β, ν).

Differentiating ` with respect to (p, λ∗, α, β, ν), we have

∂`

∂α
=

n1
∑

i=1

λ∗ exp(α + βxi)

(1 − λ∗) + λ∗ exp(α + βxi)
−

N1
∑

i=1

ν exp(α + βti)

1 + ν{exp(α + βti) − 1} = 0,

∂`

∂β
=

n1
∑

k=1

λ∗xk exp(α + βxk)

(1 − λ∗) + λ∗ exp(α + βxk)
−

N1
∑

i=1

νti exp(α + βti)

1 + ν[exp(α + βti) − 1]
= 0,

∂`

∂λ∗
= − n0

1 − λ∗
+

np

1 − λ∗p
+

n1
∑

k=1

−1 + exp(α + βxk)

(1 − λ∗) + λ∗ exp(α + βxk)
= 0,

∂`

∂p
=

m0 + n0

p
− m1 + n1

1 − p
+

nλ∗

1 − λ∗p
= 0.

Also, applying (11) to ∂`/∂α = 0, we have:

ν = λ∗ 1

N1

n1
∑

i=1

exp(α + βxi)

(1 − λ∗) + λ∗ exp(α + βxi)
. (13)
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Denote η = (α, β, λ∗, p, ν), N = m + n, the true value of η as η0 = (α0, β0, λ
∗
0, p0, ν0),

the maximum semi-parametric likelihood estimate of η as η̂ = (α̂, β̂, λ̂∗, p̂, ν̂) and assuming

m/N → ρ, 0 < ρ < 1.

Theorem 1 Suppose that:

(1). The distribution function F1 is non-degenerate, and |∂`2/∂ηi∂ηj∂ηk|, i, j, k =

1, 2.., 5 are bounded by some integrable functions in the neighbour of η0.

(2). EF1
{exp(3βx)} < ∞ in a neighbourhood of the true value of β0.

(3). 0 < λ0 < 1 and 0 < λ∗
0 < 1.

(4). (α, β) 6= (0, 0).

Under regularity conditions (1)-(4), with probability 1, `(η) has a local maximum in

an O(N−1/3) neighborhood of η0. Moreover, the maximizer η̂ satisfies the score equations

∂`(η̂)/∂η = 0, and
√

N(η̂ − η0) → N(0, Σ), Σ = V −1UV −1, (14)

where U and V are defined in (A.3) and (A.2) in the Appendix. As a result, by delta method,

we can easily prove that

√
N(λ̂ − λ0) → N(0, σ2), σ2 =

(

∂λ(η0)

∂η

)

Σ

(

∂λ(η0)

∂η

)T

.

Next we consider the semi-parametric generalized likelihood ratio test statistic. As

pointed out by Hall and La Scala (1990), the empirical likelihood method has many ad-

vantages over normal approximation methods and the usual bootstrap approximation ap-

proaches for constructing confidence intervals. For example, empirical likelihood confidence

intervals do not have pre-defined shapes and are range and transformation respecting.

We now give a large sample likelihood ratio test for the parameter λ.
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Theorem 2 Denote λ∗(λ, p) = λ/{1 − p(1 − λ)} and let

R(λ) = 2{ sup
α,β,λ,p

`(α, β, λ∗(λ, p), p) − sup
α,β,p

`(α, β, λ∗(λ, p), p)}. (15)

Under the regularity conditions specified in Theorem 1, if H0 : λ = λ0 6= 0 is true, then

R(λ0) → χ2
(1).

If parametric models for f1(x, θ1) and f2(x, θ2) are postulated, we can consider a para-

metric approach. Let

`P (θ1, θ2, λ
∗, p) = `1(p, λ

∗) + `2P (λ∗, θ1, θ2)

be the parametric log-likelihood, where

`2P (θ1, θ2, λ
∗) =

m1
∑

i=1

log f1(zi, θ1) +
n1
∑

j=1

log{(1 − λ∗)f1(xj, θ1) + λ∗f2(xj, θ2)}.

Denote the maximum parametric likelihood estimate as (θ̂1P , θ̂2P , λ̂∗
P , p̂P ). For comparison,

it can be shown that

Theorem 3 Under some regularity conditions, the parametric likelihood ratio statistic:

RP (λ) = 2{ max
(θ1,θ2,λ,p)

`P (θ1, θ2, λ
∗(λ, p), p) − max

(θ1,θ2,p)
`P (θ1, θ2, λ

∗(λ, p), p)} (16)

converges to a χ2
(1) distribution if λ = λ0, the true value of λ. Also the naive likelihood ratio

based on binomial counts of zeros and non-zero observations is:

RB(λ) = 2{max
(p,λ)

`1(p, λ) − max
p

`1(p, λ)} (17)

converges to a χ2
(1) distribution if λ = λ0.

An advantage of using the proposed semi-parametric likelihood proposed is that the

distributions, F1 and G (where G is the distribution of the community (training sample)
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defined in (5) and (6)), can be estimated using the q̂i’s, i.e.:

F̂1(t) =
1

N1

N1
∑

i=1

I(ti ≤ t)

1 + ν̂[exp(α̂ + β̂ti) − 1]
,

Ĝ(t) =
1

N1

N1
∑

i=1

I(ti ≤ t)[(1 − λ̂∗) + λ̂∗ exp(α̂ + β̂ti)]

1 + ν̂[exp(α̂ + β̂ti) − 1]
. (18)

As Qin and Zhang (1997) suggested, the discrepancy between the distribution functions

given in (18) and the empirical distribution functions:

F̃1(t) =
m1
∑

i=1

I(zi ≤ t)/m1, G̃(t) =
n1
∑

i=1

I(xi ≤ t)/n1

can be used to form a goodness of fit statistic:

∆ = max
−∞<t<∞

√
N |F̂1(t) − F̃1(t)|, (19)

for the model (7). We do not give details of the theoretical results here. However, we will

use (19) to assess the fit of the proposed method to the malaria data in the next section.

3. The malaria example

In this section we analyze the malaria dataset collected by Kitua et al (1996). The

data were obtained from repeated cross-sectional surveys of parasitaemia and fever among

children up to one year old in a village in the Kilombero district in Tanzania. Vounatsou

et al (1998) used a subset of the data from children aged between 6 and 9 months that was

collected in two seasons: the wet season (January-June) during which malaria prevalence is

high and the dry season (July-December) during which the mosquito population, and also

malaria prevalence, decreases. We use one of the datasets that can be obtained from

http : //www.blackwellpublishers.co.uk/rss.

In this dataset, there are n = 264 observations in the mixture sample and m = 144 observa-

tions in the training sample. Among these, there are n0 = 53 and m0 = 63 observations with
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zero parasite level in the mixture and training sample, respectively. Therefore, m1 = 81 and

n1 = 211. The parasite level ranges from 0 to 399952.1. The data, after log-transformation

for the non-zero data values are shown in Figure 1.

Three estimators were used to analyze the data: the binomial estimator based on

maximizing `1, the semi-parametric estimator based on maximizing ` and the parametric

estimator based on maximizing `P .

Using the binomial estimator, only (p, λ, λ∗) are relevant parameters. The binomial

estimates for this dataset are

(p̂B, λ̂B, λ̂∗
B) = (0.437, 0.541, 0.677).

The maximum semi-parametric likelihood estimates are

(α̂, β̂, λ̂, λ̂∗, p̂) = (−19.62, 2.038, 0.507, 0.641, 0.423).

To assess the goodness of fit of the semi-parametric method, the distribution function esti-

mates of F1 and F2 using (18) are calculated and plotted against the corresponding empirical

distribution functions (Figure 2). As seen in Figure 2, the semi-parametric distribution func-

tion estimates are extremely close to the empirical distribution functions. We also used 1000

bootstrap samples to calculate the significance of the statistic (19) and found the p-value to

be 0.340, indicating no evidence of model lack of fit.

The maximum parametric likelihood estimation assumed normal models for the com-

ponent distributions, f1 ∼ N(µ1, σ
2) and f2 ∼ N(µ2, σ

2). Note that f2(x)/f1(x) satisfies (7)

with

α =
µ2

1 − µ2
2

2σ2
, β =

µ2 − µ1

σ2

The estimated parameters are

(α̂P , β̂P , λ̂P , λ̂∗
P , p̂P ) = (−9.427, 1.059, 0.627, 0.763, 0.478).
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Clearly the choice of normal models for f1 and f2 is not good, λ is overestimated by an

amount of 0.1, which is a large deviation considering that the range of λ is between 0 and 1.

The 95% semi-parametric likelihood ratio based confidence intervals for λ and λ∗ are

(0.406, 0.615) and (0.529, 0.748), respectively. Also the 95% binomial likelihood ratio based

confidence intervals for λ and λ∗ are (0.380, 0.663) and (0.497, 0.795), respectively. Note

that the semi-parametric confidence intervals are much shorter that the binomial confidence

intervals. We do not report the confidence intervals for the parametric method since its

estimates are biased.

Another important problem in the Tanzania malaria survey data is to predict the

malaria status in a child with a given non-zero parasite level. A popular approach is to

diagnose the child with malaria if and only if the parasite level exceeds a given cutoff value.

This approach is based on the observation that high parasite levels are less common among

children without malaria. However there has been no clear criteria with which to select a

suitable cutoff. Moreover, not all children from endemic areas have malaria. The conven-

tional receive operational characteristic (ROC) analysis is biased if we do not take this fact

into account since the malaria group contaminates the non-malaria group. Denote D = 1 or

D = 2 as clinical non-malaria and malaria, respectively, for an individual from an endemicity.

The conditional probability of D = 2 for a given parasite level, x, is

P (D = 2|x) =
P (D = 2)f(x|D = 2)

P (D = 1)f(x|D = 1) + P (D = 2)f(x|D = 2)
=

λ∗f2(x)

λ∗f2(x) + (1 − λ∗)f ∗
1 (x)

.

Under model (7), we have

P (D = 2|x) =







0 if x = 0
exp(α∗ + βx)

1 + exp(α∗ + βx)
if x > 0

where α∗ = α + log λ∗ − log(1 − λ∗).

In Figure 3, we plotted the estimated conditional probability using the malaria data:

P̂ (D = 2|x) =







0 if x = 0
exp(−19.2 + 2.04x)

1 + exp(−19.62 + 2.04x)
if x > 0

, (20)
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which can be used to predict the probability of malaria for observed parasite level of x in an

endemicity. For example, if a case is to be diagnosed as malaria only if the probability is at

least 80%, then the observed log-parasite level should be at least 9.

4. Simulation study

In this section, we present the results of a simulation study designed to evaluate the

performance of the proposed estimator. In the study, we tried to mimic the malaria exam-

ple by fixing n = 264 and m = 144. Data in the mixture sample were generated from a

normal mixture model (1− λ∗)N(0, 1) + λ∗N(µ, 1) and data in the training sample followed

a standard normal distribution. One thousand simulations each were carried out under dif-

ferent combinations of λ∗ and µ. For each combination, the means and standard deviations

of the semi-parametric estimator are reported in Table 2. For comparison, we also report

the corresponding values using the binomial estimator and the parametric estimator. For

estimation of (λ, λ∗), (λ̂, λ̂∗) and (λ̂P , λ̂∗
P ) have better overall performance and smaller stan-

dard deviations than the binomial estimates (λ̂B, λ̂∗
B). This is expected since the binomial

estimation only uses information from the binomial counts of zero and non-zero data. The

advantages of the semi-parametric and the parametric methods over the binomial method

are more significant when the two components (f1 and f2) in the mixture are well separated

from each other and when the prevalence probability, (1 − p), is high. On the other hand,

when there is much overlap in the two components, the improvements are only moderate.

These results are not surprising since in the latter case, not much information on λ (and λ∗)

is contained in the mixture sample.

Comparing the semi-parametric and the parametric methods, the latter is more efficient

in estimating the parameters α, β. However, for the more important parameters λ, λ∗, p, the

semi-parametric method is nearly as efficient as the parametric method, in all the cases

we studied. As demonstrated in the previous section, the semi-parametric method is more

15



robust than the parametric method under model mis-specification.

In Table 3, we report the empirical coverages of the 90% and 95% nominal confidence

intervals for λ based on the semi-parametric likelihood ratio statistic (15), the binomial

likelihood ratio statistic (17) and the parametric likelihood ratio statistic (16). From this

table we can observe that the performances of all three likelihood ratio confidences are

satisfactory. The empirical coverage levels are close to the nominal levels.

5. Conclusion

In this paper, we proposed a semi-parametric method for analyzing a “compound”

mixture distribution problem with a training sample. The proposed method assumes the

component densities are related by a density ratio model (or equivalently a logistic regression

model). Based on this assumption, we used empirical likelihood to estimate the unknown

parameters in the model. Unlike previous methods, which grouped data into distinct cate-

gories, the method discussed in this paper uses the original quantitative scale of the data.

Therefore, the method avoids the arbitrariness in grouping and also gives more precise es-

timates. As demonstrated in the malaria example, the proposed method provided excellent

fit to the data whereas the fully parametric method gave biased estimates.

The method described in this article depends on the existence of a training sample, as

do other semi-parametric methods, for identifying the model parameters.

The method developed in this paper can also be applied to outputs of biomedical assays

that classify samples into groups according to whether some outputs, such as parasite density

or optical density, exceeds a given cut-off. The proposed method can also be generalized to

cases where there are covariates.
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APPENDIX: Proof of Theorem 1

First we establish some simple facts. Note that

E(n1) = n[1 − p(1 − λ)], E(m1) = m(1 − p), lim(1 − λ) =
1 − λ∗

1 − λ∗p
.

By the assumption m/N → ρ, (0 < ρ < 1) and the Weak Law of Large Number and (13),

we have in probability

ν0 = λ∗
0 lim

1

1 + m1/n1

= λ∗
0

1

1 + E(m1)/E(n1)
.

Denote

Q1 =
n1
∑

i=1

λ∗ exp(α + βxi)

(1 − λ∗) + λ∗ exp(α + βxi)
− N1ν,

Q2 =
n1
∑

k=1

λ∗xk exp(α + βxk)

(1 − λ∗) + λ∗ exp(α + βxk)
−

N1
∑

i=1

νti exp(α + βti)

1 + ν[exp(α + βti) − 1]
,

Q3 = − n0

1 − λ∗
+

np

1 − λ∗p
+

n1
∑

k=1

−1 + exp(α + βxk)

(1 − λ∗) + λ∗ exp(α + βxk)
,

Q4 =
m0 + n0

p
− m1 + n1

1 − p
+

nλ∗

1 − λ∗p
,

and

Q5 = −
N1
∑

i=1

exp(α + βti) − 1

1 + ν[exp(α + βti) − 1]
.

Then the maximum semi-parametric likelihood estimate, η̂, is the solution of the equations

Q(η) = (Q1, Q2, Q3, Q4, Q5) = 0.

Expanding Q(η̂) at the true value of η0, we have

0 = Q(η̂) = Q(η0) +
∂Q(η0)

∂η
(η̂ − η0) + op(‖η̂ − η0‖),

or
√

N(η̂ − η0) =

(

1

N

∂Q(η0)

∂η

)−1
1√
N

Q(η0) + op(1).

By simple calculus, we have

∂Q1

∂α
= λ∗(1 − λ∗)

n1
∑

i=1

exp(α + βxi)

[(1 − λ∗) + λ∗ exp(α + βxi)]2
,
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∂Q1

∂β
= λ∗(1 − λ∗)

n1
∑

i=1

xi exp(α + βxi)

[(1 − λ∗) + λ∗ exp(α + βxi)]2
,

∂Q1

∂λ∗
=

n1
∑

i=1

exp(α + βxi)

{(1 − λ∗) + λ∗ exp(α + βxi)}2

∂Q1

∂p
= 0,

∂Q1

∂ν
= −N1

∂Q2

∂α
= λ∗(1−λ∗)

n1
∑

i=1

xi exp(α + βxi)

[(1 − λ∗) + λ∗ exp(α + βxi)]2
− ν(1− ν)

N1
∑

j=1

tj exp(α + βtj)

[1 + ν{exp(α + βtj) − 1}]2

∂Q2

∂β
= λ∗(1−λ∗)

n1
∑

i=1

x2
i exp(α + βxi)

[(1 − λ∗) + λ∗ exp(α + βxi)]2
− ν(1− ν)

N1
∑

j=1

t2j exp(α + βtj)

[1 + ν{exp(α + βtj) − 1}]2

∂Q2

∂λ∗
=

n1
∑

i=1

xi exp(α + βxi)

[(1 − λ∗) + λ∗ exp(α + βxi)]2
,

∂Q2

∂p
= 0,

∂Q2

∂ν
=

N1
∑

j=1

tj exp(α + βtj)

[1 + ν{exp(α + βtj) − 1}]2

∂Q3

∂α
=

n1
∑

i=1

exp(α + βxi)

[(1 − λ∗) + λ∗ exp(α + βxi)]2

∂Q3

∂β
=

n1
∑

i=1

xi exp(α + βxi)

[(1 − λ∗) + λ∗ exp(α + βxi)]2

∂Q3

∂λ∗
= − n0

(1 − λ∗)2
+ n

p2

(1 − λ∗p)2
−

n1
∑

i=1

[−1 + exp(α + βxi)]
2

[(1 − λ∗) + λ∗ exp(α + βxi)]2

∂Q3

∂p
=

n

(1 − λ∗p)2
,

∂Q3

∂ν
= 0

∂Q4

∂α
= 0,

∂Q4

∂β
= 0

∂Q4

∂λ∗
=

n

(1 − λ∗p)2
,

∂Q4

∂p
= −m0 + n0

p2
− m1 + n1

(1 − p)2
+

n(λ∗)2

(1 − λ∗p)2
,

∂Q4

∂ν
= 0

∂Q5

∂α
= −

N1
∑

i=1

exp(α + βti)

{1 + ν[exp(α + βti) − 1]}2
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∂Q5

∂β
= −

N1
∑

i=1

ti exp(α + βti)

{1 + ν[exp(α + βti) − 1]}2

∂Q5

∂λ∗
= 0,

∂Q5

∂p
= 0,

∂Q5

∂ν
=

N1
∑

i=1

[exp(α + βti) − 1]2

{1 + ν[exp(α + βti) − 1]}2

For simplicity, denote

a(x) =
exp(α0 + β0x)

(1 − λ∗
0) + λ∗

0 exp(α0 + β0x)
, b(x) =

exp(α0 + β0x)

(1 − ν0) + ν0 exp(α0 + β0x)
, κ =

E(n1/n)

ρ + 1
.

(A.1)

It can be proved that, in probability,

1

N

∂Q1(η0)

∂α
→ λ∗

0(1 − λ∗
0)κ

∫

exp(α0 + β0x)

(1 − λ∗
0) + λ∗

0 exp(α0 + β0x)
dF1(x)

= λ∗
0(1 − λ∗

0)κ
∫

a(x)dF1(x) = v11

1

N

∂Q1(η0)

∂β
→ λ∗

0(1 − λ∗
0)κ

∫

x exp(α0 + β0x)

(1 − λ∗
0) + λ∗

0 exp(α0 + β0x)
dF1(x)

= λ∗
0(1 − λ∗

0)κ
∫

xa(x)dF1(x) = v12

1

N

∂Q1(η0)

∂λ∗
→ κ

∫

exp(α0 + β0x)

(1 − λ∗
0) + λ∗

0 exp(α0 + β0x)
dF1(x) = κ

∫

a(x)dF1(x) = v13

1

N

∂Q1(η0)

∂p
→ 0 = v14,

1

N

∂Q1(η0)

∂ν
→ −κ

λ∗
0

ν0
= v15,

1

N

∂Q2(η0)

∂α

→ κλ∗
0(1 − λ∗

0)
∫

x exp(α0 + β0x)

(1 − λ∗
0) + λ∗

0 exp(α0 + β0x)
dF1(x)

− κν0(1 − ν0)
λ∗

0

ν0

∫ x exp(α0 + β0x)

(1 − ν0) + ν0 exp(α0 + β0x)
dF1(x)

= κλ∗
0(1 − λ∗

0)
∫

xa(x)dF1(x) − κ(1 − ν0)λ
∗
0

∫

xb(x)dF1(x) = v21

1

N

∂Q2(η0)

∂β
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→ κλ∗
0(1 − λ∗

0)
∫

x2 exp(α0 + β0x)

(1 − λ∗
0) + λ∗

0 exp(α0 + β0x)
dF1(x)

− κν0(1 − ν0)
λ∗

0

ν0

∫

x2 exp(α0 + β0x)

(1 − ν0) + ν0 exp(α0 + β0x)
dF1(x)

= κλ∗
0(1 − λ∗

0)
∫

x2a(x)dF1(x) − κ(1 − ν0)λ
∗
0

∫

x2b(x)dF1(x) = v22

1

N

∂Q2(η0)

∂λ∗
→ κ

∫

x exp(α0 + β0x)

(1 − λ∗
0) + λ∗

0 exp(α0 + β0x)
dF1(x) =

∫

xa(x)dF1(x) = v23,

1

N

∂Q2(η0)

∂p
→ 0 = v24

1

N

∂Q2(η0)

∂ν
→ κ

λ∗
0

ν0

∫

x exp(α0 + β0x)

(1 − ν) + ν exp(α + βx)
dF1(x), = κ

λ∗
0

ν0

∫

xb(x)dF1(x) = v25

1

N

∂Q3(η0)

∂α
→ κ

∫

exp(α0 + β0x)

(1 − λ∗
0) + λ∗

0 exp(α0 + β0x)
dF1(x) = κ

∫

a(x)dF1(x) = v31

1

N

∂Q3(η0)

∂β
→ κ

∫

x exp(α0 + β0x)

(1 − λ∗
0) + λ∗

0 exp(α0 + β0x)
dF1(x) = κ

∫

xa(x)dF1(x) = v32

1

N

∂Q3(η0)

∂λ∗
→ − κp0

(1 − λ∗
0p0)(1 − λ∗

0)
+

κp2
0

(1 − p0)(1 − λ∗
0p0)

− κ

1 − λ∗

∫

[1 − a(x)]2

1 − λ∗a(x)
dF1(x) = v33

1

N

∂Q3(η0)

∂p
→ κ

(1 − λ∗
0p0)(1 − p0)

= v34,
1

N

∂Q3

∂ν
→ 0 = v34

1

N

∂Q4(η0)

∂α
→ 0 = v41,

1

N

∂Q4

∂α
→ 0 = v42

1

N

∂Q4(η0)

∂λ∗
→ κ

(1 − p0)(1 − λ∗
0p0)

= v43,

1

N

∂Q4(η0)

∂p
→ − 1

p2
0

+
ρE(m1) + E(n1)

1 + ρ

(

1

p2
0

− 1

(1 − p0)2

)

= v44

1

N

∂Q4(η0)

∂ν
→ 0 = v45

1

N

∂Q5(η0)

∂α
→ −κλ∗

0

ν0

∫

exp(α0 + β0x)

1 − ν0 + ν0 exp(α0 + β0x)
dF1(x) = −κλ∗

0

ν0

∫

b(x)dF1(x) = v51
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1

N

∂Q5(η0)

∂β
→ −κλ∗

0

ν0

∫

x exp(α0 + β0x)

1 − ν0 + ν0 exp(α0 + β0x)
dF1(x) = −κλ∗

0

ν0

∫

xb(x)dF1(x) = v52

1

N

∂Q5(η0)

∂λ∗
→ 0 = v53,

1

N

∂Q5(η0)

∂p
→ 0 = v54

1

N

∂Q5(η0)

∂ν
→ −κλ∗

ν0

∫ [exp(α0 + β0x) − 1]2

1 − ν0 + ν0 exp(α0 + β0x)
dF1(x)

= − κλ∗

ν0(1 − ν0)

∫ [1 − b(x)]2

1 − ν0b(x)
dF1(x) = v55

Therefore, in probability, we have proved that

1

N

∂Q

∂η
|η=η0

→ V = (vij)1≤i,j≤5. (A.2)

We can rewrite Qk(η0), k = 1, 2, ..., 5 as

Qk(η0) =
n
∑

i=1

qk(xi) +
m
∑

j=1

rk(zj), k = 1, 2, ..., 5

where

q1(x) = [λ∗
0a(xi) − ν0]I(x > 0), r1(z) = −ν0I(zi > 0)

q2(x) = λ∗
0xa(x)I(x > 0), r2(z) = −ν0zb(z)I(z > 0)

q3(x) = −I(x = 0)

1 − λ∗
0

+
p0

1 − λ∗
0p0

+
a(x) − 1

1 − λ∗
0

I(x > 0), r3(z) = 0

q4(x) =
I(x = 0)

p0
− I(x > 0)

1 − p0
+

λ∗
0

1 − λ∗
0p0

, r4(z) =
I(z = 0)

p0
− I(z > 0)

1 − p0

q5(x) = −b(x) − 1

1 − ν0
I(x > 0), r5(z) = −b(z) − 1

1 − ν0
I(z > 0).

Easily we have

V ar(Qk) = nV ar(qk(X)) + mV ar(rk(Z)),

and

Cov(Qk, Ql) = nCov(qk(X), ql(X)) + mCov(rk(Z), rl(Z)), k 6= l

uij =
1

1 + ρ
Cov(qi(X), qj(X)) +

ρ

1 + ρ
Cov(ri(Z), rj(Z)), 1 ≤ i, j ≤ 5.
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By the Central Limit Theorem, we can prove, in distribution,

1√
N

Q(η0) → N(0, U), U = (uij)1≤i,j≤5. (A.3)

Finally by Slutsky’s Theorem, we can show that, in distribution,

√
N(η̂ − η0) → N(0, Σ), Σ = V −1UV −1. (A.4)

The proof of Theorems 2 and 3 are tedious but straightforward, therefore, we omit

them. Similar proofs can be found in the first author’s University of Waterloo Ph.D. desser-

tation.
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Table 1. Partitioning of a set of data in an endemicity

Parasite level No Malaria Malaria Total

X = 0 p(1 − λ) 0 p(1 − λ)

X > 0 (1 − p)(1 − λ) λ 1− p(1 − λ)

Total 1 − λ λ 1
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Table 2. Mean (standard deviation) of different estimators. Based on 1000 simulations

µ Estimators p = 0.2, λ = 0.5 p = 0.3, λ = 0.6 p = 0.4, λ = 0.5

µ = 2.0 λ̂ 0.496 (0.069) 0.598 (0.059) 0.498 (0.062)

λ̂∗ 0.551 (0.072) 0.679 (0.059) 0.622 (0.066)

α̂ -2.424 (1.348) -2.226 (0.840) -2.359 (1.343)

β̂ 2.272 ( 0.860) 2.170 (0.598) 2.257 ( 0.933)

p̂ 0.201 (0.028) 0.299 ( 0.034) 0.401 (0.035)

λ̂B 0.483 (0.136) 0.593 (0.089) 0.493 (0.084)

λ̂∗
B

0.535 (0.145) 0.672 (0.090) 0.615 (0.092)

p̂B 0.197 (0.032) 0.302 (0.037) 0.401 (0.040)

λ̂P 0.500 (0.052) 0.599 (0.048) 0.500 (0.048)

λ̂∗
P

0.555 (0.053) 0.680 (0.047) 0.624 (0.051)

α̂P -2.065 (0.424) -2.053 (0.379) -2.059 (0.434)

β̂P 2.053 (0.310) 2.051 (0.296) 2.047 (0.333)

p̂P 0.201 (0.026) 0.299 (0.032) 0.401 (0.033)

µ = 1.5 λ̂ 0.498 (0.085) 0.602 (0.066) 0.503 (0.066)

λ̂∗ 0.552 (0.089) 0.683 (0.065) 0.626 (0.070)

α̂ -1.371 (1.201) -1.222 (0.459) -1.244 (0.525)

β̂ 1.678 (0.795) 1.586 (0.407) 1.604 (0.466)

p̂ 0.200 (0.027) 0.303 (0.033) 0.402 (0.036)

λ̂B 0.476 (0.135) 0.594 (0.089) 0.497 (0.085)

λ̂∗
B

0.527 (0.144) 0.674 (0.090) 0.619 (0.093)

p̂B 0.197 (0.032) 0.302 (0.037) 0.401 (0.040)

λ̂P 0.503 (0.072) 0.603 (0.059) 0.503 (0.061)

λ̂∗
P

0.558 (0.075) 0.685 (0.058) 0.619 (0.093)

α̂P -1.188 (0.357) -1.161 (0.296) -1.185 (0.351)

β̂P 1.551 (0.319) 1.538 (0.285) 1.556 (0.333)

p̂P 0.201 (0.026) 0.303 (0.032) 0.402 (0.035)

µ = 1.0 λ̂ 0.491 (0.107) 0.599 (0.076) 0.501 (0.075)

λ̂∗ 0.544 (0.112) 0.680 (0.076) 0.624 (0.080)

α̂ -0.673 (0.826) -0.552 (0.258) -0.561 (0.284)

β̂ 1.146 (0.582) 1.060 (0.307) 1.068 (0.350)

p̂ 0.199 (0.029) 0.303 (0.035) 0.402 (0.038)

λ̂B 0.476 (0.135) 0.594 (0.089) 0.497 (0.085)

λ̂∗
B

0.527 (0.144) 0.674 (0.090) 0.619 (0.093)

p̂B 0.197 (0.032) 0.302 (0.037) 0.401 (0.040)

λ̂P 0.497 (0.099) 0.601 (0.074) 0.501 (0.074)

λ̂∗
P

0.550 (0.104) 0.681 (0.074) 0.624 (0.079)

α̂P -0.580 (0.283) -0.536 (0.195) -0.550 (0.236)

β̂P 1.074 (0.326) 1.044 (0.262) 1.058 (0.311)

p̂P 0.200 (0.029) 0.302 (0.037) 0.402 (0.038)
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Table 3. Empirical coverages of 90% (95% ) likelihood ratio confidence intervals using three

different methods. Based on 1000 simulations.

µ Methods p = 0.2, λ = 0.5 p = 0.3, λ = 0.6 p = 0.4, λ = 0.5

1.0 Semi-parametric 89.8% (94.6%) 90.1% (96.2%) 89.1% (95.0%)
Binomial 88.7% (94.5%) 89.5% (96.1%) 89.9% (93.8%)

Parametric 89.3% (94.5%) 88.7% (95.3%) 89.2% (94.7%)

1.5 Semi-parametric 89.3% (94.4%) 90.0% (96.1%) 90.5% (95.1%)
Binomial 89.2% (94.6%) 91.3% (95.4%) 88.9% (94.1%)

Parametric 89.3% (94.5%) 88.7% (95.3%) 89.2% (94.7%)

2.0 Semi-parametric 88.7% (93.8%) 91.1% (95.5%) 90.2% (94.8%)
Binomial 88.9% (94.7%) 91.2% (96.1%) 88.4% (93.8%)

Parametric 89.3% (94.5%) 88.7% (95.3%) 89.2% (94.7%)
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Figure 1: Histograms showing parasite levels in the endemicity and community data (non-

zero data only)
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Figure 3: Semi-parametric estimate of probability of malaria using (20)
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