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Abstract

This paper studies an econometric modeling of a signaling game with two players where one player has
one of two types. In particular, we develop an estimation strategy that identi�es the payo¤s structure and
the distribution of types from data of observed actions. We can achieve uniqueness of equilibrium using a
re�nement, which enables us to identify the parameters of interest. In the game, we consider non-strategic
public signals about the types. Because the mixing distribution of these signals is nonparametrically
speci�ed, we propose to estimate the model using a sieve conditional MLE. We achieve the consistency
and the asymptotic normality of the structural parameters estimates. As an alternative, we allow for
the possibility of multiple equilibria, without using an equilibrium selection rule. As a consequence, we
adopt a set inference allowing for multiplicity of equilibria.

Keywords: Semiparametric Estimation, Signaling Game, Set Inference, In�nite Dimensional Parame-
ters, Sieve Simultaneous Conditional MLE

JEL Classi�cation: C13, C14, C35, C62, C73

1 Introduction

The econometric modeling of game theories has been of signi�cant interest over the last decade. It has
been one of most vivid research topics in the �eld of empirical industrial organization including studies on
industry entry decisions (Bresnahan and Reiss (1990, 1991), Berry (1992), Toivanen and Waterson (2000),
Seim (2002), Ciliberto and Tamer (2003)) and others (Mazzeo (2002), Sweeting (2004), Davis (2005)). Most
of econometric analysis of game theoretic models has been focused on simultaneous games with complete
information (Bjorn and Vuong (1984, 1985), Bresnahan and Reiss (1990, 1991), Tamer (2003), Bajari,
Hong and Ryan (2004)) or with incomplete information (Brock and Durlauf (2001, 2003), Seim (2002),
Sweeting (2004), Aradillas-Lopez (2005)). More recently, there are also many studies on dynamic games
(Aguirregabiria and Mira (2003), Bajari, Benkard, and Levin (2003), Berry, Ovstrovsky, and Pakes (2003),
Pesendorfer and Schmidt-Dengler (2003)).
However, although the information asymmetry problem has been noted widely both theoretically or

empirically (Riley (2001) provides a valuable survey on this issue), a formal econometric analysis of a signaling
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game appears only in few studies1 for several reasons2 . What has hindered the econometric implementation
of these games is the presence of multiple equilibria (or even absence of any equilibrium), which results in the
nonexistence of a well-de�ned likelihood function over the entire set of observable outcomes. Even when these
problems are overcome, it is generally hard to set up a �exible econometric model that is able to deal with
a generic family of signaling games. This paper studies the identi�cation and the estimation of a signaling
game with two players where one player, informed player, has one of two types. In particular, we develop an
estimation strategy that identi�es the payo¤s structure and the distribution of types from data of observed
actions by the two players. Though multiple equilibria arise in the game we study, an equilibrium re�nement
such as intuitive criterion by Cho and Kreps (1987) enables us to obtain the uniqueness of equilibrium.
Providing more empirical relevance to the basic model, we introduce some non-strategic public signals

about the types, which the informed player can not manipulate technically, or at least has no incentive to
do so. These signals are observed by all players and econometricians. Under the separating equilibrium, the
action of the informed player reveals the true type and thus the uninformed party has no incentive to use the
additional informations. However, under the pooling equilibrium, the uninformed party will update her belief
on types using these signals following the Bayes�rule. We specify the mixing distribution of non-strategic
signals on types nonparametrically and thus estimate the model using a sieve conditional MLE (a conditional
MLE version of Wong and Severini (1991) or Shen (1997)) where the in�nite dimensional parameters are
approximated by sieves. Noting that the conditional probability of choosing a certain combination of actions
can be written in terms of several conditional moment restrictions, as an alternative, we can also estimate
the model using the sieve minimum distance (MD) estimation developed by Ai and Chen (2003). In both
methods, we can obtain the consistency and the asymptotic normality of structural parameters estimates.3

As noted earlier, in the signaling game, the existence of multiple equilibria naturally arises given some
realization of payo¤s. We have resolved the multiple equilibria issue using a re�nement of equilibrium (which
is an equilibrium selection rule) as common in the literature. Even though players may select one equilibrium
out of multiple equilibria using a selection rule, it is often hard to model or justify such a selection mechanism.
Examples of papers that handle the multiple equilibria problem in other games under some strong assumption
on the equilibrium selection rules include Bjorn and Vuong (1984, 1985), Kooreman (1994), and Bajari, Hong
and Ryan (2004) in games of complete information. Another example is Sweeting (2004) in a game with
incomplete information. The disadvantage of this approach is that there is no generally accepted procedure
to determine which equilibrium will be played among multiple equilibria even though an equilibrium selection
of a signaling game is more acceptable than that of a simultaneous game, at least theoretically (See Banks
and Sobel (1987) and Cho and Kreps (1987)). Other options dealing with multiple equilibria include the
rede�nition of a game in a way that makes it estimable without requiring an equilibrium selection rule. Some
studies rede�ne the space of outcomes of the game so that it exhibits uniqueness of equilibrium (Bresnahan
and Reiss (1990, 1991)). These approaches have the merit that we do not need additional assumptions to
justify the equilibrium selection but it is noted that such rede�nitions may result in some loss of information
in the game.
Inspired by important work by Manski and co-authors (Manski (1990), Horowitz and Manski (1995),

Manski and Tamer (2002)) on bound analysis, some researchers have started to develop set inferences rather
than a point estimation, without attempting to resolve the equilibrium selection (Sutton (2000), Ciliberto and
Tamer (2003), Andrews, Berry, Jia (2004)). We note that for signaling games, the self-ful�lling property is
essential, which yields multiple equilibria depending on di¤erent beliefs on plays of the other party. Thus, as

1Ackerberg (2003) provides a dynamic learning model of consumer behavior allowing for the signaling e¤ect of advertising
on experience goods. Brown (2002) provides a structural estimation of prestige e¤ects in IPO underwriting within a signaling
game context where a �rm�s owner has an incentive to signal the �rm�s type by choosing prestigious underwriters.

2We admit that there exist many studies that empirically test testible implications of a particular signaling game but there
are very few studies that actually estimate the game�s primitives.

3This paper only presents a large sample theory for the sieve conditional MLE. The original dissertation contains the
asymptotic results for both methods.
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an attractive alternative to the previous approach, we allow for the possibility of multiple equilibria, without
attempting to resolve the equilibrium selection problem. In particular, we consider the model where some
asymptotic inequalities may de�ne a region of parameters rather than a single point in the parameter space.
By de�nition, when there are multiple equilibria, there exist regions of unobservables that are consistent with
the necessary conditions for more than one equilibrium. Therefore, the probability implied by the necessary
condition for a given event is greater than or equal to the true probability of the event. Some necessary
conditions for a perfect Bayesian equilibrium (PBE) provide a set of inequality constraints on the parameters
for the games we study. We illustrate that we can allow for the multiplicity of equilibria using Andrews,
Berry, and Jia (2004)�s results.
The structure of this paper is as follows. Section 2 describes the game we study. In Section 3, we

characterize equilibria of the game. In Section 4, we consider public information about the distribution of
types. In Section 5, we estimate the model using a sieve conditional MLE and a sieve MD. The consistency
and the asymptotic normality of the structural parameters estimates are presented. Section 6 brie�y considers
the set inference of the model. We conclude in Section 7. Some technical details and mathematical proofs
are presented in the Appendix.

2 Description of the Game

To introduce the game of our interest, we �rst de�ne a Bayesian extensive game with observable actions.
The game models a situation where each player observes the actions of all players including herself but
has uncertainty about payo¤s that are a¤ected by types of other players where the type of each player is
informed only to that player not to the other players. We de�ne this game formally following Osborne and
Rubinstein (1994). First, we say that chance or nature selects types for the players and refer to player i
after she receives the information ti as type ti.

De�nition 2.1 A Bayesian extensive game with observable actions is a tuple h�; (�i) ; (pi); (ui)i where

� � = hN;H;P i is an extensive game form with perfect information and simultaneous moves where
N denotes the set of players; H is a history which collects actions taken by players. The set of terminal
histories is denoted by T ; P is a player function that assigns a player who takes an action after the
history h 2 H.

� �i is a �nite set of possible types of player i; we write � = �i2N�i.
� pi is a probability measure on �i for which pi(ti) > 0 for all ti 2 �i, and the measures pi are stochas-
tically independent across i (pi(ti) is the probability that player i is selected to be of type ti).

� ui : �� T ! R is a von Neumann-Morgenstern utility function (ui (t; h) is player i�s payo¤ when the
pro�le of types is t and the terminal history of � is h).

Now we de�ne a signaling game as

De�nition 2.2 A signaling game is a Bayesian extensive game with observable actions h�; (�i) ; (pi); (ui)i
in which � is a two-player game form where Player 1 takes an action then Player 2 takes an action, the set
of Player 2�s type (�2) is a singleton.

What makes a signaling game interesting is that Player 2 (uninformed party or receiver) controls the
action and Player 1 (informed party or sender) controls the information. The receiver has an incentive to
try to deduce the sender�s type from the sender�s message (signal), and the sender may have an incentive to
mislead the receiver. The solution concept we will use here is a perfect Bayesian equilibrium (PBE), instead
of a sequential equilibrium (SE). The former is simpler than the latter. We do so without loss of generality
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since the game of interest here is a �nite Bayesian extensive game with observable actions. Every sequential
equilibrium of the extensive game associated with a �nite Bayesian extensive game with observable actions is
equivalent to a perfect Bayesian equilibrium of the Bayesian extensive game, in the sense that they induce the
same behavior and beliefs4 . The formal de�nition of a PBE can be found in the Appendix, which is borrowed
from Osborne and Rubinstein (p.233, 1994). In particular, we are interested in the following structure of the
game G with two players where Player 1 has one of two types strong or weak :

h�; (�1 = f�strong�;�weak�g) ; (p1(�strong�) = p); (ui)i with � = hf1; 2g ;H; P i .

Figure 1 illustrates the structure of the game. We design this game such that it is as simple as possible but
still contains all the essence of the signaling game. This is an econometric modelling of the beer-quiche game
in Cho and Kreps (1987). In this game, we have two players. Player 1 has either of two types fstrong; weakg
with the probability of being the strong type equal to p and knows her type. After observing her type, Player
1 moves �rst sending one of two messages fB;Qg to Player 2. Then, Player 2 chooses an action �F� or
�NF�after observing the signal sent by Player 1. After the play, a payo¤ is realized according to actions
chosen by two players. The payo¤s of this game have the following properties that are common in signaling
games in general.

� The payo¤s of Player 2 (uninformed party) given her action are determined by the type of Player 1
(informed party) not by Player 1�s action (signal)

� Given Player 2�s action, each type of Player 1 has bigger payo¤s by choosing the signal corresponding
to Player 1�s true type. �B� is the signal for strong and �Q� is the signal for weak by construction
(�1s > 0, �1w > 0)

� The strong type of Player 1 has an incentive to signal its true type
� The weak type of Player 1 has an incentive to mislead Player 2

The payo¤s of the game are characterized by seven parameters:

� u1s: di¤erence of payo¤s between �NF�and �F�outcomes for the strong type of Player 1
� u1w: di¤erence of payo¤s between �NF�and �F�outcomes for the weak type of Player 1
� �1s: mimicking cost of the strong type of Player 1 (cost of signalling falsely)
� �1w: mimicking cost of the weak type of Player 1 (cost of signalling falsely)
� u2s: di¤erence of payo¤s choosing between �NF�and �F�for Player 2 when Player 1 is strong
� u2w: di¤erence of payo¤s choosing between �NF�and �F�for Player 2 when Player 1 is weak
� p: distribution of types

It is of our interest to identify these seven parameters that characterize the game from observed outcomes
of actions. It is obvious that we can only identify up to three parameters nonparametrically if there is no
exclusion or parametric restrictions since we have only three independent conditional probabilities out of
four possible outcomes fB&NF , B&F , Q&NF , Q&Fg. To ensure the identi�cation5 , here we will adopt
the following parametric speci�cations of the payo¤s and we impose an exclusion restriction that X2 contains
at least one variable that does not enter in X1, which has the support of at least three values.6

4Note that the reverse statement is not true in general (see page 234-235, Osborne and Rubinstein (1994)). However,
Fudenberg and Tirole (1991) note that for a �nite Bayesian extensive game with two types or with two periods, every PBE is
also equivalent to a sequential equilibrium. Thus, for the game of Figure 1&2, these two equilibrium concepts are equivalent
each other.

5There are other possible ways of obtaining the identi�caiton of seven parameters. We may even identify some parameters
nonparametrically utilizing exclusion restrictions or functional form restrictions. This issue is one of our future research.

6For example, suppose we have no X1 and suppose X2 is a scalar random variable that can have one of three values f�1; 0; 1g.
For each value of X2, we have three linearly independent conditional probabilities. Thus, we have three sets of three linearly
indepedent conditional probabilities (nine moment conditions), from which we can identify seven parameters of interest.
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� u1s = �s +X 0
1�s � "1

� u1w = �w +X 0
1�w � "1

� u2s = X 0
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FIGURE 1. Structure of the Game
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FIGURE 2. Parameterization of Payo¤s

To make discussion simple as possible, here we only consider symmetric payo¤s as in Figure 27 where we
impose � � �s = �w and �1 � �s = �w.8 The game with asymmetric payo¤s are considered in Appendix
B. Here we note that

� �1s > 0 measures the potential cost of the strong type for mimicking the weak type given a �xed
response of Player 2.

� �1w > 0 measures the potential cost of the weak type for mimicking the strong type given a �xed
response of Player 2.

� �2s and �2w measure degrees of Player 2�s incentive to single out a particular type of Player 1.

Throughout the paper, we assume that �2s and �2w are not negative. Note that this assumption is
innocuous in the sense that �strong�and �weak�types are just labels9 unless we give some structure to it.
By imposing �2s � 0, we mean that Player 2 is more likely to be better o¤ by singling out the strong type
for the action �NF�and to be better o¤ by singling out the weak type for the action �F�.
The game tells that if Player 1 is the strong type and if Player 1 chooses �Q�and Player 2 chooses �NF�,

Player 1 obtains � + X 0
1�1 � "1 � �1s and Player 2 obtains X 0

2�2 � "2 + �2s, respectively. If Player 1 is
the strong type and if Player 1 chooses �Q�and Player 2 chooses �F�, they earn ��1s and 0, respectively.
Other playo¤s can be read in the same way. It is noted that each player�s payo¤s are not only determined
by her own action but also by the other player�s action or type, which depicts interactions between players.

7One might notice that the payo¤s structure of Figure 2 is not nested by Figure 1 seeing the payo¤s of Player 2 when she
plays �F� and Player 1 is the weak type. However, note that what matters in the game is only the payo¤s di¤erential. We
choose to use Figure 2 as an illustrational purpose to show that Player 2 is more likely to be better o¤ by choosing �F�when
Player 1 is the weak type.

8Here we assume that �1s, �1w, �2s, and �2w are constant but we may extend the model such that these paramters also
depend on characteristics of Player 1 and Player 2, respectively.

9Note that depending on realizations of "1&"2 given X1&X2, the strong type can also have an incentive to mimic the weak
type.
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We let X = (X 0
1; X

0
2)
0 2 Rk with k = k1 + k2 and let " = ("1; "2)

0 2 R2. We denote the vectors of
parameters as (�; �1) 2 Rk1+1, �2 2 Rk2 , �sg = (�1s; �1w; �2s; �2w)

0 2 (0;1)2 � [0;1)2, and let (�; p) =
(�; �01; �

0
2; �

0
sg; p)

0 2 Rk+1 � (0;1)2 � [0;1)2 � (0; 1). These parameters of interest are perfectly known to
players but unknown to econometricians.
Note that this stochastic payo¤s game is di¤erent from the deterministic payo¤s game in that by adding

the unobserved heterogeneity ("1; "2), we allow such cases that players with the same observed characteristics
(X1; X2) can show di¤erent outcomes of the game. We also note that the payo¤s structure of the game G
is somewhat restrictive in the sense that we let the following two payo¤s10 be the same. One is the payo¤
of the strong type Player 1 when she chooses �B�and Player 2 plays �NF�. The other is the payo¤ of the
weak type Player 1 when she chooses �Q�and Player 2 chooses �NF�. This structure may be justi�ed in
some cases but might be too restrictive in general. We relax this restriction in Appendix B. It turns out
that the games with/without asymmetric payo¤s are very similar in terms of equilibrium characterization.

2.1 The Information Structure (IS)

The game we study has incomplete information since players do not have exact knowledge about the payo¤s
of their opponents. It is also a signaling game since the true type of Player 1 is only known to Payer 1 herself
and Player 1 signals her type to Player 2 by choosing some action.

Assumption 2.1 (IS)

1 Player 1 knows her true type but Player 2 knows only the distribution of Player 1�s types (p is known
to Player 2).

2 The realizations of (X1; "1) and (X2; "2) are perfectly observed by both Player 1 and Player 2.
3 "1 and "2 are pure shocks commonly observed by Player 1 and Player 2. They are independent of each
other and of any other variables in the game. "1 is also independent of the type of Player 1.

4 Players�actions and beliefs constitute a Perfect Bayesian Equilibrium (Sequential Equilibrium). When-
ever there exist multiple equilibria, only one equilibrium is chosen out of these according to some
equilibrium re�nements. Players are assumed to play actions and hold beliefs about this unique equi-
librium.

Note that the generic uniqueness of the PBE is ensured by some re�nements of the equilibrium concept.

2.2 Stochastic Assumptions (SA-1)

We impose the following distributional assumptions on the random variables of the game. We �rst consider
the simplest structure and generalize it later. Hereafter we denote the support of a random variable by S(�).

Assumption 2.2 (SA-1)

1 "1 and "2 are continuously distributed, statistically independent of each other and of X.
2 The cdf�s of "1 and "2 are continuous and denoted by G1("1) and G2("2) with corresponding density
functions g1("1) and g2("2), respectively. The density functions are assumed to be bounded and strictly
positive on their supports R. The density functions do not depend on the model parameter (�; p) nor
on the type of Player 1.

3 Both X1 and X2 can be continuous or discrete random variables. Both X1 and X2 are independent of
the type of Player 1. We denote the density of X1 and X2 as fX1

(�) and fX2
(�), respectively. Neither

fX1(�) or fX2(�) depends on the structural parameter (�; p).
10Actually, the payo¤s di¤erences beween the outcomes of �NF�and �F�due to the normalization.
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4 X2 contains at least one variable that does not enter in X1, which has the support of at least three
values.

By imposing Assumption SA-1.1, we ensure that Player 2�s equilibrium beliefs are constructed condi-
tional on variables observed by the econometrician. The exclusion restriction of Assumption SA-1.4 is easily
satis�ed for the game model we consider since there exist inherent exclusions between X1 and X2. In other
words, X1 and X2 are di¤erent variables for a typical signaling game. We will strengthen these stochastic
assumptions to ensure the validity of the econometric modelling in the later section.

3 Re�nement and Uniqueness of Equilibrium

In this section we characterize equilibria of the game under PBE and then show we can achieve the uniqueness
of equilibrium using a re�nement of Cho and Kreps (1987). For the game we study, it turns out that we have
multiple equilibria for some realizations of payo¤s, which can be removed adopting a stronger equilibrium
concept as an equilibrium selection. The disadvantage of this approach noted in the literature is that there
is neither generally accepted or empirically testable procedure to determine which equilibrium will be played
among multiple equilibria, especially for simultaneous move games. However, we note that an equilibrium
selection of a signaling game is more acceptable than that of a simultaneous game, at least theoretically,
which may be a justi�cation of our approach but we relax this in Section 6.
We introduce some notation here. Let ui(t1;A1; A2) denote the payo¤s of player i 2 f1; 2g when the true

type of Player 1 is t1 2 fts � strong; tw � weakg, Player 1 chooses action (signal) A1 2 fB;Qg and Player
2 chooses action A2 2 fNF;Fg. We also let A1t1 denote the action taken by a particular type of Player
1. With (A1; A01), we mean (A1ts ; A1tw) = (A1; A

0
1) where A1; A

0
1 2 fB;Qg. Note p = Pr(t1 = ts) is the

prior belief of Player 2 on the type of Player 1. This is also the population distribution of types. We let
E1 [u1 (t1;A1; A2)] be the expected payo¤ of Player 1 with type t1 based on Player 1�s information. �2(t1jA1)
denotes the posterior belief of Player 2 on the type of Player 1 after Player 2 observes the action (signal) of
A1. We also let Y2jA1

be an indicator function that has the value 1 when Player 2 chooses the action �NF�
after observing the signal A1. Similarly, A2jA1

denotes the action of Player 2 after observing A1. Throughout
this paper, we will use this notation. In the Appendix D.2, we determine regions of ("1; "2) 2 R2, where each
PBE exists given a realization of X. Each PBE is obtained using the four conditions of De�nition D.1 in
the Appendix: sequential rationality, correct initial belief, action-determined beliefs, and Bayesian updating.
Figure 311 illustrates regions of ("1; "2) where a particular equilibrium is supported12 in terms of obser-

vations, assuming �1s > 0, �1w > 0, �2s � 0, and �2w � 0 (but �2s � �2w 6= 0). It is noted that under
"2 > X

0
2�2 + �2s, Player 2 is better o¤ by choosing F regardless of Player 1�s type or action and will choose

F . Thus, Player 1 will choose a signal corresponding to her type since given Player 2�s action, Player 1 is
better o¤ by choosing the signal that corresponds to her type. Similarly, under "2 < X 0

2�2��2w, Player 2 is
better o¤ by choosing NF no matter what and thus under this region, Player 1 is willing to reveal her true
type. We also note that in many empirical studies, researchers tend to focus on the separating equilibrium
where Player 1 reveals her type and Player 2 chooses di¤erent actions according to di¤erent types of Player 1

11For the game of Figure I in Cho and Kreps (1987), we have two pooling PBE. In one equilibrium, both types of Player
1 choose B, and Player 2 does not �ght if she observes B and she �ghts if she oberves Q with out-of-equilibrium belief
�2(tsjQ) � 0:5. In the other equilibrium, both types of Player 1 choose Q, Player 2 chooses not to �ght if she observes Q and
she �ghts if she observes B with out-of-equilibrium belief �2(tsjB) � 0:5. We note that the example of Cho and Kreps (1987)
corresponds to region S5 � f("1; "2)j"1 < �+X0

1�1 � �1w and X0
2�2 � �2w < "2 < X0

2�2 + p(�2s + �2w)� �2wg in Figure 3
and 4.
12To de�ne a PBE, we also specify the out-of-equilibrium belief that supports a particular equilibrium. A speci�c out-

of-equlibrium belief for each PBE of the game can be found in the Mathematical Appendix. Here we do not present such
out-of-equilibrium belief to make discussion simple.
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(such as region S3 � f("1; "2)j�+X 0
1�1��1w < "1 < �+X 0

1�1+�1s and X
0
2�2��2w < "2 < X 0

2�2+�2sg13
in Figure 3) by imposing some conditions or by simply asserting a separating equilibrium is more reasonable.
However, Figure 3 illustrates that other kinds of equilibria can arise depending on the realizations of ("1; "2).
For example, in region f"1 < �+X 0

1�1 � �1w and X 0
2�2 + p(�2s + �2w)� �2w < "2 < X 0

2�2 + �2sg, we have
a semi-separating equilibrium where the strong type plays B and the weak type mixes between B and Q.
Similarly, in region f"1 > � + X 0

1�1 + �1s and X
0
2�2 � �2w < "2 < X 0

2�2 + p(�2s + �2w) � �2wg, we have
another semi-separating equilibrium where the weak type plays Q and the strong type mixes between B and
Q.
The following two theorems are about the existence of PBE for all regions of ("1; "2) given X and

conditions to achieve uniqueness of equilibrium.

Theorem 3.1 (Existence of Equilibrium)
Suppose Assumptions IS and SA-1 hold. Suppose also that �1s > 0, �1w > 0, �2s � 0, and �2w � 0 (but
�2s � �2w 6= 0). Then, there exist PBE for all regions of ("1; "2) given X = x.

See the Appendix D.2 for the proof. We note that there are regions where multiple equilibria arise.
However, using the re�nement of Cho and Kreps (1987), we can achieve uniqueness of equilibria for each
region of ("1; "2) given X. Figure 314 shows that there exist three regions where we have multiple equilibria.
In region Aa � f("1; "2) j"1 > � + X 0

1�1 + �1w and X
0
2�2 + (�2s + �2w)p � �2w < "2 < X 0

2�2 + �2sg, we
have two equilibria. One is pooling (B;B) with A2jB = F and the other is pooling (Q;Q) with A2jQ = F
or separating equilibrium (when �1w < �1s). In region Ab � f"1 < � + X 0

1�1 � �1s and X 0
2�2 � �2w <

"2 < X
0
2�2 + p(�2s + �2w)� �2wg, we also have two equilibria. One is pooling (Q;Q) with A2jQ = NF and

the other is pooling (B;B) with A2jB = NF or separating equilibrium. In Appendix A, using the intuitive
criterion of Cho and Kreps (1987)15 , we show that the pooling (B;B) fails the re�nement in region Aa, the
pooling (Q;Q) fails the re�nement in Ab

16 . Figure 4 illustrates the uniqueness of equilibrium based on this
re�nement result.
We need to distinguish an equilibrium from its realized outcomes. For example, in region S1 � f("1; "2)j"1 2

R and "2 > X 0
2�2 + �2sg, we have one equilibrium where Player 1 plays the separating equilibrium with

(B;Q) and Player 2 chooses F . However, in terms of realized outcomes, we have two possible outcomes
in this region. With probability p (when Player 1 is the strong type), we will observe the B&F combi-
nation but we can also observe the the Q&F combination with probability 1 � p (when Player 1 is the
weak type). Likewise even though we have only one equilibrium (semi-separating where the strong type
plays B and the weak type mixes between B and Q) in region S2 � f("1; "2)j"1 < � + X 0

1�1 � �1w and
X 0
2�2 + p(�2s + �2w) � �2w < "2 < X 0

2�2 + �2sg, we can observe all four possible outcomes with certain
probabilities, respectively.

13We note that this region gets larger as �1s, �1w, �2s, and �2w become larger. This implies that the larger the cost of
mimicking and the larger Player 2�s incentives of singling out a particular type of Player 1, the larger the region that supports
this separating equilibrium.
14Figure 3 depicts the case �1w > �1s but this is not necessary at all.
15The intuitive criterion is based on the concept of �equilibrium dominance� which tells that a certain type should not be

expected to use a certain strategy. For example, in region S4 � f("1; "2)j"1 > �+X0
1�1+�1s and X

0
2�2+p(�2s+�2w)+�2w <

"2 < X0
2�2 + �2sg, Player 1 plays a pooling equilibrium strategy with (B;B) or (Q;Q). However, for the pooling equilibrium

with (B;B) under S4, it is not reasonable to believe that a deviation is played by the strong type because she is better o¤ by
choosing B no matter what Player 2 chooses (see Appendix). Thus, Player 2 will think a deviation is played by the weak type
for sure when she observes Q. Under this re�ned belief, now we can eliminate the pooling with (B;B) in region S4.
16For the game of Figure I in Cho and Kreps (1987), the pooling PBE with Q fails the intuitive criterion This corresponds

to region S5 in Figure 3 and 4.
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Theorem 3.2 (Uniqueness of Equilibrium)
Suppose Assumptions IS and SA-1 hold and that �1s > 0, �1w > 0, �2s � 0, and �2w � 0 (but �2s ��2w 6= 0).
Suppose each Player plays only one equilibrium that survives the re�nement of Cho and Kreps (1987), when
there exist multiple equilibria. Then, there exist unique equilibrium for each region of ("1; "2) given X.

Theorem 3.2 enables us to obtain a well-de�ned likelihood function. One may think that we cannot
identify � separately from �1s and �1w under unique equilibrium as Figure 4 suggests17 . However, we
actually can identify � separately from �1s and �1w since �1s and �1w appear separately from � in the model
conditional probabilities due to the semi-separating equilibria (see Appendix C). From the result of Theorem
3.2, we can de�ne the conditional probabilities for four possible observed outcomes.

Pjl(X; �; p) = Pr(Y1 = j; Y2 = ljX) for j; l 2 f0; 1g:

The speci�c forms of those conditional probabilities are provided in Appendix C. Now using these conditional
probabilities, one can estimate the parameter �, using the conditional ML method such that

(b�CML; bpCML) = argmax
�2�;p2(0;1)

1

n

nX
i=1

logL (yijxi; �; p) (1)

where

logL (yijxi; �; p) = y1iy2i logP11(xi; �; p) + y1i (1� y2i) logP10(xi; �; p)
+ (1� y1i) y2i logP01(xi; �; p) + (1� y1i) (1� y2i) logP00(xi; �; p).

The estimator
�b�CML; bpCML

�
will be consistent and asymptotically normal under suitable conditions. Those

conditions can be found in Newey and McFadden (1994), for example. Note that this conditional ML
estimator is identical to the ML estimator since the density function of X does not depend on the parameter
(�; p) by Assumption SA-1.3.

17We note that multiplicity of equilibria may help the identi�cation of � since there are more critical values (four vertical
lines in Figure 3 compared to two vertical lines in Figure 4) of "1 that switch the kind of equilibrium. We also note that
addtional incomplete information such that Player 1 cannot observe "2 (see the Mathematical Appendix E) can also help the
identi�cation since there are four critical values of "1 that switch the kind of equilibrium and these critical lines vary according
to di¤erent values of X2. This is an interesting result.
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4 Introducing Public Information about the Type

We consider public signals about the type of Player 1. We denote such signals by Z, which are observable to
all the players of the game and econometricians. Until now, we have assumed that X1 is independent of the
type of Player 1. However, it is likely that at least some of observed characteristics of Player 1 will reveal
information regarding the type of Player 1. In the beer or quiche game story, characteristics of Player 1 such
as muscle intensity, height, or age will tell how likely Player 1 is the strong type. Thus, Z can include all
the variables in X1 or a subset of X1. In the job signaling game (Spence (1974)), parents�education is a
possible public signal for the ability of a job candidate.
For a public signal, we require that Player 1 cannot strategically choose the signal Z when a game is

played18 or at least Player 1 does not have an incentive to do so. This means that in the game G, only the
action A1 plays the role of the strategic signal. The public signal Z 2 Rdim(Z) has a mixing distribution
FZ (�) with a mixing variable p. We let the density of Z as

fZ (z) = pf(st) (z) + (1� p)f(we) (z) (2)

where p is known to the players of the game but not known to econometricians. Player 2 has an incentive
to use these signals while playing the game. When players play a separating equilibrium, these additional
signals have no additional information for Player 1�s type since Player 1�s type is perfectly inferred from her
action. When the players play a pooling equilibrium, Player 2 will use these additional signals to update her
belief on Player 1�s type using the Bayes�rule. Therefore, under a separating equilibrium, we have

�2(t1 = tsjA1; Z) = �2(t1 = tsjA1)

but under a pooling equilibrium, we have

�2(t1 = tsjA1; Z = z) =
pf(st) (z)

pf(st) (z) + (1� p) f(we) (z)
(3)

which is also the conditional probability of being strong type given Z = z. We let p(z) denote this conditional

probability, Pr(t1 = tsjZ = z) =
pf(st)(z)

pf(st)(z)+(1�p)f(we)(z) . Thus, we have p(Z) = �2(t1 = tsjA1; Z) under a
pooling equilibrium. Note that equation (3) and p(z) become the prior p, when f(st) (z) = f(we) (z) (no
mixture). We will maintain the following assumptions:

Assumption 4.1 (IS-A)

1 Assumption IS holds.
2 The public signal Z about the types of Player 1 is perfectly known to both Player 1 and Player 2.

Assumption 4.2 (SA-1A)

1 "1 and "2 are continuously distributed, statistically independent of each other and of X and Z.
2 The cdf�s of "1 and "2 are continuous and denoted by G1("1) and G2("2) with corresponding density
functions g1("1) and g2("2), respectively. The density functions are assumed to be bounded and strictly
positive on their supports R. The density functions do not depend on the model parameter (�; p) or
on the type of Player 1.

3 Both X1 and X2 can be continuous or discrete random variables. Both X1�Z and X2 are independent
of the type of Player 1. We denote the density of X1�Z and X2 as fX1�Z(�) and fX2(�), respectively.
Neither fX1�Z(�) or fX2

(�) depends on the structural parameter (�; p).
18 It means that in the beer-quiche game, Player 1 cannot work out her muscle when the game is played.
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4 Z is a continuously distributed random vector with the mixing density fZ (z) = pf(st) (z) + (1 �
p)f(we) (z). Neither f(st) (z) or f(we) (z) depends on the structural parameter (�; p).

5 X2 contains at least one variable that does not enter in X1, which has the support of at least three
values.

In the game G under Assumptions IS-A and SA-1A, it is not di¢ cult to see that we will obtain
exactly the same equilibria under Assumptions IS and SA-1 except for replacing �2(t1 = tsjA1) with
�2(t1 = tsjA1; Z = z). This means that whenever Player 2�s belief is involved, we replace p with p(z). Note
that we should distinguish the population distribution of types (Pr(t1 = ts) = p) from the posterior belief of
Player 2 after observing the signal Z = z under a pooling equilibrium, which should also be the conditional
probability of being the strong type given Z = z in equilibrium. Regardless of the public signal Z, the
overall distribution of types (p) is �xed by nature. We apply the re�nement of Cho and Kreps (1987) to
these games with public signal Z and obtain the same uniqueness of equilibrium with Theorem 3.2.19

We will use a logistic speci�cation for the posterior belief of Player 2 under a pooling equilibrium noting
that equation (3) can be rewritten as

p(z) =
pf(st) (z)

pf(st) (z) + (1� p) f(we) (z)
=

p
1�p

f(st)(z)

f(we)(z)

1 + p
1�p

f(st)(z)

f(we)(z)

(4)

and thus, the belief only depends on p and the ratio f(st) (z) =f(we) (z). The relationship in (4) means that
for updating, we do not need to know f(st) and f(we) individually but only the ratio between these two is
necessary.

Therefore, by letting ho(z) = log
�
f(st)(z)

f(we)(z)

�
, we can rewrite (3) as a logistic speci�cation with L(�) =

exp(�)
1+exp(�) ,

p(Z = z) =
exp

�
log( p

1�p ) + h
o(z)

�
1 + exp

�
log( p

1�p ) + h
o(z)

� = L(log( p

1� p ) + h
o(z)) (5)

recalling that the posterior belief of Player 2 under a pooling equilibrium equals to the conditional probability
of being strong type given Z = z.
This speci�cation re�ects the separability of the mixing variable and the component functions. If there

is no mixture, we will have ho(z) = log
�
f(st) (z) =f(we) (z)

�
= 0. It suggests that by examining whether or

not ho(z) = 0, we may test the existence of a mixing distribution.

5 Estimation of the Signaling Game

In this section, we provide several estimation methods for the game G with public signals. We note that
the mixing distribution of public signals is nonparametrically speci�ed. The information structure of IS-A
is maintained but the stochastic assumptions are strengthened to facilitate the estimation. To preserve
uniqueness of equilibrium, we also maintain the assumption that each player plays only one equilibrium
that survives the re�nement of Cho and Kreps (1987), when there exist multiple equilibria. We also let
dl denote the dimension of a vector l. We let Y1 denote the indicator function that has the value one
when Player 1 chooses �B�such that Y1 � 1(A1 = B). Similarly, we let Y2 � 1(A2 = NF ). We also let
Y = (Y1; Y2). We let C(�), C1(�), C2(�), and so on denote generic positive constants or functions. For a
19For the game with additional incomplete information presented in the Mathematical Appendix E, we also obain the same

result with Theorem E.3.
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positive number k, we let k denote the largest integer smaller than k. Finally, we let the upper case stand
for a random variable and the lower case stand for a realization of it. We use the subscript �0�to denote the
true value of parameters. Throughout the paper, we assume that econometricians observe the realizations
of the random variables X1 [ Z, X2, Y1, and Y2 but do not observe "1 or "2. We let W � X [ Z and let
� = (�; �01; �

0
2; �1s; �1w; �2s; �2w)

0 2 R1+k1+k2 � (0;1)2 � [0;1)2, �o = (�; p; ho) 2 Ao � � � (0; 1) � Ho.
The �o is the parameter of interest that econometricians want to estimate.

5.1 Regularity Conditions

Now we impose stronger conditions than SA-1A by adding some �smoothness� conditions for G1(�) and
G2(�).

Assumption 5.1 (SA-2)

1 "1 and "2 are continuously distributed, statistically independent of each other and of W � X [ Z.
2 The cdf�s of "1 and "2 are continuous and denoted by G1("1) and G2("2) with corresponding density
functions g1("1) and g2("2), respectively. The density functions are assumed to be bounded and strictly
positive on their supports R (S("1) = S("2) = R). The density functions do not depend on the model
parameter �o or on the type of Player 1.

3 G1("1) and G2("2) are �+3 times continuously di¤erentiable with bounded �+3 derivatives everywhere
in S("1) = S("2) = R. The density of g1 and g2 are known to Player 1 but an econometrician knows g1
and g2 up to a �nite dimensional parameter20 , respectively.

4 Both X1 and X2 can be continuous or discrete random variables. Both X1�Z and X2 are independent
of the type of Player 1. We denote the density of X1�Z and X2 as fX1�Z(�) and fX2(�), respectively.
Neither fX1�Z(�) or fX2

(�) depends on the model parameter �o.
5 In particular, we assume that S(X1) � Rk1 and S(X2) � Rk2 are compact.
6 Z is a continuously distributed random vector with density fZ(z). S (Z) is compact with nonempty
interior. The density fZ(z) = pf(st) (z) + (1 � p)f(we) (z) is bounded and bounded away from zero.
Neither f(st) (z) or f(we) (z) depends on the structural parameter (�; p).

7 X2 contains at least one variable that does not enter in X1, which has the support of at least three
values.

All the assumptions are standard in the literature. In particular, Assumption SA-2.7 is an order condition
for the identi�cation of model parameters. Again we note that the exclusion restriction of Assumption SA-
2.7 is easily satis�ed due to the inherent exclusions between X1 and X2. X1 and X2 are allowed to include
continuous and/or discrete random variables. Noting that some or all of variables in X1 can be included
in Z. We let W = X [ Z and denote the joint pdf as fW (w). The joint density fW (w) is unknown to the
econometrician except for some smoothness conditions.

5.2 Identi�cation and Estimation

Now we let � = (�; �01; �
0
2; �1s; �1w; �2s; �2w)

0 2 R1+k1+k2 � (0;1)2� [0;1)2, � = (�; h) 2 A � ��H where

h = log
�

p
1�p

�
+ ho. Then, we let LY1Y2(W;�) denote the conditional probabilities of observed outcomes

such that

Ly1y2(W;�) � Pr(Y1 = y1; Y2 = y2jW;�) for (y1; y2) = f(1; 1); (1; 0); (0; 1); (0; 0)g
20Here we assume that those parameters are known, i.e. the functional forms of g1(�) and g2(�) are known to simplify our

notation without loss of generality as Aradillas-Lopez (2005).
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where Pr(Y1 = y1; Y2 = y2jW;�) takes the rather complicated form and is de�ned in Appendix C. Recall
that we need to distinguish the population probability p from the posterior belief p(Z) of Player 2, which
is also the conditional probability of being strong type conditional on Z. We note that one may think we
cannot identify p without a restriction on ho since the conditional probabilities depend on p(Z), not on p
separately. However, it turns out that we can still identify p using the relationship

E[p(Z)] =

Z
p(z)fZ(z)dz =

Z
pf(st) (z)

fZ(z)
fZ(z)dz = p

Z
f(st) (z) dz = p. (6)

We will discuss this issue later (see Section 5.3). Now we let �0 � (�0; h0) denote the true value of �. Later
we show that the following condition is su¢ cient for identi�cation of �0.

Assumption 5.2 (SA-3) Conditional on W , if � 6= �0 for �; �0 2 A, then

Pr (Ly1y2(W;�) 6= Ly1y2(W;�0)) > 0

for (y1; y2) = f(1; 1); (1; 0); (0; 1); (0; 0)g.

Now we let

l(Y jW;�) � l(Y jW; �; h)

=

�
Y1Y2 logL11(W; �; h) + Y1 (1� Y2) logL10(W; �; h)

+ (1� Y1)Y2 logL01(W; �; h) + (1� Y1) (1� Y2) logL00(W; �; h)

�
denote the single observation conditional log likelihood function. We will estimate the parameters of interest
using the conditional sieve ML based on this conditional likelihood function. In this estimation, we approx-
imate the unknown function h with some sieves. For this purpose, we need to restrict the space of functions
H where h0 belong. We consider the Hölder space ��1(S(Z)) with order �1 > 0 as Ai and Chen (2003). The
Hölder space is a space of functions g : S(Z) �! R such that the �rst �1 derivatives are bounded, and the
�1-th derivatives are Hölder continuous with the exponent �1 � �1 2 (0; 1], where �1 is the largest integer
smaller than �1. The Hölder space becomes a Banach space when endowed with the Hölder norm:

jjgjj��1 = sup
z
jg(z)j+ max

a1+a2+:::adz=�1
sup
z 6=z0

jrag(z)�rag(z0)j
(jjz � z0jjE)�1��1

<1;

where rag(z) � @
a1+a2+:::adz

@z
a1
1 :::@z

adz
dz

g(z). The Hölder ball (with radius C1) �
�1
C1
(S(Z)) is de�ned accordingly as

��1C1(S(Z)) � fg 2 �
�1(S(Z)) : jjgjj��1 � C1 <1g:

In the literature, it is known that functions in ��1C1(S(Z)) can be approximated well by various sieves such
as power series, Fourier series, splines, and wavelets. We let H = ��1C1(S(Z)). In particular, we approximate
h(�) by power series. According to Theorem 8, p.90 in Lorentz (1986) (Also see Timan (1963)), if a function
f is s-times continuously di¤erentiable, then there exist a K-vector 
K and a triangular array of polynomials
RK(z) (Particularly E[RK(Z)RK(Z)0] = IK) on the compact set Z such that

supz2Z jf(z)�RK(z)0
K j � C1K� s
dz : (7)

We consider the tensor-product power series21 , Hn, as a sieve space such that

Hn = fh(z)jh(z) = RK(z)0� for all � satisfying khk��1 � C1g (8)

21For comprehensive discussion of tensor-product linear sieves including power series, see Chen (2005).
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where we let the �rst element of RK(z) equal to the constant 1.22

Then, from the result of (7), we have a hK(�) � RK(�)0�K such that

supz2S(Z) jh0(z)�RK(z)0�K j = O
�
K� �1

dz

�
: (9)

We obtain the estimator e�n and ehn as
e�n � �e�n;ehn� = argmax

(�;h)2An���Hn

bQ(�; h) � 1

n

Pn
i=1 l(yijwi; �; h(zi)). (10)

We call e�n the exact sieve conditional ML estimator. Because the complexity (in the sense de�ned in the
Appendix F.3) of the sieve space An increases with n and because the maximizer of (10) is often obtained
numerically, we do not require the maximization of bQ(�; h) over An need to be exact. An approximated
estimator, b�n is enough for the asymptotic results, such thatbQ(b�n) � sup�2An

bQ(�)�Op ("n) , with "n = o(1). (11)

We call b�n in (11) approximate sieve ML estimator. Note that we choose the order of "n such that it can
justify a desirable asymptotics result. Now de�ne

Q(�) � Q(�; h) = E [l(Y jW; �; h)] : (12)

The following lemma shows that if Assumption SA-3 holds, then l(Y jW;�) satis�es an information inequality
result which is useful to prove the consistency of our proposed estimator b�n in (11) together with the uniform
convergence of bQ(�) to Q(�).
Lemma 5.1 (Identi�cation)
Suppose Assumptions IS-A and SA-2 hold. Further suppose Assumption SA-3 holds. Then, Q(�) < Q(�0)
for all � 6= �0 2 A.

The proof can be found in the Appendix.
It is worthwhile to note that the conditional ML estimator e�n does not use all the information we have.

In particular, we do not utilize the information about the mixing distribution of Z. The conditional ML will
be numerically identical to the ML if the density of W does not depend on the parameter �. However, we
know that the density of Z depends on ho. If we assume that Z is independent with (X1 � Z) [X2 (or we
already eliminate such dependence), the full ML estimator will be given by

e�oFull = argmax
(�;p;ho)2An���(0;1)�Hn

 
1

n

nX
i=1

log(p exp (ho(zi)) + (1� p)) +
1

n

nX
i=1

l(yijwi; �; p; ho(zi))
!

(13)

noting that neither fX1�Z or fX2
depends on �o, that

log
�
pf(st)(z) + (1� p)f(we)(z)

�
= log f(we)(z) + log(p exp (h

o(zi)) + (1� p));

and that f(we)(z) does not depend on �o. Therefore, the conditional ML estimator e�n is di¤erent from the
corresponding ML and will be less e¢ cient (see Gourieroux and Monfort (1995), Section 7.5.3) since it is
obtained by dropping the �rst term in the log likelihood function. In the Appendix G, we discuss how to
recover this lost information using a pseudo EM algorithm. Note that in the ML, we may estimate all of the

22Noting h = log
�

p
1�p

�
+ ho and thus, h(0) = log

�
p

1�p

�
+ ho(0) 6= 0 in general.
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parameters at the same time since p appears separately from p(Z) in the likelihood function. Considering
these advantages of ML, one may want to use ML instead of the conditional ML. However, we note that the
kind of transformation in the likelihood function of (13) is not valid if f(st)(�) and f(we)(�) depend on some
model parameters. If this is the case, the full ML requires to estimate f(st)(�) and f(we)(�) together with other
model parameters, which we want to avoid23 . For this reason, we will focus on the conditional ML. Though
our proposed sieve conditional ML estimator do not achieve the e¢ ciency, we note that the asymptotic
results of the sieve ML estimator in the literature will be identically applied to the sieve conditional ML.
The results obtained for the conditional ML in the following subsections can be applied to the ML estimatore�oFull in a similar manner.
5.2.1 Consistency and Convergence Rates of the Sieve Conditional ML

The consistency of sieve MLE was derived in Wong and Severini (1991) and Geman and Hwang (1992) for
i.i.d data. Some consistency results of sieve M-estimators can be found in Gallant (1987) and Gallant and
Nychka (1987). Chen (2005) presented a consistency result of sieve extremum estimators allowing for non-
compact in�nite-dimensional A, which is an extension of Theorem 2.1 in Newey and McFadden (1994) and
of Lemma A1 in Newey and Powell (2003). Using Theorem 3.1 in Chen (2005), we establish the consistency
under a pseudo metric k�ks de�ned by

k�1 � �2ks = k�1 � �2kE + kh1 � h2k1

where k�kE is the Euclidean norm and khk1 = sup
z2S(Z)

jh(z)j. We make additional assumptions.

Assumption 5.3 (SA-4)
(i) fY1i; Y2i;Wigni=1 are iid; (ii) �0 = (�0; h0) 2 A � ��H; (iii) � is compact with nonempty interior and
H = ��1C1(S(Z)); (iv) Kn !1 and Kn=n! 0.

Lemma 5.2 (Consistency)
Suppose Assumptions SA-2, SA-3, and SA-4 hold and suppose Condition 9 (Lipschitz) in the Appendix
holds. Then, kb�n � �0ks = op(1).
The proof can be found in the Appendix. This consistency result is obtained combining the identi�cation

condition and the uniform convergence of the criterion function as in the case of the parametric extremum
estimation.
Now we consider the convergence rate of the sieve conditional ML estimator under a weaker metric24 .

We present a convergence rate using Theorem 3.2 of Chen (2005) which is a version of Chen and Shen (1996)
for i.i.d data. We rede�ne, b�n, the approximate sieve ML that satis�esbQ(b�n) � sup

�2An

bQ(�)�Op �"2n� , with "n = o(1). (14)

Now suppose that A = ��H is convex in �0 so that �0 + �(�� �0) 2 A for all small � 2 [0; 1] and all
�xed � 2 A. Suppose that the pathwise derivative of l(�) at the direction [�� �0] is well-de�ned for almost
all w � y in the support of S(W )� S (Y ). We denote the pathwise �rst derivative at the direction [� � �0]
23A semiparametric estimation of a mixing distribution with nonparametric mixing components has not been established yet

in the literature except some identi�cation result in Kitamura (2004).
24Shen and Wong (1994), and Birgé and Massart (1998) derived the rates for general sieve M-estimation. Van de Geer (1993)

and Wong and Shen (1995) presented the rates for sieve MLE for i.i.d data.
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evaluated at �0 by

dl(yijwi; �0)
d�

[�� �0] � lim
�!0

dl(yijwi; (1� �)�0 + ��)
d�

=
@l(yijwi; �0)

@�0
(� � �0) +

dl(yijwi; �0)
dh

[h� h0]:

Now we de�ne the L2(P0)-norm, k�� �0k2, based on the pathwise derivative of l(�) evaluated at �0, i.e.

k�� �0k2 =

vuutE "�dl(YijWi; �0)

d�
[�� �0]

�2#
: (15)

This25 is the ML version of Ai and Chen (2003)�s L2(P0)-metric and the conditional ML version of the metric
used by Wong and Severini (1991).

Proposition 5.1 Let b�n be the approximate sieve ML de�ned in (14). Suppose Assumptions SA-2, SA-3,
and SA-4 hold and suppose Conditions 10-12 (Lipschitz) in the Appendix hold. Then, we have

kb�n � �0k2 = Op
 
max

(
O

 r
Kn

n

!
; O
�
K��1=dz
n

�)!
:

Moreover, with Kn = n
1=(2�1=dz+1) and �1=dz > 1=2, we have kb�n � �0k2 = Op�n� �1=dz

2�1=dz+1

�
.

The proof of this proposition can be found in the Appendix.

5.2.2 Asymptotic Normality

In this section, we derive the
p
n-asymptotic normality26 of the structural parameters b�n. The following

discussion and notations are based on Theorem 4.3 of Chen (2005), which is a simpli�ed version of Shen
(1997) and Chen and Shen (1998).
Suppose the functional of interest, f : A ! R, is smooth in the sense that

df(�0)

d�
[�� �0] � lim

�!0

f(�0 + �(�� �0))� f(�0)
�

is well de�ned and 



df(�0)d�





 � sup
�2A;k���0k2>0

���df(�0)d� [�� �0]
���

k�� �0k2
<1.

Now let V denote the closure of the linear span of A� �0 under the metric k�� �0k2. Then,
�
V ; k�k2

�
is a

Hilbert space with inner product

h�1; �2i = E
��
dl(YijWi; �0)

d�
[�1]

��
dl(YijWi; �0)

d�
[�2]

��
.

25For the ML context, this norm is very natural since it is the Fisher norm (see Wong and Severini (1991)).
26Wong and Severini (1991) established the

p
n-asymptotic normality and e¢ ciency of smooth functionals of nonparametric

MLE with parameter space An � A = � � H. Shen (1997) extended their results to sieve MLE allowing for highly curved
(nonlinear) least favorable directions while Chen and Shen (1998) extended Shen (1997) to general sieve M-estimation with
stationary weakly dependent data.
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Then, by the Riesz representation theorem, there exists �� 2 V such that, for any � 2 A,

df(�0)

d�
[�� �0] = h�� �0; ��i i¤





df(�0)d�





 <1. (16)

In particular, we let f(�) = �0� for any �xed and nonzero � 2 Rd� . Then, f(�) � �0� is a linear functional on
V . To estimate f(�) � �0� at a

p
n rate, f(�) has to be bounded (sup0 6=���02V jf(�)� f(�0)j = k�� �0k2 <

1) according to Van der Vaart (1991) and Shen (1997).
Now let H � h0 denote the closure of the linear span of H � h0. De�ne b�j 2 B � H � h0 for each

component �j of � such that

b�j = argmin
bj2B

E

"�
dl(Y jW;�0)

d�j
� dl(Y jW;�0)

dh
[bj ]

�2#
: (17)

Now de�ne b� = (b�1; : : : ; b
�
d�
),

dl(Y jW;�0)
dh

[b�] =

�
dl(Y jW;�0)

dh
[b�1]; : : : ;

dl(Y jW;�0)
dh

[b�d� ]

�
;

and Db�(Y;W ) � dl(Y jW;�0)
d�0 � dl(Y jW;�0)

dh [b�]. We impose

Assumption 5.4 (SA-5)
(i) �0 2int(�); (ii) E [Db�(Y;W )0Db�(Y;W )] is positive de�nite; (iii) each element b�j (Z) belongs to the
Hölder space �mj

Cj
(S(Z)) with mj > dz=2.

Now note that df(�0)d� [�� �0] = (� � �0)0� which implies that

f(�)� f(�0)�
df(�0)

d�
[�� �0] = 0. (18)

In addition, we can show that for f(�) � �0� with � 2 Rd� ,� 6= 0,

sup
0 6=���02V

jf(�)� f(�0)j2

k�� �0k22
= �0 (E [Db�(Y;W )

0Db�(Y;W )])
�1
�

which implies f(�) = �0� is bounded (in the sense of sup0 6=���02V jf(�)� f(�0)j = k�� �0k2 < 1) if and
only if E [Db�(Y;W )0Db�(Y;W )] is positive-de�nite (Assumption SA-5 (ii)). For this case, there exists
�� 2 V such that

f(�)� f(�0) � �0 (� � �0) = h��; �� �0i for all � 2 A (19)

by (18) and by the Riesz representation theorem (see (16)). We �nd that �� � (���; ��h) 2 V satis�es (19)
with ��� = (E [Db�(Y;W )

0Db�(Y;W )])
�1
� and ��h = �b� � ���.

The following theorem states that we can achieve the
p
n-asymptotic normality for the structural para-

meters.

Theorem 5.1 Suppose Assumptions SA-2, SA-3, SA-4, and SA-5 hold and suppose Conditions 10-12
(Lipschitz) in the Appendix hold. Then, we have

p
n(b�n � �0)!

d
N(0;
�)

where 
� = fE [Db�(Y;W )0Db�(Y;W )]g�1.

The proof of this theorem can be found in the Appendix.
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5.2.3 A Consistent Covariance Estimator

To do a statistical inference of the structural parameters based on Theorem 5.1, we need a consistent
estimator of 
�. First, we need a consistent estimator of b�. We estimate b�j by bb�j , j = 1; : : : ; d� such that

bb�j = argminbj2Hn

nX
i=1

�
dl(yijwi; b�n)

d�j
� dl(yijwi; b�n)

dh
[bj ]

�2
: (20)

Note that for linear sieves, bb�j is easily obtained by regressing the derivatives of l(�j�; b�n) with respect to �j
on the derivatives of l(�j�; b�n) with respect to h. Finally, we estimate 
� by

b
� �
 
1

n

nX
i=1

Dbb�(yi; wi; b�n)0Dbb�(yi; wi; b�n)
!�1

where bb� = (bb�1; : : : ;bb�d� ) and Db�(Y;W;�) = @l(Y jW;�)
@�0 � dl(Y jW;�)

dh [b�]. We note that b
� is consistent under
suitable conditions.

Proposition 5.2 Suppose Assumptions SA-2, SA-3, SA-4, and SA-5 hold and suppose Conditions 10-12
(Lipschitz) in the Appendix hold. Then, b
� = 
� + op(1).
5.2.4 Alternative Sieve Minimum Distance Estimator (SMD)

Under uniqueness of equilibrium, the true conditional probabilities of observed outcomes should be identical
with the conditional probabilities implied by a model evaluated at the true parameter. This implies that the
game models can be represented by a set of conditional moment conditions. To be precise, we have

0 = E [Y1Y2 � Pr(Y1 = 1; Y2 = 1jW;�0)jW ] � E [�1(Y1; Y2;W; �0; h0)jW ] (21)

0 = E [Y1 (Y2 � 1)� Pr(Y1 = 1; Y2 = 0jW;�0)jW ] � E [�2(Y1; Y2;W; �0; h0)jW ]
0 = E [(Y1 � 1)Y2 � Pr(Y1 = 0; Y2 = 1jW;�0)jW ] � E [�3(Y1; Y2;W; �0; h0)jW ] :

Based on these conditional moment restrictions, we can estimate the parameters of interest using the sieve
minimum distance estimation proposed by Ai and Chen (2003) as an alternative to the sieve conditional ML.
Note that only three outcomes are independent out of the four possible outcomes of (Y1; Y2) since the sum
of probabilities of four outcomes is always one. Now let �(�) = (�1(�); �2(�); �3(�))0 and then

E [�(Y;W; �0; h0)jW ] = 0: (22)

Ai and Chen (2003) provides a general framework dealing with an estimation for models of conditional
moment restrictions such as (22) and obtain the consistency and

p
n-asymptotic normality of the estimator

for �0.
Now let m(W;�) be the conditional mean function of the moment equation E [�(Y1; Y2;W; �)jW ] and

denote by bm(W;�), a linear sieve estimator of m(�; �) as
bml(W;�) =

Pn
j=1 �l(Yj ;Wj ; �)p

kn(Wj)
0(P 0P )�1pkn(W ); l = 1; : : : ;dim(�) = 3;

where pkn(W ) is a tensor-product sieve (such as power series, Fourier series, or B-splines) and P =

(pkn(W1); : : : ; p
kn(Wn))

0. Also denote by b�(W ), a consistent estimator of a positive de�nite matrix �(W )
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for any given W . Then, an SMD estimator based on the conditional moment restriction of (22)27 is obtained
by b�MD = (b�MD;bhMD) = argmin �=(�;h)2An���Hn

1

n

Pn
i=1 bm(Wi; �)

0[b�(Wi)]
�1 bm(Wi; �) (23)

where Hn is the sieve space de�ned in (8)28 .

5.3 Estimation of the Type Distribution

In Section 5.2, we argue that we can identify the parameter p from p(Z) by (6). From this result, we propose
an estimator for p as

bpn = 1

n

nX
i=1

L(bhn(zi)) = 1

n

nX
i=1

exp(bhn(zi))
1 + exp(bhn(zi)) (24)

where bhn(�) is obtained from (10) or (23). Applying the mean value theorem with ehn that lies between bhn
and h0, we have

bpn � p0 =
1

n

nX
i=1

�
L(bhn(Zi))� L(h0(Zi))�+ 1

n

nX
i=1

(L(h0(Zi))� E [L(h0(Zi))]) (25)

=
1

n

nX
i=1

L(ehn(Zi))(1� L(ehn(Zi)))(bhn(Zi)� h0(Zi)) + 1

n

nX
i=1

(L(h0(Zi))� E [L(h0(Zi))])

� 1

4




bhn � h0



1
+ op(1)

where the second equality is obtained by L0(�) = L(�)(1�L (�)) and the last result holds since L(�)(1�L (�)) �
1
4 uniformly and the second term in the RHS of (25) is op(1) by LLN noting jL(h0(�))j < 1 uniformly and
fZigni=1 are iid.
Thus, bpn is consistent as long as bhn is consistent. Now we can derive the asymptotic distribution of bpn

similarly with Chen, Linton, and van Keilegom (2003) since (6) can be written as a moment condition

m(p; h) = p� L(h), E[m(p0; h0)] = 0

and since we have an initial estimator bhn such that 


bhn � h0



1
= op(n

�1=4) from the sieve conditional ML

or the SMD29 . We obtain the following result. We letM(h) =
R
S(Z) L(h)dFZ andMn(h) =

1
n

Pn
i=1 L(h(Zi)).

Proposition 5.3 Suppose (i)



bhn � h0




1
= op(n

�1=4) and (ii)

p
n

 Z
S(Z)

L(h0)(1� L(h0))
�bhn � h0� dFZ +Mn(h0)�M(h0)

!
!
d
N(0; Vp). (26)

27Alternatively, the conditional moment conditions of (22) can be estimated using a penalized empirical likelihood estimation
(PELE) proposed by Otsu (2003). The main di¤erence between these two estimators is that in the PELE, we do not restrict
the class of functions H to be compact and do not approximate the function space H with sieves Hn. Instead, the maximization
is taken over the function space H while controlling the physical plausibility (such as roughness) of functions using a penalty
function. Otsu (2003) shows that the optimally weighted kernel smoothed version of MD (the original version of the SMD
considered in Ai and Chen (2003)�s working paper version) and the PELE are asymptotically equivalent in the �rst order sense.
From this result, we expect that the PELE is �rst order asymptotically equivalent to the optimally weighted SMD. However,
we conjecture that the PELE is preferable to the SMD in terms of higher order asymptotics from the relationship between
parametric GMM and EL estimators (see Newey and Smith (2004)).
28The asymptotic property of this estimator is provided in the dissertation version of this paper.

29Combining with the result of Lemma 2 in Chen and Shen (1998), which shows that kh� h0k1 � kh� h0k
2�1

2�1+dz
2 .
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Then,
p
n (bpn � p0)!

d
N(0; Vp).

Note that the �rst term in the LHS of (26) appears due to the fact that we use an initial estimator bhn
and will disappear if bhn = h0. The proof of this Proposition can be found in the Appendix. In the Appendix,
we also show that the condition (ii) of Proposition 5.3 holds for the sieve conditional ML estimator under
Assumptions in Theorem 5.1. We note that even if an explicit form of Vp can be derived, a feasible estimator
of Vp may be di¢ cult to calculate. Alternatively, we can use the ordinary nonparametric bootstrap. The
following proposition shows that we can consistently estimate the distribution of

p
n (bpn � p0) using the

bootstrap under some conditions. We use ��� to denote the bootstrap counterpart of the original sample
fZigni=1. We let M�

n(h) =
1
n

Pn
i=1 L(h(Z

�
i )).

Proposition 5.4 Suppose (i) with P �-probability tending to one, bh�n 2 H, and 


bh�n � bhn


1 = oP�(n�1=4);(ii)


bhn � h0



1
= o(n�1=4) a:s:;(iii) for any positive sequence �n = o(1),

sup
kh�h0k1��n

jMn(h)�M(h)�Mn(h0) +M(h0)j = o(n�1=2) a:s:;

(iv)
p
n

 Z
S(Z)

L(bhn)(1� L(bhn))�bh�n � bhn� dFZ +M�
n(
bhn)�Mn(bhn)! = N(0; Vp) + oP�(1).

Then,
p
n (bp�n � bpn) converges in distribution to N(0; Vp) in P �-probability.

6 Discussion: Set Identi�cation

In previous sections, to achieve uniqueness of equilibrium, we have used an equilibrium re�nement developed
by Cho and Kreps (1987). For signaling games, however, the �self-ful�lling property� is essential, which
can yield multiple equilibria depending on di¤erent beliefs on plays of the other party. In this section, we
will consider the possibility of multiple equilibria under PBE without attempting to resolve the equilibrium
selection problem. As a consequence, we give up point identi�cation since we do not have a well-de�ned
likelihood function and adopt a set identi�cation approach. Here we consider the model where some asymp-
totic inequalities may de�ne a region of parameters rather than a single point in the parameter space. The
idea is as follows. When multiple equilibria arise, there are regions of unobservables that are consistent with
necessary conditions for more than one equilibrium. Therefore, the probability of an event, implied by the
necessary condition, is greater than or equal to the true probability of the event. As a consequence, these
necessary conditions will provide a set of inequality constraints on the parameters rather than a set of equal-
ity conditions. Interestingly, we note that as suggested in Figure 3 compared to Figure 4, the multiplicity
of equilibria may help the identi�cation of parameters (though they are set-identi�ed) since there are more
variations of equilibria.
We can adopt a simple estimation strategy that utilizes the sample analog of these population necessary

conditions as in Chernozhukov, Hong, and Tamer (2003) and Andrews, Berry, and Jia (2004). The approach
we take is from Andrews, Berry, and Jia (2004). Noting that Andrews, Berry, and Jia (2004) do not allow for
in�nite dimensional parameters30 , we consider a parameterization of h(�) for the game with public signals. A
separate study of Kim (2006) illustrates that we can actually allow for in�nite dimensional parameters in this
set estimation and inference for a fully symmetric version of the signaling game. Now let h(�) = h(�; �0) for
30 It is because ABJ utilizes �nite numbers of cells to facilitate the estimation, which is not compatible with in�nite dimensional

parameters. Simply it violates the order condition for identi�cation.
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�0 2 D and let #0 = (�00; �0)0. Recall Yi = (Y1i; Y2i), y = (y1; y2), and "i = ("1i; "2i). Denote 
(Y = y;W; #0)
to be the region of " under which Y takes the value y given W and #0. To be precise,


(y; w; #0) � 
(Y = y;W = w; #0) = f"jY1 = y1; Y2 = y2 given W = w and #0g:

Then, the probability that the necessary conditions for Y = y holds will equal the probability that " belongs
to 
(y; w; #0) given W = w and #0. The sieve ML or SMD approaches taken in the previous sections
typically proceed by identifying a one-to-one mapping between the possible discrete outcomes and regions
of the unobservables. Under the existence of multiple equilibria, probabilities of observed events are not
necessarily equal to the probabilities of the associated regions of unobservables. Now for any (y; w) 2 S(Y )
� S(W ), the probability is de�ned to be

P (yjw; #) = Pr (" 2 
(y; w; #)) (27)

When # = #0, this is a simple "-orthant probability. Note that at the true parameter value # = #0, the
probabilities of the necessary conditions must be at least as large as the true probabilities of the events
y 2 S(Y ) given W = w, denoted by P0(yjw) :

P (yjw; #0) � P0(yjw); 8(y; w) 2 S(Y )� S(W ). (28)

Notice that this inequality follows from the fact that the outcome y implies the necessary conditions for y but
the necessary condition need not imply the outcome y. Now based on the population inequality conditions
of (28), we can follow Andrews, Berry, and Jia (2004)�s approach.
From the results of Section 3 (Figure 3), it is not di¢ cult to construct the model probabilities for each

discrete outcome of the game using (27). We note that though the usage of a mixed strategy by players is
well justi�ed theoretically, it is still a matter of question whether a mixed strategy is used in the real world.
Some experimental31 and empirical32 studies are trying to answer this question but �ndings are mixed. As an
attractive alternative, one may proceed the analysis assuming that any observed outcome can arise without
any restriction in the regions where we have semi-separating equilibria in the game. This may still provide
a tight bound for the estimate of the parameters. We may compare this result with that of allowing the
semi-separating equilibria.

6.1 Set Estimator

The model probabilities fP (yjWi; #g : i = 1; : : : ; ng induced by the games we have studied have analytic
closed form expressions. This makes our problem simpler since we do not need to consider the simulation
of the probabilities. However, we still need to consider the construction of W cells to achieve a reliable
estimation. By construction, we have S(Y ) = f(1; 1); (1; 0); (0; 1); (0; 0)g. To make notation simple while
allowing possible extensions to general cases, we let y1 = (1; 1), y2 = (1; 0), y3 = (0; 1), and y4 = (0; 0). We
also let JY = 4. Then, we have S(Y ) = fyj : j = 1; : : : ; JY g.
Now we brie�y review the data-dependent construction of W cells following Andrews, Berry, and Jia

(2004). Consider a set fq
 : 
 2 �g of real-valued weight functions on the support S(W ) of Wi, where 
 is a
subset of S(W ) and � is a collection of subsets of S(W ). In particular, for each yj , we considerMj subsets
of S(W ) denoted by 
j;m :

� =
�

j;m � S(W ) : (j;m) 2 IJY ;M

	
; where

IJY ;M = f(j;m) : m = 1; : : : ;Mj ; j = 1; : : : ; JY g : (29)

31See O�Neill (1987), Rapoport and Boebel (1992), Mookherjee and Sopher (1994), Ochs (1995), and McCabe et al. (2000).
32See Walker and Wooders (2001) and Chiappori, Levitt, and Groseclose (2002).
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The functions fq
 : 
 2 �g aggregate and/or weight the necessary conditions for an equilibrium over di¤erent
values of w. Now let b�n = �b
n;j;m � S(W ) : (j;m) 2 IJY ;M	 ;
where b
n;j;m is a random subset of S(W ). For the consistency of the set estimator, we require that b�n !

p
�0

under certain metric where
�0 =

�

0;j;m � S(W ) : (j;m) 2 IJY ;M

	
:

The set estimator proposed by Andrews, Berry, and Jia (2004) is obtained as follows. De�ne

c0(j; 
; #) =

Z
(P (yj jw; #)� P0(yj jw)) q
(w)dFW (w) and (30)

bcn(j; 
; #) = n�1
Pn

i=1 (P (yj jWi; #)� 1[Yi = yj ]) q
(Wi):

Necessary conditions for # to be the true parameters are

P (yjw; #)� P0(yjw) � 0, 8(y; w) 2 S(Y )� S(W ) (31)

which implies that
c0(j; 
0;k;m; #) � 0, 8(j;m) 2 IJY ;M. (32)

De�ne
�0 = f# 2 ��D : (31) holdsg and �+ = f# 2 ��D : (32) holdsg:

By de�nition, the set �0 is the smallest set of parameter values that necessarily includes the true value #0.
By construction, �+ � �0 since (31) implies (32). Now the set estimator is obtained asb�n = f# 2 ��D : # minimizes Qn(#) over ��Dg
where

Qn(#) =
P

(j;m)2IJY ;M

��bcn(j; b
n;j;m; #)�� � 1[bcn(j; b
n;j;m; #) � 0]: (33)

Provided that Assumptions 1-6 of Andrews, Berry, and Jia (2004) are satis�ed, we have

d(b�n;�+)!
p
0

where d(�; �) is the Hausdor¤ metric that measures the distance between two sets. For the inference of this
set estimator, Andrews, Berry, and Jia (2004) provide con�dence intervals for individual parameters and
con�dence regions, whose critical values are obtained using the bootstrap methods.

6.2 Set Estimation of the Type Distribution

We have noted that in the conditional probabilities of observed outcomes, implied by the model, p does not
appear separately from p(Z). However, from (6), we can still identify the type distribution parameter p.
Using the relationship in (6), we obtain a set estimator of p0 such that

bPn = (p : p = 1

n

nX
i=1

L(h(zi; �)) =
1

n

nX
i=1

exp(h(zi; �))

1 + exp(h(zi; �))
for each � in b�n)

We note that as long as d(b�n;�+) = op(1), bPn converges to its population counterpart P+ de�ned by
P+ =

�
p : p = E [L(h)] = E

�
exp(h(Z; �))

1 + exp(h(Z; �))

�
for each � in �+

�
.
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Proposition 6.1 Suppose d
�b�n;�+� = op(1) and sup�2D;z2S(Z) 


@h(z;�)@�0





E
<1.

Then, d
� bPn;P+� = op(1).

7 Concluding Remarks

This paper develops an econometric modeling of a signaling game with two players where one player, in-
formed party, has private information summarized by types. In particular, we provide an estimation strategy
that identi�es the payo¤s structure and the distribution of types from data of observed actions. Though
multiplicity of equilibria arises in the game, we show that uniqueness of equilibrium given a realization of
payo¤s can be achieved as long as players play a PBE and choose only one equilibrium out of multiple
equilibria using the re�nement of Cho and Kreps (1987). This uniqueness enables us to derive well-de�ned
conditional probabilities that are useful for the estimation.
To provide some empirical relevance, we consider public signals about the type of a player. Technically,

these signals cannot be manipulated by the informed player or at least the player has no incentive to
manipulate the signals. Therefore, the uninformed party will use this information to update her belief on
types after observing an action of the informed party when a pooling equilibrium is played. Since the
mixing distribution of these non-strategic signals on types is nonparametrically speci�ed, we estimate the
model using a sieve conditional MLE where the in�nite dimensional parameters are approximated by sieves.
Noting that the conditional probability of choosing a certain combination of actions can be written in terms
of several conditional moment restrictions, as an alternative, we estimate the model using the sieve minimum
distance (MD) estimation. In both methods, we obtain the consistency and the root n-asymptotic normality
of structural parameters estimates.
We note that in the signaling game, multiple equilibria naturally arise given a realization of payo¤s due

to the self-ful�lling property. We resolve this problem by re�ning the equilibrium using an equilibrium
selection rule that may be arbitrary and cannot be justi�ed. As an attractive alternative to the previous
approach, we allow for the possibility of multiple equilibria, without attempting to resolve the equilibrium
selection problem. As a consequence, we give up point identi�cation since we do not have a well-behaved
likelihood function and adopt the set identi�cation approach. In particular, we consider the model where
some asymptotic inequalities may de�ne a region of parameters rather than a single point in the parameter
space. We adopt the important work of Andrews, Berry, and Jia (2004) for the set estimation.
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Appendix I

A Equilibrium Re�nement and Uniqueness of Equilibrium (Proof
of Theorem 3.2)

� Under region Aa � f("1; "2) j"1 > � +X 0
1�1 + �1w and X

0
2�2 + (�2s + �2w)p � �2w < "2 < X 0

2�2 + �2sg, we
show that the pooling with (B;B) cannot survive the Intuitive Criterion of Cho and Kreps (1987) while the
pooling with (Q;Q) survives it.

� Pooling with (A1ts ; A1tw ) = (B;B) with A2jB = F

Note u1(ts;B;F ) > u1(ts;Q;NF ) since � + X 0
1�1 � "1 � �1s < 0 under Aa and note u1(ts;B;F ) >

u1(ts;Q;F ) since �1s > 0. This means that the strong type has no incentive to deviate in any case. Thus,
Player 2 will assign �2(t1 = tsjQ) = 0 and hence Player 2 will choose F after observing the deviation play
Q under region Aa. Now we need to check whether the weak type is better o¤ by deviation under this
situation. Note

u1(tw;B;F ) = ��1w < u1 (tw;Q;F ) = 0.

Thus, the weak type will deviate for sure. Therefore, the equilibrium outcome fails the Intuitive Criterion.

� Pooling with (A1ts ; A1tw ) = (Q;Q) with A2jQ = F

Note u1(tw;Q;F ) > u1(tw;B;NF ) since � + X 0
1�1 � "1 � �1w < 0 under Aa and note u1(tw;Q;F ) >

u1(tw;B;F ) since �1w > 0. This means that the weak type has no incentive to deviate in any case. Thus,
Player 2 will assign �2(t1 = tsjB) = 1 and hence Player 2 will choose NF after observing the deviation
play B under region Aa. Now we need to check whether the strong type is better o¤ by deviation under
this situation. Note

u1(ts;Q;F ) = ��1s > u1 (ts;B;NF ) = �+X 0
1�1 � "1

under S4. Thus, the strong type will not deviate. Therefore, the equilibrium outcome survives the
Intuitive Criterion.

� Under region Ab = f"1 < �+X 0
1�1 � �1s and X 0

2�2 � �2w < "1 < X 0
2�2 + (�2s + �2w)p� �2wg, we show that

the pooling with (Q;Q) cannot survive the Intuitive Criterion of Cho and Kreps (1987) while the pooling with
(B;B) survives it.

� Pooling with (A1ts ; A1tw ) = (Q;Q) with A2jQ = NF

Note u1(tw;Q;NF ) > u1(tw;B;F ) since � +X 0
1�1 � "1 + �1w > 0 under Ab and note u1(tw;Q;NF ) >

u1(tw;B;NF ) since �1w > 0. This means that the weak type has no incentive to deviate in any case. Thus,
Player 2 will assign �2(t1 = tsjB) = 1 and hence Player 2 will choose NF after observing the deviation
play B under region Ab. Now we need to check whether the strong type is better o¤ by deviation under
this situation. Note

u1(ts;Q;NF ) = �+X 0
1�1 � "1 � �1s < u1 (ts;B;NF ) = �+X 0

1�1 � "1

since �1s > 0. Thus, the strong type will deviate for sure. Therefore, the equilibrium outcome fails the
Intuitive Criterion.

� Pooling with (A1ts ; A1tw ) = (B;B) with A2jB = NF

Note u1(ts;B;NF ) > u1(ts;Q;NF ) since �1s > 0 and note u1(ts;B;NF ) > u1(ts;Q;F ) under Ab.
This means that the strong type has no incentive to deviate in any case. Thus, Player 2 will assign
�2(t1 = tsjQ) = 0 and hence Player 2 will choose F after observing the deviation play Q under region
Ab. Now we need to check whether the weak type is better o¤ by deviation under this situation. Note

u1(tw;B;NF ) = �+X 0
1�1 � "1 � �1w > u1 (tw;Q;F ) = 0

under region S5. Thus, the weak type will not deviate. Therefore, the equilibrium outcome survives the
Intuitive Criterion.

� The separating equilibrium (B;Q) with (Y1jB = 1; Y1jQ = 0) under region S3 cannot fail the Intuitive Criterion
since none of Player 1 wants to deviate regardless of Player 2�s action.
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B Game with Asymmetric Payo¤s
For the game presented in Figure 2, we note that the payo¤s structure is restrictive. We relax this restriction as in
the game of Figure A1 by allowing � and �1 to be di¤erent for di¤erent types. It turns out that we can achieve
uniqueness of equilibrium even under asymmetric payo¤s by imposing Conditions 1-2 (see the Appendix D.3).

Condition 1 �w +X 0
1�w � �1w < �s +X 0

1�s + �1s for all X1 2 S(X1).

Condition 2 �s +X 0
1�s � �1s < �w +X 0

1�w + �1w for all X1 2 S(X1).

These conditions hold immediately in the symmetric payo¤s case (�w = �s,�s = �w) since �1s; �1w > 0. We
summarize the result as

Corollary B.1 Suppose Conditions 1-2 hold. Further suppose Assumptions IS and SA-1 hold and that �1s > 0,
�1w > 0, �2s � 0, and �2w � 0 (but �2s � �2w 6= 0). Suppose each Player plays only one equilibrium that survives the
re�nement of Cho and Kreps (1987), when there exist multiple equilibria. Then, there exist unique equilibrium for
each region of ("1; "2) given X.

See the Appendix D.3 for the proof. Figure A2 illustrates uniqueness of equilibrium for the game with IS
and asymmetric payo¤s. We note that all the estimation strategies considered in this paper are still valid for the
asymmetric payo¤s case as long as Assumption SA-Asym holds. However, even if Assumption SA-Asym is violated
for certain observations in the data, we can still estimate the game model using a trimming device that trims out
those observations violating Assumption SA-Asym under certain conditions.

Assumption B.1 (SA-Asym)
�w +X 0

1�w � �1w < �s +X 0
1�s + �1s and �s +X 0

1�s � �1s < �w +X 0
1�w + �1w hold for all X1 2 S(X1) and for all

(�s; �w; �s; �w; �1s; �1w) in the parameter space.

We note that this assumption is embedded when we derive the appropriate conditional probabilities in the following
section. Again note that Assumption SA-Asym holds immediately in the symmetric payo¤s game (�w = �s,�s = �w)
since �1s; �1w > 0.

weak

{ } { }' '
1 1 2 2 21 2 1,    ,0s s s s sX Xβ ε β εµ φ φ φ− − ++ − −

1 p−p

B

Q Q

B

NF FNF F

NF FNF F

strong
11

2

2

{ } { }' '
1 1 2 2 2 2,    0,w w wX Xβ ε β εµ φ− −+

{ } { }' '
1 1 1 2 2 2 1 2,    ,w w w w wX Xβ ε β εµ φ φ φ− − − −+{ } { }' '

1 1 2 2 2 2,    0,0s s sX Xβ ε β εµ φ− − ++

FIGURE A1. Structure of the Game with Asymmetric
Payo¤s

ε1

ε2

'
1 1w w wXµ β φ+ −

'
2 2 2sX β φ+

'
2 2 2 2 2( )s w wX pβ φ φ φ+ + −

'
2 2 2wX β φ−

Separating

PoolingSeparating

'
1 1s s sXµ β φ+ +

Pooling

Separating

Semi − separating

Semi − separating

(B,F : p)

(Q,F :1 − p)

( , )B F

(Q,F :1− p) (Q,F)( , )B F

( , )Q F

( , )Q F

(Q, NF :1− p)

( , )Q NF

( , )Q NF

(B, NF : p)

(B, NF)

( , )B NF

( , )B NF(B, NF : p)

FIGURE A2. Uniqueness of Equilibrium under
Asymmetric Payo¤s

C Conditional Probabilities of Four Observed Outcomes
Summarizing the result derived in the Appendix D.2, here we provide the conditional probabilities of four observed
outcomes in the game with IS-A and SA-2 under asymmetric payo¤s of Figure A1. For the game with IS and SA-1,
we obtain the same conditional probabilities in replace of p(Z) with p and W with X, respectively. Also note that
the corresponding conditional probabilities of the symmetric payo¤s game (Figure 2) are easily obtained by replacing
�s & �w with �1 and �s & �w with �, respectively.

1 (Y1 = 1; Y2 = 1) : (B;NF )
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It happens under S5 with probability one (pooling), under S3[S7 with probability p(Z) (separating), and under
S2 [ S6 (semi-separating). From these, we have

Pr (Y1 = 1; Y2 = 1jW;�) =
G1 (�w +X 0

1�w � �1w) (G2 (X
0
2�2 + p(Z) (�2s + �2w)� �2w)�G2 (X

0
2�2 � �2w))

+p(Z) (G1 (�s +X 0
1�s + �1s)�G1 (�w +X 0

1�w � �1w)) (G2 (X
0
2�2 + �2s)�G2 (X

0
2�2 � �2w))

+p(Z)G2 (X
0
2�2 � �2w)

+

R 1
0
(p(Z) + (1� p(Z))�wB) g2

�
X 0
2�2 +

�
p(Z)

p(Z)+�w
B
�(1�p(Z))

�
(�2s + �2w)� �2w

�
p(Z)(1�p(Z))(�2s+�2w)
(p(Z)+(1�p(Z))�wB)

2 d�wB

�
R 1
0
e�2g1 ��w +X 0

1�w �
�1we�2

�
�1we�22 de�2

+

R 1
0
p(Z)�sBg2

�
X 0
2�2 +

�
(1��sB)p(Z)

(1��sB)p(Z)+(1�p(Z))

�
(�2s + �2w)� �2w

�
p(Z)(1�p(Z))(�2s+�2w)

(1��sBp(Z))
2 d�sB

�
R 1
0
�2g1

�
�s +X 0

1�s +
�1s
1��2

�
�1s

(1��2)2
d�2

2 (Y1 = 1; Y2 = 0) : (B;F )

It happens under S1 with probability p(Z) (separating) and under S2 [ S6 (semi-separating). From these, we
obtain

Pr (Y1 = 1; Y2 = 0jW;�) =
p(Z) (1�G2 (X

0
2�2 + �2s))

+

R 1
0
(p(Z) + (1� p(Z))�wB) g2

�
X 0
2�2 +

�
p(Z)

p(Z)+�w
B
�(1�p(Z))

�
(�2s + �2w)� �2w

�
p(Z)(1�p(Z))(�2s+�2w)
(p(Z)+(1�p(Z))�wB)

2 d�wB

�
R 1
0
(1� e�2) g1 ��w +X 0

1�w �
�1we�2

�
�1we�22 de�2

+

R 1
0
p(Z)�sBg2

�
X 0
2�2 +

�
(1��sB)p(Z)

(1��sB)p(Z)+(1�p(Z))

�
(�2s + �2w)� �2w

�
p(Z)(1�p(Z))(�2s+�2w)

(1��sBp(Z))
2 d�sB

�
R 1
0
(1� �2) g1

�
�s +X 0

1�s +
�1s
1��2

�
�1s

(1��2)2
d�2

3 (Y1 = 0; Y2 = 1) : (Q;NF )

It happens under S7 with probability 1 � p(Z) (separating), and under S2 [ S6 (semi-separating). From these,
we have

Pr (Y1 = 0; Y2 = 1jW;�) =
(1� p(Z))G2 (X

0
2�2 � �2w)

+

R 1
0
(1� p(Z)) (1� �wB) g2

�
X 0
2�2 +

�
p(Z)

p(Z)+�w
B
�(1�p(Z))

�
(�2s + �2w)� �2w

�
p(Z)(1�p(Z))(�2s+�2w)
(p(Z)+�w

B
�(1�p(Z)))2 d�wB

�
R 1
0
e�2g1 ��w +X 0

1�w �
�1we�2

�
�1we�22 de�2

+

R 1
0
(1� �sBp(Z)) g2

�
X 0
2�2 +

�
(1��sB)p(Z)
1��s

B
p(Z)

�
(�2s + �2w)� �2w

�
p(Z)(1�p(Z))(�2s+�2w)

(1��sBp(Z))
2 d�sB

�
R 1
0
�2g1

�
�s +X 0

1�s +
�1s
1��2

�
�1s

(1��2)2
d�2

4 (Y1 = 0; Y2 = 0) : (Q;F )

It happens under S4 with probability one (pooling), under S1 [ S3 with probability 1 � p(Z) (separating), and
under S2 [ S6 (semi-separating). From these, we conclude

Pr (Y1 = 0; Y2 = 0jW;�) =
(1�G1 (�s +X 0

1�s + �1s)) (G2 (X
0
2�2 + �2s)�G2 (X

0
2�2 + p(Z) (�2s + �2w)� �2w))

+(1� p(Z)) (1�G2 (X
0
2�2 + �2s))

+ (1� p(Z)) (G1 (�s +X 0
1�s + �1s)�G1 (�w +X 0

1�w � �1w)) (G2 (X
0
2�2 + �2s)�G2 (X

0
2�2 � �2w))

+

R 1
0
(1� p(Z)) (1� �wB) g2

�
X 0
2�2 +

�
p(Z)

p(Z)+�w
B
�(1�p(Z))

�
(�2s + �2w)� �2w

�
p(Z)(1�p(Z))(�2s+�2w)
(p(Z)+�w

B
�(1�p(Z)))2 d�wB

�
R 1
0
(1� e�2) g1 ��w +X 0

1�w �
�1we�2

�
�1we�22 de�2

+

R 1
0
(1� �sBp(Z)) g2

�
X 0
2�2 +

�
(1��sB)p(Z)
1��s

B
p(Z)

�
(�2s + �2w)� �2w

�
p(Z)(1�p(Z))(�2s+�2w)

(1��sBp(Z))
2 d�sB

�
R 1
0
(1� �2) g1

�
�s +X 0

1�s +
�1s
1��2

�
�1s

(1��2)2
d�2

:
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Appendix II

D Perfect Bayesian Equilibrium

D.1 De�nition of PBE
We let P (h) and A(h) be the player function and the action set at the history h, respectively.

De�nition D.1 (Osborne and Rubinstein (p.233, 1994))
Let h�; (�i) ; (pi); (ui)i be a Bayesian extensive game with observable actions, where � = hN;H;P i. A pair ((�i) ; (�i)) =�
(�i (ti))i2N;ti2�i ; (�i(h))i2N;h2HnT

�
, where �i(ti) is a behavioral strategy of player i in �, �i(h) is a probability

measure on �i, and T is the terminal history, is a perfect Bayesian equilibrium of the game if the following conditions
are satis�ed

� Sequential Rationality: For every nonterminal history h 2 HnT every player i 2 P (h), every ti 2 �i,
ui(��i; �i(ti); ��ijh) is at least as good for type ti as ui(��i; si; ��ijh) for any strategy si of player i in �.

� Correct initial beliefs: �i(?) = pi for each i 2 N
� Action-determined beliefs: If i =2 P (h) and a 2 A(h) then �i(h; a) = �i(h); if i 2 P (h), a 2 A(h), a0 2 A(h),
and ai = a0i then �i(h; a) = �i(h; a

0).
� Bayesian updating: If i 2 P (h) and ai is in the support of �i (ti) (h) for some ti in the support of ti(h) then
for any t0i 2 �i we have

�i(h; a)(t
0
i) =

�i(t
0
i)(h)(ai) � �i(h)(t0i)P

ti2�i �i(ti)(h)(ai) � �i(h)(ti)
:

D.2 PBE of the Game G with IS
We derive equilibria of the game with asymmetric payo¤s as in Figure A1. Equilibria of the game with symmetric
payo¤s (�s = �w, �s = �w) are easily obtained from the results in this section. We impose �1s > 0, �1w > 0, �2s � 0,
and �2w � 0 (but �2s � �2w 6= 0). We let Ei [ui (t1;A1; A2)] be the expected payo¤s of Player i based on Player i�s
information for i 2 f1; 2g.

D.2.1 Pooling Equilibria

P-1) Pooling Equilibrium (both ts and tw choose B):
Then, Player 2 does not update its belief and thus the posterior equals to the prior belief: �2(t1 = tsjB) = p and

�2(t1 = twjB) = 1� p. Thus, the expected payo¤s of Player 2 from choosing each action on the equilibrium path will
be

E2[u2(t1;B;NF )] = X 0
2�2 + p � �2s � "2 and E2[u2(t1;B;F )] = (1� p) � �2w

and hence Y2jB = 1 fX 0
2�2 + p (�2s + �2w)� �2w � "2 � 0g on the equilibrium path. The resulting payo¤s of each

type of Player 1 on the equilibrium path will be

Y2jB = 1 Y2jB = 0
u1 (ts;B; �) �s +X 0

1�s � "1 0
u1 (tw;B; �) �w +X 0

1�w � "1 � �1w ��1w

1) To have Y2jB = 1 as an equilibrium with pooling (A1ts ; A1tw ) = (B;B):

P1-11: ts should have no incentive to deviate. If u1(ts;B;NF ) = �s + X 0
1�s � "1 � u1(ts; Q; F ) = ��1s, then

no matter what the value of �2(t1 = tsjQ), ts has no incentive to deviate by construction. Now assume
�s + X 0

1�s � "1 � ��1s. Player 1 expect that Player 2 with �2 � �2(t1 = tsjQ) as o¤-the-equilibrium belief
will choose Y2jQ = 1 fX 0

2�2 + �2(�2s + �2w)� �2w � "2 � 0g. To make Player 1 not deviate, the belief should
induce Player 2 chooses NF after observing Q. It is required that Y2jQ = 1 while Y2jB = 1. This holds when
min (X 0

2�2 + p (�2s + �2w)� �2w; X
0
2�2 + �2 (�2s + �2w)� �2w) � "2.
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P1-12: tw should have no incentive to deviate. Since u1(tw;B;NF ) < u1(tw;Q;NF ), Player 1 of type tw has an
incentive to deviate unless u1(tw;B;NF ) � u1(tw;Q;F ) and Player 2 chooses F after seeing Q (while choosing
NF if seeing B). Not-to-deviate conditions require that �w+X

0
1�w�"1��1w � 0 and X 0

2�2+�2 (�2s + �2w)�
�2w � "2 � X 0

2�2 + p (�2s + �2w)� �2w.

Combining P1-11 and P1-12, we conclude that Y2jB = 1 and Y2jQ = 0 with pooling (A1ts ; A1tw ) = (B;B) can be
supported as an equilibrium where Player 2 assigns a belief with �2 � �2(t1 = tsjQ) under

"1 � min
�
�w +X 0

1�w � �1w; �s +X 0
1�s + �1s

�
and

X 0
2�2 + �2 (�2s + �2w)� �2w � "2 � X 0

2�2 + p (�2s + �2w)� �2w; (34)

which requires �2 < p33 for the existence of this equilibrium. Note that for any �2 < p satisfying (34), the equilibrium
is supported34 and hence regions of ("1; "2) that support the equilibrium are actually

"1 � min
�
�w +X 0

1�w � �1w; �s +X 0
1�s + �1s

�
and X 0

2�2 � �2w � "2 � X 0
2�2 + p (�2s + �2w)� �2w:

2) To have Y2jB = 0 as an equilibrium with pooling (A1ts ; A1tw ) = (B;B):
We �rst assume that Player 1 expects that Player 2 will have �2 � �2(t1 = tsjQ) as o¤-the-equilibrium belief

after observing Q.

P1-21: ts should have no incentive to deviate. Player 1 of type ts will have no incentive to deviate from the equilibrium
in either of two cases

i. u1 (ts;Q;NF ) � u1(ts;B;F ). This holds when "1 � �s +X 0
1�s � �1s.

ii. u1 (ts;Q;NF ) � u1(ts;B;F ) but Y2jQ = 0. This holds when "1 � �s+X
0
1�s��1s and X 0

2�2+�2 (�2s + �2w)�
�2w � "2.

P1-22: tw should have no incentive to deviate. Since u1 (tw;B;F ) < u1(tw;Q;F ), Player 1 of type tw has an incentive
to deviate unless u1 (tw;Q;NF ) � u1(tw;B;F ) and Y2jQ = 1. This requires "1 � �w + X 0

1�w + �1w and
X 0
2�2 + �2 (�2s + �2w)� �2w � "2 for not-to-deviate play.

Combining P1-21 and P1-22, we conclude that under

"1 � max
�
�s +X 0

1�s � �1s; "1; �w +X 0
1�w + �1w

�
and

X 0
2�2 + p (�2s + �2w)� �2w � "2 � X 0

2�2 + �2 (�2s + �2w)� �2w; (35)

the equilibrium of Y2jB = 0 and Y2jQ = 1 with pooling (A1ts ; A1tw ) = (Q;Q) can be supported as an equilibrium
where Player 2 holds o¤-the-equilibrium belief �2 � �2(t1 = tsjQ). Note that for any �2 > p that satis�es (35), the
equilibrium is supported35 and hence regions of ("1; "2) that support the equilibrium are actually

"1 � max
�
�s +X 0

1�s � �s; �w +X 0
1�w + �w

�
and X 0

2�2 + p (�2s + �2w)� �2w � "2 � X 0
2�2 + �2s.

P-2) Pooling Equilibrium (both ts and tw choose Q):
In this case, Player 2 does not update its belief and thus the posterior equals to the prior belief: �2(t1 = tsjQ) = p

and �2(t1 = twjQ) = 1�p. Thus, the expected payo¤s of Player 2 from choosing each action on the equilibrium path
will be

E2[u2(t1;Q;NF )] = X 0
2�2 + p � �2s � "2 and E2[u2(t1;Q;F )] : (1� p) � �2w

and hence Y2jQ = 1 fX 0
2�2 + p (�2s + �2w)� �2w � "2 � 0g on the equilibrium path. The resulting payo¤s of each

type of Player 1 on the equilibrium path will be

Y2jQ = 1 Y2jQ = 0
u1(ts;Q; �) �s +X 0

1�s � "1 � �1s ��1s
u1(tw;Q; �) �w +X 0

1�w � "1 0
.

1) To have Y2jQ = 1 as an equilibrium with pooling (ts; tw) = (Q;Q):

33Note that �2s + �2w > 0.
34This means that for any realization of X2 and "2 satisfying "2 � X0

2�2 + p (�2s + �2w) � �2w, there exist values of
�2 = �2(X

0
2�2; p; �2s; �2w; "2), 0 � �2 < p such that (34) holds.

35Similarly as before, this means that for any realization of X2 and "2 satisfying "2 � X0
2�2 + p (�2s + �2w) � �2w, there

exist values of �2 = �2(X
0
2�2; p; �2s; �2w; "2), p < �2 � 1 such that (35) holds.
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P2-11: tw should have no incentive to deviate. If u1(tw;Q;NF ) = �w + X 0
1�w � "1 � u1(tw;B;F ) = ��1w, then

no matter what the value of �2(t1 = tsjB), tw has no incentive to deviate by construction. Now assume
�w + X 0

1�w � "1 � ��1w. Player 2 with e�2 � �2(t1 = tsjB) as o¤-the-equilibrium belief will choose Y2jB =
1 fX 0

2�2 + e�2 (�2s + �2w)� �2w � "2 � 0g. Thus, Player 1 of type tw will have no incentive to deviate from
the equilibrium if Player 2 chooses NF after observing B. This requires that Y2jB = 1 together with Y2jQ = 1:

"2 � min(X 0
2�2 + p (�2s + �2w)� �2w; X

0
2�2 + e�2 (�2s + �2w)� �2w):

P2-12: ts should have no incentive to deviate. Since u1(ts;Q;NF ) < u1(ts;B;NF ), Player 1 of type ts has an incentive
to deviate unless u1(ts;Q;NF ) � u1(ts;B;F ) and Player 2 chooses F after seeing B (while choosing NF if
seeing Q). Not-to-deviate conditions require that �s+X

0
1�1� "1��1s � 0 and X 0

2�2+ e�2 (�2s + �2w)��2w �
"2 � X 0

2�2 + p (�2s + �2w)� �2w.

Combining P2-11 and P2-12, we conclude that Y2jQ = 1 and Y2jB = 0 with pooling (A1ts ; A1tw ) = (Q;Q) can be
supported as an equilibrium where Player 2 holds o¤-the-equilibrium belief e�2 � �2(t1 = tsjB) under

"1 � min
�
�s +X 0

1�s � �1s; �w +X 0
1�w + �1w

�
and

X 0
2�2 + e�2 (�2s + �2w)� �2w � "2 � X 0

2�2 + p (�2s + �2w)� �2w; (36)

which requires e�2 < p for the existence of this equilibrium. Note that for any e�2 < p that satis�es (36), the equilibrium
is supported similarly as before and hence regions of ("1; "2) that support the equilibrium are actually

"1 � min
�
�s +X 0

1�s � �1s; �w +X 0
1�w + �1w

�
and X 0

2�2 � �2w � "2 � X 0
2�2 + p (�2s + �2w)� �2w.

2) To have Y2jQ = 0 as an equilibrium with pooling (A1ts ; A1tw ) = (Q;Q):

We �rst assume that Player 1 expect that Player 2 will have ee�2 � �2(t1 = tsjB) as o¤-the-equilibrium belief after
observing B.

P2-21: tw should have no incentive to deviate. Player 1 of type tw will have no incentive to deviate from the equilibrium
in either of two cases

i. u1 (tw;B;NF ) � u1(tw;Q;F ). This holds when "1 � �w +X 0
1�w � �1w.

ii. u1 (tw;Q;NF ) � u1(tw;Q;F ) but Y2jB = 0:
P2-22: ts should have no incentive to deviate. Since u1 (ts; Q; F ) < u1(ts; B; F ), Player 1 of type ts has an incentive

to deviate unless u1 (ts; B;NF ) � u1(ts; Q; F ) and Y2jB = 1.

Combining P2-21 and P2-22, we conclude that Y2jQ = 0 and Y2jB = 1 with pooling (A1ts ; A1tw ) = (Q;Q) can be
supported as an equilibrium under

"1 � max
�
�w +X 0

1�w � �1w; �s +X 0
1�s + �1s

�
and

X 0
2�2 + p (�2s + �2w)� �2w � "2 � X 0

2�2 +
ee�2 (�2s + �2w)� �2w. (37)

Similarly to the previous case, note that for any ee�2 > p satisfying (37), the equilibrium is supported and hence regions
of ("1; "2) that support the equilibrium are actually

"1 � max
�
�w +X 0

1�w � �1w; �s +X 0
1�s + �1s

�
and X 0

2�2 + p (�2s + �2w)� �2w � "2 � X 0
2�2 + �2s.

D.2.2 Separating Equilibria

S-1) Separating Equilibrium (ts chooses B and tw choose Q):
In the separating equilibrium, Player 2 has complete information once it observes the signal. Thus, �2(t1 =

tsjB) = 1 and �2(t1 = tsjQ) = 0. Upon seeing B Player 2 will choose NF if u2 (ts;B;NF ) � u2 (ts;B;F ) and
choose F otherwise. This implies Y2jB � 1 fX 0

2�2 + �2s � "2 � 0g. Similarly upon seeing Q Player 2 will have
Y2jQ = 1 fX 0

2�2 � "2 � �2wg :
1) To have

�
Y2jB = 1; Y2jQ = 1

�
as an equilibrium with separating (A1ts ; A1tw ) = (B;Q): (When "2 � X 0

2�2��2w)

S1-11: ts should have no incentive to deviate. It requires u1(ts;B;NF ) = �s + X 0
1�s � "1 � u1(ts;Q;NF ) =

�s +X 0
1�s � "1 � �1s, which holds for all "1.
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S1-12: tw should have no incentive to deviate. It requires u1(tw;Q;NF ) = �w + X 0
1�w � "1 � u1(tw;B;NF ) =

�w +X 0
1�w � "1 � �1w, which also holds for all "1.

Combining S1-11 and S1-12, we conclude that
�
Y2jB = 1; Y2jQ = 1

�
with separating (A1ts ; A1tw ) = (B;Q) can be

supported as an equilibrium as long as "2 � X 0
2�2 � �2w.

2) To have
�
Y2jB = 1; Y2jQ = 0

�
as an equilibrium with separating (A1ts ; A1tw ) = (B;Q): (When X

0
2�2 � �2w �

"2 � X 0
2�2 + �2s)

S1-21: ts should have no incentive to deviate. It requires u1(ts;B;NF ) = �s + X 0
1�s � "1 � u1(ts;Q;F ) = ��1s,

which holds for "1 � �s +X 0
1�s + �1s.

S1-22: tw should have no incentive to deviate. It requires u1(tw;Q;F ) = 0 � u1(tw;B;NF ) = �w +X
0
1�w � "1��1w,

which holds for "1 � �w +X 0
1�w � �1w.

Combining S1-21 and S1-22, we conclude that
�
Y2jB = 1; Y2jQ = 0

�
with separating (A1ts ; A1tw ) = (B;Q) can be

supported as an equilibrium under36

X 0
2�2 � �2w � "2 � X 0

2�2 + �2s and �w +X 0
1�w � �1w � "1 � �s +X 0

1�s + �1s.

3) To have
�
Y2jB = 0; Y2jQ = 1

�
as an equilibrium with separating (A1ts ; A1tw ) = (B;Q): There is no such "2

that supports this equilibrium since �2s � 0, �2w � 0, and �2s � �2w 6= 0.
4) To have

�
Y2jB = 0; Y2jQ = 0

�
as an equilibrium with separating (A1ts ; A1tw ) = (B;Q): (When "2 � X 0

2�2+�2s)

S1-41: ts should have no incentive to deviate. It requires u1(ts;B;F ) = 0 � u1(ts;Q;F ) = ��1s, which holds for all
"1.

S1-42: tw should have no incentive to deviate. It requires u1(tw;Q;F ) = 0 � u1(tw;B;F ) = ��1w, which also holds
for all "1.

Combining S1-41 and S1-42, we conclude that
�
Y2jB = 0; Y2jQ = 0

�
with separating (A1ts ; A1tw ) = (B;Q) can be

supported as an equilibrium as long as "2 � X 0
2�2 + �2s.

S-2) Separating Equilibrium (ts chooses Q and tw choose B):
In the separating equilibrium, Player 2 has complete information once it observes the signal. Thus, �2(t1 =

tsjB) = 0 and �2(t1 = tsjQ) = 1. Upon seeing B Player 2 will choose NF if u2 (tw; B;NF ) � u2 (tw; B; F )
and choose F otherwise. This implies Y2jB � 1 fX 0

2�2 � "2 � �2wjBg. Similarly upon seeing Q Player 2 will have
Y2jQ = 1 fX 0

2�2 � "2 + �2s � 0g :
1) To have

�
Y2jB = 1; Y2jQ = 1

�
as an equilibrium with separating (A1ts ; A1tw ) = (Q;B): (When "2 � X 0

2�2��2w)
ts should have no incentive to deviate. It requires u1(ts;Q;NF ) = �s + X 0

1�s � "1 � �1s � u1(ts;B;NF ) =
�s +X 0

1�s � "1. Hence there is no such "1 that satis�es this condition since �1s > 0. Thus, Y2jB = 1; Y2jQ = 1 with
separating (A1ts ; A1tw ) = (Q;B) cannot be an equilibrium.

2) To have
�
Y2jB = 1; Y2jQ = 0

�
as an equilibrium with separating (A1ts ; A1tw ) = (Q;B): There is no such "2

that supports this equilibrium since �2s � 0, �2w � 0, and �2s � �2w 6= 0.
3) To have

�
Y2jB = 0; Y2jQ = 1

�
as an equilibrium with separating (A1ts ; A1tw ) = (Q;B): (When X

0
2�2 � �2w �

"2 � X 0
2�2 + �2s)

S2-21: ts should have no incentive to deviate. It requires u1(ts;Q;NF ) = �s +X 0
1�s � "1 � �1s � u1(ts;B;F ) = 0,

which holds for "1 � �s +X 0
1�s � �1s.

S2-22: tw should have no incentive to deviate. It requires u1(tw;B;F ) = ��1w � u1(tw;Q;NF ) = �w +X 0
1�w � "1,

which holds for "1 � �w +X 0
1�w + �1w.

Combining S1-21 and S1-22, we conclude that there is no such "1 satisfying both S1-21 and S-22 if �s+X
0
1�s��1s <

�w +X 0
1�w + �1w.

4) To have
�
Y2jB = 0; Y2jQ = 0

�
as an equilibrium with separating (A1ts ; A1tw ) = (Q;B): (When "2 � X 0

2�2+�2s)
ts should have no incentive to deviate. It requires u1(ts;Q;F ) = ��1s � u1(ts;B;F ) = 0. Hence there is no such

"1 that satis�es this condition since �1s > 0. Thus, Y2jB = 0; Y2jQ = 0 with separating (A1ts ; A1tw ) = (Q;B) cannot
be an equilibrium.

36 If �w +X
0
1�w � �w > �s +X0

1�s + �s, this equilibrium does not exist.
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D.2.3 Semi-Separating Equilibria
We characterize the semi-separating equilibria in this section.

SS-1: The weak type of Player 1 plays the separating equilibrium with Q and the strong type random-
izes with �ts(B) = �sB :
Then,

�2(t1 = tsjB) =
�sB � p
�sB � p

= 1 and �ss2 � �2(t1 = tsjQ) =
(1� �sB) p

(1� �sB) p+ (1� p)
2 (0; p)

which implies that the expected payo¤ of Player 2 for each action will be

E2 [u2(t1;Q;NF )] = X 0
2�2 + �ss2 �2s � "2; E2[u2(t1;Q;F )] = (1� �ss2 )�2w;

E2[u2(t1;B;NF )] = X 0
2�2 + �2s � "2; and E2[u2(t1;B;F )] = 0.

Player 2 will be indi¤erent between NF and F after observing Q if "2 = X 0
2�2 + �ss2 (�2s + �2w) � �2w and

under this, Player 2 will choose NF after seeing B since "2 = X 0
2�2 + �ss2 (�2s + �2w) � �2w and �

ss
2 2 (0; p)

implies that E2[u2(t1;B;NF )] > E2[u2(t1;B;F )]. Therefore, for the strong type of Player 1 to be indi¤erent
between choosing B and Q, we require that

�s +X 0
1�s � "1 = u1(ts;B;NF ) = E1 [u1(ts;Q; �)]

= �2(NF )
�
�s +X 0

1�s � "1 � �1s
�
+ (1� �2(NF ))(��1s)

where �2(NF ) is the probability that Player 2 chooses NF . It follows that we require "1 = �s+X1�s+
�1s

1��2(NF )
where 0 � �2(NF ) � 1. Noting "1 varies from �s +X1�s + �1s to in�nity and "2 varies from X 0

2�2 � �2w to
X 0
2�2+ p(�2s+�2w)��2w since �ss2 2 (0; p), this implies that under region S6, there exist the semi-separating

of SS-1. Finally note that we have

"1 = �s +X1�s +
�1s

1� �2(NF )
and "2 = X 0

2�2 +

�
(1� �sB) p

(1� �sB) p+ (1� p)

�
(�2s + �2w)� �2w. (38)

SS-2: The strong type of Player 1 plays the separating equilibrium with B and the weak type random-
izes with �tw (B) = �wB :
Then,

e�ss2 = �2(t1 = tsjB) =
p

p+ �wB � (1� p)
2 (p; 1) and �2(t1 = tsjQ) =

0

(1� �wB) � (1� p)
= 0

which implies that the expected payo¤ of Player 2 for each action will be

E2[u2(t1;Q;NF )] = X 0
2�2 � "2; E2[u2(t1;Q;F )] = �2w;

E2[u2(t1;B;NF )] = X 0
2�2 + e�ss2 �2s � "2; and E2[u2(t1;B;F )] = (1� e�ss2 )�2w.

Player 2 will be indi¤erent between NF and F after observing B if "2 = X 0
2�2 + e�ss2 (�2s + �2w) � �2w and

under this, Player 2 will choose F after seeing Q since "2 = X 0
2�2 + e�ss2 (�2s + �2w) � �2w and e�ss2 2 (p; 1)

implies that E2[u2(t1;Q;NF )] < E2[u2(t1;Q;F )]. Therefore, for the weak type of Player 1 to be indi¤erent
between choosing B and Q, we require that

0 = u1(tw;Q;F ) = E1 [u1(tw;B; �)] = e�2(NF ) ��w +X 0
1�w � "1 � �w

�
+ (1� e�2(NF ))(��w)

where e�2(NF ) is the probability that Player 2 chooses NF . It follows that we require "1 = �w+X1�w�
�we�2(NF )

where 0 � e�2(NF ) � 1. This implies that under region S2, there exist the semi-separating of SS-2 noting "1
varies from �w +X1�w � �w to negative in�nity and "2 varies from X 0

2�2 + p(�2s + �2w)� �2w to X 0
2�2 + �2s

since e�ss2 2 (p; 1). Finally note

"1 = �w +X1�w �
�1we�2(NF ) and "2 = X 0

2�2 +

�
p

p+ �wB � (1� p)

�
(�2s + �2w)� �2w. (39)
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D.2.4 Existence of Well-de�ned Likelihood for Semi-Separating

We let �2 � �2(NF ) and e�2 � e�2(NF ). In the equilibrium of SS-1 under the region of S6, four observed outcomes
can arise with following probabilities, respectively, denoted by

Pr(Y1 = 1; Y2 = 1;S6; �
s
B ; �2) =

R
S6
p � �sB("2) � �2("1)g1("1)g2("2)d"1d"2

Pr(Y1 = 1; Y2 = 0;S6; �
s
B ; �2) =

R
S6
p � �sB("2) � (1� �2("1)) g1("1)g2("2)d"1d"2

Pr(Y1 = 0; Y2 = 1;S6; �
s
B ; �2) =

R
S6
(p (1� �sB("2)) + (1� p)) � �2("1)g1("1)g2("2)d"1d"2

Pr(Y1 = 0; Y2 = 0;S6; �
s
B ; �2) =

R
S6
(p (1� �sB("2)) + (1� p)) � (1� �2("1)) g1("1)g2("2)d"1d"2.

For example, Pr(Y1 = 1; Y2 = 1;S6; �sB ; �2) is obtained using the following facts. Conditional on ("1; "2), (B;NF ) is
observed when the nature draw the strong type with the probability p, the strong type plays B with the probability
�sB("2), and Player 2 plays NF with probability �2("1) after observing B. Thus, the conditional probability of
observing (B;NF ) conditional on ("1; "2) is given by

p � �sB("2) � �2("1) (40)

and we obtain the unconditional probability by taking expectation of (40) with respect to ("1; "2) 2 S6. Similarly,
Pr(Y1 = 0; Y2 = 1;S6; �

s
B ; �2) is obtained from the followings. Conditional on ("1; "2), (Q;NF ) is observed in two

cases: 1) the nature draw the strong type with the probability p, the strong type plays Q with the probability
1� �sB("2), and Player 2 plays NF with probability �2("1) after observing Q and 2) the nature draw the weak type
with the probability 1� p, the weak type plays Q with the probability one (separating), and Player 2 plays NF with
probability �2("1) after observing Q. Thus, the conditional probability of observing (Q;NF ) conditional on ("1; "2)
is given by

(p (1� �sB("2)) + (1� p)) � �2("1) (41)

and we obtain the unconditional probability by taking expectation of (41) with respect to ("1; "2) 2 S6. Other
probabilities can be interpreted similarly.

Some changes of variables using the relationship of �sB and "2 and that of �2 and "1 as shown in (38) give us

Pr(Y1 = 1; Y2 = 1;S6; �
s
B ; �2) =

p
R 1
0
�sB g2

�
X 0
2�2 +

�
(1��sB)p

(1��sB)p+(1�p)

�
(�2s + �2w)� �2w

�
p(1�p)(�2s+�2w)
(1��sBp)

2 d�sB

�
R 1
0
�2g1

�
�s +X1�s +

�1s
1��2

�
�1s

(1��2)2
d�2

Pr(Y1 = 1; Y2 = 0;S6; �
s
B ; �2) =

p
R 1
0
�sB g2

�
X 0
2�2 +

�
(1��sB)p

(1��sB)p+(1�p)

�
(�2s + �2w)� �2w

�
p(1�p)(�2s+�2w)
(1��sBp)

2 d�sB

�
R 1
0
(1� �2) g1

�
�s +X1�s +

�1s
1��2

�
�1s

(1��2)2
d�2

Pr(Y1 = 0; Y2 = 1;S6; �
s
B ; �2) =R 1

0
(p (1� �sB) + (1� p)) g2

�
X 0
2�2 +

�
(1��sB)p

(1��sB)p+(1�p)

�
(�2s + �2w)� �2w

�
p(1�p)(�2s+�2w)
(1��sBp)

2 d�sB

�
R 1
0
�2g1

�
�s +X1�s +

�1s
1��2

�
�1s

(1��2)2
d�2

Pr(Y1 = 0; Y2 = 0;S6; �
s
B ; �2)R 1

0
(p (1� �sB) + (1� p)) g2

�
X 0
2�2 +

�
(1��sB)p

(1��sB)p+(1�p)

�
(�2s + �2w)� �2w

�
p(1�p)(�2s+�2w)
(1��sBp)

2 d�sB

�
R 1
0
(1� �2) g1

�
�s +X1�s +

�1s
1��2

�
�1s

(1��2)2
d�2

where we use the fact that d"2 = � p(1�p)
(1��sBp)

2 (�2s + �2w)d�
s
B , d"1 =

�1s
(1��2)2

d�2, and the independence of "1 and "2.

Similarly, in the equilibrium of SS-2 under the region of S2, four observed outcomes can arise with following
probabilities, respectively, denoted by

Pr(Y1 = 1; Y2 = 1;S2; �
w
B ; e�2) = RS2 (p+ (1� p)�wB("2)) � e�2("1)g1("1)g2("2)d"1d"2

Pr(Y1 = 1; Y2 = 0;S2; �
w
B ; e�2) = RS2 (p+ (1� p)�wB("2)) � (1� e�2("1)) g1("1)g2("2)d"1d"2

Pr(Y1 = 0; Y2 = 1;S2; �
w
B ; e�2) = RS2 (1� p) (1� �wB("2)) � e�2("1)g1("1)g2("2)d"1d"2

Pr(Y1 = 0; Y2 = 0;S2; �
w
B ; e�2) = RS2 (1� p) (1� �wB("2)) � (1� e�2("1)) g1("1)g2("2)d"1d"2.
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Some changes of variables using the relationship of �wB and "2 and that of e�2 and "1 as shown in (39) give us
Pr(Y1 = 1; Y2 = 1;S2; �

w
B ; e�2) =R 1

0
(p+ (1� p)�wB) g2

�
X 0
2�2 +

�
p

p+�w
B
�(1�p)

�
(�2s + �2w)� �2w

�
p(1�p)(�2s+�2w)
(p+(1�p)�wB)

2 d�wB

�
R 1
0
e�2g1 ��w +X1�w �

�1we�2
�
�1we�22 de�2

Pr(Y1 = 1; Y2 = 0;S2; �
w
B ; e�2) =R 1

0
(p+ (1� p)�wB) g2

�
X 0
2�2 +

�
p

p+�w
B
�(1�p)

�
(�2s + �2w)� �2w

�
p(1�p)(�2s+�2w)
(p+(1�p)�wB)

2 d�wB

�
R 1
0
(1� e�2) g1 ��w +X1�w �

�1we�2
�
�1we�22 de�2

Pr(Y1 = 0; Y2 = 1;S2; �
w
B ; e�2) =R 1

0
(1� p) (1� �wB) g2

�
X 0
2�2 +

�
p

p+�w
B
�(1�p)

�
(�2s + �2w)� �2w

�
p(1�p)(�2s+�2w)
(p+�w

B
�(1�p))2 d�wB

�
R 1
0
e�2g1 ��w +X1�w �

�1we�2
�
�1we�22 de�2

Pr(Y1 = 0; Y2 = 0;S2; �
w
B ; e�2) =R 1

0
(1� p) (1� �wB) g2

�
X 0
2�2 +

�
p

p+�w
B
�(1�p)

�
(�2s + �2w)� �2w

�
p(1�p)(�2s+�2w)
(p+�w

B
�(1�p))2 d�wB

�
R 1
0
(1� e�2) g1 ��w +X1�w �

�1we�2
�
�1we�22 de�2

where we use the fact that d"2 = � p(1�p)
(p+�wB(1�p))

2 (�2s + �2w)d�
w
B , d"1 =

�1we�22 de�2, and the independence of "1 and "2.
D.3 Equilibrium Re�nement and Uniqueness of Equilibrium with Asymmetric

Payo¤s
We make the following assumption to obtain uniqueness of equilibrium.

Condition 3 �w +X 0
1�w � �1w < �s +X 0

1�s + �1s for all X1 2 S(X1).

Condition 4 �s +X 0
1�s � �1s < �w +X 0

1�w + �1w for all X1 2 S(X1).

These conditions are su¢ cient for uniqueness of equilibria with the re�nement of Cho and Kreps (1987). Note
that Condition 3 holds immediately when �w = �s, and �s = �w (symmetric payo¤s) since �1s; �1w > 0. Note that
Condition 3 ensures the existence of the separating equilibrium (B;Q) with

�
Y2jB = NF; Y2jQ = F

�
(see S1-21 &

S1-22 in Section D.2.2) and Condition 4 eliminates the separating equilibrium (Q;B) with
�
Y2jB = NF; Y2jQ = F

�
(see S2-21 & S2-22 in Section D.2.2).

� Under region A � f("1; "2)j�s + X 0
1�s � �1s < "1 and X 0

2�2 + p (�2s + �2w) � �2w < "2 < X 0
2�2 + �2sg, we

show that the pooling (B;B) with A2jB = F cannot survive the Intuitive Criterion of Cho and Kreps (1987).

� Pooling with (B;B) with A2jB = F

Note u1(ts;B;F ) > u1(ts;Q;NF ) since �s + X 0
1�1 � "1 � �1s < 0 under A and note u1(ts;B;F ) >

u1(ts;Q;F ) since �1s > 0. This means that the strong type has no incentive to deviate in any case. Thus,
Player 2 will assign �2(t1 = tsjQ) = 0 and hence Player 2 will choose F after observing the deviation play
Q under A. Now we need to check whether the weak type is better o¤ by deviation under this situation.
Note

u1(tw;B;F ) = ��1w < u1 (tw;Q;F ) = 0.

Thus, the weak type will deviate for sure. Therefore, the equilibrium outcome fails the Intuitive Criterion.

� Under region eA � f("1; "2)j�s+X 0
1�s+�s < "1 and X 0

2�2+ p (�2s + �2w)��2w < "2 < X 0
2�2+�2sg, we show

that the pooling (Q;Q) with A2jQ = F survives the Intuitive Criterion of Cho and Kreps (1987).

� Pooling with (Q;Q) with A2jQ = F

Note u1(tw;Q;F ) > u1(tw;B;NF ) since �w +X 0
1�w � "1 � �1w < 0 under eA by Condition 3 and note

u1(tw;Q;F ) > u1(tw;B;F ) since �1w > 0. This means that the weak type has no incentive to deviate in
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any case. Thus, Player 2 will assign �2(t1 = tsjB) = 1 and hence Player 2 will choose NF after observing
the deviation play B under region eA. Now we need to check whether the strong type is better o¤ by
deviation under this situation. Note

u1(ts;Q;F ) = ��1s > u1 (ts;B;NF ) = �s +X 0
1�s � "1

under eA. Thus, the strong type will not deviate. Therefore, the equilibrium outcome survives the Intuitive
Criterion.

� Under region B � f("1; "2)j�w +X 0
1�w + �w > "1 and X 0

2�2 � �2w < "2 < X 0
2�2 + p (�2s + �2w) � �2wg, the

pooling (Q;Q) with A2jQ = NF cannot survive the Intuitive Criterion of Cho and Kreps (1987).

� Pooling with (Q;Q) with A2jQ = NF

Note u1(tw;Q;NF ) > u1(tw;B;F ) since �w +X 0
1�w � "1 + �1w > 0 under B and note u1(tw;Q;NF ) >

u1(tw;B;NF ) since �1w > 0. This means that the weak type has no incentive to deviate in any case. Thus,
Player 2 will assign �2(t1 = tsjB) = 1 and hence Player 2 will choose NF after observing the deviation
play B under region B. Now we need to check whether the strong type is better o¤ by deviation under
this situation. Note

u1(ts;Q;NF ) = �s +X 0
1�s � "1 � �1s < u1 (ts;B;NF ) = �s +X 0

1�s � "1

since �1s > 0. Thus, the strong type will deviate for sure. Therefore, the equilibrium outcome fails the
Intuitive Criterion.

� Under region eB � f("1; "2)j�w +X 0
1�w � �1w > "1 and X 0

2�2 � �2w < "2 < X 0
2�2 + p (�2s + �2w)� �2wg, the

pooling (B;B) with A2jB = NF survives the Intuitive Criterion of Cho and Kreps (1987).

� Pooling (B;B) with A2jB = NF

Note u1(ts;B;NF ) > u1(ts;Q;NF ) since �1s > 0 and note u1(ts;B;NF ) > u1(ts;Q;F ) under eB by
Condition 3. This means that the strong type has no incentive to deviate in any case. Thus, Player 2 will
assign �2(t1 = tsjQ) = 0 and hence Player 2 will choose F after observing the deviation play Q under
region eB. Now we need to check whether the weak type is better o¤ by deviation under this situation.
Note

u1(tw;B;NF ) = �w +X 0
1�w � "1 � �w > u1 (tw;Q;F ) = 0

under region eB. Thus, the weak type will not deviate. Therefore, the equilibrium outcome survives the
Intuitive Criterion.

E Alternative Information Structure (IS-2)
Here we introduce an additional incomplete information to the game. Namely, Player 2 has some private information
on her payo¤, not observed by Player 1.

Assumption E.1 (IS-2)

1 Player 1 knows its true type but Player 2 knows only the distribution of Player 1�s types (i.e., p is known to
Player 2).

2 The realizations of (X1; "1) and (X2; "2) are perfectly observed by Player 2 but Player 1 only observes (X1; "1)
and X2. (X1; X2) are public information.

3 "1 and "2 are pure shocks observed by Player 2, but Player 1 only observe her own "1. They are independent
of each other and of any other variables in the game. "1 is also independent of the type of Player 1.

4 Players� actions and beliefs constitute a Perfect Bayesian Equilibrium (Sequential Equilibrium). Whenever
there exist multiple equilibria, only one equilibrium is chosen out of these according to some equilibrium
re�nements. Players are assumed to play actions and hold beliefs of this unique equilibrium.

Under the game with IS, both players can perfectly observe (X1; "1) and (X2; "2), respectively but under this
game with IS-2, Player 1 cannot observe "2 while Player 2 observes (X1; "1) and (X2; "2) perfectly. It makes Player
1 take expectation over "2 when she derive her expected payo¤s depending on her choice of signals under the game
with IS-2.
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E.1 Equilibrium of the Game
In Section E.2, we characterize all possible PBE and obtain regions of ("1; "2) given X where a particular PBE exist.
We use a simplifying notation G�

2(a) � G2 (X
0
2�2 + a(�2s + �2w) � �2w). Figure A3 summarizes the result. Figure

A3 depicts the case that �1w > �1s and
�1s
�1w

>
G�2(p)�G

�
2(0)

G�2(1)�G
�
2(0)

. However, none of these conditions are necessary to

obtain a PBE. We, again, impose a structure �1s > 0, �1w > 0, �2s � 0, and �2w � 0 (but �2s � �2w 6= 0), which are
innocuous since a meaningful signaling game requires that (i) each signal corresponds to a particular type of Player
1 and (ii) Player 2 has an incentive to single out a particular type.

We conclude that

Theorem E.1 (Existence of Equilibrium under Additional Incomplete Information)
Suppose Assumptions IS-2 and SA-1 hold. Suppose also that �1s > 0, �1w > 0, �2s � 0, and �2w � 0 (but
�2s � �2w 6= 0). Then, there exist PBE for all regions of ("1; "2) given X.

See the Appendix E.2 for the proof. From Figure A3, we see that there exist multiple equilibria in several regions.
Similarly to the case of IS, we determine which equilibrium survives the re�nement but here we use Banks and Sobel
(1987)�s divinity concept 37 instead, which is stronger than Cho and Kreps (1987)38 . The results are summarized in
the following theorem (see the Appendix E.3.1).

Theorem E.2 Suppose Assumptions IS-2 and SA-1 hold and suppose that �1s > 0, �1w > 0, �2s � 0, and �2w � 0
(but �2s � �2w 6= 0). Then, (i) The pooling equilibrium with (A1s; A1w) = (B;B) survives the re�nement of Banks
and Sobel (1987) under "1 � �+X 0

1�1 �
�1w

G�2(p)�G
�
2(0)

; (ii) The pooling equilibrium (A1s; A1w) = (Q;Q) survives the

re�nement of Banks and Sobel (1987) under "1 � �+X 0
1�1 +

�1s
G�2(1)�G

�
2(p)

.
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FIGURE A3. Equilibrium of the Game under IS-2
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Figure A4 depicts the results and we conclude

Theorem E.3 (Uniqueness of Equilibrium)
Suppose Assumptions IS-2 and SA-1 hold. Suppose �1s > 0, �1w > 0, �2s � 0, and �2w � 0 (but �2s � �2w 6= 0).
Further suppose each Player plays only one equilibrium that survives the re�nement of Banks and Sobel (1987), when
there exist multiple equilibria. Then, the game G has the unique equilibrium for each region of ("1; "2) given X.

37The idea of �divinity� developed by Banks and Sobel (1987) is that if Player 2 observes a deviation play and if the set of
Player 2�s responses that makes type t1 willing to deviate from an equilibrium is strictly smaller than such a set for type t01, it
is reasonable to expect that Player 2 will think such deviation is more likely to be from type t01.
38We use Banks and Sobel (1987)�s re�nement, instead of Cho and Kreps (1987), because it is not feasible to apply Cho and

Kreps (1987)�s intuitive criterion to our game with additional incomplete information.
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Now similarly with the case of IS, from the result of Theorem E.3, we can obtain a well-de�ned likelihood
function under IS-2 and SA-1. Using the conditional probabilities of four possible observed outcomes presented in
the Appendix E.3.2, we can estimate the parameters of interest by the conditional ML as in (1). We note that the
additional incomplete information considered in this section may help the identi�cation of � and other parameters
since there are more critical values (four vertical lines in Figure A4 compared to two vertical lines in Figure 4) of
"1 that switches the kinds of equilibrium and these critical lines vary according to di¤erent values of X2. This is an
interesting result.

E.2 PBE of the Game G with IS-2
Again we derive equilibria of the game with asymmetric payo¤s as in Figure A1. Equilibria of the game with
symmetric payo¤s (�s = �w, �s = �w) are easily obtained from the results in this section.

E.2.1 Pooling Equilibria

P-1) Pooling Equilibrium (both ts and tw choose B):
In this case, Player 2 does not update her belief and thus the posterior equals to the prior belief: �2(t1 = tsjB) = p

and �2(t1 = twjB) = 1� p. Thus, Y2jB = 1 fX 0
2�2 + p(�2s + �2w)� �2w � "2 � 0jBg on the equilibrium path. Now

we de�ne G�
2(a) � G2 (X

0
2�2 + p(�2s + �2w)� �2w). The resulting payo¤s of each type of Player 1 on-the-equilibrium

path will be

Y2jB = 1 Y2jB = 0 Player 1�s expected payo¤s
u1 (ts;B; �) �s +X 0

1�s � "1 0 G�
2(p)

�
�s +X 0

1�s � "1
�

u1 (tw;B; �) �w +X 0
1�w � "1 � �1w ��1w G�

2(p)
�
�w +X 0

1�w � "1
�
� �1w

To have the pooling (A1ts ; A1tw ) = (B;B) as an equilibrium:

P1-1 ts should have no incentive to deviate. Player 1 of ts will note that Player 2 with �2 � �2(t1 = tsjQ) as o¤-
the-equilibrium belief will choose Y2jQ = 1 fX 0

2�2 + �2(�2s + �2w)� �2w � "2 � 0jQg which implies Pr(Y2jQ =
1) = G2 (X

0
2�2 + �2(�2s + �2w)� �2w) = G�

2(�2). Thus, Player 1 of type ts will have no incentive to deviate
from the equilibrium if

E1 [u1 (ts;Q;A2)] � E1[u1(ts;B;A2)]

which implies
G�
2(�2) �

�
�s +X 0

1�s � "1
�
� �1s � G�

2(p)
�
�s +X 0

1�s � "1
�
. (42)

P1-2 tw should have no incentive to deviate. tw has an incentive to deviate unless E1 [u1(tw;Q;A2)] � E [u1(tw;B;A2)].
This requires

G�
2(�2) �

�
�w +X 0

1�w � "1
�
� G�

2(p)
�
�w +X 0

1�w � "1
�
� �1w: (43)

Combining P1-1 and P1-2, we conclude that the pooling (A1ts ; A1tw ) = (B;B) with E
�
Y2jB

�
= G�

2(p) and
E
�
Y2jQ

�
= G�

2(�2) can be supported as an equilibrium under the following two cases.

� If �2 > p (noting any �2 > p satisfying (42) and (43) supports the equilibrium39 ), we need

max

�
�s +X 0

1�s �
�1s

G�
2(1)�G�

2(p)
; �w +X 0

1�w +
�1w

G�
2(1)�G�

2(p)

�
� "1. (44)

� If �2 < p (noting any �2 < p satisfying (42) and (43) supports the equilibrium similarly as before), we
need

min

�
�w +X 0

1�w �
�1w

G�
2(p)�G�

2(0)
; �s +X 0

1�s +
�1s

G�
2(p)�G�

2(0)

�
� "1. (45)

39This means that there exist values of �2 = �2(G
�
2(p); �s +X

0
1�s; �w +X

0
1�w; �1s; �1w; "1), p < �2 � 1 such that (42) and

(43) hold.
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P-2) Pooling Equilibrium (both ts and tw choose Q):
In this case, Player 2 does not update its belief and thus the posterior equals to the prior belief: �2(t1 = tsjQ) = p

and �2(t1 = twjQ) = 1 � p. Thus, Y2jQ = 1 fX 0
2�2 + p(�2s + �2w)� �2w � "2 � 0g on the equilibrium path. The

resulting payo¤s of each type of Player 1 on-the-equilibrium path will be

Y2jQ = 1 Y2jQ = 0 Player 1�s expected payo¤s
u1 (ts;Q; �) �s +X 0

1�s � "1 � �1s ��1s G�
2(p)

�
�s +X 0

1�s � "1
�
� �1s

u1 (tw;Q; �) �w +X 0
1�w � "1 0 G�

2(p)
�
�w +X 0

1�w � "1
�

To have the pooling (A1ts ; A1tw ) = (Q;Q) as an equilibrium:

P2-1 tw should have no incentive to deviate. Player 1 of tw will note that Player 2 with e�2 � �2(t1 = tsjB) as o¤-
the-equilibrium belief will choose Y2jB = 1 fX 0

2�2 + e�2(�2s + �2w)� �2w � "2 � 0jQg which means Pr(Y2jB =
1) = G2 (X

0
2�2 + e�2(�2s + �2w)� �2w) = G�

2(e�2). Thus, Player 1 of type tw will have no incentive to deviate
from the equilibrium if

E1 [u1 (tw;B;A2)] � E1[u1(tw;Q;A2)]

which implies
G�
2(e�2) � ��w +X 0

1�w � "1
�
� �1w � G�

2(p)
�
�w +X 0

1�w � "1
�
. (46)

P2-2 ts should have no incentive to deviate. ts has an incentive to deviate unless E1 [u1(ts; B;A2)] � E [u1(ts; Q;A2)].
This requires

G�
2(e�2) � ��s +X 0

1�s � "1
�
� G�

2(p)
�
�s +X 0

1�s � "1
�
� �1s: (47)

Combining P1-1 and P1-2, we conclude that the pooling (A1ts ; A1tw ) = (Q;Q) with E
�
Y2jQ

�
= G�

2(p) and
E
�
Y2jB

�
= G�

2(e�2) can be supported as an equilibrium under the following two cases.

� If e�2 > p (noting any e�2 > p satisfying (46) and (47) supports the equilibrium), we need

max

�
�s +X 0

1�s +
�1s

G�
2(1)�G�

2(p)
; �w +X 0

1�w �
�1w

G�
2(1)�G�

2(p)

�
� "1. (48)

� If e�2 < p (noting any e�2 < p satisfying (46) and (47) supports the equilibrium), we need

min

�
�s +X 0

1�s �
�1s

G�
2(p)�G�

2(0)
; �w +X 0

1�w +
�1w

G�
2(p)�G�

2(0)

�
� "1. (49)

E.2.2 Separating Equilibria

S-1) Separating Equilibrium (ts choose B and tw choose Q):
In the separating equilibrium, Player 2 has complete information once it observes the signal. Thus, �2(t1 =

tsjB) = 1 and �2(t1 = tsjQ) = 0. This implies Y2jB � 1 fX 0
2�2 + �2s � "2 � 0g. Similarly upon seeing Q Player 2

will have Y2jQ = 1 fX 0
2�2 � "2 � �2wg. The resulting payo¤s of each type of Player 1 on-the-equilibrium path will be

Player 1�s expected payo¤s
E1[u1(ts;B; �)] : G2(X

0
2�2 + �2s)

�
�s +X 0

1�s � "1
�

E1[u1(tw;Q; �)] : G2(X
0
2�2 � �2w)

�
�w +X 0

1�w � "1
�

S1-1 ts should have no incentive to deviate. It requires
E1 [u1(ts;B; �)] = G2(X

0
2�2+�2s) (�s +X 0

1�s � "1) � E1 [u1(ts;Q; �)] = G2(X
0
2�2��2w) (�s +X 0

1�s � "1)��1s.
S1-2 tw should have no incentive to deviate. It requires

E1[u1(tw;Q; �)] = G2(X
0
2�2��2w) (�w +X 0

1�w � "1)� E1 [u1(tw;B; �)]= G2(X
0
2�2+�2s) (�s +X 0

1�w � "1)��1w:

Combining S1-1 and S1-2, we conclude a separating equilibrium (A1ts ; A1tw ) = (B;Q) can be supported as an
equilibrium under40

�w +X 0
1�w �

�1w
G�
2(1)�G�

2(0)
� "1 � �s +X 0

1�1 +
�1s

G�
2(1)�G�

2(0)
: (50)

40 If �w +X
0
1�w �

�1w
G�2(1)�G

�
2(0)

> �s +X
0
1�s +

�1s
G�2(1)�G

�
2(0)

, this equilibrium does not exist.
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S-2) Separating Equilibrium (ts choose Q and tw choose B):
In the separating equilibrium, Player 2 has complete information once it observes the signal. Thus, �2(t1 =

tsjB) = 0 and �2(t1 = twjB) = 1. This implies Y2jB � 1 fX 0
2�2 � "2 � �2wg. Similarly upon seeing Q Player 2 will

have Y2jQ = 1 fX 0
2�2 � "2 + �2s � 0g : The resulting payo¤s of each type of Player 1 on-the-equilibrium path will be

Player 1�s expected payo¤s
E1[u1 (ts;Q; �)] : G2(X

0
2�2 + �2s)

�
�s +X 0

1�s � "1
�
� �1s

E1[u1 (tw;B; �)] : G2(X
0
2�2 � �2w)

�
�w +X 0

1�w � "1
�
� �1w

S2-1 ts should have no incentive to deviate. It requires
E1 [u1(ts;Q; �)] = G2(X

0
2�2+�2s) (�s +X 0

1�s � "1)��1s � E1 [u1(ts;B; �)] = G2(X
0
2�2��2w) (�s +X 0

1�s � "1).
S2-2 tw should have no incentive to deviate. It requires

E1[u1(tw;B; �)] = G2(X
0
2�2��2w) (�w +X 0

1�w � "1)��1w � E1 [u1(tw;Q; �)] = G2(X
0
2�2+�2s) (�w +X 0

1�w � "1).

Combining S2-1 and S2-2, we conclude a separating equilibrium (A1ts ; A1tw ) = (Q;B) can be supported as an
equilibrium under41

�w +X 0
1�w +

�1w
G�
2(1)�G�

2(0)
� "1 and X

0
1�s �

�1s
G�
2(1)�G�

2(0)
� "1: (51)

E.2.3 Semi-separating Equilibrium
There exist other possible equilibria named �semi-separating� where one type of Player 1 randomize between two
possible actions while the other type of Player 1 plays a separating equilibrium. One of conditions for the existence
of such an equilibrium is that the type of Player 1 who randomizes should be indi¤erent between two actions.

SS1: The weak type of Player 1 plays the separating equilibrium with Q and the strong type random-
izes with �ts(B) = �sB :

Then,

�2(t1 = tsjB) =
�sB � p
�sB � p

= 1 and �ss2 � �2(t1 = tsjQ) =
(1� �sB) p

(1� �sB) p+ (1� p)
2 (0; p)

which implies that

E1 [u1 (ts;B; �)] = G2(X
0
2�2 + �2s) (�s +X 0

1�s � "1) and
E1 [u1 (ts;Q; �)] = G2 (X

0
2�2 + �ss2 (�2s + �2w)� �2w) (�s +X 0

1�s � "1)� �1s:

For the existence of such a semi-separating equilibrium, it is required that the strong type of Player 1 is indi¤erent
between choosing B or Q, E1 [u1 (ts;B; �)] = E1 [u1 (ts;Q; �)] and hence
G2(X

0
2�2 + �2s) (�s +X 0

1�s � "1) = G2 (X
0
2�2 + �ss2 (�2s + �2w)� �2w) (�s +X 0

1�s � "1)� �1s
which implies

�s +X 0
1�s +

�1s
G2(X 0

2�2 + �2s)�G2 (X 0
2�2 + �ss2 (�2s + �2w)� �2w)

= "1: (52)

We note that such �ss2 and "1 satisfying (52) does exist. Now we check whether the weak type of Player 1 has an
incentive to deviate. The weak type has no incentive deviate if E1 [u1 (tw;Q; �)] � E1 [u1 (tw;B; �)],
G2 (X

0
2�2 + �ss2 (�2s + �2w)� �2w) (�w +X 0

1�w � "1) � G2 (X
0
2�2 + �2s) (�w +X 0

1�w � "1)� �1w
which holds as long as "1 � �w +X 0

1�w �
�1w

G2(X
0
2�2+�2s)�G2(X0

2�2+�
ss
2 (�2s+�2w)��2w)

. Note that by construction, we

have 0 < �ss2 < p and hence (52) implies that under the region of M2, such semi-separating equilibria exist.

SS2: The strong type of Player 1 plays the separating equilibrium with B and the weak type random-
izes with �tw (B) = �wB :

41No such "1 exists when �w +X
0
1�w +

�1w
G�2(1)�G

�
2(0)

> �s +X
0
1�s �

�1s
G�2(1)�G

�
2(0)

.
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Then,

e�ss2 = �2(t1 = tsjB) =
p

p+ �wB � (1� p)
2 (p; 1) and �2(t1 = tsjQ) =

0

(1� �wB) � (1� p)
= 0

which implies that

E1 [u1 (tw;B; �)] = G2(X
0
2�2 + e�ss2 (�2s + �2w)� �2w) (�w +X 0

1�w � "1)� �1w and
E1 [u1 (tw;Q; �)] = G2 (X

0
2�2 � �2w) (�w +X 0

1�w � "1) :

For the existence of such a semi-separating equilibrium, it is required that the weak type of Player 1 is indi¤erent
between choosing B or Q, E1 [u1 (tw;B; �)] = E1 [u1 (tw;Q; �)] and hence
G2(X

0
2�2 + e�ss2 (�2s + �2w)� �2w) (�w +X 0

1�w � "1)� �1w = G2 (X
0
2�2 � �2w) (�w +X 0

1�w � "1)
which implies

�w +X 0
1�w �

�1w
G2(X 0

2�2 + e�ss2 (�2s + �2w)� �2w)�G2 (X 0
2�2 � �2w)

= "1: (53)

Now we check whether the strong type of Player 1 has an incentive to deviate. The strong type has no incentive
deviate if E1 [u1 (ts;B; �)] � E1 [u1 (ts;Q; �)],
G2 (X

0
2�2 + e�ss2 (�2s + �2w)� �2w) (�s +X 0

1�s � "1) � G2 (X
0
2�2 � �2w) (�s +X 0

1�s � "1)� �1s
which holds as long as "1 � �s +X 0

1�s +
�1s

G2(X0
2�2+e�ss2 (�2s+�2w)��2w)�G2(X0

2�2��2w)
. Note that by construction, we

have p < e�ss2 < 1 and hence (53) implies that under the region of M1, such semi-separating equilibria exist.

E.2.4 Existence of Well-de�ned Likelihood for Semi-Separating

Under the equilibrium of (SS1), four observed outcomes can arise with following probabilities denoted by

Pr(Y1 = 1; Y2 = 1;M2; �
s
B) = Pr (Y1 = 1;M2; �

s
B) Pr (Y2 = 1jY1 = 1; ;M2; �

s
B)

=
R
"12M2

p � �sB("1) �G2(X
0
2�2 + �2s)g1("1)d"1

Pr(Y1 = 1; Y2 = 0;M2; �
s
B) = Pr (Y1 = 1;M2; �

s
B) Pr (Y2 = 0jY1 = 1;M2; �

s
B)

=
R
"12M2

p � �sB("1) � (1�G2(X
0
2�2 + �2s)) g1("1)d"1

Pr(Y1 = 0; Y2 = 1;M2; �
s
B) = Pr (Y1 = 0;M2; �

s
B) Pr (Y2 = 0jY1 = 1;M2; �

s
B)

=
R
"12M2

(p (1� �sB("1)) + (1� p)) �G2 (X
0
2�2 + �ss2 ("1)(�2s + �2w)� �2w) g1("1)d"1

Pr(Y1 = 0; Y2 = 0;M2; �
s
B) = Pr (Y1 = 0;M2; �

s
B) Pr (Y2 = 0jY1 = 0;M2; �

s
B)

=
R
"12M2

(p (1� �sB("1)) + (1� p)) � (1�G2 (X
0
2�2 + �ss2 ("1)(�2s + �2w)� �2w)) g1("1)d"1

where �ss2 ("1) =
(1��sB("1))�p

(1��sB("1))�p+(1�p)
. For example, Pr(Y1 = 0; Y2 = 0;M2; �

s
B) is obtained using the following

facts. Conditional on ("1; "2), (Q;F ) is observed in two cases: 1) the nature draw the strong type with the
probability p, the strong type plays Q with the probability (1� �sB("1)), and Player 2 plays F with probability
(1�G2 (X

0
2�2 + �ss2 ("1)(�2s + �2w)� �2w)) after observing Q and 2) the nature draw the weak type with the prob-

ability 1 � p, the weak type plays Q with the probability 1 (separating), and Player 2 plays F with probability
(1�G2 (X

0
2�2 + �ss2 ("1)(�2s + �2w)� �2w)) after observing Q. Thus, the conditional probability of observing (Q;F )

conditional on ("1; "2) is given by

(p (1� �sB("1)) + (1� p)) �
�
1�G2

�
X 0
2�2 + �ss2 ("1)(�2s + �2w)� �2w

��
(54)

and we obtain the unconditional probability by taking expectation of (54) with respect to "1 2M2. Other probabil-
ities can be interpreted similarly. Using a change of variables from the relationship of �sB and "1:

"1(�
s
B ; p) � �s +X 0

1�s +
�1s

G2(X 0
2�2 + �2s)�G2 (X 0

2�2 + �ss2 (�
s
B)(�2s + �2w)� �2w)

(55)

as given in (52), we �nd
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Pr(Y1 = 1; Y2 = 1;M2; �
s
B)

=
R 1
0
p � �sB �G2(X

0
2�2 + �2s)g1("1(�

s
B ; p))D(�

s
B ; p)d�

s
B

Pr(Y1 = 1; Y2 = 0;M2; �
s
B)

=
R 1
0
p � �sB � (1�G2(X

0
2�2 + �2s)) g1("1(�

s
B ; p))D(�

s
B ; p)d�

s
B

Pr(Y1 = 0; Y2 = 1;M2; �
s
B)

=
R 1
0
(p (1� �sB) + (1� p)) �G2 (X

0
2�2 + �ss2 (�

s
B ; p)(�2s + �2w)� �2w) g1("1(�

s
B ; p))D(�

s
B ; p)d�

s
B

Pr(Y1 = 0; Y2 = 0;M2; �
s
B)

=
R 1
0
(p (1� �sB) + (1� p)) � (1�G2 (X

0
2�2 + �ss2 (�

s
B ; p)(�2s + �2w)� �2w)) g1("1(�

s
B ; p))D(�

s
B ; p)d�

s
B

where �ss2 (�
s
B ; p) =

(1��sB)�p
(1��sB)�p+(1�p)

, "1(�sB ; p) as given in (55), and

D(�sB ; p) �
��� d"1(�sB ;p)d�s

B

��� = �1s(�2s+�2w)

(G2(X
0
2�2+�2s)�G2(X0

2�2+�
ss
2 (�s

B
;p)(�2s+�2w)��2w))2

� g2 (X
0
2�2 + �ss2 (�

s
B ; p)(�2s + �2w)� �2w)

p(1�p)
((1��sB)p+(1�p))

2 .

Similarly, under this equilibrium of (SS2), four observed outcomes can arise with following probabilities.

Pr(Y1 = 1; Y2 = 1;M1; �
w
B) = Pr (Y1 = 1;M1; �

w
B) Pr (Y2 = 1jY1 = 1;M1; �

w
B)

=
R
"12M1

(p+ �wB("1) (1� p))G2(X
0
2�2 + e�ss2 ("1)(�2s + �2w)� �2w)g1("1)d"1

Pr(Y1 = 1; Y2 = 0;M1; �
w
B) = Pr (Y1 = 1;M1; �

w
B) Pr (Y2 = 0jY1 = 1;M1; �

w
B)

=
R
"12M1

(p+ �wB("1) (1� p)) (1�G2(X
0
2�2 + e�ss2 ("1)(�2s + �2w)� �2w))g1("1)d"1

Pr(Y1 = 0; Y2 = 1;M1; �
w
B) = Pr (Y1 = 0;M1; �

w
B) Pr (Y2 = 0jY1 = 1;M1; �

w
B)

=
R
"12M1

(1� �wB("1)) (1� p)G2 (X
0
2�2 � �2w) g1("1)d"1

Pr(Y1 = 0; Y2 = 0;M1; �
w
B) = Pr (Y1 = 0;M1; �

w
B) Pr (Y2 = 0jY1 = 0;M1; �

w
B)

=
R
"12M1

(1� �wB("1)) (1� p) (1�G2 (X
0
2�2 � �2w)) g1("1)d"1

where e�ss2 ("1) = p
p+�w

B
("1)�(1�p) . A change of variables using the relationship of �

ss
2 and "1:

"1(�
w
B ; p) = �w +X 0

1�w �
�1w

G2(X 0
2�2 + e�ss2 (�wB ; p)(�2s + �2w)� �2w)�G2 (X 0

2�2 � �2w)
(56)

as given in (53) gives us

Pr(Y1 = 1; Y2 = 1;M1; �
w
B)

=
R 1
0
(p+ �wB (1� p))G2(X

0
2�2 + e�ss2 (�wB ; p)(�2s + �2w)� �2w)g1("1(�

w
B ; p))D(�

w
B ; p)d�

w
B

Pr(Y1 = 1; Y2 = 0;M1; �
w
B)

=
R 1
0
(p+ �wB (1� p)) (1�G2(X

0
2�2 + e�ss2 (�wB ; p)(�2s + �2w)� �2w))g1("1(�

w
B ; p))D(�

w
B ; p)d�

w
B

Pr(Y1 = 0; Y2 = 1;M1; �
w
B)

=
R 1
0
(1� �wB) (1� p)G2 (X

0
2�2 � �2w) g1("1(�

w
B ; p))D(�

w
B ; p)d�

w
B

Pr(Y1 = 0; Y2 = 0;M1; �
s
B)

=
R 1
0
(1� �wB) (1� p) (1�G2 (X

0
2�2 � �2w)) g1("1(�

w
B ; p))D(�

w
B ; p)d�

w
B

where e�ss2 (�wB ; p) = p
p+�w

B
�(1�p) , "1(�

w
B ; p) as given in (56), and

D(�wB ; p) �
��� d"1(�wB ;p)d�w

B

��� = �1w(�2s+�2w)

(G2(X
0
2�2+e�ss2 (�w

B
;p)(�2s+�2w)��2w)�G2(X0

2�2��2w))2

� g2 (X
0
2�2 ++e�ss2 (�wB ; p)(�2s + �2w)� �2w)

p(1�p)
(p+�wB(1�p))

2 .

E.3 Existence of Well-de�ned Likelihood for the Game with IS-2
We proceed the following discussion for the game with public signals. All the discussions hold true for the game
without public signals also by replacing p(Z) with p. We add the public signal assumption to IS-2.

Assumption E.2 (IS-2A)

1 Assumption IS-2 holds.
2 The public signal Z about the types of Player 1 is perfectly known to both Player 1 and Player 2.
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E.3.1 Equilibrium Re�nement and Uniqueness of Equilibrium (Proof of Theorem E.2)

Again we proceed our discussion with asymmetric payo¤s case. From the result we obtain here, uniqueness of
equilibrium for the symmetric payo¤s case immediately follows. We make the following assumptions to obtain
uniqueness of equilibrium.

Condition 5 �w+X
0
1�w�

�1w
G2(X0

2�2+�2s)�G2(X0
2�2��2w)

< �s+X
0
1�s+

�1s
G2(X0

2�2+�2s)�G2(X0
2�2��2w)

for all X1�X2 2
S(X1)� S(X2).

Condition 6 For all W 2 S(W ),
�w +X 0

1�w �
�1w

G2(X0
2�2+p(Z)(�2s+�2w)��2w)�G2(X0

2�2��2w)
< �s +X 0

1�s +
�1s

G2(X0
2�2+p(Z)(�2s+�2w)��2w)�G2(X0

2�2��2w)

Condition 7 For all W 2 S(W ),
�w +X 0

1�w �
�1w

G2(X0
2�2+�2s)�G2(X0

2�2+p(Z)(�2s+�2w)��2w)
< �s +X 0

1�s +
�1s

G2(X0
2�2+�2s)�G2(X0

2�2+p(Z)(�2s+�2w)��2w)

Condition 8 �s+X
0
1�s�

�1s
G2(X0

2�2+�2s)�G2(X0
2�2��2w)

< �w+X
0
1�w+

�1w
G2(X0

2�2+�2s)�G2(X0
2�2��2w)

for all X1�X2 2
S(X1)� S(X2).

These conditions are su¢ cient for uniqueness of equilibria together with the re�nement of Banks and Sobel
(1987), namely, divine equilibrium. Note that Conditions 5-8 hold immediately when �s = �w and �w = �s since
�1s; �1w > 0. Condition 5 makes the separating (B;Q) supported (see (50)) and thus prevents two di¤erent semi-
separating equilibria from overlapping each other (see Figure A4). Condition 8 eliminates the separating equilibrium
(Q;B) (see (51)). Now we eliminate some of pooling equilibria using the re�nement.

� Pooling with (A1ts ; A1tw ) = (B;B)

Under this pooling equilibrium, Player 2 knows the weak type is more willing to deviate (at any given Player 2�s
action) and hence Player 1 knows that if Player 2 observes a deviation play of Q, she will assign �2(t1 = tsjQ) < p.
In other words, it is reasonable to expect that the relative probability of ts should decrease when Player 2 observes Q
according to Banks and Sobel (1987)�s divinity concept. This rules out the case of (44) and only the region de�ned
by (45) supports this equilibrium.

This re�nement and Condition 6 make the pooling equilibrium with (A1ts ; A1tw ) = (B;B) supported only under

"1 � �w +X 0
1�w �

�1w
G2 (X 0

2�2 + p(Z)(�2s + �2w)� �2w)�G2 (X 0
2�2 � �2w)

.

� Pooling with (A1ts ; A1tw ) = (Q;Q)

Under this pooling equilibrium, Player 2 knows the strong type is more willing to deviate (at any given Player 2�s
action) and hence Player 1 knows that if Player 2 observes a deviation play of B, she will assign �2(t1 = tsjB) > p.
Again Banks and Sobel (1987)�s divinity requires that we should expect that the relative probability of ts should
increase when Player 2 observes a deviation play with B. This rules out the case of (49) and only the region de�ned
by (48) supports this equilibrium.

This re�nement and Condition 7 make the pooling with equilibrium (A1ts ; A1tw ) = (Q;Q) supported only under

"1 � �s +X 0
1�s +

�1s
G2 (X 0

2�2 + �2s)�G2 (X 0
2�2 + p(Z)(�2s + �2w)� �2w)

.

Finally, we note that the estimation strategies considered in the paper are still valid based on the conditional
probabilities derived in the next section provided that Assumption SA-Asym-IS-2 holds.

Assumption E.3 (SA-Asym-IS-2)
(i) �w+X

0
1�w�

�1w
G2(X0

2�2+�2s)�G2(X0
2�2��2w)

< �s+X
0
1�s+

�1s
G2(X0

2�2+�2s)�G2(X0
2�2��2w)

for all X1�X2 2 S(X1)�
S(X2) and for all �s, �w, �1s, �1w, �2s, �2w, �s, �w, �2 in the parameter space;
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(ii) �w+X
0
1�w�

�1w
G2(X0

2�2+(2p(Z)�1)�2)�G2(X0
2�2��2w)

< �s+X
0
1�s+

�1s
G2(X0

2�2+p(Z)(�2s+�2w)��2w)�G2(X0
2�2��2w)

for

all W 2 S(W ) and for all �s, �w, �1s, �1w, �2s, �2w, �s, �w, �2, and h(�) in the parameter space;

(iii)
�w +X 0

1�w �
�1w

G2(X0
2�2+�2s)�G2(X0

2�2+p(Z)(�2s+�2w)��2w)
< �s +X 0

1�s +
�1s

G2(X0
2�2+�2s)�G2(X0

2�2+p(Z)(�2s+�2w)��2w)
for all W 2 S(W ) and for all �s, �w, �1s, �1w, �2s, �2w, �s, �w, �2, and h(�) in the parameter space;
(iv) �s + X 0

1�s �
�1s

G2(X0
2�2+�2s)�G2(X0

2�2��2w)
< �w + X 0

1�w +
�w

G2(X0
2�2+�2s)�G2(X0

2�2��2w)
for all X1 � X2 2

S(X1)� S(X2) and for all �s, �w, �1s, �1w, �2s, �2w, �s, �w, �2 in the parameter space.

Note that Assumption SA-Asym-IS-2 holds immediately when �s = �w and �s = �w.

E.3.2 Conditional Probabilities of Four Observed Outcomes
From the result of previous sections, here we present the conditional probabilities of four observed outcomes in the
game with IS-2A and SA-2 allowing for asymmetric payo¤s. For the game with IS-2 and SA-1, we obtain the
same conditional probabilities in replace of p(Z) with p and W with X, respectively. Corresponding conditional
probabilities of the game with symmetric payo¤s are easily obtained by replacing �s& �w with �1 and �s & �w with
�, respectively.

We will use some simplifying notations:

G�
2(a) = G2(X

0
2�2 + a (�2s + �2w)� �2w)

�ss2 (�
s
B ; p(Z)) =

(1��sB)�p(Z)
(1��sB)�p(Z)+(1�p(Z))

"1(�
s
B ; p(Z)) = �s +X 0

1�s +
�1s

G2(X
0
2�2+�2s)�G2(X0

2�2+�
ss
2 (�s

B
)(�2s+�2w)��2w)

D(�sB ; p(Z)) �
��� d"1(�sB ;p(Z))d�s

B

��� = �1s(�2s+�2w)

(G2(X
0
2�2+�2s)�G2(X0

2�2+�
ss
2 (�s

B
;p(Z))(�2s+�2w)��2w))2

� g2 (X
0
2�2 + �ss2 (�

s
B ; p(Z))(�2s + �2w)� �2w)

p(Z)(1�p(Z))
((1��sB)p(Z)+(1�p(Z)))

2e�ss2 (�wB ; p(Z)) = p(Z)
p(Z)+�w

B
�(1�p(Z))e"1(�wB ; p(Z)) = �w +X 0

1�w �
�1w

G2(X
0
2�2+e�ss2 (�w

B
;p(Z))(�2s+�2w)��2w)�G2(X0

2�2��2w)eD(�wB ; p(Z)) � ��� de"1(�wB ;p(Z))d�w
B

��� = �1w(�2s+�2w)

(G2(X
0
2�2+e�ss2 (�w

B
;p(Z))(�2s+�2w)��2w)�G2(X0

2�2��2w))2

� g2 (X
0
2�2 + e�ss2 (�wB ; p(Z))(�2s + �2w)� �2w)

p(Z)(1�p(Z))
(p(Z)+�wB(1�p(Z)))

2 .

Now we present the conditional probabilities of four possible observed outcomes.

1 (Y1 = 1; Y2 = 1) : (B;NF )

It happens under region of L2 with probability one (pooling), under region of C2 [ C3 [ C4 (separating) with
probability p(Z), and under region of M12 [M13 [M14 [M22 [M23 [M24 (semi-separating):

Pr(Y1 = 1; Y2 = 1jW;�) =
G1

�
�w +X 0

1�w �
�1w

G�2(p(Z))�G
�
2(0)

�
�G�

2 (p(Z))

+p(Z)
�
G1

�
�s +X 0

1�s +
�1s

G�2(1)�G
�
2(0)

�
�G1

�
�w +X 0

1�w �
�1w

G�2(1)�G
�
2(0)

��
G�
2 (1)

+
R 1
0
(p(Z) + �wB (1� p(Z)))G�

2(e�ss2 (�wB ; p(Z)))g1(e"1(�wB ; p(Z))) eD(�wB ; p(Z))d�wB
+
R 1
0
p(Z)�sBG

�
2(1)g1("1(�

s
B ; p(Z)))D(�

s
B ; p(Z))d�

s
B .

2 (Y1 = 1; Y2 = 0) : (B;F )

It happens under region of L1 with probability one (pooling) and under region of C1 (separating) with probability
p(Z), and under region of M11 [M12 [M21 (semi-separating):

Pr(Y1 = 1; Y2 = 0jW;�) =
G1

�
�w +X 0

1�w �
�1w

G�2(p(Z))�G
�
2(0)

�
(1�G�

2 (p(Z)))

+p(Z)
�
G1

�
�s +X 0

1�s +
�1s

G�2(1)�G
�
2(0)

�
�G1

�
�w +X 0

1�w �
�1w

G�2(1)�G
�
2(0)

��
(1�G�

2 (1))

+
R 1
0
(p(Z) + �wB (1� p(Z))) (1�G�

2(e�ss2 (�wB ; p(Z)))) g1(e"1(�wB ; p(Z))) eD(�wB ; p(Z))d�wB
+
R 1
0
p(Z)�sB (1�G�

2(1)) g1("1(�
s
B ; p(Z)))D(�

s
B ; p(Z))d�

s
B .
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3 (Y1 = 0; Y2 = 1) : (Q;NF )

It happens under region of R2 (pooling) with probability one and under region of C4 (separating) with probability
1� p(Z), and under region of M14 [M23 [M24 (semi-separating):

Pr(Y1 = 0; Y2 = 1jW;�) =�
1�G1

�
�s +X 0

1�s +
�1s

G�2(1)�G
�
2(p(Z))

��
G�
2 (p(Z))

+ (1� p(Z))
�
G1

�
�s +X 0

1�s +
�1s

G�2(1)�G
�
2(0)

�
�G1

�
�w +X 0

1�w �
�1w

G�2(1)�G
�
2(0)

��
G�
2 (0)

+
R 1
0
(1� �wB) (1� p(Z))G�

2 (0) g1(e"1(�wB ; p(Z))) eD(�wB ; p(Z))d�wB
+
R 1
0
(1� p(Z)�sB)G

�
2 (�

ss
2 (�

s
B ; p(Z))) g1("1(�

s
B ; p(Z)))D(�

s
B ; p(Z))d�

s
B .

4 (Y1 = 0; Y2 = 0) : (Q;F )

It happens under region of R1 (pooling) with probability one and under region of C1[C2[C3 (separating) with
probability 1� p(Z), and under region of M11 [M12 [M13 [M21 [M22 [M23 (semi-separating):

Pr(Y1 = 0; Y2 = 0jW;�) =�
1�G1

�
�s +X 0

1�s +
�1s

G�2(1)�G
�
2(p(Z))

��
(1�G�

2 (p(Z)))

+ (1� p(Z))
�
G1

�
�s +X 0

1�s +
�1s

G�2(1)�G
�
2(0)

�
�G1

�
�w +X 0

1�w �
�1w

G�2(1)�G
�
2(0)

��
(1�G�

2 (0))

+
R 1
0
(1� �wB) (1� p(Z)) (1�G�

2 (0)) g1(e"1(�wB ; p(Z))) eD(�wB ; p(Z))d�wB
+
R 1
0
(1� p(Z)�sB) (1�G�

2 (�
ss
2 (�

s
B ; p(Z)))) g1("1(�

s
B ; p(Z)))D(�

s
B ; p(Z))d�

s
B .

F Mathematical Proofs for the Sieve Conditional ML
All the discussions of this section can be applied to both game models under IS-A and IS-2A based on appropriate
conditional probabilities presented in Sections C and E.3.2, respectively.

F.1 Identi�cation (Proof of Lemma 5.1)
Proof. We let L(Y;W;�) = exp(l(Y jW;�)) and note

L(Y;W;�)
L(Y;W;�0)

2
�
Pr (Y = yjW;�)
Pr (Y = yjW;�0)

: y 2 f(1; 1); (1; 0); (0; 1); (0; 0)g
�

where Pr (Y jW;�) denotes the conditional probability of Y given W = X [ Z when the parameter equals to �.
Applying Jensen�s inequality, we have

� ln
�
E

�
L(Y;W;�)
L(Y;W;�0)

��
< �E

�
ln

�
L(Y;W;�)
L(Y;W;�0)

��
(57)

noting L(Y;W;�)
L(Y;W;�0) is always positive and not constant whenever � 6= �0 by Assumption SA-3. We also have

Pr

�
L(Y;W;�)
L(Y;W;�0)

=
Pr (Y = yjW;�)
Pr (Y = yjW;�0)

�
= Pr (Y = yjW;�0) ;

for each y 2 f(1; 1) ; (1; 0) ; (0; 1) ; (0; 0)g under Assumptions IS-A and SA-2 or Assumptions IS-2A and SA-2. It
follows that

E
h
L(Y;W;�)
L(Y;W;�0)

i
=
R nP

y
Pr(Y=yjW;�)
Pr(Y=yjW;�0) � Pr (Y = yjW;�0)

o
fW (W )dW

=
R nP

y Pr (Y = yjW;�)
o
fW (W )dW = 1

(58)

where the last equality holds since
P

y Pr (Y = yjW;�) = 1 for all � 2 A. Therefore, combining (57) and (58), we
conclude that for all � 6= �0 2 A, 0 < E [lnL(Y;W;�0)] � E [lnL(Y;W;�)]. This implies Q(�0) > Q(�) and thus
proves the claim.
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F.2 Consistency
To prove the consistency, we need an additional condition. Recall that Lij(W;�) denotes the conditional probabilities
of observed outcomes such that Lij(W;�) � Pr(Y1 = i; Y2 = jjW;�) for i; j = 0; 1.

Condition 9 (Lipschitz Condition)
(i) For � some convex combination of �1,�2 2 An, there exists functions M

(�1s)
ij (�), M (�1w)

ij (�), M (�2s)
ij (�), M (�2w)

ij (�),
M

(�)
ij (�), M

(�1)
ij (�), M (�2)

ij (�), and M (h)
ij (�) such that

dLij(W;�)
d�

[�1 � �2] =

M
(�1s)
ij (W;�) (�1s1 � �1s2) +M

(�1w)
ij (W;�) (�1w1 � �1w2) +M

(�2s)
ij (W;�)(�2s1 � �2s2)

+M
(�2w)
ij (W;�)(�2w1 � �2w2) +M

(�)
ij (W;�)(�1 � �2)

+M
(�1)
ij (W;�)X 0

1 (�11 � �12) +M
(�2)
ij (W;�)X 0

2 (�21 � �22) +M
(h)
ij (W;�) (h1 � h2)

for all i; j = 0; 1;

(ii) sup
�2An

���M (t)
ij (W;�)

��� � Ct(W ) <1, 8t 2 f�1s; �1w; �2s; �2w; �; �1; �2; hg, 8i; j = 0; 1, n � 9N .

This condition is not di¢ cult to verify from the arguments in Section J.
The following theorem is borrowed from Theorem 3.1 in Chen (2005) for the sieve conditional ML estimator

de�ned in (11).

Theorem F.1 (Theorem 3.1 in Chen (2005))
Suppose (C1) Q(�) is uniquely maximized on A at �0 2 A, and Q(�0) > �1;
(C2) An � An+1 � A for all n � 1, and for any � 2 A there exists �n� 2 An such that k�n�� �ks ! 0 as n!1;
(C3) The criterion function, Q(�), is continuous in � 2 A with respect to k�ks;
(C4) The sieve spaces, An, are compact under k�ks;
(C5) plim

n!1
sup
�2An

��� bQn(�)�Q(�)
��� = 0 holds and let b�n be the approximate sieve ML estimator de�ned by (11), then

kb�n � �ks = op(1).

Remarks (1)-(4) after Theorem 3.1 in Chen (2005) are applied here. Note that Condition (C1) is satis�ed by
Lemma 5.1. Condition (C2) holds for the sieve space An = � � Hn with Hn de�ned in (8) (see Section 5.3.2
of Timan (1963)). Condition (C3) is satis�ed since each Lij , i; j = 1; 0 is (pointwise) Lipschitz continuous by
Condition 9 for the game models with IS-A or IS-2A. Condition (C4) holds for the sieve space (8). Now let
Fn = fl(yjw; �; h) : (�; h) 2 Ang denote the class of measurable functions indexed by (�; h). Condition (C5) will be
satis�ed, for example, if Fn is P -Glivenko-Cantelli as presented in van der Vaart and Wellner (1996). The following
lemma establishes the uniform convergence result.

Lemma F.1 (Uniform convergence over sieves)
Suppose Assumptions SA-2 and SA-4 hold. Then, for bQn(�) and Q(�) de�ned in (10) and (12), respectively and

for An = ��Hn with Hn de�ned in (8), we have plim
n!1

sup
�2An

��� bQn(�)�Q(�)
��� = 0.

Proof. We prove this lemma by showing that all the conditions (i), (ii), and (iii) of Lemma A2 in Newey and Powell
(2003) are satis�ed. The condition (i) is satis�ed for An = � �Hn with Hn de�ned in (8) and for the metric k�ks.
The condition (ii) will be satis�ed if E[jl(yijwi; �; h(zi))j] <1, for all (�; h) 2 An by the law of large numbers. Note
that this condition is satis�ed since Lij(W; �; h), 8i; j = 0; 1 is uniformly bounded between 0 and 1 over An and since
under Assumptions SA-2,

Pr (Lij(W; �; h) = 0 or Lij(W; �; h) = 1 for W 2 S(W )) = 0 for 8i; j = 0; 1 and all (�; h) 2 An;

where Pr (�) is a probability measure over W . Therefore, the condition (ii) holds. The condition (iii) is also satis�ed
since bQn(�) is Lipschitz with respect to � by Condition 9. This completes the proof.

Therefore, under Assumptions SA-2, SA-3, and SA-4 and Condition 9, all the conditions in Theorem F.1 are
satis�ed for b�n. This establishes the consistency result of the sieve ML estimator de�ned in (11).
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F.3 Convergence Rate
In this section and the next section, we will use the following notations. For any �1; �2; �3 2 A; the pathwise �rst
derivatives are de�ned as

dl(yijwi;�0)
d�

[�1 � �2] � dl(yijwi;�0)
d�

[�1 � �0]� dl(yijwi;�0)
d�

[�2 � �0] and
dl(yijwi;�3)

d�
[�1 � �0] � lim�!0

dl(yijwi;�3+�(�1��0))
d�

.

The pathwise second derivatives are de�ned in a similar way such that

d2l(yijwi; �3)
d�2

[�1 � �0; �2 � �0] � lim
�!0

dl(yijwi; �3 + �(�2 � �0))

d�
[�1 � �0].

In particular, the pathwise second derivative at the direction [�� �0] evaluated at �0 is denoted by d2l(yijwi;�0)
d�2

[��
�0; �� �0] � lim�!0

d2l(yijwi;�0+�(���0))
d�2

. Note that we have

E

�
dl(yijwi; �0)

d�
[�1 � �0]

dl(yijwi; �0)
d�

[�2 � �0]

�
= �E

�
d2l(yijwi; �0)

d�2
[�1 � �0; �2 � �0]

�
(59)

by Wong and Severini (1991).
Here we present a convergence rate of the sieve ML estimator de�ned in (11) under the metric k�k2. We use

Theorem 3.2 of Chen (2005) which is a version of Chen and Shen (1996) for iid data. Before stating Theorem 3.2 of
Chen (2005) and proving Proposition 5.1, we need to introduce some notations.

Now let K(�0; �) = n�1
Pn

i=1 E [l(yijwi; �0)� l(yijwi; �)] denote the Kullback-Leibler information (divergence
measure) on n observations Let k�ka be a metric on A which is equivalent to K(�; �)1=2. The equivalence means
there exist constants C1 and C2 > 0 such that C1K(�0; �)1=2 � k�0 � �ka � C2K(�0; �)

1=2 for all � 2 A. It
is well known in the literature that the convergence rate depends on two factors. One is how fast the sieve ap-
proximation error rate, k�0 ��n�0ka, goes to zero. The other is the complexity of the sieve space Hn. Let
Lr(P0), r 2 [1;1) denote the space of real-valued random variables with �nite r-th moments and k�kLr de-
note the Lr(P0)-norm. Let Fn = fg(�; �) : � 2 Ang be a class of real-valued, Lr(P0)-measurable functions
indexed by � 2 An. We let N

�
";Fn; k�kLr

�
denote the covering numbers without bracketing, which is the min-

imal number of "-balls
nn

f : kf � gjkLr � "
o
; kgjkLr <1; j = 1; : : : ; N

o
that covers Fn. We often use the no-

tion of Lr(P0)-metric entropy, H
�
";Fn; k�kLr

�
� log

�
N
�
";Fn; k�kLr

��
as a measure of the complexity of Fn

since the covering numbers can grow very fast. The second notion of complexity of the class Fn is the covering
numbers with bracketing. Let CLr be the completion of Fn under the norm k�kLr . The Lr(P0)-covering num-

bers with bracketing, denoted by N[]

�
";Fn; k�kLr

�
, is the minimal number of N for which there exist "-brackets�

[lj ; uj ] : lj ; uj 2 CLr ; max
1�j�N

klj � ujkLr � "; kljkLr <1; kujkLr <1; j = 1; : : : ; N

�
to cover Fn (i.e., for each g 2

Fn, there exists a j = j(g) 2 f1; : : : ; Ng such that lj � g � uj a.e.-P0. Similarly we let H[]

�
";Fn; k�kLr

�
�

log
�
N[]

�
";Fn; k�kLr

��
which is called the Lr(P0)-metric entropy with bracketing of the class Fn. Pollard (1984),

Andrews (1994), van der Vaart and Wellner (1996), and van der Geer (2000) provide more detailed discussions of
metric entropy. We will use a simpli�ed notation b1n � b2n for two sequences of positive numbers b1n and b2n when
the ratio of these two b1n=b2n is bounded below and above by some positive constants.

Now let Fn =
�
l(yijwi; �)� l(yijwi; �0) : k�� �0ka � �; � 2 An

	
and for some constant b > 0, let

�n = inf

(
� 2 (0; 1) : 1p

n�2

Z �

b�2

r
H[]

�
";Fn; k�kL2

�
d" � const

)
: (60)

Note that �n does not only depend on the smoothness of l(�j�; �) but also it depends on the complexity of the sieve
An. Now we present Theorem 3.2 in Chen (2005) tailored to our estimator.
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Theorem F.2 (Theorem 3.2 in Chen (2005))
Suppose that (CC1) The data fY1i; Y2i;Wig are iid;
(CC2) There is a C1 > 0 such that for all small " > 0, sup�2An;k���0k2�"

V ar (l(yijwi; �)� l(yijwi; �0)) � C1"
2;

(CC3) For any � > 0, there exists a constant s 2 (0; 2) such that
sup�2An;k���0k2��

jl(yijwi; �)� l(yijwi; �0)j � �sU(wi) with E
�
jU(wi)jt

�
� C2 for some t � 2. Let b�n be the

approximate sieve ML de�ned in (11). Then, kb�n � �0k2 = Op ("n) with "n = maxf�n; k�n�0 � �0k2g.

Note that �n increases with the complexity of the sieve An, which can be interpreted as a measure of the standard
deviation form, while we interpret the deterministic approximation error k�n�0 � �0k2 as a measure of the bias since
it decreases with the complexity of the sieve An. Now we prove Proposition 5.1 by showing the conditions in Theorem
F.2 hold under Assumptions SA-2, SA-3, and SA-4. We impose the following three conditions

Condition 10 For � some convex combination of � and �0 and for Lij , there exists functions M (�1s)
ij (�), M (�1w)

ij (�),
M

(�2s)
ij (�), M (�2w)

ij (�), M (�)
ij (�), M

(�1)
ij (�), M (�2)

ij (�), and M (h)
ij (�) such that

dLij(W;�)
d�

[�� �0] =

M
(�1s)
ij (W;�) (�1s � �1s0) +M

(�1w)
ij (W;�) (�1w � �1w0) +M

(�2s)
ij (W;�) (�2s � �2s0) +M

(�2w)
ij (W;�) (�2w � �2w0)

+M
(�)
ij (W;�) (�� �0) +M

(�1)
ij (W;�)X 0

1 (�1 � �10) +M
(�2)
ij (W;�)X 0

2 (�2 � �20) +M
(h)
ij (W;�) (h� h0)

for all i; j = 0; 1.

Condition 11 (i) sup
�2An;k���0ks=o(1)

���M (t)
ij (W;�)

��� � C11(W ) <1, 8t 2 f�1s; �1w; �2s; �2w; �; �1; �2; hg, 8i; j = 0; 1;

(ii) inf
�2An;k���0ks=o(1)

���M (t)
ij (W;�)

��� � C12(W ) > 0, 8t 2 f�1s; �1w; �2s; �2w; �; �1; �2; hg, 8i; j = 0; 1;

Condition 12 sup
�2An;k���0ks=o(1)

���M (t)
ij (W;�)�M

(t)
ij (W;�0)

��� = C2(W ) k�� �0ks with C2(W ) <1,

8t 2 f�1s; �1w; �2s; �2w; �; �1; �2; hg, 8i; j = 0; 1.

These three conditions are not di¢ cult to verify for the game models with IS-A and IS-2A from the arguments
in Section J. These three conditions are su¢ cient to verify the conditions (CC2) and (CC3).

F.3.1 Proof of Proposition 5.1

The condition (CC1) is directly assumed by Assumption SA-4 (i). Condition 10 implies that the pathwise derivative
of l(�j�; �) is well de�ned. Condition 10-11 implies that l(�j�; �) satis�es a Lipschitz condition in � 2 A. Condition
12 is useful to provide some regularities on the di¤erence of the pathwise derivatives of l(�j�; �). We �rst verify the
condition (CC2). Using the mean value theorem, we have l(yijwi; �)� l(yijwi; �0) = dl(yijwi;e�)

d�
[�� �0] where e� lies

between � and �0. It follows that

E
�
(l(yijwi; �)� l(yijwi; �0))2

�
= E

"�
dl(yijwi; e�)

d�
[�� �0]

�2#

from which we conclude E
�
(l(yijwi; �)� l(yijwi; �0))2

�
� k�� �0k2 since Condition 10-12 implies that����dl(yijwi; e�)d�

[�� �0]�
dl(yijwi; �0)

d�
[�� �0]

���� = O(k�� �0k2s) with k�� �0ks = o(1):

Thus, the condition (CC2) holds immediately.
Now we verify the condition (CC3). Note if 0 < C � a � b, then jln a� ln bj � ja� bj =C. Because Lij(W;�),

8i; j = 0; 1 is bounded away from zero and one for all � 2
�
� 2 An : k�� �0k2 � "

	
for all small " > 0, we have

jlnLij(W;�)� lnLij(W;�0)j � jLij(W;�)� Lij(W;�0)j =C for all i; j = 0; 1.
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This fact and the fact that Lij(W;�) satis�es the Lipschitz condition for all i; j = 0; 1 (Condition 10-11) implies that

jl(Y jW;�)� l(Y jW;�0)j � C(W ) k�� �0ks (61)

with E
�
C(W )2

�
<1. By Theorem 1 of Gabushin (1967) (for integer �1 > 0) or Lemma 2 in Chen and Shen (1998)

(for �1 > 0, any positive number), we have

k�� �0ks � C1 k�� �0k
2�1=dz

2�1=dz+1

2 . (62)

From (61) and (62), we see that the condition (CC3) is satis�ed with s = 2 �1
dz
=(2 �1

dz
+ 1) and U(wi) = C1C(W ). We

have veri�ed all the conditions in Theorem F.2.
The next step is to derive the convergence rate depending on the choice of sieves. For the sieve An � � � Hn

with Hn de�ned in (8), we have

k�n�0 � �0ks = O
�
K��1=dz
n

�
(63)

by Lorentz (1986). Now we need to calculate �n that solves (60). Now let C =
q
E
�
jU(wi)j2

�
and uh �

suph2Hn
khk1, then for all 0 <

"
C
� � < 1, we have

H[]

�
";Fn; k�kL2

�
� logN

� "
C
;Hn; k�k1

�
� const�Kn � log

�
1 +

4uh
"

�
by Lemma 2.5 in van der Geer (2000). Using this result, we obtain

1p
n�2n

R �n
b�2n

r
H[]

�
";Fn; k�kL2

�
d" � C 1p

n�2n

R �n
b�2n

q
Kn � log

�
1 + 4uh

"

�
d"

� C 1p
n�2n

p
Kn

R �n
b�2n

log
�
1 + 4uh

"

�
d" � C 1p

n�2n

p
Kn�n � const:

(64)

From the last inequality of (64), we conclude �n �
q

Kn
n
. We complete the proof by combining this result with (63).

Finally, by letting �n � k�n�0 � �0ks and Kn = n�, we obtain the optimal rate with Kn = n1=(2v1=dz+1).

F.4 Asymptotic Normality
We derive the asymptotic normality of the structural parameters estimates using Theorem 4.3 in Chen (2005).

First, we let the sieve conditional ML estimator b�n converges to �0 at a rate faster than �n. Also let "n denote
any sequence satisfying "n = o(n�1=2) and �n(g(Y;W )) = n�1

Pn
i=1 fg(yi; wi)� E[g(yi; wi)]g denote the empirical

process indexed by the function g. The following theorem show that the plug-in sieve conditional ML estimator f(b�n)
achieves the

p
n-asymptotic normality.

Theorem F.3 (Theorem 4.3 in Chen (2005))

Suppose that (AN1) (i) there is an ! > 0 such that
���f(�)� f(�0)� df(�0)

d�
[�� �0]

��� = O
�
kb�n � �0k!2

�
uniformly over

� 2 An with k�� �0k2 = o(1);(ii)



 df(�0)d�




 <1; (iii) there is a �n�� 2 An such that k�n�� � ��k2�kb�n � �0k2 =
op(n

�1=2);

(AN2) sup
�2An;k���0k2��n

�n

�
l(Y jW;�)� l(Y jW;�� "n�n�

�)� dl(Y jW;�0)
d�

[�"n�n��]
�
= Op("

2
n);

(AN3) K(�0; b�n)�K(�0; b�n � "n�n�
�) = �"n � hb�n � �0;�n�

�i+ o(n�1);

(AN4) (i) �n
�
dl(Y jW;�0)

d�
[�n�

� � ��]
�
= op(n

�1=2); (ii) E
h
dl(Y jW;�0)

d�
[�n�

�]
i
= o(n�1=2);

(AN5) n1=2�n
�
dl(Y jW;�0)

d�
[��]

�
!
d
N(0; �2��) with �

2
�� �Var

h
dl(Y jW;�0)

d�
[��]

i
> 0 for iid data holds and kb�n � �0k!2 =

op(n
�1=2). Then, for the sieve ML estimate b�n given in (14), we have pn (f(b�n)� f(�0))!

d
N(0; �2��).

Note that for statistical inference of the sieve plug-in estimate f(b�n), one needs a consistent estimator for �2�� .
For example, such estimators can be found in Andrews (1994b), Newey (1994), and Ai and Chen (2003). Now we are
ready to prove Theorem 5.1 based on Theorem F.3.
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F.4.1 Proof of Theorem 5.1

Now note that df(�0)
d�

[���0] = (���0)0� which implies that f(�)�f(�0)� df(�0)
d�

[���0] = 0 and hence the condition
(AN1) (i) holds with ! =1. In addition, note

sup0 6=���02V
jf(�)�f(�0)j2
k���0k2

= sup0 6=���02V
j�0(���0)j2

E

��
dl(Y jW;�0)

d�0 (���0)+
dl(Y jW;�0)

dh
[h�h0]

�2�
= sup0 6=(���0;b)2V

�0(���0)(���0)0�
(���0)0E

h�
dl(Y jW;�0)

d�0 � dl(Y jW;�0)
dh

[b]
�0� dl(Y jW;�0)

d�0 � dl(Y jW;�0)
dh

[b]
�i
(���0)

= �0 (E [Db�(Y;W )0Db�(Y;W )])
�1
�

which implies f(�) = �0� is bounded if and only if E [Db�(Y;W )0Db�(Y;W )] is �nite positive-de�nite, in which case
we have �� 2 V such that

f(�)� f(�0) � �0 (� � �0) = h��; �� �0i for all � 2 A (65)

by (18) and the Riesz representation theorem. �� � (��� ; ��h) 2 V satis�es (65) with

��� =
�
E
�
Db�(Y;W )0Db�(Y;W )

���1
� and ��h = �b� � ��� :

Thus, the condition (AN1) (ii) is satis�ed under Assumption SA-5 (ii). Assumption SA-5 (iii) implies that we can
�nd �n�� 2 An � � �Hn with Hn de�ned in (8) such that k�n�� � ��ks = O

�
n�1=4

�
. Combining this with the

condition kb�n � �0k2 = op(n
�1=4) supported by Proposition 5.1, we obtain k�n�� � ��k2 �kb�n � �0k2 = op(n

�1=2)
with �1=dz > 1=2. This satis�es the condition (AN1) (iii). Next, we verify the condition (AN3).

Note that we have

E

�
dl(Y jW;�0)

d�
[�� �0]

�
= 0 (66)

for any �� �0 (it does not need to be in V ) because (i) the directional derivative of l(Y jW;�) at �0 is well-de�ned
and (ii) it is unconstrained maximization (see Shen (1997)). This is the zero expectation of score function like in a
parametric ML. We can show (66) as follows. Denote L(Y;W;�) = exp(l(Y jW;�)).

E
h
dl(Y jW;�0)

d�
[�� �0]

i
= E

�
dL(Y;W;�0)

d�
[���0]

L(Y;W;�0)

�
=
R P

y

dL(Y=y;W;�0)
d�

[���0]
L(Y=y;W;�0) L(Y = y;W;�0)fW (W )dW

= lim�!0
d
d�

R P
y L(Y = y;W;�0 + �(�� �0))fW (W )dW = lim�!0

d
d�

R
fW (W )dW = 0

where the second equality holds since L(Y = y;W;�0) = Pr(Y = yjW;�0), by construction, for all y 2 f(1; 1); (1; 0);
(0; 1); (0; 0)g, the third equality holds by the interchangeability of integral and derivative and by de�nition of direc-
tional derivative, the fourth equality holds since

P
y L(Y = y;W;�0 + �(�� �0)) = 1 regardless of � and �, and the

last result holds since
R
fW (W )dW = 1.

From (66), it follows that

E

�
dl(Y jW;�0)

d�
[��]

�
= 0 and (67)

E

�
dl(Y jW;�0)

d�
[�n�

�]

�
= 0. (68)

We also need the following results to verify the condition (AN3).
For �3 2 An such that k�3 � �0k2 � �n and for �1,�2 2 An � �0, note that���E h dl(Y jW;�3)d�

[�1]
dl(Y jW;�3)

d�
[�2]

i
� E

h
dl(Y jW;�0)

d�
[�1]

dl(Y jW;�0)
d�

[�2]
i���

�
���E h� dl(Y jW;�3)d�

[�1]� dl(Y jW;�0)
d�

[�1]
�
dl(Y jW;�3)

d�
[�2]

i��� +
���E h dl(Y jW;�0)d�

[�1]
�
dl(Y jW;�3)

d�
[�2]� dl(Y jW;�0)

d�
[�2]

�i���
� C1 k�3 � �0ks k�2ks k�1ks � C1

�
k�3 � �0k2 k�2k2 k�1k2

� 2�1=dz
2�1=dz+1
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where the �rst inequality uses the triangle inequality, the second inequality holds by Conditions 10-12, and the last
result holds by Theorem 1 of Gabushin (1967) (when �1=dz is an integer) or by Lemma 2 in Chen and Shen (1998)
for any �1=dz > 0. Thus, the condition A4 (i) in Wong and Severini (1991) holds with �1=dz > 1. Note also that���E h dl(Y jW;�3)d�

[�1; �2]
i
� E

h
dl(Y jW;�0)

d�
[�1; �2]

i��� = ���E h� dl(Y jW;�3)d�
� dl(Y jW;�0)

d�

�
[�1;�2]

i���
� C1 k�3 � �0ks k�2ks k�1ks � C1

�
k�3 � �0k2 k�2k2 k�1k2

� 2�1=dz
2�1=dz+1

(69)

and hence the condition A4 (ii) in Wong and Severini (1991) holds with �1=dz > 1. Now consider

K(�0; b�n)�K(�0; b�n � "n�n�
�)

= E [l(Y jW; b�n � "n�n�
�)� l(Y jW; b�n)] = E

h
dl(Y jW;b�n�e"n�n��)

d�
[�"n�n��]

i
= E

h
dl(Y jW;�0)

d�
[�"n�n��] + d2l(Y jW;�0)

d�2
[b�n � e"n�n�� � �0;�"n�n��] + op(n

�1)
i

= E
h
d2l(Y jW;�0)

d�2
[b�n � �0;�"n�n��]

i
+ o(n�1) = �"n � hb�n � �0;�n�

�i+ o(n�1)

where the �rst equality holds by de�nition of K(�; �), the second equality is using the mean value theorem withe"n = o(n�1=2), the third equality is obtained using the Taylor expansion, the fourth equality is obtained using (i)

E
h
dl(Y jW;�0)

d�
[�"n�n��]

i
= �"nE

h
dl(Y jW;�0)

d�
[��n]

i
= 0 by (68) and using (69) with e"n; "n = o(n�1=2), the last result

is from the fact that h�1; �2i = �E
h
d2l(Y jW;�0)

d�2
[�1; �2]

i
from (59) (see Wong and Severini (1991)). Therefore, the

condition (AN3) holds since "n is arbitrary.

Note that the condition (AN4) (ii) immediately holds since E
h
dl(Y jW;�0)

d�
[�n�

�]
i
= 0 by (68). De�ne

M (h)(Y;W;�0) =

8<: Y1Y2
M

(h)
11 (W;�0)

L11 + Y1(1� Y2)
M

(h)
10 (W;�0)

L10

+(1� Y1)Y2
M

(h)
01 (W;�0)

L01 + (1� Y1) (1� Y2)
M

(h)
00 (W;�0)

L00

9=; . (70)

From this, it follows that

1
n

Pn
i=1

dl(yijwi;�0)
d�

[�n�
� � ��] = 1

n

Pn
i=1

dl(yijwi;�0)
dh

[�n�
�
h � ��h]

= 1
n

Pn
i=1M

(h)(yi; wi; �0)(�n�
�
h(zi)� ��h(zi))

and thus the condition (AN4) (i) follows using the Chebyshev inequality from 0 = E
h
dl(YijWi;�0)

d�
[�n�

� � ��]
i
by

(67), (68), and from k�n��h � ��hk1 = o(n�1=4) by Assumption SA-5 (iii). Now note that

dl(Y jW;�0)
d�

[��] = @l(Y jW;�0)
@�0 ��� +

dl(Y jW;�0)
dh

[��h]

=
�
@l(Y jW;�0)

@�0 �M (h)(Y;W;�0)b
�
�
(E [Db�(Y;W )0Db�(Y;W )])

�1
�

=
�
@l(Y jW;�0)

@�0 � dl(Y jW;�0)
dh

[b�]
�
(E [Db�(Y;W )0Db�(Y;W )])

�1
�

= Db�(Y;W ) (E [Db�(Y;W )0Db�(Y;W )])
�1
�

where the second equality is obtained using (70) and the de�nitions of ��� and �
�
h. This implies that the condition

(AN5) is satis�ed by the Lindberg and Levy CLT since E
h
dl(Y jW;�0)

d�
[��]

i
= 0 and

E

�


 dl(Y jW;�0)d�
[��]




2�
= E

h
�0 (E [Db�(Y;W )0Db�(Y;W )])

�1
Db�(Y;W )0Db�(Y;W ) (E [Db�(Y;W )0Db�(Y;W )])

�1
�
i

= �0 (E [Db�(Y;W )0Db�(Y;W )])
�1
� <1

by Assumption SA-5 (ii). Now note �2�� �Var
�
dl(Y jW;�0)

d�
[��]

�
= � (E [Db�(Y;W )0Db�(Y;W )])

�1
�0. Therefore, the

conclusion p
n(b�n � �0)!

d
N
�
0;
�
E
�
Db�(Y;W )0Db�(Y;W )

���1�
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follows since � is arbitrary with � 6= 0.
Now the condition (AN2) remains to be proved. Note that the condition (AN2) is implied by

sup
�2An;k���0k��n

�n

�
dl(yijwi; �)

d�
[�n�

�]� dl(yijwi; �0)
d�

[�n�
�]

�
= op(n

�1=2). (71)

Let F = f dl(Y jW;�)
d�

[�n�
�] : � 2 Ag. Condition 12 implies that dl(yijwi;�)

d�
[�n�

�] satis�es the Lipschitz condition with
respect to � and the metric k�ks. Thus,

dl(yijwi;�)
d�

[�n�
�] satis�es the condition (3.1) of Theorem 3 in Chen, Linton,

and van Keilegom (2003). Note also that � is compact and H is a subset of a Hölder space. Thus, from the Lipschitz
condition and the remark 3 (ii) of Chen, Linton, and van Keilegom (2003), it follows thatZ 1

0

r
logN[]

�
";F ; k�kL2(P0)

�
d" <1 (72)

by the proof of Theorem 3 in Chen, Linton, and van Keilegom (2003). Now note

E

�


 dl(yijwi;�)d�
[�n�

�]� dl(yijwi;�0)
d�

[�n�
�]



2
E

�
� C � E

h


 dl(yijwi;�)d�
[�n�

�]� dl(yijwi;�0)
d�

[�n�
�]




E

i
� supw�y2S(W )�S(Y );k���0k��n;�2An




 dl(yjw;�)d�
[�n�

�]� dl(yjw;�0)
d�

[�n�
�]




E
! 0 as k�� �0ks ! 0

(73)

where the last result holds by Condition 12. Therefore, applying Lemma 1 in Chen, Linton, and van Keilegom (2003),
we �nd that (71) is true by (72) and (73). This completes the proof.

F.4.2 Proof of Proposition 5.2

Similarly with the proof of Theorem 5.1 in Ai and Chen (2003). We can prove Proposition 5.2. We note thatPn
i=1

�
dl(yijwi;b�n)

d�j
� dl(yijwi;b�n)

dh
[bj ]
�2
is globally convex in bj and hence the solution of (20), bb�j , must be bounded

by



bb�j




s
� C. Thus, we only care about the subset

�
b 2 B : kbks � C

	
in the following discussion.

Note that uniformly over bj 2 Hn; kbjks < C, we have

1

n

nX
i=1

�
Dbj (Yi;Wi; b�n)�2 = 1

n

nX
i=1

�
Dbj (Yi;Wi; �0)

�2
+ op(1) (74)

since Dbj (Y;W;�) = Dbj (Yi;Wi; �0)+ op(1) uniformly over k�� �0ks = o(1) by Condition 12 and kbjks < C. Thus,

it su¢ ces to show that



bb�j (�)� b�j (�)





s
= op(1) which implies

Dbb�j (Y;W;�0) = Db�j
(Yi;Wi; �0) + op(1): (75)

Combining (74) and (75), we have 1
n

Pn
i=1

�
Dbb�j (Yi;Wi; b�n)�2 = 1

n

Pn
i=1

�
Db�j

(Yi;Wi; �0)
�2
+ op(1) from which the

claim follows.
Now it remains to show that




bb�j (�)� b�j (�)




s
= op(1) which is satis�ed by Condition 12, Assumption SA-5,

kb�n � �0ks = o(1), and Lemma A.1 in Newey and Powell (2003).

G Utilizing the Mixing Distribution of Public Signals
Until now, we have ignored the possibility that we may estimate the �nite mixing distribution of Z directly from the
data or we may combine this with the estimation procedures we have considered in previous sections (for example,
we may estimate the sieve ML estimator that maximizes (13)). Recall that Z follows a mixing distribution with the
density

fZ(z) = pf(st)(z) + (1� p) f(we)(z).
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Suppose f(st)(�) and f(we)(�) belong to some parametric family
�
f(�)(�; �)

	
. Then, we can estimate p and � consistently

using the EM algorithm as suggested in the literature (Everitt and Hand (1981), Titterington, Smith, and Makov
(1985)). For a comprehensive treatment of mixture models, one can refer to Lindsay (1995). First, we brie�y review
the EM procedure tailored to our problem, following Arcidiacono and Bailey Jones (2003). Denote the unconditional
likelihood of zi as fZ(z;�; p) = pf(st)(z;�) + (1� p) f(we)(z;�). From Bayes�theorem, P (tsjzi;�; p), the probability
that i is from the strong type conditional on zi will be

P (tsjzi;�; p) =
pf(st)(z;�)

fZ(z;�; p)
: (76)

If we maximize the sample average of the log of unconditionally-type-averaged likelihood L(�; p) = 1
n

Pn
i=1 log(fZ(zi;�; p)),

we will obtain bp = 1

n

Pn
i=1 P (tsjzi; b�; bp): (77)

The maximum likelihood estimator b� must solve
1

n

Pn
i=1

�
P (tsjzi; b�; bp)@ log f(st)(zi;�)

@�
+ (1� P (tsjzi; b�; bp))@ log f(we)(zi;�)

@�

�
= 0

which is the �rst order condition of

b� = argmax 1
n

Pn
i=1

�
P (tsjzi; b�; bp) log f(st)(zi;�) + (1� P (tsjzi; b�; bp)) log f(we)(zi;�)� : (78)

This means that b� maximizes both the sample average of the log of unconditionally- and conditionally-type averaged
log-likelihood. In the EM algorithm, starting from an initial value of �(1) and p(1), we update the conditional
probability using (76) as P (tsjzi;�(1); p(1)) in the �E�step. In the �M�step, using (77) and (78), we obtain �(2) and
p(2). Asymptotic properties of this estimator are well-known in the literature.

However, in our problem, the mixing distribution is nonparametrically speci�ed where f(st)(�) and f(we)(�) are
in�nite dimensional parameters. The identi�cation of the mixture with nonparametric component functions for types
has not been studied well with few exceptions (Kitamura (2004)) while Heckman and Singer (1994) provides an
important study for the semiparametric models treating the mixing probability nonparametrically. Here we propose
a pseudo EM algorithm that combines (76), (77), and the estimation procedures considered in the previous sections.
The key idea is that for updating the mixing probability (like in step (77)), other than the prior mixing probability,
we only need the ratio of densities for two component distributions, not individual densities.

In the �rst step, from (10), obtain an initial estimator of bh(1)n . Using these, obtain

P (tsjz;bh(1)n ) � exp(bh(1)n (z))

1 + exp(bh(1)n (z))
and bp(1)n =

1

n

nX
i=1

P (tsjzi;bh(1)n ) (79)

from (5) and (24). These replace the steps (76) and (77), respectively. Now note that a directional derivative of the
log likelihood function in (13) with respect to (�; ho) at the direction of (�; ho) equals to

1

n

nX
i=1

p exp (ho(zi))

p exp (ho(zi)) + (1� p)
(eho � ho) +

1

n

nX
i=1

dl(yijwi; �; log
�

p
1�p

�
+ ho(zi))

d (�; ho)
[
�e�;eho�� (�; ho)]

and note that p exp(ho(z))
p exp(ho(z))+(1�p) =

exp(log(p=(1�p))+ho(z))
1+exp(log(p=(1�p))+ho(z)) =

exp(h(z))
1+exp(h(z))

. Similarly with (78), this suggests that we
can update � and ho by solving

�b�(2)n ;bho(2)n

�
� argmax

(�;ho)2��Hn

1

n

nX
i=1

exp(bh(1)n (zi))

1 + exp(bh(1)n (zi))
ho(zi) +

1

n

nX
i=1

l(yijwi; �; log
 bp(1)n
1� bp(1)n

!
+ ho(zi)).

Let bh(2)n (z) = log
�bp(1)n =(1� bp(1)n )

�
+ bho(2)n . Using this bh(2)n , obtain bp(2)n from (79). Iterate this procedure until

convergence is obtained.
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H Asymptotic Normality of p0: Type Distribution
We may prove Proposition 5.3 by showing all the conditions in Theorem 2 of Chen, Linton, and van Keilegom (2003)
hold. Most of conditions will be satis�ed trivially. Here we directly prove Proposition 5.3 since it is a simple case of
Chen, Linton, and van Keilegom (2003).

H.1 Proof of Proposition 5.3
We let M(h) denote

R
S(Z) L(h(z))fZ(z)dz and Mn(h) denote 1

n

Pn
i=1 L(h(Zi)). We have

p
n (bpn � p0) =

1p
n

Pn
i=1

�
L(bhn(Zi))� L(h0(Zi))

�
+ 1p

n

Pn
i=1 (L(h0(Zi))� E(L (h0(Zi))))

=
p
n
�
Mn(bhn)�Mn(h0)

�
+
p
n (Mn(h0)�M(h0))

(80)

Now let �(h) = Mn(h) �M(h) be a stochastic process indexed by h 2 H. Then, we obtain the following stochastic
equicontinuity such that for any positive sequence �n = o(1),

sup
kh�h0k1��n

j�(h)� �(h0)j = op(n
�1=2) (81)

by applying Lemma 1 of Chen, Linton, and van Keilegom (2003) after establishing that (a) fv(h) � L(h)�M(h0) :

h 2 Hg is a Donsker class and that (b) E
�
(v(h1)� v(h2))

2� ! 0 as kh1 � h2k1 ! 0 noting E [v(h0)] = 0 by
construction. Consider that fv(h) � L(h) �M(h0) : h 2 Hg is a subset of ��1C1(S(Z)) and �

�1
C1
(S(Z)) is a Donsker

class by Theorem 2.5.6 of van der Vaart and Wellner (1996). Thus, the condition (a) is satis�ed. Now note

E
�
(v(h1)� v(h2))

2� = E
�
(L(h1)� L(h2))

2� � E [jL(h1)� L(h2)j] supz jL(h1)� L(h2)j
= E [jL(h1)� L(h2)j] supz

���L0(eh(z))��� kh1 � h2k1 � 1
4
E [jL(h1)� L(h2)j] kh1 � h2k1

since L0 = L(1�L) � 1=4 uniformly where the second equality is obtained by applying the mean value theorem and
thus, the condition (b) is satis�ed. Therefore, (81) holds. Now consider

p
n
�
Mn(bhn)�Mn(h0)

�
=
p
n
�
M(bhn)�M(h0)

�
+
p
n
�
Mn(bhn)�M(bhn)�Mn(h0) +M(h0)

�
=
p
n
�
M(bhn)�M(h0)

�
+ op(1)

(82)

where the last result is obtained by (81) and



bhn � h0





1
= op(1). Now applying the mean value theorem, we have

p
n
�
M(bhn)�M(h0)

�
=
p
n
R
S(Z) L

0(ehn(z))�bhn(z)� h0(z)
�
fZ(z)dz

=
p
n
R
S(Z) L

0(h0(z))
�bhn(z)� h0(z)

�
fZ(z)dz +

p
n
R
S(Z)

�
L0(ehn(z))� L0(h0(z))

��bhn(z)� h0(z)
�
fZ(z)dz

(83)

where ehn lies between bhn and h0. Applying the mean value theorem again, we obtain (noting L0 = L(1� L))���L0(ehn)� L0(h0)
��� = ���L�ehn��1� L

�ehn��� L (h0) (1� L (h0))
���

=

�����1� L
�ehn�� L (h0)

�
L0
�eehn��ehn � h0

����� � 1
4

���ehn � h0

���
where eehn lies between ehn and h0. It follows that

p
n

Z
S(Z)

�
L0(ehn(z))� L0(h0(z))

��bhn(z)� h0(z)
�
fZ(z)dz �

1

4

p
n



ehn � h0





1




bhn � h0





1
= op(1) (84)

by the condition (i). Thus, we �nd

p
n
�
M(bhn)�M(h0)

�
=
p
n

Z
S(Z)

L0(h0(z))
�bhn(z)� h0(z)

�
fZ(z)dz + op(1) (85)

from (83) and (84). From (80), (82), and (85), the claim follows by the condition (ii).
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H.2 Proof of Proposition 5.4
We let M�

n(h) =
1
n

Pn
i=1 L(h(Z

�
i )). First, we note that the following condition holds by Giné and Zinn (1990),

sup
kh�h0k1��n

j��(h)� ��(h0)j = oP�(1) (86)

where ��(h) =M�
n(h)�Mn(h). Note

p
n (bp�n � bpn) = pn�M�

n(bh�n)�M�
n(bhn)�+pn�M�

n(bhn)�Mn(bhn)� (87)

and we have, p
n
�
M�
n(bhn)�Mn(bhn)� = pn�Mn(bhn)�M(bhn)�+ oP�(1) (88)

by Giné and Zinn (1990). Also note

p
n
�
M�
n(bh�n)�M�

n(bhn)�
=
p
n
�
M�
n(bh�n)�Mn(bh�n)�M�

n(h0) +Mn(h0)
�
�
p
n
�
M�
n(bhn)�Mn(bhn)�M�

n(h0) +Mn(h0)
�

+
p
n
�
Mn(bh�n)�Mn(bhn)�

=
p
n
�
Mn(bh�n)�Mn(bhn)�+ oP�(1)

(89)

where the last equality is obtained using (86) and by the conditions (i) and (ii). Now consider

p
n
�
Mn(bh�n)�Mn(bhn)�

=
p
n
�
M(bh�n)�M(bhn)�+pn�Mn(bh�n)�M(bh�n)� (Mn(h0)�M(h0))

�
�
p
n
�
Mn(bhn)�M(bhn)� (Mn(h0)�M(h0))

�
=
p
n
�
M(bh�n)�M(bhn)�+ oP�(1)

(90)

by the conditions (i), (ii), and (iii). Now similarly with (85), we can show that

p
n
�
M(bh�n)�M(bhn)� = pn Z

S(Z)
L0(bhn)�bh�n � bhn� dFZ + oP�(1): (91)

Combining (87), (88), (89), (90), and (91), we note the claim follows by the condition (iv).

H.2.1 Stochastic Expansion of bhn � h0
To check the condition (ii) in Proposition 5.3 (or the condition (iv) of Proposition 5.4), we need to derive the
stochastic expansion of bhn�h0 for a particular estimator. Here we provide a sketch of such an expansion for the sieve
conditional ML estimator. Deriving the stochastic expansion of a nonparametric estimator obtained from a highly
nonlinear objective function is often di¢ cult.

To facilitate this task, we de�ne a pseudo true value of � and h such that

�0K � (�0K ; h0K) = argmax
�2�,h=RK(�)0�2Hn

QK(�; h) � E [l(YijWi; �; h(Zi))] (92)

and let h0K(�) = RK(�)0�0K . Similarly, we let bhn(�) = RK(n)(�)0b�n. Then,
bhn(�)� h0K(�) = RK(�)0 (b�n � �0K) with K = K(n). (93)

De�ne

	(h) =

Z
S(Z)

L(h(z))(1� L(h(z)))RK(z)dFZ(z): (94)
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Now suppose that

	(h0)
0 (b�n � �0K) =

1

n

nX
i=1

 (�0K ; Yi;Wi) + op(n
�1=2); (95)

E[ (�0K ; Yi;Wi)] = o(1), E[k (�0K ; Yi;Wi)k2E ] <1. Further suppose,

kh0K � h0k1 = o
�
n�1=2

�
. (96)

Then, we have

p
n
R
S(Z) L(h0)(1� L(h0))

�bhn � h0
�
dFZ

=
p
n
R
S(Z) L(h0)(1� L(h0))

�bhn � h0K
�
dFZ +

p
n
R
S(Z) L(h0)(1� L(h0)) (h0K � h0) dFZ

=
p
n	(h0)

0 (b�n � �0K) +
p
n
R
S(Z) L(h0)(1� L(h0)) (h0K � h0) dFZ =

1p
n

Pn
i=1  (�0K ; Yi;Wi) + op(1)

where the second equality is obtained from (93) and (94) and the third equality is obtained from (95) and (96) noting
L(�)(1� L(�)) � 1=4 uniformly. From this, it follows

Vp = lim
K!1

E
�
( (�0K ; Yi;Wi) + '(Zi)) ( (�0K ; Yi;Wi) + '(Zi))

0�
where '(Zi) = L(h0(Zi)) � E [L(h0(Zi))]. Therefore, to verify the condition (ii) of Proposition 5.3 holds, it su¢ ces
to show (95) and (96) are true. (95) can be shown using the �rst order conditions of (10) and (92). For (96),
we note we often �nd kh0K � h0k1 = �(K)K��1=2dZ in the literature (Hirano, Imbens, and Ridder (2003)) where
�(K) = supz2S(Z)



RK(z)


E
.

I Set Estimation of the Type Distribution (Proposition 6.1)
Here we derive the consistency for the set estimator of the type distribution parameter. We employ the Hausdor¤
metric measuring the distance between two sets whose elements are dim(#)-vectors. For two such sets A and B,
let the maximum distance between any points in A and B be given by �(AjB) = supa2A �(ajB) where �(ajB) =
inf
�
ka� bkE : b 2 B

	
. Then, the Hausdor¤ metric is de�ned by d(A;B) = maxf�(AjB); �(BjA)g.

We prove Proposition 6.1 similarly with the proof of Theorem 2 in Andrews, Berry, and Jia (2004).
Proof. We let pn(#) = 1

n

Pn
i=1 L(h(zi; �)) where # = (�; �) 2 b�n and let p(#) = E [L(h(Z; �))] where # = (�; �) 2 �+.

Now note that for any " > 0,

P (d( bPn;P+) > ") � P (�( bPnjP+) > ") + P (�(P+j bPn) > ") (97)

from the de�nition of d(�; �). Let � = P (d(b�n;�+) > �) for any � > 0 and consider

P (�( bPnjP+) > ") � P (�( bPnjP+) > "; d(b�n;�+) � �) + �
= P (sup#2b�n inf fjpn(#)� p(#+)j : #+ 2 �+g > "; d(b�n;�+) � �) + �

(98)

where the equality holds by de�nitions of �(�j�), bPn, and P+. Now consider that if d(b�n;�+) � �, then �(b�nj�+) � �

and for any # 2 b�n, there exists #++ 2 �+ such that k#� #++ks � �. It follows that for any # 2 b�n such that
k#� #++ks � �, we have

pn(#)� p(#++)
= 1

n

Pn
i=1 (L(h(Zi; �))� L(h(Zi; �++))) +

1
n

Pn
i=1 (L(h(Zi; �++))� E [L(h(Zi; �++))])

= 1
n

Pn
i=1 L(h(Zi;

e�))(1� L(h(Zi;e�)))(h(Zi; �)� h(Zi; �++))
+ 1

n

Pn
i=1 (L(h(Zi; �++))� E [L(h(Zi; �++))])

� 1
4
supz2S(Z) jh(z; �)� h(z; �++)j+ op(1) � C � � for su¢ ciently large n � 9N;

(99)

where the second equality is obtained applying the mean value theorem (e� lies between � and �++), the �rst in-
equality holds since L(1 � L) � 1=4 uniformly and since we bound the second term of (99) by op(1) applying
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the LLN (fZigni=1 are iid and jL(h)j < 1 uniformly), the last result holds applying the mean value theorem since

sup�2D;z2S(Z)




 @h(z;�)@�0





E
<1. From this result, we have

sup
#2b�n inf fjpn(#)� p(#+)j : #+ 2 �+g � sup

#2b�n;k#�#++ks��
jpn(#)� p(#++)j � C � �

for all su¢ ciently large n � 9N . From this, it follows that for su¢ cient large n,

P (sup#2b�n inf fjpn(#)� p(#+)j : #+ 2 �+g > "; d(b�n;�+) � �) � " (100)

and thus
P (�( bPnjP+) > ") � "+ P (d(b�n;�+) > �) (101)

from (98) and (100). An analogous argument provides

P (�(P+j bPn) > ") � "+ P (d(b�n;�+) > �). (102)

Combining (97), (101), and (102), we have P (d( bPn;P+) > ") � 2" + 2P (d(b�n;�+) > �). This proves Proposition
6.1 since " > 0 is arbitrary and d(b�n;�+) = op(1).

J Smoothness of Conditional Probabilities
Here we note that for the conditional probabilities presented in Appendix C or E.3.2, the pathwise �rst and second
derivatives are well-de�ned. This result is useful to verify Conditions 10-12 for the sieve conditional ML. It is
easy to see that the pathwise derivatives are well-de�ned as long as G1(�) and G2(�) are continuously di¤erentiable
since the function h(�) appears only in p(Z) = p(p; h) = exp(log(p=(1�p))+h)

1+exp(log(p=(1�p))+h) and we have
dp(p;h)
dh

[h1 � h2] = (1 �
p(p; h))p(p; h)(h1 � h2). Therefore, for the conditional probabilities given in Appendix C or E.3.2, we have

dPij(Y jW;�;p(p;h))
dh

[h1 � h2] =M
(h)
ij (h1 � h2), 8i; j = 0; 1,

d2Pij(Y jW;�;p(p;h))
dh2

[h1 � h0; h2 � h0] =M
(h)(h)
ij (h1 � h0)(h2 � h0), 8i; j = 0; 1, and

dh@Pij(Y jW;�;p(p;h))
dh@t

[h1 � h2] =M
(h)(t)
ij (h1 � h0), 8i; j = 0; 1 and for any element t of �,

where M (h)
ij , M

(h)(h)
ij , and M

(h)(t)
ij are some well-de�ned ordinary derivatives. The second thing to note is that

those derivatives and other derivatives with respect to �nite dimensional parameters are uniformly bounded by some
constant since (i) G1(�) and G2(�) are continuously di¤erentiable, (ii) the parameter space � is compact, (ii) S(W ) is
compact, (iii) 0 < p < 1 and 0 < p(Z) < 1, and (iv) h(Z) appears only in p(p; h). Therefore, the Lipschitz conditions
for the conditional probabilities and the Lipschitz conditions for the pathwise �rst derivatives of the conditional
probabilities are well satis�ed. For example, in the case of the sieve conditional ML estimation, this implies that
the Lipschitz conditions for the log likelihood and the Lipschitz conditions for the pathwise derivatives of the log
likelihood are also well-de�ned.

Speci�c forms of derivatives for each model can be provided upon request.
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