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Abstract—We calibrate Markov regime-switching (MRS) mod- II. DATA PREPROCESSING

els to mean daily spot prices from the EEX market. Our empirical
study shows that (i) models with shifted spike regime distributions Due to space limitations in this paper we concentrate only
lead to more realistic models of electricity spot prices and that (ii) on the German EEX market. For results of the whole study

introducing heteroskedasticity in the base regime leads to better . . E dA - ket
spike identification and goodness-of-fit than in MRS models with Covering various £uropean an merican power markets see

the standard mean-reverting, constant volatility dynamics. [11]. We use mean daily (baseload) spot prices from the gerio
January 1, 2001 — January 3, 2009. To see how the presented
I. INTRODUCTION methods perform under different market conditions the $amp

Electricity is a very unique commodity. In addition toiS split into two subsamples of 1463 daily observations (209
strong seasonality on the annual, weekly and daily level; spveeks each): January 1, 2001 — January 2, 2005 and January
electricity prices exhibit mean reversion, very high vitigt 3, 2005 — January 3, 2009, see Figure 1. Note, that starting in
and abrupt, short-lived and generally unanticipated extre late 2004 the spot prices exhibit an upward trend and higher
price changes known as spikes or jumps [3], [15], [18]/_0Iatility, largely due to a combination of higher fuel pei
The aim of this paper is to suggest parsimonious mode#§d the introduction of COemission costs.
for electricity spot price dynamics that can address thetmos The first crucial step in defining a model for electricity
pertinent characteristics and, hence, be used for desgtiprice dynamics consists of finding an appropriate desoripti
pricing. To this end, we test a range of Markov regimesf the seasonal pattern. There are different suggestiottsein
switching (MRS) models, which by construction should bliterature for dealing with this task [16]. Here we followeth
very well suited for the volatile electricity spot prices. ‘industry standard’ and represent the spot prizdy a sum of

Motivated by recent findings [19] we focus on MRS modelvo independent parts: a predictable (seasonal) compghent
for the prices themselves; not the log-prices as in mostrotrand a stochastic componehit, i.e. P, = f; + X;. Further, we
studies. Further, we introduce two novel features in theeodn let f; be composed of a weekly periodic pagtand a long-
of MRS modeling of electricity spot prices: heterosceditsti term seasonal trend;, which represents both the changing
in the base regime and shifted spike regime distributiohg Tclimate/consumption conditions throughout the year are th
rationale for the former comes from the observation thateprilong-term non-periodic structural changes.
volatility generally increases with price level, since ipus As in [19] the deseasonalization is conducted in three
price shocks increase volatility more than negative shockgeps. First.T; is estimated from daily spot priceB; using
(so-called ‘inverse leverage effect’ [13]). The CIR squarex wavelet filtering-smoothing technique (for details seg],[1
root process [4] is tested as a heteroscedastic alterntativg18]). Recall, that any function or signal (her®;) can be built
the standard mean-reverting dynamics. Shifted spike megimp as a sequence of projections onto one father wavelet and
distributions, on the other hand, are required for the catllibn a sequence of mother wavelets; + Dy + Dy 1 + ... + D1,
procedure to correctly separate spikes from the ‘normatepr where2” is the maximum scale sustainable by the number of
behavior. As in [19] we use two spike distributions: senmobservations. At the coarsest scale the signal can be éstima
heavy-tailed lognormal and heavy-tailed Pareto. by S;. At a higher level of refinement the signal can be

The paper is structured as follows. In Section Il we preseapproximated byS; | = S; + D;. At each step, by adding
the datasets and explain the deseasonalization procedarest mother waveletD; of a lower scalej = J —1,J — 2, ...,
Section Il we introduce the MRS models for deseasonalizeet obtain a better estimate of the original signal. Here wee us
prices and in Section IV we evaluate their goodness-of-fihe Ss approximation, which roughly corresponds to annual
Finally, in Section V we summarize the results. (2% = 256 days) smoothing, see the thick blue lines in Figure
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200 400 600 800 1000 1200 1400 is theith column of the2 x 2 identity matrix.

Days [Jan 1, 2001 - Jan 2, 2005] To our best knowledge, the MRS models were first ap-
plied to electricity prices in [7]. A two state specification
was proposed, in which in both regimes the log-prices were

300 governed by autoregressive processes of order one, i.el)AR(
= 250} ] Huisman and Mahieu [10] proposed a regime-switching model
= with three possible regimes in which the initial jump regime
£ 200{ 1 was immediately followed by the reversing regime and then
o4
i 150} moved back to the base regime. Consequently, their model did
g not allow for consecutive high prices (in fact of log-prites
B 100} and hence did not offer any obvious advantage over jump-
5 diffusion models. This restriction was relaxed in [9], wher
W 50} model with only two regimes — a stable, mean-reverting AR(1)
regime and a spike regime — was proposed for deseasonalized
200 400 600 800 1000 1200 1400 log-prices. The third regime was not needed to pull prices
Days [Jan 3, 2005 — Jan 3, 2009] back to stable levels, because the prices were independent

from each other in the two regimes. The dynamics of the
Fig. 1. Mean daily EEX spot prices and their long-term seasoomponents spike regime was modeled with a simple normal distribution
(thick blue lines) for the two studied periods. whose mean and variance were higher than those of the
mean-reverting base regime process. This simple yet versat
model was further extended by admitting lognormal, Pareto
[ﬁ and exponential [1] spike regime distributions, as ves|

PR _ * autoregressive Poisson driven spike regime dynamics [5].
the weekly periodicitys, is removed by applying the moving s apove mentioned models have two common features.

average technique (see e.g. [18]) and subtracting thetiresul Firstly, not the pricesX; themselves, but rather log-pricks —

‘mean’ weekly pattern. Finally, the deseasonalized prices log(X,) are considered. Secondly, the base regime (and in

By — T, — s, are shifted so that the minimum of the new, e cases the spike regime as well) is driven by a mean-
process is the same as the minimunmPpfthe latter alignment reverting diffusion process of the form:

is required if log-prices are to be analyzed). The resulting
deseasonalized time seri&s can be seen in Figure 3. dY; = (a — BYy)dt + odWy, 2

1. The price series without the long-term seasonal trend
obtained by subtracting th&s approximation frompP;. Next,

where W; is Brownian motion (i.e. a Wiener proces%,is
the long term mean reversion level,is the speed of mean
The underlying idea behind the Markov regime-switchingeversion andr is the volatility. In the fixed income literature
(MRS) scheme is to model the observed stochastic behawiis popular process is known as the Vasicek [17] model, in
of a specific time series by two (or more) separate phasesnesthematics as the (generalized) Ornstein-Uhlenbeclepsyc
regimes with different underlying processes. In other wprdwhile in signal processing — when discretized — as an autore-
the parameters of the underlying process may change fogrssive time series of order one, i.e. AR(1).
certain period of time and then fall back to their original In a recent paper, Weron [19] provided evidence that mod-
structure. The switching mechanism between the stateselig the prices themselves is more beneficial and method-
Markovian and is assumed to be governed by an unobsengtdgically sound than the log-prices, at least in case of MRS
random variable. The underlying processes, though, do mabdels. For log-price models the calibration scheme gélyera
have to be Markovian, but are (typically) independent frorassigns all extreme prices to the spike regime, no matter
each other. whether they truly are spikes or only sudden drops. This
In this study, the spot price is assumed to display eithproperty can be seen in Figure 2, where a MRS model
normal (base regimé;, = 1) or high (spike regimeR; = 2) with Vasicek base regime and lognormal spikes is fitted to

IIl. M ARKOV REGIME-SWITCHING MODELS



the medianm = mediar{X;)) of the dataset. We consider
‘shifted lognormal’:

log(X; —m) ~ N(a, 6%), X, > m, 3)

and ‘shifted Pareto’ laws:

EEX log—price

A\ @
Xy~ Fparet({a, )\) =1- (x> , Xy >A>m. (4)

‘ ‘ ‘ ‘ ‘ ‘ ‘ Regarding the second common feature, we introduce an
200 400 600 800 1000 1200 1400 alternative base regime dynamics and compare it with the
L ‘industry standard’ Vasicek model; with; replaced byX; in

Ll h I L l]l L1 eqn. (2). The competitor is the so-called square-root or CIR
Days [Jan 1, 2001 — Jan 2, 2005] [4] process:

P(Spike)
o
(6]

dX, = (o — BX})dt + o/ X, dW,. (5)

Note, that in this model the volatility is dependent on the

4 current price levelX;, i.e the higher the price level the larger

are the price changes. Compared to Vasicek dynamics, we can

3 expect that in the CIR model the less extreme price changes

will be classified as ‘normal’ and not spiky.

+  Spike Calibration of MRS models is not straightforward since

200 400 600 800 1000 1200 1400 the regime |s'only latent and he.nce' not directly observ'able.

Hamilton [8] introduced an application of the Expectation-

— H l]m] “.Jl m l “UM Maximization (EM) algorithm [6] where the whole set of
1| - Ll : parameter® is estimated by an iterative two-step procedure.

The algorithm was later refined by Kim [12]. In the first

Fig. 2. Calibration results of the MRS model with Vasicek basgime SteP the conditional probabilitieB( R, = j| X1, ..., X1 ¢) for

and lognormal spikes fitted to the deseasonalized EEX lagegrin the two the process being in regimeat time ¢, so-called ‘smoothed
periods. The corresponding lower panels display the pribyatP(R: = 2)  inferences’, are calculated based on starting vali&s for

g(%et"‘f 2';1 ;hg.;p;'jz ;‘iﬂi’gghawe dg\%g(‘fgi glf‘tz_s'f'ed asespike. with e parameter vectar of the underlying stochastic processes.
Then, in the second step, new and more exact maximum
likelihood (ML) estimatesé for all model parameters are
calculated. Compared to standard ML estimation, where for
deseasonalized EEX log-prices. But these ‘sudden drops’ @fgiven probability density functiof the log-likelihood func-
actually not so extreme. They appear such only becauseiigh 5" | log f(X;,6) is maximized, here each component of
the logarithmic transformation which enhances low pri@s, this sum has to be weighted with the corresponding smoothed
the same time dumping high prices. More importantly, theggference, since each observati&in belongs to theth regime
artificial sudden drops are not that interesting from thepoiexactly with probabilityP(R, = j| X1, ..., X1:0).
of view of price modeling and derivatives Valuation, be@us The parameters of the ‘shifted |Ogn0rma|’ regime are ob-
in absolute terms the price changes are small and the relaigfled as the ML estimates of the standard lognormal distrib
price risks are negligible. Hence, when calibrating models tjon fitted to (deseasonalized) prices with subtracted aredi
log-prices we needlessly try to match some of the insigniticagnd weighted by the smoothed inferences. In the ‘shifted
characteristics. Having this in mind, in this study we fit MR®areto’ case the situation is more complicated. Recalk tha
models to deseasonalized pric&s. the likelihood function of the standard Pareto distribatio
Furthermore, if we define the ‘expected spike size’ as th& monotonically increasing with\, hence, reasonable ML
difference between the expected values in the spike and basémates exist only for the shape parameterThe scale
regime, it turns out that in a significant number of casesiit cparameter is thus typically set fo= min(X;), the rationale
be negative! For instance, such results were reported by amming from the fact that the distribution is defined only for
Jong [5] for models with a Gaussian spike regime, but wer€; > \. In order to ensure that prices lower than the median
not considered as evidence for wrong model specificaticare not identified as spikes we latbe the maximum of the
As observed in [19], using price models instead of log-pricmedian price and the smallest price satisfying the conditio
models alleviates this unwanted feature to a large extef(R; :j|X1,...,XT;é) > 0, i.e. the smallest potential spike.
Nevertheless, still some of the low prices are classified &#ally, the base regime parameters are estimated via ML
being in the spike regime. To eliminate this problem, weith each price being weighted by the smoothed inferences.
introduce in this paper shifted spike regime distributiatéch In every iteration the EM algorithm generates new estimates
assign zero probability to prices below a certain quantieré: 61 as well as new estimates for the smoothed inferences.

EEX log—price

Base

P(Spike)
o
(6]

Days [Jan 3, 2005 - Jan 3, 2009]



TABLE |
CALIBRATION RESULTS, DESCRIPTIVE STATISTICS ANDp-VALUES OF THE K-S GOODNESSOF-FIT TEST

Parameters Probabilities Model statistics K-S testalues K-S value
Regime 8 e a2, A Qii P(R=14) Median IDR Regime  Model Model
EEX (Jan. 1, 2001 - Jan. 2, 2005)
Base CIR 0.36 16.99 0.54 0.9911 0.9896 46.54 16.930.015 0.015  0.0407
Spike Logn 3.44 0.69 0.1598 0.0104 0.770
Base Vasicek 0.36 16.62 22.99 0.9864 0.9579 46.63 16.81 20.000.007 0.0439
Spike Logn 2.56 0.92 0.6906 0.0421 0.338
Base CIR 0.36 16.99 0.55 0.9913 0.9899 46.58 16.970.015 0.016 0.0404
Spike  Pareto 1.70 46.93 0.1492 0.0101 0.073
Base Vasicek 0.36 16.53 23.23 0.9863 0.9609 46.63 16.80 40.000.013 0.0415
Spike  Pareto 3.14 46.93 0.6635 0.0390 0.026
EEX (Jan. 3, 2005 - Jan. 3, 2009)

Base CIR 0.30 13.81 165 0.9884 0.9824 4519 31.690.001 <0.001 0.0714
Spike Logn 341 2.77 0.3519 0.0176 0.038
Base Vasicek 0.28 12.32 5343 0.9751 0.8756 4541 30.890.001 <0.001 0.0890
Spike Logn 2.79 1.05 0.8244 0.1244 0.041
Base CIR 0.30 13.82 1.65 0.9882 0.9821 4520 31.590.001 <0.001 0.0719
Spike Pareto 1.38 45.73 0.3549 0.0179 0.030
Base Vasicek 0.26 11.29 53.97 0.9732 0.8786 4540 30.830.001 <0.001 0.0553
Spike Pareto 2.67 4573 0.8061 0.1214 0.002

Each iteration cycle increases the log-likelihood funtctamd dynamics leads to lower probabilities of being and remajnin
the limit of this sequence of estimates reaches a (locath)the spike regime but also higher spike regime variance. In
maximum of the log-likelihood function. fact, the fitted Pareto spike distribution is so heavy-th{til
index a < 2) that the variance does not exist. This is not a
problem as the bids in the EEX market are capped [14]. If the
The deseasonalized priceé§ and the unconditional prob- sgme cap (3000 EUR/MWAh) is imposed on the models, the
abilities of being in the spike regim&(R; = 2) for both model generated prices exhibit a finite variance as well.
datasets are displayed in Figure' '3. The.estir'nation resultqn order to evaluate the goodness-of-fit, we report basic
are _summarlze_d_ n Table I'_ Ad_dltlonally n this table WGfjescriptive statistics and results of the K-S tests. Thenéor
provide probabilities of staying in each regime, uncon- . de the median and the Inter-Decile Range (IDR), i.e.
ditional probabilitiesP(12 = ) of being in regimei, basic o jifference between the ninth (90% quantile) and first
descriptive statistics and results of the Kolmogorov-8Wr 140, quantile) deciles. The quantile-based measuresrathe
(K-S) goodness-of-fit tests. . . than the less robust to outliers moment-related statisties
, As expected,. n ?aCh mOF"e' the pmbat,"“ty of rémainingseq. The model statistics (Table 1) should be compared with
in the base regime is very high: from9732 in the Vasicek- o o resnonding values for the datasets: a median of 46.92
Pareto model up t6.9913 in the CIR-Pareto speC|f|cat|on.The(45'73) and an IDR of 16.30 (30.97) in the first (second)
probapility Of. remair_uing in the spike re_gim_e Is ml_JCh !Owerperiod. The models with Vasicek base regime seem to have a
but still relatively high. Obviously, unlike jump-diffusns, slightly higher median and slightly smaller IDR than the CIR

MRS models allow for consecutive spikes in a very naturgl, e regime models. Nevertheless, in terms of these Efsitist
way. Moreover, the probabilities that the price will remai%” models provide very good fits for both periods

in the spike regime for the next day is much higher in the L .
e Sp grr y n g .~ The K-S tests are more discriminatory. In the considered
Vasicek base regime models. Indeed, when fitting the Vasicek : : -
. : models, though, neither the prices themselves nor thdardif
base regime models clusters of spikes can be observed, see

Figure 3. Looking carefully at spike classification (Figue ences or returns are independent and |dent|c_:ally (.JI'SB[IOUt
. : "hd')' Hence, the K-S tests cannot be applied directly to
we notice that only some of those prices are extreme eno

to be regarded as spikes. This is not the case in the CIR b iges (or returns). Instead we have fo use the following

SE . i o )
regime models, where — regardless of the spike distribu%ionorocedure' First, the data is split into wo subsets: spfkes
spikes are identified correctly.

prices with probabilityP(R; = 2) > 0.5) and the base regime.
Considering unconditional probabilities, the probabilif

The discretization of equations (2) and (5) leads to
being in the spike regim&(R; = 2) for the CIR base regime
models is lower than for the Vasicek base regime modelsesinc g = (X —(1=-0)X—a)/o, (6)
there are fewer prices identified as spikes. CIR base regime g = (X1 —(1-0)Xt—a)/ov/ Xy, @)

IV. EMPIRICAL RESULTS
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Fig. 3. Calibration results for the MRS models with shiftedgriormal {op 4 panels) or Pareto lfottom 4 panels) spikes and Vasicek or CIR base regimes.
The corresponding lower panels display the probabiyR; = 2) of being in the spike regime. The prices classified as spikeswith P(R; = 2) > 0.5,
are additionally denoted by dots.



Vasicek—LogN model statistical evidence that the CIR model is more suitable tha
the Vasicek model. In the first period, thevalues for the CIR
base regime with both spike distributions are larger th&a,0.
while the Vasicelp-values do not exceed 0.004. Moreover, for
both periods the values of the K-S statistics are lower fer th
CIR base regime dynamics (with the exception of the Pareto

120

100

EEX price [EUR/IMWh]
o]
o

60 spike model in the second period). We have to note also, that
the deseasonalization method does not do a perfect job in the
40 second, more volatile period. Perhaps the fits in this period
20.06.2003 10.07.2003 30.07.2003 19.08.2003 could be improved by applying a different (more restrictive
deseasonalization method.
120 CIR~LogN model V. CONCLUSIONS

Our empirical study provides evidence for two facts, which
have important consequences in risk management apphisatio
Firstly, models with shifted spike regime distributiongdeto
more realistic descriptions of electricity spot pricesc@wlly,
by introducing CIR-type heteroskedasticity in the baseémeg
— in place of the standard mean-reverting, constant vit\atil
dynamics — we obtain better spike identification and (gener-
ally) better goodness-of-fit.
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