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Abstract—We calibrate Markov regime-switching (MRS) mod-
els to mean daily spot prices from the EEX market. Our empirical
study shows that (i) models with shifted spike regime distributions
lead to more realistic models of electricity spot prices and that (ii)
introducing heteroskedasticity in the base regime leads to better
spike identification and goodness-of-fit than in MRS models with
the standard mean-reverting, constant volatility dynamics.

I. I NTRODUCTION

Electricity is a very unique commodity. In addition to
strong seasonality on the annual, weekly and daily level, spot
electricity prices exhibit mean reversion, very high volatility
and abrupt, short-lived and generally unanticipated extreme
price changes known as spikes or jumps [3], [15], [18].
The aim of this paper is to suggest parsimonious models
for electricity spot price dynamics that can address the most
pertinent characteristics and, hence, be used for derivatives
pricing. To this end, we test a range of Markov regime-
switching (MRS) models, which by construction should be
very well suited for the volatile electricity spot prices.

Motivated by recent findings [19] we focus on MRS models
for the prices themselves; not the log-prices as in most other
studies. Further, we introduce two novel features in the context
of MRS modeling of electricity spot prices: heteroscedasticity
in the base regime and shifted spike regime distributions. The
rationale for the former comes from the observation that price
volatility generally increases with price level, since positive
price shocks increase volatility more than negative shocks
(so-called ‘inverse leverage effect’ [13]). The CIR square-
root process [4] is tested as a heteroscedastic alternativeto
the standard mean-reverting dynamics. Shifted spike regime
distributions, on the other hand, are required for the calibration
procedure to correctly separate spikes from the ‘normal’ price
behavior. As in [19] we use two spike distributions: semi
heavy-tailed lognormal and heavy-tailed Pareto.

The paper is structured as follows. In Section II we present
the datasets and explain the deseasonalization procedures. In
Section III we introduce the MRS models for deseasonalized
prices and in Section IV we evaluate their goodness-of-fit.
Finally, in Section V we summarize the results.

II. DATA PREPROCESSING

Due to space limitations in this paper we concentrate only
on the German EEX market. For results of the whole study
covering various European and American power markets see
[11]. We use mean daily (baseload) spot prices from the period
January 1, 2001 – January 3, 2009. To see how the presented
methods perform under different market conditions the sample
is split into two subsamples of 1463 daily observations (209
weeks each): January 1, 2001 – January 2, 2005 and January
3, 2005 – January 3, 2009, see Figure 1. Note, that starting in
late 2004 the spot prices exhibit an upward trend and higher
volatility, largely due to a combination of higher fuel prices
and the introduction of CO2 emission costs.

The first crucial step in defining a model for electricity
price dynamics consists of finding an appropriate description
of the seasonal pattern. There are different suggestions inthe
literature for dealing with this task [16]. Here we follow the
‘industry standard’ and represent the spot pricePt by a sum of
two independent parts: a predictable (seasonal) componentft

and a stochastic componentXt, i.e. Pt = ft +Xt. Further, we
let ft be composed of a weekly periodic partst and a long-
term seasonal trendTt, which represents both the changing
climate/consumption conditions throughout the year and the
long-term non-periodic structural changes.

As in [19] the deseasonalization is conducted in three
steps. First,Tt is estimated from daily spot pricesPt using
a wavelet filtering-smoothing technique (for details see [16],
[18]). Recall, that any function or signal (here:Pt) can be built
up as a sequence of projections onto one father wavelet and
a sequence of mother wavelets:SJ + DJ + DJ−1 + ... + D1,
where2J is the maximum scale sustainable by the number of
observations. At the coarsest scale the signal can be estimated
by SJ . At a higher level of refinement the signal can be
approximated bySJ−1 = SJ + DJ . At each step, by adding
a mother waveletDj of a lower scalej = J − 1, J − 2, ...,
we obtain a better estimate of the original signal. Here we use
the S8 approximation, which roughly corresponds to annual
(28 = 256 days) smoothing, see the thick blue lines in Figure
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Fig. 1. Mean daily EEX spot prices and their long-term seasonal components
(thick blue lines) for the two studied periods.

1. The price series without the long-term seasonal trend is
obtained by subtracting theS8 approximation fromPt. Next,
the weekly periodicityst is removed by applying the moving
average technique (see e.g. [18]) and subtracting the resulting
‘mean’ weekly pattern. Finally, the deseasonalized prices, i.e.
Pt − Tt − st, are shifted so that the minimum of the new
process is the same as the minimum ofPt (the latter alignment
is required if log-prices are to be analyzed). The resulting
deseasonalized time seriesXt can be seen in Figure 3.

III. M ARKOV REGIME-SWITCHING MODELS

The underlying idea behind the Markov regime-switching
(MRS) scheme is to model the observed stochastic behavior
of a specific time series by two (or more) separate phases or
regimes with different underlying processes. In other words,
the parameters of the underlying process may change for a
certain period of time and then fall back to their original
structure. The switching mechanism between the states is
Markovian and is assumed to be governed by an unobserved
random variable. The underlying processes, though, do not
have to be Markovian, but are (typically) independent from
each other.

In this study, the spot price is assumed to display either
normal (base regimeRt = 1) or high (spike regimeRt = 2)

prices each day. The transition matrixQ contains the proba-
bilities qij of switching from regimei at time t to regimej
at time t + 1, for i, j = {1, 2}:

Q = (qij) =

(

q11 q12

q21 q22

)

=

(

q11 1 − q11

1 − q22 q22

)

. (1)

Because of the Markov property the current stateRt at timet
depends on the past only through the most recent valueRt−1.
Consequently the probability of being in statej at timet+m
starting from statei at timet is given byP (Rt+m = j | Rt =
i) = (Q′)m · ei, whereQ′ denotes the transpose ofQ andei

is the ith column of the2 × 2 identity matrix.
To our best knowledge, the MRS models were first ap-

plied to electricity prices in [7]. A two state specification
was proposed, in which in both regimes the log-prices were
governed by autoregressive processes of order one, i.e. AR(1).
Huisman and Mahieu [10] proposed a regime-switching model
with three possible regimes in which the initial jump regime
was immediately followed by the reversing regime and then
moved back to the base regime. Consequently, their model did
not allow for consecutive high prices (in fact of log-prices)
and hence did not offer any obvious advantage over jump-
diffusion models. This restriction was relaxed in [9], where a
model with only two regimes – a stable, mean-reverting AR(1)
regime and a spike regime – was proposed for deseasonalized
log-prices. The third regime was not needed to pull prices
back to stable levels, because the prices were independent
from each other in the two regimes. The dynamics of the
spike regime was modeled with a simple normal distribution
whose mean and variance were higher than those of the
mean-reverting base regime process. This simple yet versatile
model was further extended by admitting lognormal, Pareto
[2] and exponential [1] spike regime distributions, as wellas,
autoregressive Poisson driven spike regime dynamics [5].

The above mentioned models have two common features.
Firstly, not the pricesXt themselves, but rather log-pricesYt =
log(Xt) are considered. Secondly, the base regime (and in
some cases the spike regime as well) is driven by a mean-
reverting diffusion process of the form:

dYt = (α − βYt)dt + σdWt, (2)

whereWt is Brownian motion (i.e. a Wiener process),α
β

is
the long term mean reversion level,β is the speed of mean
reversion andσ is the volatility. In the fixed income literature
this popular process is known as the Vasicek [17] model, in
mathematics as the (generalized) Ornstein-Uhlenbeck process,
while in signal processing – when discretized – as an autore-
gressive time series of order one, i.e. AR(1).

In a recent paper, Weron [19] provided evidence that mod-
eling the prices themselves is more beneficial and method-
ologically sound than the log-prices, at least in case of MRS
models. For log-price models the calibration scheme generally
assigns all extreme prices to the spike regime, no matter
whether they truly are spikes or only sudden drops. This
property can be seen in Figure 2, where a MRS model
with Vasicek base regime and lognormal spikes is fitted to
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Fig. 2. Calibration results of the MRS model with Vasicek baseregime
and lognormal spikes fitted to the deseasonalized EEX log-prices in the two
periods. The corresponding lower panels display the probability P (Rt = 2)
of being in the spike regime. The log-prices classified as spikes, i.e. with
P (Rt = 2) > 0.5, are additionally denoted by dots.

deseasonalized EEX log-prices. But these ‘sudden drops’ are
actually not so extreme. They appear such only because of
the logarithmic transformation which enhances low prices,at
the same time dumping high prices. More importantly, these
artificial sudden drops are not that interesting from the point
of view of price modeling and derivatives valuation, because
in absolute terms the price changes are small and the related
price risks are negligible. Hence, when calibrating modelsto
log-prices we needlessly try to match some of the insignificant
characteristics. Having this in mind, in this study we fit MRS
models to deseasonalized pricesXt.

Furthermore, if we define the ‘expected spike size’ as the
difference between the expected values in the spike and base
regime, it turns out that in a significant number of cases it can
be negative! For instance, such results were reported by de
Jong [5] for models with a Gaussian spike regime, but were
not considered as evidence for wrong model specification.
As observed in [19], using price models instead of log-price
models alleviates this unwanted feature to a large extent.
Nevertheless, still some of the low prices are classified as
being in the spike regime. To eliminate this problem, we
introduce in this paper shifted spike regime distributionswhich
assign zero probability to prices below a certain quantile (here:

the medianm = median(Xt)) of the dataset. We consider
‘shifted lognormal’:

log(Xt − m) ∼ N(α, σ2), Xt > m, (3)

and ‘shifted Pareto’ laws:

Xt ∼ FPareto(α, λ) = 1 −

(

λ

x

)α

, Xt > λ ≥ m. (4)

Regarding the second common feature, we introduce an
alternative base regime dynamics and compare it with the
‘industry standard’ Vasicek model; withYt replaced byXt in
eqn. (2). The competitor is the so-called square-root or CIR
[4] process:

dXt = (α − βXt)dt + σ
√

XtdWt. (5)

Note, that in this model the volatility is dependent on the
current price levelXt, i.e the higher the price level the larger
are the price changes. Compared to Vasicek dynamics, we can
expect that in the CIR model the less extreme price changes
will be classified as ‘normal’ and not spiky.

Calibration of MRS models is not straightforward since
the regime is only latent and hence not directly observable.
Hamilton [8] introduced an application of the Expectation-
Maximization (EM) algorithm [6] where the whole set of
parametersθ is estimated by an iterative two-step procedure.
The algorithm was later refined by Kim [12]. In the first
step the conditional probabilitiesP (Rt = j|X1, ...,XT ; θ) for
the process being in regimej at time t, so-called ‘smoothed
inferences’, are calculated based on starting valuesθ̂(0) for
the parameter vectorθ of the underlying stochastic processes.
Then, in the second step, new and more exact maximum
likelihood (ML) estimatesθ̂ for all model parameters are
calculated. Compared to standard ML estimation, where for
a given probability density functionf the log-likelihood func-
tion

∑n

t=1 log f(Xt, θ) is maximized, here each component of
this sum has to be weighted with the corresponding smoothed
inference, since each observationXt belongs to thejth regime
exactly with probabilityP (Rt = j|X1, ...,XT ; θ).

The parameters of the ‘shifted lognormal’ regime are ob-
tained as the ML estimates of the standard lognormal distribu-
tion fitted to (deseasonalized) prices with subtracted median
and weighted by the smoothed inferences. In the ‘shifted
Pareto’ case the situation is more complicated. Recall, that
the likelihood function of the standard Pareto distribution
is monotonically increasing withλ, hence, reasonable ML
estimates exist only for the shape parameterα. The scale
parameter is thus typically set tôλ = min(Xt), the rationale
coming from the fact that the distribution is defined only for
Xt > λ. In order to ensure that prices lower than the median
are not identified as spikes we letλ̂ be the maximum of the
median price and the smallest price satisfying the condition
P (Rt = j|X1, ...,XT ; θ̂) > 0, i.e. the smallest potential spike.
Finally, the base regime parameters are estimated via ML
with each price being weighted by the smoothed inferences.
In every iteration the EM algorithm generates new estimates
θ̂(n+1) as well as new estimates for the smoothed inferences.



TABLE I
CALIBRATION RESULTS, DESCRIPTIVE STATISTICS ANDp-VALUES OF THE K-S GOODNESS-OF-FIT TEST

Parameters Probabilities Model statistics K-S testp-values K-S value

Regime β α σ2, λ qii P (R = i) Median IDR Regime Model Model

EEX (Jan. 1, 2001 - Jan. 2, 2005)

Base CIR 0.36 16.99 0.54 0.9911 0.9896 46.54 16.93 0.015 0.015 0.0407

Spike Logn 3.44 0.69 0.1598 0.0104 0.770

Base Vasicek 0.36 16.62 22.99 0.9864 0.9579 46.63 16.81 0.002 0.007 0.0439

Spike Logn 2.56 0.92 0.6906 0.0421 0.338

Base CIR 0.36 16.99 0.55 0.9913 0.9899 46.58 16.97 0.015 0.016 0.0404

Spike Pareto 1.70 46.93 0.1492 0.0101 0.073

Base Vasicek 0.36 16.53 23.23 0.9863 0.9609 46.63 16.80 0.004 0.013 0.0415

Spike Pareto 3.14 46.93 0.6635 0.0390 0.026

EEX (Jan. 3, 2005 - Jan. 3, 2009)

Base CIR 0.30 13.81 1.65 0.9884 0.9824 45.19 31.69<0.001 <0.001 0.0714

Spike Logn 3.41 2.77 0.3519 0.0176 0.038

Base Vasicek 0.28 12.32 53.43 0.9751 0.8756 45.41 30.89<0.001 <0.001 0.0890

Spike Logn 2.79 1.05 0.8244 0.1244 0.041

Base CIR 0.30 13.82 1.65 0.9882 0.9821 45.20 31.59<0.001 <0.001 0.0719

Spike Pareto 1.38 45.73 0.3549 0.0179 0.030

Base Vasicek 0.26 11.29 53.97 0.9732 0.8786 45.40 30.83<0.001 <0.001 0.0553

Spike Pareto 2.67 45.73 0.8061 0.1214 0.002

Each iteration cycle increases the log-likelihood function and
the limit of this sequence of estimates reaches a (local)
maximum of the log-likelihood function.

IV. EMPIRICAL RESULTS

The deseasonalized pricesXt and the unconditional prob-
abilities of being in the spike regimeP (Rt = 2) for both
datasets are displayed in Figure 3. The estimation results
are summarized in Table I. Additionally in this table we
provide probabilities of staying in each regimeqii, uncon-
ditional probabilitiesP (R = i) of being in regimei, basic
descriptive statistics and results of the Kolmogorov-Smirnov
(K-S) goodness-of-fit tests.

As expected, in each model the probability of remaining
in the base regime is very high: from0.9732 in the Vasicek-
Pareto model up to0.9913 in the CIR-Pareto specification. The
probability of remaining in the spike regime is much lower,
but still relatively high. Obviously, unlike jump-diffusions,
MRS models allow for consecutive spikes in a very natural
way. Moreover, the probabilities that the price will remain
in the spike regime for the next day is much higher in the
Vasicek base regime models. Indeed, when fitting the Vasicek
base regime models clusters of spikes can be observed, see
Figure 3. Looking carefully at spike classification (Figure4),
we notice that only some of those prices are extreme enough
to be regarded as spikes. This is not the case in the CIR base
regime models, where – regardless of the spike distribution–
spikes are identified correctly.

Considering unconditional probabilities, the probability of
being in the spike regimeP (Rt = 2) for the CIR base regime
models is lower than for the Vasicek base regime models, since
there are fewer prices identified as spikes. CIR base regime

dynamics leads to lower probabilities of being and remaining
in the spike regime but also higher spike regime variance. In
fact, the fitted Pareto spike distribution is so heavy-tailed (tail
index α < 2) that the variance does not exist. This is not a
problem as the bids in the EEX market are capped [14]. If the
same cap (3000 EUR/MWh) is imposed on the models, the
model generated prices exhibit a finite variance as well.

In order to evaluate the goodness-of-fit, we report basic
descriptive statistics and results of the K-S tests. The former
include the median and the Inter-Decile Range (IDR), i.e.
the difference between the ninth (90% quantile) and first
(10% quantile) deciles. The quantile-based measures rather
than the less robust to outliers moment-related statisticsare
used. The model statistics (Table I) should be compared with
the corresponding values for the datasets: a median of 46.92
(45.73) and an IDR of 16.30 (30.97) in the first (second)
period. The models with Vasicek base regime seem to have a
slightly higher median and slightly smaller IDR than the CIR
base regime models. Nevertheless, in terms of these statistics
all models provide very good fits for both periods.

The K-S tests are more discriminatory. In the considered
models, though, neither the prices themselves nor their differ-
ences or returns are independent and identically distributed
(i.i.d.). Hence, the K-S tests cannot be applied directly to
prices (or returns). Instead we have to use the following
procedure. First, the data is split into two subsets: spikes(i.e.
prices with probabilityP (Rt = 2) > 0.5) and the base regime.
The discretization of equations (2) and (5) leads to

εt = (Xt+1 − (1 − β)Xt − α)/σ, (6)

εt = (Xt+1 − (1 − β)Xt − α)/σ
√

Xt, (7)
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Fig. 3. Calibration results for the MRS models with shifted lognormal (top 4 panels) or Pareto (bottom 4 panels) spikes and Vasicek or CIR base regimes.
The corresponding lower panels display the probabilityP (Rt = 2) of being in the spike regime. The prices classified as spikes, i.e. with P (Rt = 2) > 0.5,
are additionally denoted by dots.
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Fig. 4. Sample results for the MRS models with shifted lognormalspikes
and Vasicek (top) or CIR (bottom) base regimes. Note, that only some of
the prices classified as spikes in the Vasicek base regime modelare extreme
enough to be regarded as spikes. This is not the case in the CIRmodel.

for the Vasicek and CIR models, respectively. Theεt’s are
now i.i.d. Gaussian random variables. Hence, we can apply
one of the above transformations to the base regime data and
obtain two i.i.d. samples: Gaussian and lognormal (or Pareto,
depending on spike specification) distributed. Combining these
two subsets yields a sample of independent variables with the
distribution being a mixture of the lognormal (or Pareto) and
Gaussian laws. The probability that a given priceXt comes
from the spike distribution is equal toP (Rt = 2), while that
it comes from the Gaussian law is equal toP (Rt = 1) =
1 − P (Rt = 2). We perform the K-S test for both subsets
(base regime and spikes), as well as, for the whole sample.

The results of the K-S tests (Table I) indicate that good
fits are obtained for prices in the first, less volatile period,
since in all but one (i.e. the Vasicek-lognormal) model thep-
values are larger than 0.01. Recall, thatp-values larger than
0.01 indicate that we cannot reject the hypothesis about the
chosen price model at the1% significance level. Moreover,
each spike distribution gives an acceptable result. Thep-values
obtained for the spike regime indicate that, although we cannot
reject the hypothesis about the Pareto spike distribution,the
lognormal distribution gives a better fit. In the second, more
volatile period none of the models yields a satisfactory fit.
Nevertheless, the spike distribution, which seems to be the
most important feature from the risk analysis point of view,is
well fitted in three out of four cases. Only Pareto spikes with
the Vasicek base regime give ap-value lower than 0.01.

A comparison of the test results for the base regime provides

statistical evidence that the CIR model is more suitable than
the Vasicek model. In the first period, thep-values for the CIR
base regime with both spike distributions are larger than 0.01,
while the Vasicekp-values do not exceed 0.004. Moreover, for
both periods the values of the K-S statistics are lower for the
CIR base regime dynamics (with the exception of the Pareto
spike model in the second period). We have to note also, that
the deseasonalization method does not do a perfect job in the
second, more volatile period. Perhaps the fits in this period
could be improved by applying a different (more restrictive)
deseasonalization method.

V. CONCLUSIONS

Our empirical study provides evidence for two facts, which
have important consequences in risk management applications.
Firstly, models with shifted spike regime distributions lead to
more realistic descriptions of electricity spot prices. Secondly,
by introducing CIR-type heteroskedasticity in the base regime
– in place of the standard mean-reverting, constant volatility
dynamics – we obtain better spike identification and (gener-
ally) better goodness-of-fit.
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