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1 Introduction

Univariate autoregressive (AR) models are commonly employed in analyzing economic

time series. Typical �elds of application include forecasting and the measurement of

persistence. However, virtually all economic applications so far restrict themselves

to causal autoregressive models where the current value of the variable of interest is

forced to depend only on its past. In contrast, applications of noncausal AR models

allowing for dependence on the future are almost nonexistent in econometrics. The

major references in the relatively scant statistical literature on noncausal AR models

include Breidt et al. (1991) and Rosenblatt (2000).1 From the econometric perspec-

tive, noncausal AR models have recently been considered by Lanne and Saikkonen

(2008), who proposed a new formulation of the model with attractive features from

the viewpoints of statistical inference and economic interpretation. Their results sug-

gest that expanding the set of univariate AR models in the noncausal direction may

indeed be worthwhile in empirical economic research.

As pointed out above, the statistical literature on noncausal AR models is not

voluminous and forecasting with these models has so far hardly been considered at all.

To the best of our knowledge, the only exception is Rosenblatt (2000) whose Corollary

5.4.2 shows that in the non-Gaussian case the optimal (in mean square sense) one-

step ahead predictor is generally nonlinear. However, no practically useful forecasting

method seems to be available although forecasting is probably the most important

application of univariate models. In addition, forecasts are needed in computing

impulse responses on which measures of persistence in economic time series can be

1Noncausal and potentially noninvertible autoregressive moving average models, as well as their

their special cases referred to as all-pass models, have also been studied in the statistical literature

(see, inter alia, Lii and Rosenblatt (1996), Huang and Pawitan (2000), Breidt et al. (2001), and

Andrews et al. (2006)).

1



based. Hence, being able to compute forecasts is crucial for noncausal AR models to

be a useful tool in empirical economics. Moreover, devising techniques for forecasting

in univariate models paves the way for the development of forecasting methods in

corresponding multivariate models (see Lanne and Saikkonen (2009) for the noncausal

vector autoregressive model), where forecasts are needed in conducting structural

analysis.

In this paper, we propose a simulation-based method of forecasting with noncausal

and non-Gaussian AR models. The Gaussian case will not be considered explicitly

because then the noncausal AR model is indistinguishable from its causal counterpart

and the conventional linear forecasting method is optimal. As already mentioned, in

the non-Gaussian case the prediction problem is generally nonlinear which explains

why numerical methods are needed to compute forecasts. Our forecasting method

has some similarities to the recent method developed by Breidt and Hsu (2005) for

non-Gaussian and potentially noninvertible moving average processes. In fact, our

forecasts are formed by writing the noncausal AR model in a form in which the

noncausal AR part is approximated by a long moving average containing future in-

novations. In practice this long moving average is recovered from the considered

estimated noncausal AR model so that no moving average parameters are estimated

directly. According to simulations the performance of the proposed method is good

when the true model in noncausal.

The rest of the paper is organized as follows. The formulation of the noncausal

AR model of Lanne and Saikkonen (2008) is presented and its maximum likelihood

estimation and statistical inference are discussed in Section 2. Our forecast method is

described in Section 3. To illustrate the properties of the forecast procedure and the

gains in forecast accuracy over a causal model in the presence of noncausality, some

Monte Carlo simulation results are reported in Section 4. An empirical application

to U.S. in�ation is provided in Section 5. Finally, Section 6 concludes.
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2 Noncausal Autoregression

2.1 Model

In this section, we describe the formulation of the noncausal autoregressive model

suggested by Lanne and Saikkonen (2008). As pointed out above, our formulation

di¤ers somewhat from that employed in the earlier literature. In particular, compared

to Breidt et al. (1991), the autoregressive polynomial in our model explicitly involves

both leads and lags. One advantage of this formulation is that statistical inference on

autoregressive parameters is facilitated. Furthermore, the autoregressive parameters

are orthogonal to the parameters in the distribution of the error term so that inference

on these two sets of parameters is asymptotically independent.

Consider a stochastic process yt (t = 0;�1;�2; :::) generated by

'
�
B�1�� (B) yt = �t; (1)

where � (B) = 1� �1B � � � � � �rBr, ' (B�1) = 1�'1B�1� � � � �'sB�s, and �t is a

sequence of independent, identically distributed (continuous) random variables with

mean zero and variance �2 or, brie�y, �t � i:i:d: (0; �2). Moreover, B is the usual

backward shift operator, that is, Bkyt = yt�k (k = 0;�1; :::), and the polynomials

� (z) and ' (z) have their zeros outside the unit circle so that

� (z) 6= 0 for jzj � 1 and ' (z) 6= 0 for jzj � 1: (2)

We use the abbreviation AR(r; s) for the model de�ned by (1) and sometimes

write AR(r) for AR(r; 0). If '1 = � � � = 's = 0, model (1) reduces to the conventional

causal AR(r) model with yt depending on its past but not future values. The more

interesting cases from the viewpoint of this paper arise, when this restriction does

not hold. If �1 = � � � = �r = 0, we have the purely noncausal AR(0; s) model with

dependence on future values only. In the mixed AR(r; s) case where neither restriction

holds, yt depends on its past as well as future values.
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The conditions in (2) imply that yt has the two-sided moving average representa-

tion

yt =
1X

j=�1
 j�t�j; (3)

where  j is the coe¢ cient of z
j in the Laurent series expansion of � (z)�1 ' (z�1)�1

def
=

 (z). This expansion exists in some annulus b < jzj < b�1 with 0 < b < 1 and with

 jjj converging to zero exponentially fast as jjj ! 1. From (1) one also obtains the

representation

yt = �1yt�1 + � � �+ �ryt�r + vt; (4)

where vt = ' (B�1)
�1
�t =

P1
j=0 �j�t+j with �j the coe¢ cient of z

j in the power series

expansion of ' (B�1)
�1. This representation will be used to obtain forecasts.

2.2 Estimation and Inference

A well-known feature of noncausal autoregressions is that a non-Gaussian error term

is required to achieve identi�cation. Thus, we assume that the error term �t is non-

Gaussian and that its distribution has a (Lebesgue) density f� (x;�) = ��1f (��1x;�)

which depends on the parameter vector � (d� 1) in addition to the scale parameter

� already introduced. The function f (x;�) is assumed to satisfy the regularity con-

ditions stated in Andrews et al. (2006) and Lanne and Saikkonen (2008). These con-

ditions imply that f (x;�) is twice continuously di¤erentiable with respect to (x; �),

non-Gaussian, and positive for all x 2 R and all permissible values of �.

Let y1; :::; yT be an observed time series generated by the noncausal autoregression

(1). De�ne ut = ' (B�1) yt and vt = � (B) yt, and set y = (y1; :::; yT ) and z =

(u1; :::; ur; �r+1; :::; �T�s; vT�s+1; :::; vT ). The unknown parameters of the model are

collected in the parameter vector � = (�1;�2) = (�;'; �; �) where �1 = (�;')

and �2 = (�; �) with � = (�1; :::; �r) and ' = ('1; :::; 's) : As shown in Lanne and

Saikkonen (2008), the vectors y and z are related by a linear transformation of the
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form z = BAy where the matrices A and B depend on the parameter vector �1.

Moreover, the determinant ofB is unity whereas the determinant ofA is independent

of the sample size T . We shall not provide explicit forms of these matrices because

they will not be needed in our subsequent developments. As in Lanne and Saikkonen

(2008) we can now conclude that the joint density function of the data vector y =

(y1; :::; yT ) can be expressed as

p (y;�) = hu
�
'
�
B�1� y1; :::; ' �B�1� yr� T�sY

t=r+1

f�
�
'
�
B�1�� (B) yt;��! (5)

� hv (� (B) yT�s+1; :::; � (B) yT ) jdet (A)j ;

where hu and hv signify the joint density functions of the random vectors u =

(u1; :::; ur) and v = (vT�s+1; :::; vT ), respectively.

Analogosly to Breidt et al. (1991), Lanne and Saikkonen (2008) use the second

factor on the right hand side of (5) to approximate the likelihood function. They

show that the resulting (local) maximum likelihood (ML) estimator is asymptotically

normally distributed and the covariance matrix of the limiting distribution is block

diagonal with respect to the parameters �1 and �2: Moreover, a consistent estimator

of the limiting covariance matrix is obtained in the usual way from the standardized

Hessian of the approximate log-likelihood function. Thus, standard errors of esti-

mators and conventional Wald tests with asymptotic �2-distribution under the null

hypothesis can be constructed as usual and the same is true for likelihood ratio tests

based on the approximate log-likelihood function.

In this section we have assumed that the model orders r and s are known. Proce-

dures to specify these quantities are discussed in the next section.
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2.3 Model Selection

Because noncausal AR processes are not identi�ed by Gaussian likelihood, the �rst

step in modeling a potentially noncausal time series is to search for signs of non-

normality. To this end, Lanne and Saikkonen (2008) suggest estimating a Gaussian

AR(p) model that adequately captures the autocorrelation in the series and checking

its residuals for nonnormality. For economic and �nancial time series, the residu-

als are often leptokurtic, indicating that Student�s t-distribution might be a suitable

error distribution.

Provided nonnormality is detected, the next step is to select among the alter-

native AR(r; s) speci�cations. As the AR(p) model has been found to adequately

capture the autocorrelation in the series, it seems reasonable to restrict oneself to

models with r + s = p. Following Breidt et al. (1991), Lanne and Saikkonen (2008)

suggest selecting among these the model that produces the greatest value of the ap-

proximate likelihood function. Finally, the adequacy of the selected speci�cation is

checked diagnostically and the model is augmented if needed. In addition to examin-

ing the �t of the t-distribution, Lanne and Saikkonen (2008) checked the residuals for

remaining autocorrelation and conditional heteroskedasticity. Moreover, they tested

the signi�cance of an additional lead and lag.

The purpose of �tting a Gaussian AR model in the �rst step is only to help de-

termine the correct lag length and checking for nonnormality. Sometimes it may not

be possible to come up with a satisfactory Gaussian AR model, in which case an

adequate model might still be found among di¤erent non-Gaussian AR(r; s) speci�-

cations. In any case, one possibility is to start out with a non-Gaussian distribution,

say the t-distribution, and select the model by employing information criteria.
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3 Forecasting Method

3.1 Point Forecasts

As pointed out in the Introduction, the prediction problem in noncausal autoregres-

sions has been studied by Rosenblatt (2000) whose Corollary 5.4.2 shows that in the

non-Gaussian case the optimal (in mean square sense) one-step ahead predictor is

generally nonlinear. In the Gaussian case the prediction problem is linear because

the best linear predictor is always the best mean square predictor. As far as we know,

no practical way to compute forecasts in the non-Gaussian noncausal case has been

presented. One method is described below.

Let ET (�) signify the conditional expectation operator given the observed data

vector y = (y1; :::; yT ). From (4) it is seen that the optimal predictor of yt+h (h > 0)

based on the observed data satis�es

ET (yT+h) = �1ET (yT+h�1) + � � �+ �rET (yT+h�r) + ET (vt+h) :

Thus, if we can forecast the variable vt+h, we can compute forecasts for the ob-

served process recursively. To solve this problem we use the approximation vT+h �PM�h
j=0 �j�T+h+j;where the integer M is supposed to be so large that the approxima-

tion error is negligible for all forecast horizons h of interest. To a close approximation

we then have

ET (yT+h) � �1ET (yT+h�1) + � � �+ �rET (yT+h�r) + ET

 
M�hX
j=0

�j�T+h+j

!
: (6)

To be able to compute the last conditional expectation on the right hand side of

(6) we derive the conditional density of �+ = (�T+1; :::; �T+M) given the data vector

y. If z, A and B are as in Section 2.2, the matrix of the linear transformation

(y; �+)! (z; �+) is diag (BA;IM). The Jacobian of this transformation is det (A) so
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that the joint density function of (y; �+) is

p
�
y; �+;�

�
= hu (u('))

 
T�sY
t=r+1

f� (�t(�1);�)

!
hv;�+

�
v(�); �+

�
jdet (A)j ; (7)

where we have simpli�ed the notation by writing u(') = (u1 (') ; :::; ur (')) =

(' (B�1) y1; :::; ' (B
�1) yr), v(�) = (vT+s+1(�); :::; vT (�)) = (� (B) yT�s+1; :::; � (B) yT )

and �t(�1) = ' (B�1)� (B) yt, t = r+1; :::; T � s. Using (5) and (7) we can now write

the conditional density function of �+ given y as

p
�
�+ j y;�

�
=
hv;�+ (v(�); �

+)

hv (v(�))
=

hv;�+ (v(�); �
+)R

hv;�+ (v(�); �+) d�+
:

The last conditional expectation on the right hand side of (6) can thus be expressed

as

ET

 
M�hX
j=0

�j�T+h+j

!
=

1

hv (v(�))

Z M�hX
j=0

�j�T+h+jhv;�+
�
v(�); �+

�
d�+: (8)

Next we have to �nd a feasible way to handle the density functions hv (v(�))

and hv;�+ (v(�); �
+). To this end, consider the linear transformation (v; �+) !

(�T�s+1; :::; �T ; �
+). As vt =

P1
j=0 �j�t+j its inverse transformation satis�es the ap-

proximate equation26666666666666664

1 �1 � � � � � � � � � � � � �M+s�1

0
. . . . . .

...
...
. . . 1 �1 � � � � � � �M

...
. . . 1 0 � � � 0

...
. . . . . . . . .

...
...

. . . . . . 0

0 � � � � � � � � � � � � 0 1

37777777777777775

26666666666664

�T�s+1
...

�T

�T+1
...

�T+M

37777777777775
�

26666666666664

vT�s+1
...

vT

�T+1
...

�T+M

37777777777775
:

We write this brie�y as

Ce � w:
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Using the approximate inverse transformation e � C�1w and ignoring the approxi-

mation error it is seen that, for 1 � j � s, the jth component of the vector e depends

linearly on vT�s+j; :::; vT and �T+1; :::; �T+M . We therefore write

e = (eT�s+1
�
vT�s+1; �

+
�
; :::; eT

�
vT ; �

+
�
; �T+1; :::; �T+M)

where vT�s+j = (vT�s+j; :::; vT ) and, if D = [dij] = C
�1,

e �

26666666666666664

1 d12 � � � � � � � � � � � � d1;M+s�1

0
. . . . . .

...
...
. . . 1 ds;s+1 � � � � � � ds;M

...
. . . 1 0 � � � 0

...
. . . . . . . . .

...
...

. . . . . . 0

0 � � � � � � � � � � � � 0 1

37777777777777775

26666666666664

vT�s+1
...

vT

�T+1
...

�T+M

37777777777775
: (9)

Thus, eT�s+j (vT�s+j; �+) =
Ps

k=j djkvT�s+k+
PM+s�j

k=s+1 djk�T�s+k, where djj = 1 and,

as the determinant of the matrix C is unity, a close approximation for the density

function of (v;�+) = w is given by

hv;�+(v; �
+) �

sY
j=1

f�
�
eT�s+j

�
vT�s+j; �

+
�
;�
�
�
T+MY
t=T+1

f� (�t;�) : (10)

An approximation for the density function of v is obtained from this by integrating

over �+.

To compute the value of the conditional expectation (8) we have to compute values

of the density functions hv (v) and hv;�+ (v; �+) at the point v = v (�) which depends

on the observations (and the value of the parameter �). Consider �rst the former.

Using (10) we get the approximation

hv (v (�)) =

Z
hv;�+

�
v(�); �+

�
d�+

�
Z sY

j=1

f�
�
eT�s+j

�
vT�s+j; �

+
�
;�
�
�
T+MY
t=T+1

f� (�t;�) d�
+:

9



The last expression can be interpreted as the expectation of the �rst product therein

with respect to the distribution of �+. Using simulation, this expectation can therefore

be approximated as

hv (v (�)) � N�1
NX
i=1

 
sY
j=1

f�

�
eT�s+j(vT�s+j(�); �

(i)
T+1; :::; �

(i)
T+M);�

�!
;

where �(i)T+1; :::; �
(i)
T+M , i = 1; :::; N; are mutually independent simulated realizations

from the distribution of �+. As N ! 1, the right hand side of this approximation

converges almost surely and provides an approximation for hv (v (�)) that can be

made arbitrarily accurate by choosing the integer M large enough.

In a similar way, we can use (10) and obtain an approximation forZ M�hX
j=0

�j�T+h+jhv;�+
�
v(�); �+

�
d�+

�
Z M�hX

j=0

�j�T+h+j

sY
k=1

f�
�
eT�s+k

�
vT�s+k; �

+
�
;�
�
�
T+MY
t=T+1

f� (�t;�) d�
+:

Speci�cally, we haveZ M�hX
j=0

�j�T+h+jhv;�+
�
v(�); �+

�
d�+

� N�1
NX
i=1

 
M�hX
j=0

�j�T+h+j

sY
k=1

f�

�
eT�s+k(vT�s+k(�); �

(i)
T+1; :::; �

(i)
T+M);�

�!
:

From the preceding discussion we can now conclude that the conditional expecta-

tion (8) can be approximated as

ET

 
M�hX
j=0

�j�T+h+j

!
�
N�1PN

i=1

 PM�h
j=0 �j�T+h+j

sY
k=1

f�

�
eT�s+k(vT�s+k(�); �

(i)
T+1; :::; �

(i)
T+M);�

�!

N�1PN
i=1

 
sY
k=1

f�

�
eT�s+k(vT�s+k(�); �

(i)
T+1; :::; �

(i)
T+M);�

�! :

(11)
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Using this approximation in (6), we can compute approximate forecasts recursively.

The accuracy of the approximation depends on the choice of the integers M and

N . For a good approximation these integers should be large enough but, on the

other hand, the larger they are, the heavier is the computational burden. As vt+h �PM�h
j=0 �j�T+h+j the integerM should be so large that the coe¢ cients �j are practically

zero for j > M . This in turn depends on the roots of the polynomial ' (z) : The closer

the roots of this polynomial are to the unit circle the larger value of M should be

used. The simulation results in Section 4 suggest that even relatively small values of

M and N (50 and 10 000, respectively) are su¢ cient for a reasonable approximation

that cannot be much improved upon by further increases. As in Breidt and Hsu

(2005) an importance sampling scheme could be used to improve the approximation

or make it accurate for a smaller value of N .

3.2 Density and Interval Forecasts

The forecast method developed in the preceding section can be extended to compute

interval forecasts. First note that the arguments used to obtain the forecast forPM�h
j=0 �j�T+h+j in (11) can readily be modi�ed to obtain a forecast for any function

of �+. Speci�cally, the forecast of q (�+), say, is given by

ET
�
q
�
�+
��
�

N�1PN
i=1

 
q (�+)

sY
j=1

f�

�
eT�s+j(vT�s+j(�); �

(i)
T+1; :::; �

(i)
T+M);�

�!

N�1PN
i=1

 
sY
j=1

f�

�
eT�s+j(vT�s+j(�); �

(i)
T+1; :::; �

(i)
T+M);�

�! :

(12)

For instance, letting 1 (�) stand for the indicator variable and choosing q (�+) =

1
�PM�1

j=0 �j�T+1+j � x
�
in (12) yields a forecast for the conditional cumulative dis-

tribution function of vt+1 �
PM�1

j=0 �j�T+1+j at the point x. Choosing a grid x1; :::; xK

with K large enough, one can obtain a forecast for the whole conditional cumulative

11



distribution function of vt+1: As yt+1 = vt+1 +
Pr

j=1 �jyT+1�j (see (4)) a forecast

for the conditional cumulative distribution function of yt+1 is obtained from this by

treating
Pr

j=1 �jyT+1�j as a constant. Using appropriate quantiles from the lower and

upper tail of this forecast, an interval forecast for yt+1 can further be constructed.

Obtaining interval forecasts for yt+h with h > 1 is slightly more complicated.

De�ne the r � 1 vector yt = (yt; :::; yt�r+1) and write (4) in the companion form

yt = �yt�1 + �vt;

where � = (1; 0:::; 0) (r � 1) and

� =

26666666664

�1 �2 � � � �r 0

1 0 � � � � � � 0

0 1 0 � � � 0
...

. . . . . . . . .
...

0 � � � 0 1 0

37777777775
(r � r)

Using repetitive substitution and the approximation vT+h �
PM�h

j=0 �j�T+h+j, one

now obtains

yT+h = �
hyT +

h�1X
i=0

�i�vT+h�i � �hyT +
h�1X
i=0

�i�
M�h+iX
j=0

�j�T+h�i+j:

Thus, we need to �nd a forecast for the conditional cumulative distribution function

of
Ph�1

i=0 �
0�i�

PM�h+i
j=0 �j�T+h�i+j. This is obtained from (12) with

q
�
�+
�
= 1

 
h�1X
i=0

�0�i�
M�h+iX
j=0

�j�T+h�i+j � xk

!
; k = 1; :::; K:

After this, a forecast for the conditional cumulative distribution function of yt+h and

interval forecasts for yt+h can be constructed as in the case h = 1.
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4 Simulation Study

In order to illustrate the gains in forecast accuracy of correctly allowing for noncausal-

ity and the properties of the proposed forecasting method, we provide a small Monte

Carlo simulation experiment. Following Clements and Smith (1999) along with a num-

ber of other simulation studies on the forecasting performance of nonlinear models,

we use the model estimated with actual data as the data generating process (DGP).

In particular, we consider AR(r; s) models for the demeaned seasonally adjusted an-

nualized quarterly U.S. in�ation series based on the GDP implicit price de�ator series

extracted from the FRED database of the Federal Reserve Bank of St. Louis for the

period from 1960:1 to 2008:2. In Section 5, we will provide evidence on the forecasting

performance of various AR models for a number of subsamples of this series.

Using the model selection procedure outlined in Section 2 above, the AR(1,4)

model with t-distributed errors is selected. The Gaussian AR(5) model turns out

su¢ cient in capturing the autocorrelation in the in�ation series, and among the �fth-

order models the AR(1,4) model maximizes the approximate log-likelihood function.

The p-values of the Wald test against the sixth-order AR(2,4) and AR(1,5) models

equal 0.385 and 0.313, respectively, indicating adequacy of the AR(1,4) speci�cation.

Judged by the Q-Q plot of the residuals (not shown), the t-distribution assumption

seems reasonable, and this conclusion is also backed up by the precisely estimated

relatively low value of the degree-of-freedom parameter, 3.25. The residuals are not

autocorrelated but some remaining conditional heteroskedasticity is detected. The

estimation results are presented in Table 1.

We simulate 10 000 realizations of length T+8 from the estimated DGP. Using the

�rst T observations in each realization, we estimate a causal AR(5,0) and a noncausal

AR(1,4) model. Then we compute the point forecasts 1, 2, 4 and 8 periods ahead

and �nally compute the mean-square forecast error (MSFE) for each horizon over all

13



the realizations. We consider two sample sizes (T = 100, 200) and three choices of

the number of simulated realizations in the forecasting procedure (N = 1000, 10 000,

100 000). Throughout the truncation parameter M is set at 50. We also considered

two other values, 25 and 100 (results not reported), but di¤erences between these

di¤erent choices of M turned out negligible.

Table 2 presents the MSFEs of the AR(1,4) model 1, 2, 4 and 8 periods ahead.

The accuracy of forecasts seems to increase with both the sample size T and and the

number of replications N , with the latter e¤ect being more minor such that virtually

no improvement is seen when N increases from 10 000 to 100 000. The relative MS-

FEs, i.e., the MSFEs of the AR(1,4) model divided by those of the AR(5,0) model,

are reported in Table 3. The fact that all entries are below unity indicates the superi-

ority of the (true) noncausal speci�cation at all horizons considered. According to the

test of Diebold and Mariano (1995), all di¤erences are also signi�cant at least at the

5% level. In general, the superiority of the noncausal model tends to improve as N

increases, but the di¤erences are small, especially between 10 000 and 100 000 repli-

cations. The increase in the sample size favors the noncausal model when forecasting

one period ahead, whereas at greater forecast horizons, its relative performance re-

mains virtually unchanged and at the eight-period horizon even deteriorates. All in

all, the choice of N does not seem to be critical as long as it is not too small, and

the relative accuracy of the noncausal over causal model is not much a¤ected by the

sample size at least at short forecast horizons, whereas the forecast accuracy of the

noncausal model seems to clearly improve with an increase in the sample size.

5 Empirical Application

In this section, we illustrate the use of our forecasting method by an application

to quarterly U.S. in�ation. As already mentioned in Section 4, we compute in�ation
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based on the seasonally adjusted GDP implicit price de�ator series. We consider fore-

casts for three di¤erent sample periods, from 1972:1 until 2008:2 and two subsample

periods (1972:1�1990:1 and 1990:2�2008:2) of equal length. Following the standard

practice in the literature on in�ation forecasting (for a survey of the recent literature,

see Stock and Watson (2008)), we consider point forecasts of average in�ation instead

of the in�ation prevailing at a particular quarter in the future.

Forecasts 1, 2, 4 and 8 quarters ahead are computed as recursive pseudo out-of-

sample forecasts based on reestimated models at each step with the estimation sample

always starting from the �rst quarter of 1960. Several alternative forecast series are

compared. First, forecasts from causal and purely noncausal �fth-order AR models as

well as the AR(1,4) model selected for the entire sample in Section 4 are considered.

Second, we produce forecast series based on reselecting the model at each step. Two

alternative model selection procedures are employed, the Akaike information criterion

(AIC) among the causal AR(r; 0) or noncausal AR(r; s) models with the maximum

values of r and s set at �ve and the procedure based on maximizing the log-likelihood

function outlined in Section 2 above. In the latter case the sum of r and s is set at

the AIC estimate of the Gaussian AR(p) model with the maximum value of p equal

to �ve. In computing the forecasts, we set the number of replications N at 100 000

and the truncation parameter M at 50.

The MSFEs are reported in Table 4. Comparison of the recursive out-of-sample

MSFEs suggests four �ndings. Firstly, the noncausal AR models generally outperform

the causal models, especially at the longer forecast horizons. In the full sample, the

purely noncausal AR model represents strong improvement in forecasting accuracy

over the alternative models at the horizons from two to eight quarters, while the causal

models perform relatively well in one-step ahead forecasting. Secondly, although the

AR(rAIC , sAIC) model forecasts relatively poorly in the �rst subsample period, it does

particularly well during the low in�ation subsample period of 1990:1 through 2008:2,
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producing the most accurate in�ation forecast at all horizons. One reason for this may

be the fact that, according to our experience, accurate estimation of the parameters

of the mixed models requires a reasonably large number of observations. This is espe-

cially true when the orders of the autoregressive polynomials are high. In our sample,

high-order AR(r; s) models are typically selected by the AIC, and since the sample

starts from the �rst quarter of 1960, the sample used in the �rst reestimation consists

of only 48 observations. Thirdly, among the models, the AR(r; s) model performs well

in all out-of-sample periods and at all forecast horizons. However, there is no period

or horizon in which it is able to produce the most accurate point forecasts on average.

Finally, the out-of-sample forecasts indicate that with the exception of the latter sub-

sample period, the Gaussian autoregressive model, AR(pAIC), is not systematically

outperformed by the AR(rAIC ,0) model based on the t-distribution, suggesting that

the distributional assumptions are not particularly critical in forecasting with causal

AR models.

Often it is the direction of change rather than the magnitude that is of interest.

Therefore, in addition to the MSFEs we also report the percentages of correct change-

of-direction forecasts of the di¤erent models and model selection procedures in Table

5. At least one of the noncausal models always outperforms the causal models in all

sample periods and at all forecast horizons, with a tie only in the �rst subsample

period at the one-quarter horizon. Furthermore, all models predict the direction

correctly over 50 percent of the time in all samples and at all horizons with only one

exeption. Fisher, Liu and Zhou (2002) obtained similar results for U.S. consumer

price in�ation using multivariate (Phillips curve) models.

As discussed in Section 3, the forecasting method can easily be modi�ed to pro-

duce density and interval forecasts. As an example, Figure 1 depicts the predictive

cumulative distribution function of in�ation for the last quarter of 1989 based on the

AR(1,4) model estimated on data up to the preceding quarter. The observed value
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equals 2.63%, and the point forecast is 2.91%. Any interval forecast can be read o¤

the distribution function; for instance, the 90% interval forecast comprises values be-

tween 0.94% and 4.84%. Hence, the forecast interval includes the observed in�ation

rate.

A more complete idea of the performance of the noncausal AR(1,4) model in den-

sity forecasting is given by the box-and-whisker plots of recursive one-step density

forecasts in Figure 2. The bottom and top of the box are the 25% and 75% points,

the interior line is the median, the bottom whisker is the 5% and the top whisker is

the 95% point. In almost all cases, the observed value is well within the interquartile

range, with nearly all exceptions in the 1970�s. For comparison, Figure 3 contains the

corresponding plot for the causal AR(5,0) model, shose perfomance in density fore-

casting seems inferior. There are far more quarters when the observation is not even

included in the 90% forecast interval, especially in the 1970�s, and in other cases, the

observation often lies on the boudary of the interquartile range or outside it. Hence,

allowing for noncausality seems to improve the density forecasts of autoregressive

models.

6 Conclusion

To the best of our knowledge, the method proposed in this paper is the �rst attempt

to obtain a practical forecasting procedure for noncausal autoregressions. Appar-

ently forecasting has not been of much interest in the previous statistical literature

on noncausal models with applications mostly con�ned to natural sciences and engi-

neering. In many of these applications, it may actually not be reasonable to think of

the employed model as a time series model but rather as a one-dimensional random

�eld in which the direction of �time� is irrelevant and prediction is not of interest.

However, the ability to compute forecasts is necessary for these models to be useful
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in economics and �nance. Here we have only considered the univariate noncausal au-

toregression, but it should be straightforward to extend the method to multivariate

models, such as the noncausal vector autoregression of Lanne and Saikonen (2009).

In a multivariate setting, structural analysis, including impulse reponses and forecast

error decompositions, is based on forecasts, which emphasizes their importance from

the econometric point of view.

The results of our simulation experiment and empirical application to in�ation

are encouraging, but more work is needed to evaluate the performance of the pro-

posed method in di¤erent situations. In particular, as pointed out in Section 3, an

importance sampling scheme could be used to improve accuracy or shorten the com-

putation time. Although our simulation experiment suggested that the computational

burden of obtaining accurate forecasts is not very heavy, this may not hold generally,

especially in a multivariate model. Moreover, only practical experience on forecast-

ing di¤erent kinds of economic time series will reveal the true bene�ts of noncausal

autoregressions in forecasting.
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Figure 1: The conditional cumulative distribution function of U.S. in�ation in the

last quarter of 1989 predicted by the AR(1,4) model.
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Table 1: Estimation results of the AR(1,4) model for the demeaned U.S. in�ation.
Parameter Estimate Standard error

�1 0.672 0.065

'1 �0.166 0.080

'2 0.116 0.073

'3 0.304 0.054

'4 0.363 0.061

� 1.164 0.207

� 3.253 0.980

Log-likelihood �261.181
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Table 2: Mean-square forecast errors of the AR(1,4) model estimated with data gen-

erated from the model in Table 1.
T

100 200

N N

Horizon 1 000 10 000 100 000 1 000 10 000 100 000

1 1.358 1.325 1.321 1.284 1.261 1.253

2 1.553 1.522 1.522 1.494 1.449 1.454

4 2.367 2.343 2.355 2.245 2.222 2.211

8 4.143 4.107 4.104 3.889 3.858 3.871

The entries are based on 10 000 realizations. T is the sample size, and

N is the number of replications in the forecasting procedure. The truncation

parameter M is set at 50.
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Table 3: Relative mean-square forecast errors of the AR(1,4) model compared to the

AR(5,0) model estimated with data generated from the model in Table 1.
T

100 200

N N

Horizon 1 000 10 000 100 000 1 000 10 000 100 000

1 0.934** 0.912** 0.909** 0.920** 0.904** 0.898**

2 0.870** 0.853** 0.853** 0.873* 0.847* 0.850**

4 0.857** 0.848** 0.853* 0.865** 0.856** 0.852**

8 0.887** 0.879* 0.879** 0.915** 0.902** 0.905*

The entries are based on 10 000 realizations. T is the sample size, and N is the

number of replications in the forecasting procedure. The truncation parameter M is set

at 50. ** and * indicate rejection in the Diebold-Mariano test at the 1% and 5% level,

respectively.
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Table 4: Mean-square forecast errors of di¤erent AR models for the U.S. in�ation.
Model

Horizon (5,0) (0,5) (1,4) (rAIC ; 0) (pAIC) (rAIC ; sAIC) (r; s)

1972:1�2008:2

1 1.369 1.406 1.707 1.370 1.382 1.648 1.470

2 1.343 1.245 1.727 1.275 1.276 1.594 1.286

4 1.604 1.322 1.827 1.520 1.516 1.634 1.401

8 2.585 1.896 2.289 2.575 2.580 2.561 2.023

1972:1�1989:4

1 2.264 2.333 2.953 2.265 2.282 2.831 2.478

2 2.318 2.117 3.119 2.180 2.178 2.853 2.231

4 2.836 2.269 3.324 2.666 2.651 2.949 2.467

8 4.629 3.254 4.074 4.609 4.596 4.636 3.536

1990:1�2008:2

1 0.475 0.479 0.461 0.475 0.483 0.464 0.461

2 0.380 0.383 0.358 0.380 0.384 0.356 0.358

4 0.381 0.379 0.351 0.381 0.389 0.333 0.350

8 0.561 0.548 0.522 0.561 0.583 0.508 0.521

The columns entitled (pAIC ; 0), (rAIC ; 0) and (rAIC ; sAIC) contain the MSFEs for AR

models selected by the Akaike information criterion. The �rst model assumes Gaussian

errors. The column entitled (r; s) contains the AR models selected by maximizing the

log-likelihood function among all �fth-order models.
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Table 5: Percentages of correctely forecast change of direction of di¤erent AR models

for the U.S. in�ation.
Model

Horizon (5,0) (0,5) (1,4) (rAIC ; 0) (pAIC) (rAIC ; sAIC) (r; s)

1972:1�2008:2

1 62.3% 63.0% 60.3% 60.3% 59.6% 56.8% 58.9%

2 62.8% 65.5% 64.8% 63.4% 62.8% 65.5% 66.9%

4 58.0% 61.5% 58.7% 59.4% 58.7% 62.9% 62.9%

8 56.1% 58.3% 56.8% 54.7% 55.4% 57.6% 59.0%

1972:1�1989:4

1 61.6% 61.6% 57.5% 57.5% 56.2% 56.1% 54.8%

2 58.3% 59.7% 54.2% 59.7% 58.3% 58.3% 58.3%

4 59.2% 63.4% 54.9% 62.0% 60.6% 62.0% 63.4%

8 59.4% 62.3% 58.0% 56.5% 58.0% 65.2% 62.3%

1990:1�2008:2

1 63.0% 64.4% 63.0% 63.0% 63.0% 57.5% 63.0%

2 68.1% 72.2% 75.0% 68.1% 68.1% 72.2% 75.0%

4 57.7% 60.6% 62.0% 57.7% 57.7% 64.8% 62.0%

8 53.6% 55.1% 55.1% 53.6% 53.6% 49.3% 55.1%

See notes to Table 4.
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