
NBER WORKING PAPER SERIES

PREFERENCE SIGNALING IN MATCHING MARKETS

Peter Coles
Alexey Kushnir
Muriel Niederle

Working Paper 16185
http://www.nber.org/papers/w16185

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
July 2010

We are grateful to Attila Ambrus, Simon Board, Johaness Horner, Scott Kominers, Vijay Krishna,
Marek Pycia, Korok Ray, Al Roth and Utku Unver for fruitful discussions and comments. We thank
the NSF for financial support. We also thank Matt Eliot and Matt Chao for reading the paper thoroughly,
suggesting useful references, and finding typos. Any mistakes are our own. The views expressed herein
are those of the authors and do not necessarily reflect the views of the National Bureau of Economic
Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2010 by Peter Coles, Alexey Kushnir, and Muriel Niederle. All rights reserved. Short sections of
text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit,
including © notice, is given to the source.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6483358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Preference Signaling in Matching Markets
Peter Coles, Alexey Kushnir, and Muriel Niederle
NBER Working Paper No. 16185
July 2010, Revised August 2010
JEL No. C78,J01

ABSTRACT

Many labor markets share three stylized facts: employers cannot give full attention to all candidates,
candidates are ready to provide information about their preferences for particular employers, and employers
value and are prepared to act on this information. In this paper we study how a signaling mechanism,
where each worker can send a signal of interest to one employer, facilitates matches in such markets.
We find that introducing a signaling mechanism increases the welfare of workers and the number of
matches, while the change in firm welfare is ambiguous. A signaling mechanism adds the most value
for balanced markets.

Peter Coles
Harvard University
pcoles@hbs.edu

Alexey Kushnir
Department of Economics
The Pennsylvania State University
alexey.kushnir@gmail.com

Muriel Niederle
Department of Economics
579 Serra Mall
Stanford University
Stanford, CA 94305-6072
and NBER
niederle@stanford.edu

An online appendix is available at:
http://www.nber.org/data-appendix/w16185



1 Introduction

Job seekers in labor markets often apply for many positions, as there is a low cost for

applying and a high value for being employed. Consequently, many employers face the

near impossible task of reviewing and evaluating hundreds of applications. Moreover, since

pursuing candidates is often costly, employers may need to assess not only the quality of

an applicant, but also whether the applicant is attainable: that is, whether the candidate

is likely to ultimately accept a job offer, should the employer make one. In this paper we

study a mechanism that aids employers in this evaluation process by allowing applicants to

credibly signal information about their preferences for positions.

In practice, in many markets that suffer from this form of application congestion, can-

didates communicate special interest for a select number of places. For example, in college

admissions in the United States, many universities have early admission programs, where

high school seniors may apply to exactly one college before the general application period.

Evidence suggests that universities respond to such action in that it is easier to get into a

college through early admission programs (Avery, Fairbanks and Zeckhauser, 2003).1 An-

other example of applicants signaling interest can be found in the market for entry-level

clinical psychologists, which in the early 1990’s was organized as a telephone-based market.

On “match day,” program directors called applicants to make offers, and candidates were,

at any moment, allowed to hold on to at most one offer. At the end of match day, all

non-accepted offers were automatically declared as rejected. Due in part to its limited time

frame, this market suffered from congestion, and it was common for program directors to

make offers out of their preference order to applicants who credibly indicated they would

accept an offer immediately (Roth and Xing, 1997).2

Some markets have formal, market-wide mechanisms that allow participants to signal

preferences, and the formal nature of the signals ensures credibility. Since 2006, The Ameri-

can Economic Association (AEA) has operated a signaling service to facilitate the job search

1Under single early application programs, universities often require that an applicant not apply early to
other schools, and this is often enforced by high school guidance counselors. In another example of colleges
looking for signs of interest, many schools take great care to note whether applicants visit the campus, which
presumably is costly for parents in terms of time and money. This can also be taken into account when
colleges decide whom to admit.

2Congestion in the telephone market was costly for program directors who worried that their offer would
be held the whole match day and then rejected in the last moments, leaving them to fill the position in
a hectic “aftermarket” with only a few leftover candidates. As an example of offer strategy, the directors
of one internship program decided to make their first offers (for their five positions) to numbers 1, 2, 3, 5,
and 12 on their rank-order list of candidates, with the rationale that 3, 5, and 12 had indicated that they
would accept immediately and that 1 and 2 were so attractive as to be worth taking chances on. Anecdotal
evidence suggests that promises to accept an offer were binding. The market was relatively small, and as
one program director mentioned: “you see these people again.”
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for economics graduate students. Using this service, students can send signals to up to two

employers to indicate their interest in receiving an interview at the annual Allied Social

Science Associations meeting. Coles et al. (2010) provide suggestive evidence that sending a

signal of interest increases the chances of receiving an interview. Since interviews take place

over a single weekend, departments typically interview about twenty candidates out of hun-

dreds of applicants, which suggests that most departments must strategically choose from

among their candidates that are above the bar.3 Though not labor markets, some online

dating websites allow participants to send signals to potential partners. For example in the

matchmaking service of the website “Hot or Not,” participants can send each other virtual

flowers that purportedly increase the chances of receiving a positive response.4 In a field

experiment on a major Korean online dating website, Lee et al. (2009) study the effect of a

user attaching one of a limited number of “virtual roses” to a date request. They find that

users of both genders are more likely to accept a request when a virtual rose is attached.5

These examples all share three important features. First, in each case substantial frictions

lead to market congestion: employers (or colleges or dating partners) are unable to give full

attention to all possible candidates when making decisions. Second, applicants are ready

to provide information about their preferences over employers. Third, employers value this

preference information and are prepared to act on it.

For employers to take useful action, preference signals must be credible. But simply

declaring one’s interest typically bears almost no cost, and job seekers have an incentive to

indicate particular interest to many employers, regardless of how strong their preferences

towards these employers actually are. Hence, absent any credibility guarantee, employers

may struggle to discern which preference information is sincere and which is simply cheap

talk. So while candidates may wish to signal their preferences, and employers may value

3Similar mechanisms exist for non-academic jobs. For example, Skydeck360, a student-operated com-
pany at Harvard, offers a signaling service for MBA students in their search for internships and full-time
jobs. Each registered student can send up to ten signals to employers via their secure website. (See
http://skydeck360.posterous.com for detail.)

4In this case the number of flowers one may send is unlimited, but each flower is costly. Signals of interest
may be helpful in dating markets because pursuing partners is costly. At the very least, each user may be
limited in the number of serious dates she can have in a given period. “As James Hong from HotorNot
tells it, his virtual flower service has three components: there’s the object itself represented by a graphical
flower icon, there’s the gesture of someone sending the flower to their online crush, and finally, there’s the
trophy effect of everyone else being able to see that you got a flower. People on HotorNot are paying
$10 to send the object of their affection a virtual flower – which is a staggering 3-4x what you might pay
for a real flower!” (from http://www.viralblog.com/research/why-digital-consumers-buy-virtual-goods/) See
http://www.hotornot.com/m/?flowerBrochure=1 for a description of HotorNot’s virtual flower offerings.

5This dating website targets people looking for marriage partners, rather than people who want many
dates. Hence, dates may be perceived as particularly costly, so users must decide carefully on whom to
“spend” a date. The study found that candidates of average attractiveness, who may worry that date offers
are only “safety” offers, are particularly responsive to signals of special interest.
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learning candidate preferences, inability to credibly convey information may prevent any

gains from preference signaling from being realized.

In this paper, we investigate how a signaling mechanism that limits the number of signals

a job seeker may send can overcome the credibility problem and improve the welfare of market

participants. We develop a model that can account for the three stylized facts mentioned

above. In our model, firms make offers to workers, but the number of offers they may make

is limited, so that firms must carefully select the workers to whom they make offers. We

focus on the strategic question of offer choice and abstract away the question of acquiring

information that determines preferences. Hence, we assume that each agent knows her own

preferences over agents on the other side of the market, but is uncertain of the preferences

of other agents.

In the simplest version of our model, we assume that both worker and firm preferences

are idiosyncratic and uniformly distributed. Workers have the opportunity to send a signal

to one firm, where each signal is binary in nature and does not transmit any further infor-

mation. Firms observe their signals, but not the signals of other firms, and then each firm

simultaneously makes exactly one offer to a worker. Finally, workers choose offers from those

available to them. We focus on symmetric equilibria in anonymous strategies to eliminate

any coordination devices beyond the signaling mechanism.

We show that, in expectation, introducing a signaling mechanism increases both the

number of matches as well as the welfare of workers. Intuitively, when firms make offers

to workers who send them signals, these offers are unlikely to overlap, leading to a higher

expected number of matches. Furthermore, workers are not only more likely to be matched,

but are also more likely to be matched to a firm they prefer the most. On the other hand,

when a firm makes an offer to a worker who has signaled it, this creates strong competition

for firms who would like to make an offer to that same worker because, for example, they

rank that worker highest. Hence, by responding to signals, that is, being more likely to make

offers to workers who have signaled them, firms may generate a negative spillover on other

firms. Consequently, the effect on firm welfare from introducing a signaling mechanism

is ambiguous; welfare for a firm depends on the balance between individual benefit from

responding to signals and the negative spillover generated by other firms responding to

signals. Furthermore, we show that the degree to which a firm responds to signals is a case

of strategic complements. When one firm responds more to signals, it becomes riskier for

other firms to make offers to workers who have not sent them signals. Consequently, multiple

equilibria, with varying responsiveness to signals, may exist. These equilibria can be welfare

ranked: workers prefer equilibria where firms respond more to signals, while firms prefer the

equilibria where they respond less.
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We also study an extension in which workers have correlated preferences. In this setting

a worker may not necessarily signal to her overall most preferred firm. This implies that

firms cannot be certain that an offer made to a worker who sent a signal will be accepted.

Nonetheless, for a class of correlated preferences we show that the introduction of a signaling

mechanism increases the expected number of matches and the welfare of workers.

To understand when a signaling mechanism might be most helpful, we compare perfor-

mance across market settings. To do this, we focus on a simpler environment where agents

care about getting a match, but not the quality of the match. Hence, the value of intro-

ducing a signaling mechanism is simply the expected increase in the number of matches.

For such an environment, we find that the value of a signaling mechanism is maximal for

balanced markets ; that is, markets where the number of firms and workers are of roughly the

same magnitude. We further show that the increase in the number of matches is roughly

homogenous of degree one in the number of firms and workers. That is, signaling mechanisms

are equally important for large and small markets in terms of the expected increase in the

fraction of matched participants.

Our approach is related to several strands of literature. A standard interpretation of

signaling and its effectiveness is that applicants have private information that is pertinent

to how valuable an employee they would be. For example, in Spence’s signaling model

(Spence, 1973), applicants use wasteful costly signals, such as education, to signal their

type, such as their ability.6 More recently, Avery and Levin (2009) model early application

in US college admissions as a way for students to signal college-specific quality, such as

enthusiasm for a particular college. In their model, colleges explicitly derive more utility

from having enthusiastic students in their freshman class than they do from other, equally

able students. By contrast, in our model we abstract away from such motives and instead

show how congestion, stemming from the explicit monetary or opportunity costs of making

offers, can generate room for useful preference signaling.

A more closely related strand of literature is that of strategic information transmission,

or “cheap talk,” between a sender and receiver, introduced in Crawford and Sobel (1982).

In our model, however, we consider a multi-stage game with many senders (workers) and

many receivers (firms), where the structure of allowable signals plays a distinctive role. Each

sender must choose the receiver to whom she will send one of her limited, identical signals,

and the scarcity of signals induces credibility. Each receiver knows only whether a sender has

sent a signal to it or not, and receives no additional information. While Crawford and Sobel

6Hoppe, Moldovanu and Sela (2009) extend this idea to an environment where agents on both sides of the
market may send signals. Among other findings, they identify general conditions under which the potential
increase in expected output due to the introduction of signaling is offset by the costs of signaling.

5



(1982) study a coordination problem between the sender and receiver, our setting includes an

additional coordination problem among receivers who must decide whom to make an offer.

Nevertheless, some features of Crawford and Sobel persist in our model. Signals are “cheap”

in the sense that they do not have a direct influence on agent payoffs. Each agent has only a

limited number of signals, so there is an opportunity cost associated with sending a signal.

Finally, in our model there always exist babbling equilibria where agents ignore signals;

hence, the introduction of a signaling mechanism always enlarges the set of equilibria.

While to our knowledge we are the first to introduce preference signaling in decentralized

markets, papers by Abdulkadiroglu, Che and Yasuda (2008) and Lee and Schwarz (2007)

deal with preference signaling in the presence of centralized clearinghouses.7

In summary, our paper models the introduction of a signaling mechanism in markets

where interviews or offers are costly for firms, either in direct monetary terms or because of

opportunity costs. Our results suggest potentially large welfare gains for workers, and an

increase in the expected total number of matches. Furthermore, as the experience with the

economic job market shows, introducing a signaling mechanism can be a low cost, unintrusive

means of improving maket outcomes. As such we see our paper as part of the larger market

design literature (c.f. Roth, 2008).

The paper proceeds as follows. Section 2 begins with a simple example, and Sections 3

and 4 discuss the offer game with and without a signaling mechanism, respectively. Section

5 considers the impact of introducing a signaling mechanism on the welfare of agents. In

Section 6 we examine signaling in an environment with correlated agent preferences. Section

7 analyzes the robustness of the welfare results across various market structures. Section 8

concludes.

2 A Simple Example

In this section we lay out a simple example that shows the effects of introducing a signaling

mechanism and highlights some of our main findings. Consider a market with two firms

{f1, f2} and two workers {w1, w2}. For each agent, a match with one’s most preferred

partner from the other side of the market yields payoff 1, while a match with one’s second

choice partner yields x ∈ (0, 1). Remaining unmatched yields payoff 0.

7Abdulkadiroglu, Che and Yasuda (2008) show that the introduction of a signaling technology improves
efficiency of the deferred acceptance algorithm in a school choice problem. Lee and Schwarz (2007) analyze
preference signaling in a match formation process between firms and workers that consists of three steps:
preference signaling, investments in information acquisition, and formation of matches via a centralized clear-
inghouse. They construct a centralized mechanism where workers communicate their complete preferences
to an intermediary, and the intermediary recommends to each firm a subset of workers to interview.
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Ex-ante, agent preferences are random, uniform and independent. That is, for each firm

f , the probability that f prefers worker w1 to worker w2 is one half, as is the probability

that f prefers w2 to w1. Worker preferences over firms are similarly symmetric. Agents learn

their own preferences, but not the preferences of other agents.

We first examine behavior in a game where once agent preferences are realized, each firm

may make a single offer to a worker. Workers then accept at most one of their available

offers. We will examine sequential equilibria, which guarantees that workers accept their

best available offer.

In the unique equilibrium of this game where firm strategies do not depend on the name

of the worker,8 each firm simply makes an offer to its most preferred worker. This follows

because firms cannot discern which worker is more likely to accept an offer. In this congested

market there is a fifty percent chance that both firms make an offer to the same worker, in

which case there will only be one match. Hence, on average there are 1.5 matches, and the

expected payoff for each firm is 3
4
1+ 1

4
0 = 0.75. For workers, if they receive exactly one offer,

it is equally likely to be from their first or second choice firm. There is also a fifty percent

chance that one worker receives two offers, hence attaining a payoff of one while the other

worker receives zero. The expected payoff for each worker is then (2 + x)/4.

We now introduce a signaling mechanism: before firms make offers, each worker may

send a signal to a single firm. Each signal has a binary nature: either a firm receives a signal

from a particular worker or not, and signals do not not transmit any other information. We

focus on non-babbling equilibria, where firms interpret a signal as a sign of being the more

preferred firm of that worker, and workers send a signal to their more preferred firm.9

To analyze firm behavior, note that a firm that receives a signal from its top worker will

make this worker an offer, since it will certainly be accepted. If on the other hand a firm

receives no signals, it again optimally makes an offer to its top worker, as symmetry implies

the workers are equally likely to accept an offer. The interesting strategic decision a firm

must make is when it receives a signal only from its second ranked worker. In this case the

other firm also receives exactly one signal. We say a firm “responds” to the signal if it makes

the signaling worker an offer, and “ignores” the signal if it instead makes an offer to its top

worker, which did not send it a signal.

Suppose f1 prefers w1 to w2 and only w2 sent a signal to f1, which implies w1 sent a

8See Section 3 for a formal definition of anonymous strategies.
9Note that there is no equilibrium where firms expect signals from workers, but interpret them as a

particular lack of interest and hence reduce the probability of making an offer to a signaling worker. If this
were the case, workers would simply not send any signal. There are, however, babbling equilibria where no
information is transmitted, though we will not focus on those in this paper, as they are equivalent to not
having a signaling device.
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signal to f2. Clearly, whenever f1 makes an offer to w2, f1 receives x. Suppose f1 instead

makes an offer to w1, who sent a signal to f2. If f2 responds to signals, then f2 also makes

an offer to w1, which w1 will accept, hence leaving f1 a payoff of 0. If f2 ignores signals,

then there is still a fifty percent chance that w1 is actually f2’s first choice, in which case an

offer is tendered and accepted, so that f1 again receives 0. Otherwise, f1 receives 1. Table

1 summarizes f1’s payoffs conditional on receiving a signal from its second ranked worker,

and the strategies of f2.

Table 1: Firm f1’s payoffs conditional on receiving a signal from
its second ranked worker.

f1 \ f2 Respond Ignore
Respond x x
Ignore 0 1/2

Table 1 shows that strategies of firms are strategic complements. If a firm responds to

signals, then the other firm is weakly better off from responding to signals as well. In this

example, if f2 switches from the action ignore (not making an offer to a second choice worker

who has signaled) to the safe action of responding (making an offer to a second choice worker

who has signaled), then f1 optimally also takes the safe action of responding.

Turning to equilibrium analysis, note that if x > 0.5 there is a unique equilibrium in

which both firms respond to signals. When x < 0.5, that is when the value of the first choice

worker is much greater than that of the second ranked worker, there exist two equilibria in

pure strategies. In the first, both firms respond to signals (Respond-Respond) and in the

second both firm ignore signals (Ignore-Ignore).10 Table 2 summarizes welfare properties of

these equilibria. Note that the expected firm and worker payoffs, as well as the expected

number of matches when signals are ignored are the same as when there is no signaling

mechanism, since agent actions in these two settings are identical.11

Whenever there are multiple equilibria (x < 0.5), we can rank them in terms of firm wel-

fare, worker welfare, and the expected number of matches. Workers and firms are opposed in

10There is also a mixed strategy equilibrium whenever there are two pure strategy equilibria. Properties
of this equilibrium coincide with those in the equilibrium where both firms respond to signals.

11When both firms respond to signals, since each firm has a fifty percent chance of receiving a signal
from its first choice worker, half the time this strategy yields payoff of one. Otherwise a firm has a 1/4
chance of receiving a signal from its second choice worker only, yielding a payoff of x. With a 1/4 chance a
firm receives no signal, in which case it makes an offer to its first choice worker, who will accept with fifty
percent probability (whenever she is not the first choice worker of the other firm). Hence, expected firm
payoffs are 1

21 + 1
4x + 1

4
1
21 = 5+2x

8 . Payoffs for workers can similarly be calculated given these outcomes.
Furthermore, when one firm receives all signals (which happens half the time) there is a fifty percent chance
of firms making offers to the same worker, and hence, of only one match occuring, so the expected number
of matches is 1

41 + 3
42 = 7

4 .
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Table 2: Firm payoffs, worker payoffs, and number of matches
when both firms use the same strategy.

Firm Payoffs Worker Payoffs Number of Matches

Respond-Respond (5 + 2x)/8 3/4 7/4

Ignore-Ignore 3/4 (2 + x)/4 3/2

their preferences over equilibria: workers prefer the equilibrium in which both firms respond

to signals while firms prefer the equilibrium in which they both ignore signals. Intuitively,

while one firm may privately gain from responding to a signal, such an action may nega-

tively affect the other firm. The expected number of matches in the equilibrium when both

firms respond to signals is always greater than in the equilibrium when both firms ignore the

signals.

These welfare results enable us to study the effects of introducing a signaling mechanism,

as outcomes in the offer game without signals are identical to those when both firms ignore

signals (even if the Ignore-Ignore equilibrium does not exist). The expected number of

matches and the welfare of workers in the offer game with signals in any non-babbling

equilibrium are greater than in the offer game with no signals. The welfare of firms changes

ambiguously with the introduction of a signaling mechanism. We now show that these results

generalize.

3 The Offer Game with No Signals

3.1 General Notation

In this paper we aim for a simple hiring model in which we can highlight the role of agents

being able to credibly signal preferences in the presence of congestion. We have a market

with a set of firms, a set of workers, and a distribution over firm and worker preferences.

Each firm has the capacity to hire at most one worker, and each worker can fill at most

one position. We examine an extreme form of congestion: each firm may make at most one

offer to hire a worker, where we implicitly assume that workers have applied to all firms. In

the offer game with no signals, firms make an offer based on the limited knowledge of the

distribution of worker preferences. In the second setting, the offer game with signals, before

offers are made, each worker has the opportunity to send one costless signal to a firm, who

may use this signal to partially infer worker preferences. In the web appendix we show that

the main results carry over when firms have multiple positions and workers can send several

signals.
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Let F = {f1, . . . , fF} be the set of firms, and W = {w1, . . . , wW} be the set of workers,

with |F| = F and |W| = W . We consider markets with at least two firms and two workers.

Firms and workers have preferences over each other. For each firm f , let Θf be the set of

all possible preference lists over workers, where θf ∈ Θf is a vector of length W . We use

the convention that the worker of rank one is the most preferred worker, while the worker of

rank W is the least preferred worker. The set of all firm preference profiles is ΘF = (Θf )
F .

Similarly, we define θw, Θw and ΘW for workers. Let Θ ≡ ΘF × ΘW , and let t(·) be the

distribution over preference list profiles.

Firm f with preference list θf values a match with worker w as u(θf , w), where u(θf , ·)
is a von-Neumann Morgenstern utility function. In our model, firms will be symmetric in

the following sense: we assume that a firm’s utility for a match depends only on a worker’s

rank. That is, for any permutation ρ of worker indices, we have u(ρ(θf ), ρ(w)) = u(θf , w).12

Furthermore, all firms have the same utility function u(·, ·). Worker w with preference list

θw values a match with firm f as v(θw, f), where match utility again depends only on rank,

and all workers share the same utility function. Though not essential for our results, we

will assume that workers and firms derive zero utility from being unmatched, and that any

match is preferable to remaining unmatched for all participants. A market is given by the

5-tuple 〈F ,W , t, u, v〉.
For Sections 3-5, we will focus on a simple preference structure: each firm f has pref-

erences over the workers chosen uniformly, randomly and independently from the set of all

strict preference orderings over all workers. Worker preferences are analogously chosen; that

is, there is no correlation in preferences. This will make the problem symmetric and easy to

analyze.

In Section 6 we will relax this assumption, and consider the case in which preferences of

workers over firms may exhibit correlation. In the web appendix we consider a more involved

symmetric model where firms have several slots to fill, and workers can send multiple signals.

3.2 The Offer Game with No Signals

We first examine behavior in the absence of a signaling mechanism. Play proceeds as follows.

After preferences of firms and workers are realized, each firm simultaneously makes an offer

to at most one worker. Workers then choose at most one offer from those available to them.

Sequential rationality ensures that workers will always select the best available offer. Hence,

12Let ρ : {1, . . . ,W} → {1, . . . ,W} be a permutation. Abusing notation, we apply ρ to preference lists,
workers, and sets of workers such that the permutation applies to the worker indices. For example, suppose
W = 3, ρ(1) = 2, ρ(2) = 3, and ρ(3) = 1. Then we have θf = (w1, w2, w3) ⇒ ρ(θf ) = (w2, w3, w1) and
ρ(w1) = w2.

10



we take the workers’ behavior in the last stage as given and focus on the reduced game with

only firms as strategic players.

Once its preference list θf (f ’s type) is realized, firm f decides whether and to whom

to make an offer. Firm f may use a mixed strategy denoted by σf which maps the set of

preference lists to the set of distributions over the union of workers with the no-offer option,

denoted by N ; that is σf : Θf → ∆(W ∪N ).13 We denote a profile of all firms’ strategies

as σF = (σf1 , ...σfF
), and the set of firm f ’s strategies as Σf .

Let the function πf : (Σf )
F × Θ → R denote the payoff of firm f as a function of

firm strategies and realized agent types. We are now ready to define the Bayesian Nash

equilibrium of the offer game with no signals.

Definition 1. Strategy profile σ̂F is a Bayesian Nash equilibrium in the offer game with no

signals, if for all f ∈ F and θ̄f ∈ Θf the strategy σ̂f maximizes the profit of firm f of type

θ̄f , that is

σ̂f (θ̄f ) ∈ arg maxσ
f
∈Σf

Eθ−f
(πf (σf , σ̂−f , θ) | θ̄f ).

We focus on equilibria in which firm strategies are anonymous; that is, they depend

only on workers’ ranks within a firm’s preference list. This rules out strategies that rely

on worker indices, eliminating any coordination linked to the identity of workers. As an

example, “always make an offer to my second-ranked worker” is an anonymous strategy,

while “always make an offer to the worker called w2” is not.

Definition 2. Firm f ’s strategy σf is anonymous if for any permutation ρ, and for any

preference profile θf ∈ Θf , we have σf (ρ(θf )) = ρ(σf (θf )).

When deciding whom to make an offer, firms must consider both the utility from hiring a

specific worker and the likelihood that this worker will accept an offer. Because preferences of

both firms and workers are independently and uniformly chosen from all possible preference

orderings, and since firms use anonymous strategies, an offer to any worker will be accepted

with equal probability. Hence, each firm optimally makes an offer to the highest-ranked

worker on its preference list. Indeed, this is the unique equilibrium when firms use anonymous

strategies.

Proposition 1. The unique equilibrium of the offer game with no signals when firms use

anonymous strategies and workers accept the best available offer is σf (θf ) = θ1
f for all f ∈ F

and θf ∈ Θf .

13In other words, f selects elements of a W -dimensional simplex; σf (θf ) ∈ ∆W , where ∆W = {x ∈ RW+1 :∑W+1
i=1 xi = 1, and xi ≥ 0 for each i}.
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Note that the above statement requires that firm strategies be anonymous only in equi-

librium. Firm deviations that do not satisfy the anonymity assumption are still allowed.

As seen in the example in Section 2, in this equilibrium there might be considerable lack of

coordination, leaving many firms and workers unmatched.14

4 The Offer Game with Signals

We now modify the game so that each worker may send a “signal” to exactly one firm. A

signal is a fixed message; that is, the only decision of workers is whether and to whom to

send a signal. No decision can be made about the content of the signal. Note that the signal

does not directly affect the utility a firm derives from a worker, as the firm’s utility from

hiring a worker is determined by how high the firm ranks that worker. However, the signal

of a worker may affect a firm’s beliefs over whether that worker is likely to accept an offer.

Since we have a congested market where firms can only make one offer, these beliefs may

affect the firm’s decision of whom to make an offer. The offer game with signals proceeds in

three stages:

1. Agents’ preferences are realized. Each worker decides whether to send a signal, and to

which firm. Signals are sent simultaneously, and are observed only by firms who have

received them.

2. Each firm makes an offer to at most one worker; offers are made simultaneously.

3. Each worker accepts at most one offer from the set of offers she receives.

Once again, sequential rationality ensures that workers will always select the best available

offer. Hence, we take this behavior for workers as given and focus on the reduced game

consisting of the first two stages.

In the first stage, each worker sends a signal to a firm, or else chooses not to send a

signal. A mixed strategy for worker w is a map from the set of all possible preference lists

to the set of distributions over the union of firms and the no-signal option, denoted by N ;

that is, σw : Θw → ∆(F ∪ N ). In the second stage, each firm observes the set of workers

that sent it a signal, WS ⊂ W , and based on these signals forms beliefs µf (·|WS) about the

preferences of workers. Each firm, based on these beliefs as well as its preferences, decides

whether and to whom to make an offer. A mixed strategy of firm f is a map from the set of

all possible preference lists, Θf , and the set of all possible combinations of received signals,

14Note that our model of a congested market is reminiscent of the micro-foundations for the matching
function in the search literature (see e.g. Pissarides, 2000).
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2W , which is the set of all subsets of workers, to the set of distributions over the union of

workers and the no-offer option. That is, σf : Θf × 2W → ∆(W ∪N ). We denote a profile

of all worker and firm strategies as σW = (σw1 , ...σwW
) and σF = (σf1 , ...σfF

) respectively.

The payoff to firm f is a function of firm and worker strategies and realized agent types,

which we again denote as πf : (Σw)W × (Σf )
F × Θ → R. Similarly, define the payoff of

workers as πw : (Σw)W × (Σf )
F × Θ → R. As the offer game with signals is a multi-stage

game of incomplete information, we consider sequential equilibrium as the solution concept.

Definition 3. The strategy profile σ̂ = (σ̂W , σ̂F ) and posterior beliefs µ̂f (·|WS) for each

firm f and each subset of workers WS ⊂ W are a sequential equilibrium if

• for any w ∈ W , θ̄w ∈ ΘW : σ̂w(θ̄w) ∈ arg maxσw∈ΣwEθ−w(πw(σw, σ̂−w, θ) | θ̄w),

• for any f ∈ F , θ̄f ∈ Θf , WS ⊂ W :

σ̂f (θ̄f ,WS) ∈ arg maxσf∈Σf
Eθ−f

(πf (σf , σ̂−f , θ) | θ̄f ,WS, µ̂f ),

where σ̂−a denotes the strategies of all agents except a, for a = w, f , and beliefs are defined

using Bayes’ rule.15

We again focus on equilibria where agents use anonymous strategies, thereby eliminating

unrealistic sources of coordination.

Definition 4. Firm f ’s strategy σf is anonymous if for any permutation ρ, preference profile

θf ∈ Θf , and subset of workers WS ⊂ W who send f a signal, we have σf (ρ(θf ), ρ(WS)) =

ρ(σf (θf ,WS)). Worker w’s strategy σw is anonymous if for any permutation ρ and preference

profile θw ∈ Θw, we have σw(ρ(θw)) = ρ(σw(θw)).

4.1 Equilibrium Analysis

To analyze equilibrium behavior, we first turn to the workers’ choice of whether and to whom

to send a signal. In any symmetric equilibrium in which workers send signals and signals

are interpreted as a sign of interest by firms and hence increase the chance of receiving an

offer, each worker sends her signal to her most preferred firm. Since sending a signal to any

firm will lead to identical probabilities of receiving an offer, it is optimal for each worker

to simply send its signal to its highest ranked firm (see Proposition 4 in Section 6, which

provides the analog of this statement for a more general setup).

15As usual in a sequential equilibrium, permissible off-equilibrium beliefs are defined by considering the
limits of completely mixed strategies.
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Note that babbling equilibria in which no information is transmitted via signals also exist.

In one form of such equilibria, firms ignore signals and workers randomize any signals they

send across firms. In another version, workers do not send signals, and firms interpret unex-

pected signals negatively. Note however that equilibria where firms interpret off-equilibrium

signals negatively fail to survive standard equilibrium refinements (see Section 6 for details).

Finally, “perverse” equilibria, where firms interpret signals negatively, e.g. as a sign of a

particular lack of interest in such a position, and workers nevertheless send such signals do

not exist. This is because workers may always opt against sending a signal. We focus on

non-babbling equilibria, in which each worker sends a signal only to her most preferred firm.

Hence, we have pinned down worker equilibrium behavior: workers send a signal to their

highest ranked firm, and workers accept the best available offer. We now examine offers of

firms in the second stage of the game, taking the strategies of workers and beliefs of firms

about interpreting signals as given.16

Call f ’s most preferred worker Tf (f ’s top-ranked worker). Consider a firm f that has

received signals from a subset of workers WS ⊂ W . Call f ’s most preferred worker in this

subset Sf (f ’s most preferred signaling worker).

Whenever workers signal to their most preferred firm, and other firms use anonymous

strategies, f ’s offer choice is reduced to a binary decision between making an offer to the

top ranked worker, Tf , and the most preferred (potentially) lower-ranked worker who has

signaled it, Sf . When the two coincide, that is when Tf = Sf , there is no tradeoff, and firm

f will make an offer to this worker. The expected payoff to f from making an offer to Tf or

Sf (whichever yields greater payoff) is strictly greater than the payoff from making an offer

to any other worker. This follows from the symmetry of worker preferences and strategies

and the anonymity of firm strategies: for any two workers who sent a signal, f ’s expectation

that these workers will accept an offer is identical. Hence, if f makes an offer to a worker

who sent a signal, it should make that offer to the worker it prefers the most among them.

The same logic holds for any two workers who have not sent a signal. (Propositions A2 and

A3 in Appendix A.2 provide a rigorous argument for the above statements).

This suggests a special kind of strategy for firms, which we will call a cutoff strategy.

Definition 5 (Cutoff Strategies). Strategy σf is a cutoff strategy for firm f if ∃j1, . . . , jW ∈
{1, . . . ,W}, such that for any θf ∈ Θf and any set WS of workers who sent a signal,

σf (θf ,WS) =

{
Sf if rankθf

(Sf ) ≤ j|WS |

Tf otherwise.

16Note that in any non-babbling symmetric equilibrium, all information sets for firms are realized with
positive probability. Hence, firm beliefs are determined by Bayes’ Law: if a firm receives a signal from a
worker, it believes that worker ranks the firm first in her preference list.
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We call (j1, . . . , jW ) f ’s cutoff vector, which has as its components cutoffs for each positive

number |WS| of received signals.

A firm f which employs a cutoff strategy need only look at the rank of the most preferred

worker who sent it a signal, conditional on the number of signals f has received. If the rank

of this worker is below a certain cutoff (lower ranks are better since one is the most preferred

rank), then the firm makes an offer to this most preferred signaling worker Sf . Otherwise the

firm makes an offer to its overall top ranked worker Tf . Cutoffs may in general depend on the

number of signals the firm receives. This is because the number of signals received provides

information about the signals the other firms received. This in turn affects the behavior of

other firms and hence the optimal decision for firm f . Note that any cutoff strategy is, by

definition, an anonymous strategy.

While we defined cutoffs as integers, we can extend the definition to include all real

numbers in the range (1,W ) by letting a cutoff j+λ, where λ ∈ (0, 1), correspond to mixing

between cutoff j and cutoff j + 1 with probabilities 1− λ and λ respectively.17

Cutoff strategies are not only intuitive but also optimal strategies for firms. Whenever

other firms use anonymous strategies and workers signal to their most preferred firms, for

any strategy of firm f there exists a cutoff strategy that provides firm f with a weakly higher

expected payoff (see Proposition A3). This is due to the fact that the preferences of firms

and strategies of workers are symmetric. Consequently, the probability that firm f ’s offer

to Tf or Sf will be accepted depends only on the number of signals firm f receives, and not

on the identity of the signaling workers. Hence, if f finds it optimal to make an offer to

Sf , it will certainly make an offer to a more preferred Sf , provided the number of signals it

receives is the same. The equilibrium results in this paper will all involve firms using cutoff

strategies.

Since cutoff strategies can be represented by cutoff vectors, we can impose a natural

partial order on them: firm f ’s cutoff strategy σ′f is greater than cutoff strategy σf if all

cutoffs of σ′f are weakly greater than all cutoffs of σf and at least one of them is strictly

greater. We say that firm f responds more to signals than firm f ′ when σf is greater than

σf ′ .

We now examine how a firm should adjust its behavior in response to changes in the

behavior of opponents. We find that responding to signals is a case of strategic complements.

Proposition 2 (Strategic Complements). Suppose workers send signals to their most pre-

ferred firms and accept their best available offer, and suppose all firms use cutoff strategies

17This is equivalent to f making offers to Sf when Sf is ranked better than j, randomizing between Tf
and Sf when Sf has rank exactly j, and making offers to Tf otherwise.

15



and firm f uses a cutoff strategy that is a best response. If one of the other firms responds

more to signals, then the best response for firm f is to also weakly respond more to signals.

When other firms make offers to workers who have signaled to them, it is risky for firm

f to make an offer to a worker who has not signaled to it. Such a worker has signaled to

another firm, which is more inclined to make her an offer. The greater this inclination on the

part of the firm’s opponents, the riskier it is for firm f to make an offer to its most preferred

overall worker Tf . Hence as a response, firm f is also more inclined to make an offer to its

most preferred worker among those who sent a signal, namely Sf .

The strategic complements result allows us to apply Theorem 5 from Milgrom and

Roberts (1990) to demonstrate the existence of symmetric equilibria in pure cutoff strategies

with smallest and largest cutoffs (see the proof of Theorem 1 in Appendix A.1 for details).

Theorem 1 (Equilibrium Existence). In the offer game with signals, there exists a symmetric

equilibrium in pure cutoff strategies where 1) workers signal to their most preferred firms and

accept their best available offer and 2) firms use symmetric cutoff strategies. Furthermore,

there exist pure symmetric equilibria with smallest and largest cutoffs.

5 The Welfare Effects of Introducing a Signaling Mech-

anism

We have analyzed the unique equilibrium in the offer game with no signals, and we have

studied symmetric equilibria in markets with a signaling mechanism. We focused on non-

babbling equilibria where firms interpret signals of workers as a sign of interest, and hence

each worker sends a signal to her most preferred firm. In this section we address the effect

of introducing a signaling mechanism on the market outcome. We consider three outcome

measures: the number of matches in the market, the welfare of firms and the welfare of

workers, where for agent welfare comparisons we consider Pareto ex-ante expected utility as

our criterion.

Our analysis begins with an incremental approach: we first study the effect of a single

firm increasing its cutoff, that is, responding more to signals. We then rank various signaling

equilibria in terms of their outcomes. Finally, we address how the introduction of a signaling

mechanism impacts the three measures of welfare.

The expected welfare for a firm f and a worker w are captured by πf and πw respectively,

where πf , πw : ΣW
w × ΣF

f × Θ → R. Let the function m : (Σw)W × (Σf )
F × Θ → R denote

the expected total number of matches in the market as a function of agent strategies and

types. In this section we restrict the analysis to cutoff strategies.
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Consider the offer game with signals, in which workers send their signal to their first

choice firms, and firms interpret these signals as signs of interest. Fix the strategies of all

other firms, and assume that one firm changes its strategy to respond more to signals. How

does this affect the number of matches, and the workers and firms welfare?

Proposition 3. Consider any strategy profile in which firms use cutoff strategies, workers

send signals to their most preferred firms, and workers accept their best available offer. Fix

the strategies of all firms but f as σ−f . Let firm f ’s strategy σ′f differ from σf only in that

σ′f responds more to signals, that is, has higher cutoffs than σf . Then

• The expected number of matches increases. That is, Eθ[m(σ′f , σ−f , θ) ] ≥ Eθ[m(σf , σ−f , θ) ].

• The expected payoff of each worker increases. That is, for each w ∈ W, Eθ[ πw(σ′f , σ−f , θ) ] ≥
Eθ[ πw(σf , σ−f , θ) ].

• The expected payoffs of all firms but f decrease. That is, for each f ′ ∈ −f , Eθ[ πf ′(σ
′
f , σ−f , θ) ] ≤

Eθ[ πf ′(σf , σ−f , θ) ] (negative spillover on opponent firms).

When at least one firm in −f responds to signals, that is has a cutoff strictly greater than

one for some number of received signals, then all inequalities are strict.

To understand the first result, observe that when firm f switches its offer from its first

choice worker Tf to its most preferred signaling worker Sf , it is the other offers received

by these two workers that determine the impact on the total number of matches. If both

workers have other offers, or if neither has another offer, the number of matches is unaffected.

Only when exactly one of these two workers has another offer does f ’s switch from Tf to Sf

affect the number of matches. However, conditional on exactly one of these having another

offer, it is weakly more likely to be Tf , as this worker has signaled to another firm, while Sf

has not. Furthermore, Tf is strictly more likely than Sf to have another offer when at least

one other firm responds to signals. Hence, making an offer to Sf leads to a greater expected

total number of matches.

In addition to creating more matches in expectation, a firm responding more to signals

unambiguously increases expected worker welfare. Note that when firm f changes its offer

from Tf to Sf , then worker Sf receives an offer from her first choice firm, while worker Tf

loses an offer from a firm she ranks second or worse. Hence, when the number of matches is

unchanged, average worker welfare increases. Furthermore, it is more likely that the number

of matches increases rather than decreases, and once more each match ‘gained’ is one where

a worker receives her first choice firm, while each match ‘lost’ is one where a worker receives

a firm of her second choice or worse. It follows that in expectation, each worker gains when

a firm starts responding more to signals.
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In contrast, a firm f responding more to signals has a negative effect on the welfare of

other firms. When firm f makes an offer to Tf , this offer may be rejected, as Tf may prefer

other firms to firm f . But an offer from f to Sf creates “stiff” competition for competing

firms, since this worker will accept f ’s offer with certainty, and offers from other firms will

be rejected. Additionally, f ’s switch from Tf to Sf may only be pivotal for opponent firms

making “risky” offers to their top ranked workers. Such offers are more likely to be made

to Sf than to Tf since by signaling, Sf has indicated she prefers f. Hence, in addition to

creating stiffer competition for −f , f ’s switch from Tf to Sf creates more competition for

−f . The combination of these two effects gives the negative spillover result.

We now use the incremental welfare results to compare welfare across equilibria. The

following corollary states that for all three of our welfare measures, there is a clear ranking

of any two symmetric equilibria that can be ordered by their cutoffs.

Corollary 1. Consider any two symmetric cutoff strategy equilibria where in one equilibrium

firms have greater cutoffs (respond more to signals). Compared to the equilibrium with lower

cutoffs, in the equilibrium with greater cutoffs we have the following: (i) the expected number

of matches is weakly greater, (ii) workers have weakly higher expected payoffs, and (iii) firms

have weakly lower expected payoffs.

Corollary 1 states that firms and workers are opposed in their preferences over equilibria.18

When multiple symmetric equilibria exist, workers prefer the equilibrium that involves firms

responding the most to signals, that is the greatest cutoffs, while firms prefer the equilibrium

with the lowest cutoffs.

We can now address the effect of adding a signaling mechanism to an offer game with

no signals. We will assume that the equilibrium once the signaling mechanism is introduced

is one of the symmetric non-babbling equilibria. Using the results above, we can show that

introducing a signaling mechanism weakly increases the welfare of workers and the expected

number of matches. Furthermore, the inequality is strict if firms respond to signals at all;

that is, if for at least some number of signals, firms use strategies that call for an offer to a

worker who signaled, Sf , even when she is not the first choice worker Tf . In contrast, firm

welfare cannot be compared. As the example in Section 2 illustrates, firm welfare may be

higher with or without a signaling mechanism. The following theorem encapsulates these

results.

18Suppose that when we have a class of cutoff strategies that are strategically equivalent, we allow firms to
only use the lowest one. For example, when we have W workers, a firm with k > 1 signals may have cutoffs
of W − k + 1 and W − k + 2 that are strategically equivalent: the firm always makes an offer to Sf . When
we focus on the lowest strategically equivalent cutoff, then all inequalities of Corollary 1 are strict.
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Theorem 2 (Welfare). Consider any non-babbling symmetric equilibrium of the offer game

with signals in which for at least some number of signals, firm strategies call for an offer to

the signaling worker, Sf , even when she is not the first choice worker Tf . Then the following

three statements hold.

i. The expected number of matches is strictly greater than in the unique equilibrium of

the offer game with no signals.

ii. The expected welfare of workers is strictly greater than in the unique equilibrium of the

offer game with no signals.

iii. The welfare of firms may be greater or smaller than in the unique equilibrium of the

offer game with no signals.

When introducing a signaling mechanism hurts firm welfare, it is because the negative

externality outweighs the individual firm benefit from responding to signals. The theorem

discusses the case in which firms respond to at least some degree to signals in equilibrium.

Note that when there is a symmetric non-babbling equilibrium where firms ignore signals,

then this equilibrium is outcome equivalent to a market without a signaling mechanism, so

that agents are no worse off with the signaling mechanism. But provided firms respond even

minimally to signals in equilibrium, with the introduction of a signaling mechanism, the

expected number of matches and the expected welfare for workers increase unambiguously.

6 Block Correlation

So far we assumed that worker preferences are symmetric, uniform and independent. In

non-babbling sequential equilibria, this implies that workers send their signal to their most

preferred firm, and a firm that received a signal could be certain that an offer would be

accepted. In this section we relax the assumption that worker preferences are uncorrelated.

More precisely, we consider a market where firms can be partitioned in blocks, so that all

workers agree which block contains the most desirable firms, which block the second most

desirable set of firms and so on. However, within a block, workers may have idiosyncratic

preferences over firms. Hence, for this section we consider markets where agent preferences

are block-correlated.

Definition 6. A block-correlated market is a market 〈F ,W , t, u, v〉 such that for a partition

F1, . . . ,FB of the firms into blocks, ordinal preferences (as encompassed in t(·)) are such

that
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1. For any b < b′, where b, b′ ∈ {1, . . . , B}, each worker prefers every firm in block Fb to

any firm in block Fb′ ;

2. Each worker’s preferences within each block Fb are uniform and independent; and

3. Each firm’s preferences over workers are uniform and independent.

We call distributions t(·) that satisfy the criteria in Definition 6 block uniform. The

environment analyzed in previous sections is a special case of block-correlated markets,

where there is only one block of firms. Block-correlated markets are meant to capture the

notion that many two-sided markets are segmented. That is, workers may largely agree on

the ranking of blocks on the other side of the market, but vary in their preferences within

each block. For example, workers might agree on the set of firms that constitute the “top

tier” of the market; however within that tier, preferences are influenced by factors specific

to each worker.

We again focus on equilibria where agents use anonymous strategies. For firms we main-

tain the notion of anonymous strategies introduced in Definitions 2 and 4. For workers we

only consider permutations PB that permute firm orderings within blocks; that is, permu-

tation ρ ∈ PB if for any firm f and any block b, if f∈ F b then ρ(f)∈ F b

Definition 7. Worker w’s strategy σw is anonymous if for any permutation ρ ∈ PB and

preference profile θw ∈ Θw, we have σw(ρ(θw)) = ρ(σw(θw)).

As previously, let us first consider the offer game with no signals. Since worker preferences

are still uniformly distributed there is again a unique equilibrium where firms use anonymous

strategies: each firm optimally makes an offer to the highest-ranked worker on its preference

list.

We now turn to the offer game with signals, where we will be interested in equilibria

where firms within each block play symmetric, anonymous strategies. That is, if firm f and

firm f ′ belong to the same block Fb, for some b ∈ {1, ..., B}, they play the same anonymous

strategies and have the same beliefs. We call such firm strategies and firm beliefs block-

symmetric. We denote equilibria where firm strategies and firm beliefs are block-symmetric

and worker strategies are anonymous and symmetric as block-symmetric equilibria. Before we

can characterize the set of block-symmetric equilibria, we discuss the strategies of workers,

who must choose whether to send a signal, and if so, to which firm. In block-symmetric

equilibria, firms within each block Fb use the same anonymous strategies. Hence, we can

denote the ex-ante probability of a worker w receiving an offer from a firm in block Fb,
conditional on w sending and not sending a signal to it as psb and pnsb correspondingly. We

also denote the equilibrium probability that a worker sends her signal to a firm in block Fb
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as αb, where αb ∈ [0, 1] and
∑B

b=1 αb ≤ 1, where of course the αb’s are not independent as

each worker may only send at most one signal.

The following proposition characterizes worker strategies in all block-symmetric sequen-

tial equilibria that satisfy an analog of Criterion D1 of Cho and Kreps (1987).19

Proposition 4 (Worker Strategies). Consider a block-symmetric sequential equilibrium that

satisfies Criterion D1. Then either

1. Signals do not influence offers: for every b ∈ {1, ..., B}, psb = pnsb or

2. Signals sent in equilibrium increase the chances of receiving an offer: there exists b0 ∈
{1, ..., B} such that psb0 > pnsb0 and

(a) for any b ∈ {1, ..., B} such that αb > 0, we have psb > pnsb , and if a worker sends

her signal to block Fb, she sends her signal to her most preferred firm within Fb,
and

(b) for any b′ ∈ {1, ..., B} such that αb′ = 0, workers’ strategies are optimal for any

off-equilibrium beliefs of firms from block Fb′.

Proposition 4 states that there are two types of block-symmetric equilibria that satisfy

Criterion D1. Equilibria of the first type are babbling, where firms ignore signals. The

outcomes of these equilibria coincide with the outcome in the offer games with no signals.

Consequently, the signaling mechanism adds no value in this case.

In equilibria of the second type, workers send signals only to their most preferred firm in

each block, possibly mixing across these top firms. We show that in equilibrium workers only

send signals to blocks in which firms respond to signals, that is the chances of receiving an

offer from the firm they signaled to is higher than if they had not sent that signal. Moreover,

if in equilibrium worker w is not prescribed to signal to some block Fb′ , then w’s choice of

αb′ = 0 is optimal for any beliefs of firms in block Fb′ . In particular, this strategy would be

optimal even if firms in block Fb′ interpreted signals in the most favorable way for worker

w; i.e., upon receiving a signal from worker w each firm f in Fb′ believes that it is w’s most

preferred firm within block Fb′ .
We call all strategies where a worker who sends a signal to firms in block b sends it to

her most preferred firm in that block best-in-block strategies. We call all beliefs where a firm

19Criterion D1 lets us characterize beliefs when firms receive “unexpected,” or off-equilibrium, signals. See
the proof of Proposition 4 for the definition of our analog of Criterion D1 of Cho and Kreps (1987). Other
refinements could also be used in our equilibrium characterization: for example, we could replace Criterion
D1 with “universal divinity” of Banks and Sobel (1987) or by “never a weak best response” of Cho and
Kreps (1987) without making a change to the statement of Proposition 4.
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interprets a signal from a worker w as indicating it is the most preferred firm of w in that

block best-in-block beliefs. We will now assume that workers use symmetric best-in-block

strategies and that firms have best-in-block beliefs, and examine firm offers in the second

stage of the game.20

An important difference between the single block and multi-block settings is that when

there are multiple blocks, offers to workers who have signaled are no longer guaranteed to

be accepted. This is because a firm that receives a signal knows that while it is the worker’s

most preferred firm in the block, the worker may receive an offer from a firm in a superior

block. Nevertheless, several results about the strategies of firms carry over when we introduce

block correlation. In a block-correlated market, firm f ’s offer choice is again reduced to a

binary decision between Tf and Sf , provided workers use symmetric best-in-block strategies

and firms −f use anonymous strategies. Under these same conditions, cutoff strategies are

again optimal for f . The strategic complements result of Proposition 2 also carries over;

if firms −f use cutoff strategies and workers use symmetric best-in-block strategies, then

when f ′ ∈ −f responds more to cutoffs, f optimally responds more to cutoffs as well (see

Propositions A2, A3, and A4).

The next result establishes the existence of equilibria in block correlated settings in the

offer game with signals. To prove the theorem, we first demonstrate equilibrium existence

while requiring firms to use only cutoff strategies. We then invoke the optimality of cutoffs

result to show that this step is not restrictive.

Theorem 3 (Equilibrium Existence under Block Correlation). There exists a block-symmetric

equilibrium where 1) workers play symmetric best-in-block strategies, and 2) firms play block-

symmetric cutoff strategies.

In contrast to Theorem 1 which established equilibrium existence when there is a single

block, equilibria here may involve mixed strategies for workers; that is, each worker may

signal with positive probability to multiple blocks.

The final result of the section extends the welfare results of Theorem 2. Note that for

the comparisons in the theorem to be strict, we require a block with at least two firms where

in equilibrium, workers send signals with positive probability to that block. Without this

condition, we only have weak comparisons.

20Note that firms have best-in-block beliefs on the equilibrium path in any block-symmetric equilibrium.
In addition, a block-symmetric equilibrium satisfies Criterion D1 if and only if worker strategies remain
optimal if firm off-equilibrium beliefs were best-in-block beliefs. Hence, we will focus on equilibria where
firms have best-in-block beliefs even off the equilibrium path. See the proof of Proposition 4 in Appendix
A.2 for details.
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Theorem 4 (Welfare under Block Correlation). Consider any non-babbling block-symmetric

equilibrium of the offer game with signals, in which there is a block Fb with at least two firms

such that αb > 0. Then,

i. The expected number of matches is strictly greater than in the unique equilibrium of

the offer game with no signals.

ii. The expected welfare of workers is strictly greater than in the unique equilibrium of the

offer game with no signals.

iii. The welfare of firms may be greater or smaller than in the unique equilibrium of the

offer game with no signals.

Note that while the welfare comparisons with and without a signaling mechanism gener-

alize to block correlated markets, the welfare comparisons across equilibria (see Corollary 1)

do not generalize. In particular, when there are multiple blocks, when a single firm responds

more to signals, firms in lower ranked blocks may benefit. Hence, we no longer see a purely

negative spillover on other firms, which was a key step in establishing the welfare ranking.21

However, even when workers have correlated preferences, so that receiving a signal does

not translate to a guaranteed match for a firm, we find that introducing a signaling mecha-

nism increases the expected number of matches and the expected welfare of workers.

7 Market Structure and The Value of a Signaling Mech-

anism

In this section, we analyze the effects of introducing a signaling mechanism across different

market structures. More precisely, we study the increase in the expected number of matches

due to the introduction of a signaling mechanism.

To isolate the impact of a signaling mechanism on the number of matches in the market,

we consider a special case where agents want to match, but are nearly indifferent over whom

they match with. That is, firms (and workers) play an (almost) pure coordination game

amongst themselves. Specifically, we consider the cardinal utility from being matched to a

partner as being almost the same across partners. If agent a has a preference profile θa,

agent a prefers to be matched with partner θka, rather than with partner θk
′
a , k′ > k, though

21Since offers to workers who have signaled are no longer guaranteed to be accepted, firms making offers
to signaling workers may be affected by f ’s switch from Tf to Sf . In particular, firms in the same or higher
blocks responding to signals will not be affected, but firms in lower blocks responding to signals prefer that
f switch from Tf to Sf . There is a positive spillover on these firms, and negative spillover on all other firms.
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the difference between utility intensities is very small.22 In addition, there is only one block

of firms, so that agent preferences are uniformly distributed.23

Under these assumptions, there is a unique non-babbling symmetric equilibrium in the

offer game with signals. Each worker sends a signal to her most preferred firm. Each firm

makes an offer to its most preferred worker that has signaled provided the firm receives at

least one signal; otherwise, it makes an offer to its top-ranked worker (see Proposition B1).24

Proposition 1 also applies in this setting; that is, there is a unique equilibrium of the offer

game with no signals.

We denote the expected number of matches in the unique equilibrium in the pure coor-

dination model with signals and with F firms and W workers as mS(F,W ), and without a

signaling mechanism as mNS(F,W ). The increase in expected number of matches from the

introduction of the signaling mechanism, which we term the value of the signaling mecha-

nism, we denote as V (F,W ) ≡ mS(F,W )−mNS(F,W ). Figure 1 graphs 100 · V (F,W )/W

as a function of F for fixed W = 10 and W = 100, and 100 · V (F,W )/F as a function of

W for fixed F = 10 and F = 100. That is, the figure depicts the increase in the expected

number of matches proportional to the size of the side of the market we keep fixed (which

places an upper bound on the total number of possible matches).

The figures suggest that the value of a signaling mechanism is single peaked when varying

one side of the market and holding the other constant. That is, it seems that a signaling

mechanism is most beneficial for balanced markets — markets where the the number of firms

and the number of workers are roughly of the same magnitude. To understand why signaling

may be useful in balanced markets, it is helpful to think about the endpoints. With many

workers and very few firms, firms will almost certainly match with or without the signaling

mechanism, as there is no large coordination problem. With many firms and few workers,

22The “nearly indifferent” condition for firms is that u(W ) > W
F

(
1−

(
1− 1

W

)F)
u(1), where u(1) and

u(W ) are firm utility from matching with first and last ranked workers, respectively. A complete specification
of the setup can be found in Appendix B.2.

23Our pure coordination model has similarities to the “urn-ball” model in the labor literature, concisely
described in a survey by Petrongolo and Pissarides (2001): “Firms play the role of urns and workers play the
role of balls. An urn becomes “productive” when it has ball in it. [. . . ] In the simplest version of this process
U workers know exactly the location of V job vacancies and send one application each. If a vacancy receives
one or more applications it selects an applicant at random and forms a match. The other applicants are
returned to the pool of unemployed workers to apply again.” Our pure coordination model effectively flips
the urn-ball problem around. Workers apply to all jobs, and firms propose the offers. We have a non-random
selection procedure, and of course in our model we study the role of signaling. Perhaps the paper with the
closest market structure to ours is Julien, Kennes and King (2000).

24In this case, one can view the offer game with no signals as the result of the first round of a firm-
proposing deferred acceptance algorithm. When workers send signals, the result resembles one round of a
worker-proposing deferred acceptance with one exception: firms who received no offer (no signal from any
worker) do get to make an offer.
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Figure 1: Balanced Markets: The proportional increase in the
number of matches due to a signaling mechanism as
we vary the number of firms for a fixed number of
workers (left graphs) and vice versa (right graphs).

the reverse holds: most workers will get offers with or without the signaling mechanism.

Hence, the signaling mechanism offers little benefit at the extremes. Furthermore, Figure 1

suggests that the proportional increase in the expected number of matches remains steady as

market size increases, holding constant the ratio of workers to firms. Proposition 5 describes

these observations precisely.

Proposition 5 (Balanced Markets). Consider markets with F firms and W workers. Then

(i) for fixed W , V (F,W ) attains its maximum value at F = x0W + OW (1), where x0 ≈
1.01211 and (ii) for fixed F , V (F,W ) attains its maximum value at W = y0F + OF (1),

where y0 ≈ 1.8442.

The proof of Proposition 5 involves the calculation of an explicit formula for V (F,W ).

The expected increase in the number of matches can be represented as

V (F,W ) = α(
W

F
)F +OF (1)

or as

V (F,W ) = β(
F

W
)W +OW (1),

where α(·) and β(·) are particular functions and OW (1) and OF (1) denote functions that

are smaller than a constant for large W and for large F respectively. Hence, V (F,W ) is

“almost” homogeneous of degree one for large markets. That is, the proportional increase
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in the number of matches, V (F,W )/W and V (F,W )/F , is almost homogenous of degree

zero.25 As a consequence, we can evaluate the introduction of the signaling mechanism for a

sample market, and its properties will be preserved for markets of other sizes, but with the

same ratio of firms to workers.

For example, we can use Figure 1 to investigate maximal quantitative gains from the

introduction of the signaling mechanism in large markets. For a fixed number of workers,

the maximum increase in expected number of matches is approximately 15%. Furthermore,

the returns to the signaling mechanism are substantial over a wide range of market conditions.

For example, only when the number of firms outweighs the number of workers by more than

fourfold do the gains from introducing the signaling mechanism drop to below 1%.

8 Discussion and Conclusion

Excessive applications by job market candidates lead to market congestion: employers must

devote resources to evaluate and pursue potential candidates, but cannot give due attention

to all. Evaluation is further complicated because employers must assess which applicants,

many of whom are performing broad searches, are likely to ultimately accept a job offer.

Consequently, applicants are often eager to convey information about their interest in

particular employers, and employers stand ready to act upon such information, if it can be

deemed credible. However, in many markets indicating preferences is cheap, and employers

may struggle to identify which preference information is sincere. This, in turn, may prevent

any potential gains from preference signaling from being realized.

In this paper we examined how a signaling mechanism can overcome this credibility prob-

lem and improve agent welfare. In our model, workers are allowed to send a costless signal

to a single firm. While participation is free and voluntary, this mechanism nevertheless pro-

vides workers with a means of credibly expressing preferences. In a symmetric setting where

agent preferences are uncorrelated, workers will send their signal to their most preferred firm.

Firms use this information as guidance, optimally using cutoff strategies to make offers. We

find that on average, introducing a signaling technology increases both the expected number

of matches as well as the expected welfare of workers. The welfare of firms, on the other

hand, changes ambiguously, because firms responding more to signals may impose a negative

externality on other firms. The results carry over when we consider a model where firms

have many positions, and workers can send multiple signals.

25Note that this result corroborates the stylized fact in the empirical labor literature that the matching
function (the expected number of matches) has a constant return to scale. See, for example, Petrongolo and
Pissarides (2001) or Rogerson, Shimer and Wright (2005).
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We showed that the results hold even when workers have correlated preferences, where

workers agree on the ranking of blocks of firms but vary in their preferences within each

block. In this case firm offers to workers who have signaled will not result in guaranteed

acceptance. This is because workers will no longer send their signal to their most preferred

firm, but rather will mix among the most preferred firms from each block. We showed further

that introducing a signaling mechanism adds the most value for balanced markets, that is,

markets in which the number of firms and the number of workers are of roughly the same

magnitude.

One path for future research would be to characterize the full set of agent preferences

where signaling is beneficial. While in this paper we find that signaling mechanisms can im-

prove agent welfare under a broad class of preferences, for some agent preferences signaling

can worsen outcomes. Kushnir (2009) models a high-information setting with minimal con-

gestion where signals disturb firms’ commonly held beliefs about workers preferences, which

in turn disrupts the maximal matching. Kushnir’s example corroborates the intuition that

signals may be more useful in low information settings than in high. Further investigation

of this question could be fruitful.

Another interesting question that is beyond the scope of the current paper concerns the

optimal signaling mechanism. Providing candidates with one, or else a small number of

identical signals offers a tractable approach, and participants may value its simplicity. But

within the realm of mechanisms that offer candidates equal numbers of identical signals, how

do we identify the optimal number of signals, especially in light of the fact that multiple

equilbria may exist? And might we do even better?

If we expand the class of mechanisms under study, we can potentially improve perfor-

mance even more. For example, the signaling mechanism that maximizes the number of

matches may be asymmetric. Consider the example in Section 2, with two firms and two

workers. In the example, each worker had exactly one signal. If both workers have and

send two signals that are identical, outcomes are as if each had no signal. If we offered each

worker two distinct signals, e.g. a ‘gold’ and a ‘silver’ signal, analysis is as if they had one

signal each.

Asymmetric signaling capacities, however, can generate a full matching. Suppose that

one worker has a gold signal, while the other has two silver signals. Suppose further that

firms are indifferent between the two workers. Then one equilibrium involves the first worker

sending its gold signal to its preferred firm. The firm that receives the gold signal will make

the signaling worker an offer, while the firm who receives no gold signal will make an offer

to the worker who sent a silver signal. Both firms and workers will always be matched.

The question of the optimal signaling mechanism, as well as the question of how the

27



benefit from signaling varies across market structures, provide interesting areas for future

research.

We wish to highlight that a signaling mechanism has the potential to improve outcomes

in congested markets. Importantly, since signaling mechanisms are free, voluntary, and built

on top of existing labor markets, these improvements come in a reasonably non-invasive

manner. As opposed to a central clearinghouse, as in the National Resident Matching Pro-

gram (c. f. Roth, 1984 and Roth and Peranson, 1999), a centralized signaling mechanism

requires significantly less intervention. Market designers may find it easier to get consensus

from participants to introduce such a mechanism, which nevertheless can offer significant

benefits. As such, we hope that in addition to furthering our understanding of how labor

markets work, our paper adds to the practical literature that aims at changing and improving

existing markets.

A Appendix

A.1 Markets with a single block of firms

This portion of the appendix covers proofs for Sections 3-5. In this setup workers may send

at most one signal, and there is a single block of firms. We omit proofs of Propositions 1

and 2 and Theorem 2 as these are special cases of Propositions A1 and A4 and Theorem 4

respectively.

Proof of Theorem 1. As discussed in Section 4, in any symmetric non-babbling equilibrium

each worker sends its signal to its most preferred firm. Consequently, all information sets

for firms are realized with positive probability, so firm beliefs are determined by Bayes’ Law:

if a firm receives a signal from a worker, it believes that worker ranks the firm first in its

preference list. We now take these worker strategies and firm beliefs as fixed, and analyze

the second stage of the game when firms choose offers. We will show that this reduced game

is a supermodular game, and then use the results of Milgrom and Roberts (1990) to prove

our theorem.

We analyze the game where we restrict firm strategies to be cutoff strategies. Denote

the set of cutoff strategy profiles as Σcut, with typical element σ = (σ1, ..., σF ). Recall that

a cutoff strategy for firm f is a vector σf = (j1
f , ..., j

W
f ) where jkf corresponds to the cutoff

when firm f receives k signals. We will consider only strategies where each cutoff is a natural

number, i.e. jkf ∈ {1, ...,W}. As defined on p.15, vector comparison yields a natural partial

order on Σcut: σ ≥Σcut σ
′ ⇔ σf ≥ σ′f ⇔ jkf ≥

(
jkf
)′

for any f ∈ F and k ∈ {1, ...,W}. This

partial order is reflexive, antisymmetric, and transitive.
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To show that the second stage is a game with strategic complementarities, we need to

verify that Eθ(πf (σf , σ−f , θ)) is supermodular in σf , and that Eθ(πf (σf , σ−f , θ)) has increas-

ing differences in σf and σ−f . The former is trivially true because when f shifts of one its

cutoff vector components, thisdoes not influence the change in payoff from a shift of another

cutoff vector component. Namely, if we consider σ1
f = (..., jl, ..., jk, ...), σ

2
f = (..., j′l, ..., jk, ...),

σ3
f = (..., jl, ..., j

′
k, ...), and σ4

f = (..., j′l, ..., j
′
k, ...) for some l, k ∈ {1, ...,W} , then

Eθ(πf (σ
1
f , σ−f , θ))− Eθ(πf (σ2

f , σ−f , θ)) = Eθ(πf (σ
3
f , σ−f , θ))− Eθ(πf (σ4

f , σ−f , θ)).

That Eθ(πf (σf , σ−f , θ)) has increasing differences in σf and σ−f follows from Proposition

2. Namely, for any σf , σ−f , σ
′
f , and σ′−f such that σ′f ≥ σf and σ′−f ≥ σ−f we have

Eθ(πf (σ
′
f , σ

′
−f , θ))− Eθ(πf (σf , σ′−f , θ)) ≥ Eθ(πf (σ

′
f , σ−f , θ))− Eθ(πf (σf , σ−f , θ)).

Hence the second stage of the game, when firms choose their strategies, is a game with

strategic complementarities. Since in our model firms are ex-ante symmetric, Theorem 5

of Milgrom and Roberts (1990) establishes the existence of largest and smallest symmetric

pure strategy equilibria. �

Proof of Proposition 3. The first two results, increase in the expected number of matches

and positive spillover on workers, are demonstrated in the proof of Theorem 4 in Section 6

(which considers a more general assumption on agent preferences). To avoid repetition, we do

not present the proofs here. However, the third result, that responding to signals generates

a negative spillover on opponent firms, is unique to the case when agent preferences are

uniformly distributed, so we present the proof below.

Let firm f strategy σf differ from σ′f in that σ′f has weakly greater cutoffs. Consider

some firm f ′ ∈ −f . For each preference list θf ′ and set of signals receivedWS, firm f ′ either

makes an offer to Sf ′(θf ′ ,WS) or Tf ′(θf ′ ,WS). Observe that a change in strategy of firm f

does not affect f ′’s payoff from making Sf ′ an offer. This follows since each worker sends

her signal to her most preferred firm, so offers to signaling workers are always accepted.

However, as shown in the proof of Proposition 2, the probability that Tf ′ accepts firm f ′’s

offer weakly decreases. Hence, overall the expected payoff of firm f ′ ∈ −f weakly decreases

when firm f responds more to signals: Eθ(πf ′(σf , σ−f , θ)) ≥ Eθ(πf ′(σ
′
f , σ−f , θ)). �

Proof of Corollary 1. That the expected number of matches and the expected welfare of

workers are higher in the equilibrium with higher cutoffs is a straightforward consequence of

iterated application of the first and the second parts of Proposition 3. In order to show that

firms have lower expected payoffs in the equilibrium with greater cutoffs, we combine the
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third result of Proposition 3 with a simple equilibrium property. Consider two symmetric

equilibria, where firms play cutoff strategies σ and σ′, with σ′ ≥ σ. From the definition

of an equilibrium strategy we have Eθ[πf (σf , σ−f , θ)] ≥ Eθ[πf (σ
′
f , σ−f , θ)]. The third result

of Proposition 3 yields Eθ[πf (σ
′
f , σ−f , θ)] ≥ Eθ[πf (σ

′
f , σ

′
−f , θ)]. Combining these inequalities

yields Eθ[πf (σf , σ−f , θ)] ≥ Eθ[πf (σ
′
f , σ

′
−f , θ)]. �

A.2 General block-correlated preferences

This portion of the the appendix covers proofs for Section 6. In this setup workers may

send at most one signal, and worker preferences are block-correlated. We also introduce

Propositions A1-A4 which formalize statements in the text. Proofs for these propositions

are in the web appendix.

Proposition A1 (Equilibrium with no signals). The unique equilibrium of the offer game

with no signals when firms use anonymous strategies and workers accept the best available

offer is σf (θf ) = θ1
f for all f ∈ F and θf ∈ Θf .

Proposition A2 (Binary nature of optimal firm offer). Suppose firms −f use anonymous

strategies and workers use symmetric best-in-block strategies. Consider a firm f that receives

signals from workers WS ⊂ W. Then the expected payoff to f from making an offer to Sf

is strictly greater than the payoff from making an offer to any other worker in WS . The

expected payoff to firm f from making an offer to Tf is strictly greater than the payoff from

making an offer to any other worker from set W/WS .

Proposition A3 (Optimality of cutoff strategies). Suppose workers use symmetric best-in-

block strategies and firms have best-in-block beliefs. Then for any strategy σf of firm f , there

exists a cutoff strategy that provides f with a weakly higher expected payoff than σf for any

anonymous strategies σ−f of opponent firms −f .

Proposition A4 (Strategic complements under block correlation). Suppose workers play

symmetric best-in-block strategies, and firms −f use cutoff strategies. If firm f ′ ∈ −f
increases its cutoffs (responds more to signals), firm f will also optimally weakly increase its

cutoffs.
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Proof of Proposition 4. We first define an analog of criterion D1 of Cho and Kreps for

our setting.26 Consider some block-symmetric sequential equilibrium. Fix strategies of all

agents except worker w and firm f, which we denote as σ−f,w. Fix also the beliefs of firms

other than firm f , which we denote as µ−f . We now analyze strategies of worker w and

strategies and beliefs for firm f .

There are two cases where information sets for firms might be reached with zero prob-

ability (lie “off the equilibrium path”) in a block-symmetric equilibrium. First, when the

symmetric worker equilibrium strategy prescribes zero probability of sending a signal to a

particular block, firms in these blocks would view signals from such workers as “unexpected.”

Second, when a firm anticipates receiving a signal with 100% probability, then not receiving

a signal would correspond to an off-equilibrium information set. But by the anonymous

strategies assumption, this can only happen in a block-symmetric equilibrium if the firm

is the only one in its block. In this case, the symmetry of worker strategies would ensure

that all workers send their signals to this firm with probability 1. Since signals then would

not transmit information about worker types, this equilibrium is outcome equivalent to a

babbling equilibrium. We will concentrate on the first type of off-equilibrium messages –

“unexpected” signals.

Consider firm f ’s decision at an information set that includes a (hypothetical, off-

equilibrium) signal from worker w. Denote the expected equilibrium payoff of firm f as

u∗f and the expected equilibrium payoff of worker w as u∗w. For each possible type θ̄ ∈ Θf for

firm f and each set of signals that firm f could receive, we denote the mixed best response

of firm f that has beliefs µ̄ as

MBRf (θ̄,WS ∪w, µ̄) = arg maxσf∈Σf
Eθ−f

(πf (σf , σ−f , θ) | θf = θ̄, WS
f =WS ∪w, µf = µ̄).

We then denote the mixed best response of firm f for all possible types and all possible

profiles of signals it may receive conditional on receiving worker w’s signal as

MBRf (w, µ̄) = {MBRf (θ̄,WS ∪ w, µ̄) for all θ̄ ∈ Θf , WS ⊂ W}.

We denote the set of best responses of firm f to probability assessments concentrated on set

Ω ⊂ Θw as

MBRf (w,Ω) =
⋃

{µf :µf (Ω)=1}

MBRf (w, µf ).

26See Cho and Kreps (1987) for the original definition.
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Denote for any worker’s type t ∈ Θw

Dt = {φ ∈MBRf (w,Θw) : u∗w(t) < Eθ−w(πw(σw, φ, σ−w,f , θ) | θw = t)}

D0
t = {φ ∈MBRf (w,Θw) : u∗w(t) = Eθ−w(πw(σw, φ, σ−w,f , θ) | θw = t)}.

Intuitively, set Dt (D0
t ) is the set of firm f strategies (consistent with f best responding to

strategies of firms −f and to some set of beliefs that places weight 1 on w signaling f) such

that by signaling f , worker w of type t would receive an expected payoff greater than (equal

to) her equilibrium payoff. We say that type t may be pruned from firm f ’s beliefs if firm

f ’s off-equilibrium beliefs place zero probability on worker w being type t (upon f receiving

a signal from her). Using the above notation, we now state our analog of criterion D1 as

follows:

Criterion D1. Fix strategies of workers −w and strategies and beliefs of firms −f . If for

some type t ∈ Θw of worker w there exists a second type t′ ∈ Θw with Dt ∪D0
t ⊆ Dt′ ,

then t may be pruned from the domain of firm f ’s beliefs.

The intuition behind this criterion is that whenever type t of worker w either wishes to

defect and send an off-equilibrium signal to firm f or is indifferent, some other type t′ of

worker w strictly wishes to defect. When we prune t for worker w from firm f ’s beliefs, we

are interpreting that firm f finds it infinitely more likely that the off-equilibrium signal has

come from type t′ than from type t.

We first show that there cannot be a block-symmetric sequential equilibrium that satisfies

Criterion D1 where sending a signal to a firm in some block Fb, b ∈ {1, ..., B} reduces the

likelihood of receiving an offer, i.e. psb < pnsb .

Let us assume that such a block-symmetric sequential equilibrium exists. If there are

at least two workers, agents use anonymous block-symmetric strategies, and agents’ types

are uncorrelated, each worker is unmatched with positive probability. Then in equilibrium,

certainly no worker sends her signal to a firm within block Fb; she’d prefer to simply send

no signal at all. Hence, it must be that a signal would reduce the probability of an offer for

firms in some block not signaled in equilibrium. Following the definition of Dt, whenever

it would be beneficial for some type θw ∈ Θw to deviate from the equilibrium path and

send her signal to firm f (which would require firm f making an offer to worker w), then it

would be beneficial for any type θ′w ∈ Θw of worker w such that firm f is w’s most preferred

firm within block Fb, to similarly deviate. Therefore, the only types (preference profiles) of

worker w that are not pruned in firms’ beliefs according to Criterion D1 are those where firm

f is w’s most preferred firm within block Fb. Hence, given these beliefs, if it is optimal for

firm f to make an offer to worker w when it does not receive a signal from her, it is optimal

32



for firm f to make an offer to worker w when it receives her signal. This contradicts our

initial assumption, and hence psb0 < pnsb0 cannot be part of any block-symmetric sequential

equilibrium that satisfies Criterion D1.

We have established that psb ≥ pnsb for each b = 1, ..., B. It is easy to observe that

there exists a block-symmetric sequential equilibrium that satisfies Criterion D1 where for

any b = 1, ..., B, psb = pnsb . For example, each worker may randomize her signal across

all firms with equal probability, independently of her preferences, and firms simply play

the equilibrium strategies of the offer game with no signals. The equilibrium beliefs are

trivially block-uniform since when a firm receives a signal from worker w, its beliefs coincide

with the priors. Since all blocks are reached with positive probability in equilibrium, no

off-equilibrium beliefs need be specified, and the equilibrium trivially satisfies Criterion D1.

Let us now consider the case when there exists b0 ∈ {1, ..., B}, such that psb0 > pnsb0 in

some block-symmetric sequential equilibrium. Recall that the equilibrium probability that

a worker sends her signal to a firm within block Fb is denoted as αb, where αb ∈ [0, 1] and∑B
b=1 αb ≤ 1. Let us consider some block Fb( 6= Fb0) such that αb > 0. As mentioned, if

there are at least two workers, agents use anonymous block-symmetric strategies, and agents’

types are uncorrelated, each worker is unmatched with positive probability in equilibrium.

Therefore, αb > 0 and psb = pnsb are incompatible in an equilibrium (worker w can benefit by

signaling to block Fb0 rather than block Fb). Hence, if psb > pnsb then if worker w plans to

send a signal to a firm in Fb, it should be to her most preferred firm within this block, as

this delivers the greatest expected payoff to her.

Now suppose there is some block Fb′ , b′ ∈ {1, ..., B}, such that αb′ = 0. Consider the

decision of some firm f ∈ Fb′ at an information set that includes a (hypothetical, off-

equilibrium) signal from worker w. We have two cases: either there exists type t ∈ Θw of

worker w such that Dt 6= ∅, or else for any type t ∈ Θw, Dt = ∅.

We will first rule out the former case. Suppose there exists type t ∈ Θw of worker w such

that Dt 6= ∅. That is, if worker w sends a signal to firm f , there exists a “reasonable” firm

f strategy that delivers expected payoff to worker w of type t greater than her equilibrium

payoff. However, any firm f offer that delivers payoff exceeding equilibrium payoff for worker

w of type t, also delivers payoff exceeding equilibrium payoff for a worker w of type t′ which

prefers firm f to any other firm in block Fb′ . Therefore, the only firm f off-equilibrium

beliefs that survive Criterion D1 are such that

µf ({θw ∈ Θw : f = max
θw

(f ′ ∈ Fb′)} |w ⊂ WS
f ) = 1. (A.2.1)

But since Dt′ and D0
t′ consist of firm f best responses, it is optimal for firm f to indeed make
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an offer to worker w upon receiving her signal, provided f ’s beliefs are restricted to (A.2.1).

This means that the equilibrium strategy of worker w of type t′ (not sending a signal to firm

f) is not optimal if firm f has beliefs (A.2.1). Therefore, there cannot exist type t ∈ Θw of

worker w such that Dt 6= ∅.

Let us now consider the case where for any type t ∈ Θw , we have Dt = ∅. That is, it

is never beneficial for any type of worker to send an off-equilibrium signal, as no reasonable

offers can be expected for any firm beliefs. Therefore, αb′ = 0 is an equilibrium strategy

for worker w independently of off-equilibrium beliefs of firm f . In particular, worker w’s

strategy is optimal for any off-equilibrium beliefs of firms in block Fb′ , even if each firm f

has the most favorable possible beliefs about worker w, such as in (A.2.1).

Note that if there are at least two workers, the interaction between worker w and some

firm f (fixing the strategies and beliefs of other agents) is a monotonic signaling game of Cho

and Sobel (1990). The assumption of monotonicity is satisfied in our environment because

each type of worker w prefers the same action of firm f , i.e. firm f making an offer to worker

w. As a consequence, Criterion D1 is equivalent to “never a weak best response” of Cho

and Kreps (1987) and “universal divinity” of Banks and Sobel (1987) in our setting. More

detailed discussion of monotonic signaling games can be found in Cho and Sobel (1990). �

Proof of Theorem 3. We first prove the theorem while requiring firms to use cutoff

strategies and workers to use best-in-block strategies, and then show that this assumption

is not restrictive. Denote a typical such strategy profile as σ = (σF , σW ) that consists

of firm cutoff strategies σF = (σf1 , ..., σfF
) and worker best-in-block strategies strategies

σW = (σw1 , ..., σwW
).

A strategy of firm f is a vector of real numbers of size W that specifies cutoff points

for each positive number of signals firm f could receive, σf = (j1
f , ..., j

W
f ), where jlf is a real

number from the interval [1,W ] for each l = 1, ...,W . Denote the set of possible firm cutoff

strategies as Σcut
f = [1,W ]W .

A best-in-block strategy of worker w is a vector of size B that specifies the probability

that she sends her signal to her top firm of specific block σw = (α1
w, ..., α

B
w), where αbw ≥ 0

for each b = 1, ..., B and
∑B

b=1 α
b
w ≤ 1. We denote the set of possible worker best-in-block

strategies as Σblock
w = {(α1, ..., αB) : αb ≥ 0 and

∑B
b=1 α

b ≤ 1}.
Let us also denote the expected payoff of worker w when she uses best-in-block strategy

σw and the other agents use strategy σ−w as27

Uw(σw, σ−w) = Eθ(πw(σw, σ−w, θ))

27Note that the strategy of agents are anonymous. Therefore, they do not depend on particular realization
of preferences.
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and the expected payoff of firm f when it uses strategy σf and the other agents use strategies

σ−f as

Uf (σf , σ−f ) = Eθ(πf (σf , σ−f , θ)).

We introduce best reply correspondence g : (Σcut
f )F × (Σblock

w )W → 2(Σcut
f )F×(Σblock

w )W

such that

gf (σ) = arg maxβ∈Σcut
f
Uw(β, σ−w)

for each f ∈ F and

gw(σ) = arg maxβ∈Σblock
w

Ua(β, σ−w)

for each w ∈ W .

An immediate consequence of the above definitions is that Σcut
f and Σblock

w are non-empty,

convex, and compact. Also, Uw(σw, σ−w) is a linear function of its first argument. Namely,

let us denote the expected payoff of worker w from sending a signal to some block Fb given

the strategies of agents σ−w as Πb(−σw). If worker w employs strategy σw = (α1
w, ..., α

B
w),

her payoff equals

Uw(σw, σ−w) =
∑B

b=1
αbΠb(−σw).

Therefore, gw(σ) is a continuous correspondence with closed graph.

Let us now consider function Uf (σf , σ−f ). Similarly, let us consider some realized pref-

erence profile θ when firm f receives
∣∣WS

∣∣ signals. Given the strategies σ−f of other agents,

we denote the expected payoff of firm f from making an offer to Tf as ΠT , and the expected

payoff of firm f from making an offer to Sf as ΠS. We then evaluate the payoff for firm f

from using cutoff strategy j|WS |, σf = (..., j|WS |, ...) as

πf (σf , σ−f , θ) =


ΠT if j|WS | ≤ rank(Sf )− 1

(dj|WS |e − j|WS |)ΠS + (j|WS | − bj|WS |c)ΠT if j|WS | ∈ (rank(Sf )− 1, rank(Sf ))

ΠS if j|WS | ≥ rank(Sf )

where dj|WS |e and bj|WS |c denote the closest integer larger and smaller than j|WS | correspondingly.

Function πf (σf , σ−f , θ) is a quasi-concave function of cutoff j|WS |. Therefore, the ex-

pected payoff from using cutoff j|WS |, Eθ[πf (σf , σ−f , θ)||WS
f | = |WS|], is also a quasi-concave

function of cutoff j|WS | as it is a linear combination of quasi-concave functions. Therefore,

Uf (σf , σ−f ) is a quasi-concave function of its first argument. It follows that gf (σ) is a con-

tinuous correspondence with closed graph.

Since g(σ) is a continuous correspondence with closed graph, g(σ) has a fixed point by
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Kakutani’s theorem (see Kakutani, 1941).

Until now we have required cutoff strategies for firms. However, Proposition 4 and Propo-

sition A3 allow us to conclude that the above equilibrium is also an equilibrium when we

allow any deviations, not simply deviations in cutoff strategies. Hence, we have established

the existence of an equilibrium when workers use symmetric best-in-block strategies and

firms use symmetric cutoff strategies and have best-in-block beliefs. �

Proof of Theorem 4. We will use following lemma, proved in the web appendix.

Lemma A1 (Incremental welfare). Assume firms use cutoff strategies and workers use

best-in-block strategies. Fix the strategies of firms −f as σ−f . Let firm f ’s strategy σf

differ from σ′f only in that σ′f has greater cutoffs (more response more to signals). Then

Eθ(m(σ′f , σ−f , θ)) ≥ Eθ(m(σf , σ−f , θ)) and Eθ(πw(σ′f , σ−f , θ)) ≥ Eθ(πw(σf , σ−f , θ)).

Let us denote firm strategies in the unique equilibrium of the offer game with no signals

as σ0
F . Now consider a block-symmetric equilibrium of the offer game with signals when

agent use strategies (σF , σW ). If agents employ strategies (σ0
F , σW ), the expected number of

matches and the welfare of workers equal the corresponding parameters in the offer game

with no signals. Therefore, the result that the expected number of matches and the expected

welfare of workers in a block-symmetric equilibrium in the offer game with signals are weakly

greater than the corresponding parameters in the unique equilibrium of the offer game with

no signals is a consequence of sequential application of Lemma A1.

Let us now consider a non-babbling block-symmetric equilibrium (σF , σW ) of the offer

game with signals such that there exists block Fb with at least two firms where αb > 0.

Proposition 4 shows that firms from block Fb respond to signals in the equilibrium, i.e.

make offers to signaling workers with positive probability, so that psb > pnsb .

Select some firm f from block Fb. Using a construction similar to that in the proof of

Lemma A1 we consider two sets of preference profiles:

Θ̄+ ≡ {θ ∈ Θ | m(σ0
f , σ−f , θ) < m(σf , σ−f , θ)}

Θ̄− ≡ {θ ∈ Θ | m(σ0
f , σ−f , θ) > m(σf , σ−f , θ)}.

Consider some realized profile of preferences, θ ∈ Θ, and denote Tf = w′ and Sf = w. Define

mapping ψ : Θ → Θ so that ψ(θ) is the profile in which workers have preferences as in

θ, but firms −f all swap the positions of workers w′ and w in their preference lists. Note

that ψ(ψ(θ)) = θ and ψ is a bijection on Θ. A direct consequence of Lemma A1 is that

|Θ̄+| ≥ |Θ̄−|. Let us now show that there exist θ ∈ Θ̄+ such that ψ(θ) /∈ Θ̄−.
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There are at least two firms, f and f ′, in block Fb that respond to signals. Consider some

profile θ from Θ̄+. We again denote Tf = w′ and Sf = w. Therefore, worker w does not

have an offer from any other firm for profile θ from Θ̄+, but worker w′ has at least two offers.

Since worker w′ sends her signal to firm f ′ with positive probability and firm f ′ responds to

signals, i.e. makes offers to its top signaling workers, there exist θ∗ ∈ Θ̄+ such that worker

w′ is the top signaling worker of firm f ′, and firm f ′ makes an offer to worker w′.

However, worker w for profile ψ(θ∗) does not have any other offer, because she is neither

Tf nor Sf for profile ψ(θ∗). Therefore, ψ(θ∗) cannot belong to Θ̄−. Therefore, we have found

a profile from Θ̄+ that does not belong to Θ̄−. As a result, |Θ̄+| > |Θ̄−| and we have that

Eθ[m(σ0
f , σ−f , θ)] < Eθ[m(σf , σ−f , θ)].

In addition, we know that

Eθ[m(σ0
f , σ

0
−f , θ)] ≤ Eθ[m(σ0

f , σ−f , θ)],

which gives us

Eθ[m(σ0
f , σ

0
−f , θ)] < Eθ[m(σf , σ−f , θ)].

Overall, the expected number of matches in the offer game with signals when agents use

strategies (σF , σW ) is strictly greater than the expected number of matches in the offer game

with no signals.

Using the above construction and the logic of the proof of Lemma A1 we obtain the

result for worker welfare. The example presented in Section 2 illustrates that signals can

ambiguously influence the welfare of firms. Specifically, Table 2 shows that firm welfare

increases upon introduction of a signaling mechanism only if the value of a second ranked

worker is sufficiently high, in this case when x > 0.5. �
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*** NOT FOR PUBLICATION ***

B Web Appendix: Proofs and extensions.

B.1 Proofs of results about block correlated markets.

This subsection provides proofs for Propositions A1, A2, A3 and A4, and the proof of Lemma

A1.

Proof of Proposition A1 (Equilibrium with no signals). Consider some agent preference

profile θ ∈ Θ. We will compare two strategies for firm f given its profile of preferences θf :

strategy σf of making an offer to its top worker, and strategy σ′f of making an offer to its

nth ranked worker, n > 1. We have σf (θ) = θ1
f ≡ w and σ′f (θ) = θnf ≡ wn. We will show that

for any anonymous strategies σ−f of opponent firms −f , these two strategies yield identical

probabilities of f being matched, so that f optimally makes its offer to its most preferred

worker. The proposition straightforwardly follows.

Denote a permutation that changes the ranks of w and wn in a firm preference list (or

profile of firm preference lists) as

ρ : (..., w, ..., wn, ...) −→ (..., wn, ..., w, ...).

We now construct preference profile θ′ ∈ Θ from θ as follows:

• firm f preferences are the same as in θ : θ′f = θf ,

• workers w and wn are exchanged in the preference lists of firms −f : ∀f ′ ∈ −f, we

have θ′f ′ = ρ(θf ′)

• worker w and worker wn preference profiles are exchanged: θ′w = θwn , θ′wn = θw, and

• θw′ = θ
′

w′ for any other w′ ∈ W \{w,wn}.

Define function mf : (Σw)W × (Σf )
F ×Θ→ R as the probability of firm f being matched as

a function of agent strategies and types. Since firm −f strategies are anonymous we have

σ−f (θ
′
−f ) = σ−f (ρ(θ−f )) = ρ (σ−f (θ−f ))

Therefore, the probability of firm f ′, f ′ ∈ −f, making an offer to worker w for profile θ

equals the probability of making an offer to worker wn for profile θ′. Moreover, since we

exchange worker w and wn preference lists for profile θ′, whenever it is optimal for worker
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w to accept firm f offer for profile θ, it is optimal for worker wn to accept firm f ′s offer for

profile θ′. Therefore,

mf (σf , σ−f , θ) = mf (σ
′
f , σ−f , θ

′)

In other words, given θf , for each θ−f there exists θ′−f such that the probability of f ’s

offer to θ1
f being accepted when opponent preferences are θ−f equals the probability of f ’s

offer to θnf being accepted when opponent preferences are θ′−f .
28 Moreover θ′−f is different

for different θ−f by construction. Since θ−f and θ′−f are equally likely, we have

Eθ−f
mf (σf , σ−f , θ | θf ) = Eθ−f

mf (σ
′
f , σ−f , θ | θf )

and

Eθmf (σf , σ−f , θ) = Eθmf (σ
′
f , σ−f , θ).

That is, the expected probability of getting a match from firm f ’s top choice equals the

expected probability of getting a match from firm f ’s nth ranked choice. Since the utility

from obtaining a top match is greater, the strategy of firm f of making an offer to its top

worker is optimal. �

Proof of Proposition A2 (Binary nature of firm optimal offer). Consider firm f from

some block Fb, b ∈ {1, ..., B} that has realized preference profile θ∗ ∈ Θf and that receives

signals from the set of workers WS ⊂ W . Denote worker Sf as w and select arbitrary other

worker w′ ∈ WS . We first prove that the expected payoff to f from making an offer to

worker w is strictly greater than the expected payoff from making an offer to worker w′.

We denote the strategies of firm f that correspond to these actions as σf (θ
∗,WS) = w and

σ′f (θ
∗,WS) = w′.

Workers use symmetric best-in-block strategies and firms have best-in-block beliefs.

Specifically, firm f believes that it is the top firm within block Fb in the preference lists

of workers w and w′. Denote the set of all possible agents’ profiles consistent with firm f

beliefs as29

Θ̄ ≡ {θ ∈ Θ | θf = θ∗ and f = max
θw

(f ′ ∈ Fb′) for each w ∈ WS}

28In this context, θ−f is a preference profile for all agents – both workers and firms – other than f .
29For the case of one block of firms, firm f beliefs also exclude preference profiles where firm f is a top

firm for those workers that did not send signal to firm f.

Θ̄ ≡ {θ ∈ Θ | θf = θ∗, f = max
θw

(f ′ ∈ Fb′) for each w ∈ WS , and f 6= maxθw (f ′ ∈ Fb′) for each w ∈ W\WS}.

For simplicity, we assume that there are at least two blocks. All the derivations are also valid without change
for the case of one block.
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As in the proof of Proposition A1, we denote a permutation that changes the ranks of w

and w′ in a firm preference list (or profile of firm preference lists) as

ρ : (..., w, ...w′, ...)→ (..., w′, ...w, ...).

We now construct preference profile θ′ ∈ Θ from θ∗ as follows:

• firm f preferences are the same as in θ∗: θ′f = θ∗,

• workers w and w′ are exchanged in the preference lists of firms −f : ∀f ′ ∈ −f, we

have θ′f ′ = ρ(θf ′),

• worker w and worker w′ preference profiles are exchanged θ′w = θw′ , θ
′
w′ = θw, and

• for any other w0 ∈ W\{w,w′}, θw0 = θ′w0 .

Since firm f ’s preference list is unchanged and since w,w′∈ WS , profile θ′ belongs to Θ̄.

Since strategies of firms −f are anonymous, then for any f ′ ∈ −f and for any WS
f ′
⊂ W we

have

σf ′(ρ(θf ′), ρ(WSf ′)) = ρ
(
σf ′(θf ′ ,WSf ′)

)
.

Worker w and w′ send their signals to firm f under both profile θ and θ′. Therefore, they

do not send their signals to firms −f , i.e. ρ(WS
f ′

) =WS
f ′ . Since θ′f = ρ(θf ) we have

σf ′(θ
′
f ′ ,WSf ′) = ρ

(
σf ′(θf ′ ,WSf ′)

)
.

This means that the probability of firm f ′ making an offer to worker w for profile θ equals

the probability of making an offer to worker w′ for profile θ′. Moreover, since we exchange

worker w and w′ preference lists for profile θ′, whenever it is optimal for worker w to accept

firm f ′s offer under profile θ, it is optimal for worker w′ to accept an offer from firm f ′ under

profile θ′. Since firm types are independent, the probability of firm f being matched when

it uses strategy σf for profile θ equals the probability of firm f being matched when it uses

strategy σ′f for profile θ′ :

mf (σf , σ−f , θ) = mf (σ
′
f , σ−f , θ

′).

Therefore, for each θ ∈ Θ̄ there exists θ′ ∈ Θ̄ such that the probability that firm f

gets an offer from worker w equals the probability that firm f gets an offer from worker w′.

Moreover, profile θ′ is different for different θ by our construction. Since θ and θ′ are equally
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likely,

Eθmf (σf , σ−f , θ | θ ∈ Θ̄) = Eθmf (σ
′
f , σ−f , θ | θ ∈ Θ̄).

Therefore, the expected probability that firm f gets a match if it makes an offer to some

worker in WS is the same across all workers in WS. But within this set, a match with Sf

offers the greatest utility, so the expected payoff to f from making an offer to Sf is strictly

greater than the payoff from making an offer to any other worker in WS.

A similar construction is valid for the workers in set W\WS. That is, the probability

that firm f ’s offer is accepted is the same across all workers inW\WS. Hence, firm f prefers

making an offer to its most valuable worker, Tf , than to any other worker in W\WS.30 �

Proof of Proposition A3 (Optimality of Cutoff Strategies). If workers use best-in-block

strategies and firms have best-in-block beliefs, the optimal choice of firm f for each set of

received signals is either Sf or Tf (or some lottery between them) (see Proposition A2). In

light of this, we break the proof into two parts. First we show that the identities of workers

that have sent a signal to firm f influence neither the expected payoff of making an offer

to Sf nor the expected payoff of making an offer to Tf , conditional on the total number of

signals received by f remaining constant. Second we prove that if it is optimal for firm f

to choose Sf when it receives signals from some set of workers, then it still optimal for firm

f to choose Sf if the number of received signals does not change and Sf has a smaller rank

(Sf is more valuable to f).

Let us consider some firm f from block Fb, b ∈ {1, ..., B} and some realization θ∗ of its

preference list. Assume that it is optimal for firm f to make an offer to Sf if it receives a

set of signals WS ⊂ W . We want to show that if firm f receives the set of signals WS′ such

that Sf (θ
∗,WS) = Sf (θ

∗,WS′) and
∣∣WS′

∣∣ =
∣∣WS

∣∣, it is still optimal for firm f to make an

offer to Sf . For simplicity, we only consider the case when WS and WS′ differ only in one

signal. (The general case then follows straightforwardly.) That is, there exist worker w and

worker w′ such that w belongs to set WS, but not to set WS′ ; while w′ belongs to WS′ , but

not to WS. We consider two firm f strategies for realization of signals WS and WS′ .

σf (θ
∗, ·) = Sf (θ

∗, ·)
σ′f (θ

∗, ·) = Tf (θ
∗, ·).

We denote the set of possible agents’ profiles that are consistent with firm f having received

30It is certainly possible that Tf = Sf . In this case the statement of the proposition is still valid. Firm f
believes that it is Tf ’s top firm within block Fb and firm f prefers making an offer to Tf = Sf rather than
to any other worker in W.
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signals from WS and WS′ as31

Θ̄S ≡ {θ ∈ Θ | θf = θ∗ and f = max
θw

(f ′ ∈ Fb′) for each w ∈ WS}

Θ̄S′ ≡ {θ ∈ Θ | θf = θ∗ and f = max
θw

(f ′ ∈ Fb′) for each w ∈ WS′}

correspondingly. We now construct a bijection between Θ̄S and Θ̄S′ . Denote a permutation

that changes the ranks of w and w′ in a firm preference profile as

ρ : (..., w, ...w′, ...) −→ (..., w′, ...w, ...).

For any profile θ ∈ Θ̄S we construct profile θ′ ∈ Θ as follows:

• firm f preferences are the same as in θ: θ′f = θ∗,

• the ranks of workers w and w′ are exchanged in the preference lists of firms −f :

∀f ′ ∈ −f, θ′f = ρ(θf ),

• the preference lists of worker w and worker w′ are exchanged: θ′w = θw′ , θ
′
w′ = θw, and

• for any other w0 ∈ W\{w,w′}, θw0 = θ
′

w0 .

Since this construction leaves the preference list of firm f unchanged, and since workers w

and w′ swap preference lists, we have that if θ ∈ Θ̄S, then θ′ ∈ Θ̄S′ . By construction, profile

θ′ is different for different θ. Finally, since the cardinality of sets Θ̄S and Θ̄S′ are the same,

the above correspondence is a bijection.

Since firm −f strategies are anonymous, for any f ′ ∈ −f and WS
f ′ ⊂ W

σf ′(ρ(θf ′), ρ(WS
f ′)) = ρ

(
σf ′(θf ′ ,WS

f ′)
)
.

This means that the probability of firm f ′ making an offer to worker w for any profile θ

equals the probability of firm f ′ making an offer to worker w′ for corresponding profile θ′.

Moreover, since we exchange worker w and w′ preference lists for profile θ′, whenever it is

optimal for worker w to accept firm f offer for profile θ, it is optimal for worker w′ to accept

firm f ′s offer for profile θ′. Since firms types are independent, the probability of firm f being

matched when it uses strategy σf (θ
∗, ·) for profile θ equals the probability of firm f being

matched when it uses strategy σf (θ
∗, ·) for profile θ′:

mf (σf , σ−f , θ) = mf (σf , σ−f , θ
′).

31See footnote 29 for the definition of firm beliefs for the case of one block.
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Similarly, for strategy σ′f (θ
∗, ·) we have

mf (σ
′
f , σ−f , θ) = mf (σ

′
f , σ−f , θ

′).

Since our construction is a bijection between Θ̄S and Θ̄S′ , and since θ and θ′ are equally

likely, we have

Eθmf (σf , σ−f , θ | θ ∈ Θ̄S) = Eθmf (σf , σ−f , θ
′ | θ′ ∈ Θ̄S′)

Eθmf (σ
′
f , σ−f , θ | θ ∈ Θ̄S) = Eθmf (σ

′
f , σ−f , θ

′ | θ′ ∈ Θ̄S′).

Therefore, if firm f optimally makes an offer to Sf (Tf ) when it has received set of signals

WS, it also should optimally make an offer to Sf (Tf ), which is the same worker, for the set

of signals WS′ .

We now prove that if firm f optimally chooses Sf (θ
∗,WS) when it receives signals from

WS, then it should still optimally choose Sf (θ
∗,WS′) for set of signalsWS′ , if the number of

received signals is the same
∣∣WS′

∣∣ =
∣∣WS

∣∣ and Sf (θ
∗,WS′) has a smaller rank, that is, when

the signaling worker is more valuable to f . We consider set WS′ that differs from WS only

in the best (for firm f) worker and the difference between the ranks of top signaled workers

equals one. (The general case follows straightforwardly.) That is,

w ∈ WS/Sf (θ
∗,WS)⇔ w ∈ WS′/Sf (θ

∗,WS′) and

rankf (Sf (θ
∗,WS′)) = rankf (Sf (θ

∗,WS))− 1.

The construction in the first part of the proof works again in this case. Using sets of

profiles and a correspondence similar to the one above, we can show that the probabilities

of firm f being matched with Sf (Tf ) are the same for WS and WS′ . Observe that if firm

f ’s offer to Tf is accepted, naturally firm f gets the same payoff for sets WS and WS′ . If

firm f ’s offer to Sf is accepted, firm f gets strictly greater payoff for set WS′ compared to

set WS, because by definition Sf (θ
∗,WS′) has smaller rank than Sf (θ

∗,WS). Hence, if it is

optimal for firm f to make an offer to Sf (θ
∗,WS) when it receives set of signals WS, it is

optimal for firm f to make an offer to Sf (θ
∗,WS′) when firm f receives set of signals WS′ .

Combined, the two statements we have just proved allow us to conclude that if firms

−f use anonymous strategies, firm f ’s optimal strategy can be represented as some cutoff

strategy.32 �

32Note that there can be other optimal strategies. If firm f is indifferent between making an offer to Sf
and making an offer to Tf for some set of signals, firm f could optimally make its offer to Sf or to Tf
for any set of signals conditional on maintaining the same rank of the most preferred signaling worker and
cardinality of signals received.
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Proof of Proposition A4 (Strategic complements under block correlation). Consider some

firm f from some block Fb, b ∈ {1, ..., B}. We consider two strategy profiles, σ−f and σ′−f ,

for firms −f that vary only in the strategy for firm f ′ . For simplicity, we assume that σ′f ′

differs from σf ′ only for some profile θ̄f ′ and some set of received signals WS
f ′

σf ′(θ̄f ′ ,WS
f ′) = αSf ′ + (1− α)Tf ′

σ′f ′(θ̄f ′ ,WS
f ′) = α′Sf ′ + (1− α′)Tf ′

such that α′ > α. Formally, this means σ′f is not a cutoff strategy, because a cutoff strategy

requires the same behavior for any profile of preferences (anonymity) when firms receive

the same number of signals. We will prove the statement using our simplifying assumption

about strategies for firms −f , and the extension to the full proposition follows from iterated

application of this result.

Consider some realized firm f preference profile θ∗f ∈ Θ and some set of signalsWS ⊂ W .

We want to show that firm f ’s payoff from making an offer to Tf (weakly) decreases whereas

firm f ’s payoff from making an offer to Sf (weakly) increases when firm f ′ responds more

to signals, i.e. plays strategy σ′f ′ instead of σf ′ . That is,

I) Eθ(πf (Tf , σ−f , θ) | θf = θ∗f ,WS
f =WS) ≥ Eθ(πf (Tf , σ

′
−f , θ) | θf = θ∗f ,WS

f =WS)

II) Eθ(πf (Sf , σ−f , θ) | θf = θ∗f ,WS
f =WS) ≤ Eθ(πf (Sf , σ

′
−f , θ) | θf = θ∗f ,WS

f =WS).

Since firm f ’s offer can only be either accepted or declined, the above statements are equiv-

alent to

I) Eθ(mf (Tf , σ−f , θ) | θf = θ∗f ,WS
f =WS) ≥ Eθ(mf (Tf , σ

′
−f , θ) | θf = θ∗f ,WS

f =WS)

II) Eθ(mf (Sf , σ−f , θ) | θf = θ∗f ,WS
f =WS) ≤ Eθ(mf (Sf , σ

′
−f , θ) | θf = θ∗f ,WS

f =WS).

That is, we wish to show that the probability of being matched to Tf weakly decreases, and

the probability of being matched to Sf weakly increases.

We first prove I) first. Define the sets of agent profiles that lead to the increase and

decrease in the probability of getting a match given the change in firm f ′ strategy as

Θ̄+ ≡ {θ ∈ Θ | θf = θ∗f ,WS
f =WS and mf (Tf , σ−f , θ) < mf (Tf , σ

′
−f , θ)}

Θ̄− ≡ {θ ∈ Θ | θf = θ∗f ,WS
f =WS and mf (Tf , σ−f , θ) > mf (Tf , σ

′
−f , θ)}

correspondingly. If set Θ̄+ is empty, the statement has been proved. Otherwise, select

arbitrary θ ∈ Θ̄+ and denote Tf ≡ w. Since in this case, f ′’s strategy change pivotally reduces
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competition to f ’s offer to w, we must have Tf ′(θ̄f ′ ,WS
f ′) = w and Sf ′(θ̄f ′ ,WS

f ′) = w′ 6= w,

and

σf ′(θ̄f ′ ,WS
f ′) = αw′ + (1− α)w

σ′f ′(θ̄f ′ ,WS
f ′) = α′w′ + (1− α′)w.

Note that it cannot be that firm f is from a higher ranked block than firm f ′ , i.e. f ′ ∈ Fb′
where b′ > b. If f were from a higher ranked block, an offer from firm f ′ is always worse

than the offer of firm f and could not influence the probability that firm f obtains a match.

Therefore, firm f is from a block that is weakly worse than Fb′ , i.e. b′ ≤ b.

Note that under θ, worker w has sent a signal neither to firm f nor to firm f ′. This will

allow us to construct element θ′ ∈ Θ̄−. Consider a permutation that changes the ranks of w

and w′ in a firm preference profile

ρ : (..., w, ...w′, ...) −→ (..., w′, ...w, ...).

For any profile θ ∈ Θ̄+ we construct profile θ′ ∈ Θ as follows:

• θ′f = θ∗f

• the ranks of workers w and w′ are exchanged in the preference lists of firms −f : for

each firm f ′ ∈ −f, θ′f ′ = ρ(θf ′)

• worker w and worker w′ preference profiles are exchanged: θ′w = θw′ , θ
′
w′ = θw, and

• for any other w0 ∈ W\{w,w′}, θw0 = θ
′

w0 .

Note that under θ and θ′, firm f has the same preferences θ∗f and receives the same set of

signals.

Since firm strategies are anonymous we have that

σf ′(θ
′
f ′ ,WS′

f ′ ) = σf ′(ρ(θf ′), ρ(WS
f ′)) (by our construction)

= αρ(w′) + (1− α)ρ(w) (by anonymity)

= αw + (1− α)w′

and similarly

σ′f ′(θ
′
f ′ ,WS′

f ′ ) = α′w + (1− α′)w′.

We will now argue that θ′ ∈ Θ̄−. Since θ ∈ Θ̄+, the strategy change for firm f ′ reduces

the likelihood of firm f being matched with worker w (when f makes Tf an offer under
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profile θ). Under profile θ′, firm f ′ makes an offer to worker w more frequently when using

strategy σ′f ′ rather than σf ′ . Furthermore, worker w prefers firm f ′ to firm f under profile

θ′. (We have already shown that f ′ cannot be in a lower ranked block than f . If firm f ′ is

in a higher ranked block Fb′ , b > b′, worker w always prefers firm f ′ to firm f . If firm f and

firm f ′ are from the same block, b = b′, worker w prefers f to f ′, since worker w sends a

signal to firm f ′ under profile θ′).

To finish our proof, we must also investigate the behavior of a firm that receives worker

w’s signal for profile θ, say firm fy. If firm fy makes an offer to worker w for profile θ, since

the change of firm f ′ strategy changes firm f ’s payoff, firm fy must be lower ranked than

both firms f and f ′ in worker w’s preferences. Hence, firm fy’s offer cannot change the

action of worker w. If worker w′ sends her signal to firm fy then firm fy either makes an

offer to worker w′ or to worker Tfy , which are both different from worker w.

Hence, firm fy does not influence the behavior of the agents in question, and the overall

probability that firm f ’s offer to worker w is accepted is smaller when firm f ′ uses strategy

σ′f ′ rather than σf ′ . That is, θ′ ∈ Θ̄−.

Note that the above construction gives different profiles in Θ̄+ for different profiles of Θ̄−.

Hence, our construction is an injective function from Θ̄+ to Θ̄−, so
∣∣Θ̄−∣∣ > ∣∣Θ̄+

∣∣.33 Since

profiles θ and θ′ are equally likely, we have

Eθ(mf (Tf , σ−f , θ) | θf = θ∗f ,WS
f =WS) ≥ Eθ(mf (Tf , σ

′
−f , θ) | θf = θ∗f ,WS

f =WS).

We now prove inequality II). That is, we will show that if firm f ′ responds more to

signals, the probability of firm f being matched to Sf (upon making Sf an offer) weakly

increases. If firm f, f ∈ Fb, receives a signal from worker w it believes it is the best firm in

block Fb according to worker w’s preferences. That is, worker w prefers the offer of firm f

to an offer from any other firm f ′ from any block Fb′ with b′ ≥ b. Therefore, the change of

the behavior of any firm f ′ from block Fb′ , b′ ≥ b, does not influence firm f ’s payoff.

If we consider some firm f ′ from group Fb′ , b′ < b, it can draw away worker w’s offer

from firm f only if it makes an offer to worker w. However, firm f ′ makes an offer to worker

w, conditionally on firm f receiving a signal from worker w, only when worker w is Tf ′ .

However, if firm f ′ responds more to signals, it makes an offer to its Tf more rarely. This

means that firm f ′ draws worker w away from firm f less often. Therefore, the probability

that firm f ’s offer is accepted by Sf increases:

Eθ(mf (Sf , σ−f , θ) | θf = θ∗f ,WS
f =WS) ≤ Eθ(mf (Sf , σ

′
−f , θ) | θf = θ∗f ,WS

f =WS).

33One may show by example that this is not, in general, a bijection.
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As a corollary of I) and II), if firm f ′ increases its cutoff point for some set of signals,

firm f will also optimally (weakly) increase its cutoff points. The above logic is valid for the

change of cutoff points for any set of signals of the same size and any profile of preferences,

so the statement of the proposition immediately follows. �

Proof of Lemma A1. We prove the first statement first. Let us consider firm f cutoff

strategies σf and σ′f such that σ′f has weakly greater cutoffs. We consider two sets of

preference profiles

Θ̄+ ≡ {θ ∈ Θ | m(σf , σ−f , θ) < m(σ′f , σ−f , θ)}
Θ̄− ≡ {θ ∈ Θ | m(σf , σ−f , θ) > m(σ′f , σ−f , θ)}.

For each profile θ from set Θ+, it must be the case that without firm f ’s offer, Tf has an

offer from another firm and worker Sf does not:

m(σ′f , σ−f , θ)−m(σf , σ−f , θ) = 1. (B.1.1)

Similarly, if profile θ is from set Θ−, it must be the case that without firm f offer, Sf has

an offer from another firm, and Tf does not

m(σ′f , σ−f , θ)−m(σf , σ−f , θ) = −1. (B.1.2)

We will now show that |Θ̄+| ≥ |Θ̄−|. Equations (B.1.1) and (B.1.2), along with the fact

that each θ ∈ Θ+ ∪Θ− occurs equally likely, will then be enough to prove the result.

Let us denote Tf = w′ and Sf = w. We construct function ψ : Θ → Θ as follows. Let

ψ(θ) be the profile in which workers have preferences as in θ, but firms −f all swap the

positions of workers w′ and w in their preference lists. If profile θ belongs to Θ̄−, without

firm f ’s offer, worker w has an offer from another firm, and worker w′ does not. Therefore,

when preferences are ψ(θ), without firm f ’s offer the following two statements must be true:

i) worker w′ must have another offer and ii) worker w cannot have another offer.

To see i), note that under θ, worker w sends a signal to firm f , so his outside offer must

come from some firm f ′ who has ranked him first. Under profile ψ(θ), firm f ′ ranks worker

w′ first. If worker w′ has not sent a signal to firm f ′, then by anonymity, w′ gets the offer of

firm f ′. If worker w′ has signaled to firm f ′, worker w′ again gets firm f ′’s offer.

To see ii), suppose to the contrary that under ψ(θ), worker w does in fact receive an offer

from some firm f ′ 6= f . Since worker w sends a signal to firm f , worker w must be Tf ′ under

ψ(θ), so that worker w′ is Tf ′ under θ. But then by anonymity w′ receives the offer of firm

f ′ under θ, a contradiction.
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From i) and ii), we have

θ ∈ Θ̄− ⇒ ψ(θ) ∈ Θ̄+.

Since function ψ is injective, we have |Θ̄+| ≥ |Θ̄−|.
In order to prove the second statement note that the expected number of matches of each

worker increases when firm f responds more to signals. Using the construction presented

above, one can show that whenever worker w “loses” a match with firm f for profile θ

(worker w is Tf ) it is possible to construct profile θ′ when worker w obtains a match (worker

w is Sf ). The function that matches these profiles is again injective. Moreover, worker w

values more greatly the match with firm f when she has signaled it (Sf ) rather when she is

simply highest ranked (Tf ). Therefore, the ex-ante utility of worker w increases when firm

f responds more to signals. �

B.2 Market Structure and the Value of a Signaling Mechanism —

Proofs and Extensions

This set of results pertains to Section 7: Market Structure and the Value of a Signaling

Mechanism. In this section, we denote as u(j) the utility of a firm from matching with its

jth ranked worker.

Proposition B1. Under the assumption that

u(W ) > W
F

(
1−

(
1− 1

W

)F)
u(1) (B.2.1)

there is a unique non-babbling equilibrium in the offer game with signals. Each worker sends

her signal to her top firm. Each firm f makes an offer to Sf if it receives at least one signal;

otherwise, firm f makes an offer to Tf .

Proof. We will show that under condition (B.2.1) even if Sf is the worst ranked worker

in firm f preferences, firm f still optimally makes her an offer.

Proposition 2 shows that if firms −f respond more to signals, i.e. increase their cutoffs, it

is also optimal for firm f to respond more to signals. Therefore, if firm f optimally responds

to signals when no other firm does, it will certainly optimally respond to signals when other

firm respond. Hence, it will be enough to consider the incentives of firm f when firms −f
do not respond to signals and always make an offer their top ranked workers.

Let us consider some realized profile of preferences of firm f and denote Tf as w. If firms

−f do not respond to signals, then some firm among −f makes an offer to worker w with

probability q = 1
W

. Therefore, the probability that the offer of firm f to worker w is accepted
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equals

(1− q)F−1 + ...+ Cj
F−1q

j (1− q)F−1−j 1
j+1

+ ...+ qF−1 1
F

(B.2.2)

where Cy
x = x!

y!(x−y)!
. Intuitively, j firms among the other F − 1 firms simultaneously make

an offer to worker w with probability Cj
F−1q

j(1− q)F−1−j. Therefore, firm f is matched with

worker w only with probability 1
j+1

because worker w’s preferences are uniformly distributed.

The sum over all possible j from 0 to F − 1 gives us the overall probability of firm f ’s offer

being accepted. We can simplify this expression as follows:

∑F−1

j=0
Cj
F−1q

j (1− q)F−1−j 1
j+1

(B.2.3)

=
∑F−1

j=0

(F−1)!
j!(F−1−j)!q

j (1− q)F−1−j 1
j+1

(B.2.4)

=
∑F−1

j=0

1
Fq

F !
(j+1)!(F−(1+j))!

qj+1 (1− q)F−(1+j) (B.2.5)

= 1
Fq

∑F

j=1

F !
j!(F−j)!q

j (1− q)F−j (B.2.6)

= 1
Fq

(∑F

j=0

F !
j!(F−j)!q

j (1− q)F−j − (1− q)F
)

(B.2.7)

= 1
Fq

(
1− (1− q)F

)
= W

F

(
1−

(
1− 1

W

)F)
. (B.2.8)

Alternatively, if firm f makes an offer to its top signaling worker, its offer is accepted

with probability one. Therefore, it is optimal for the firm to make an offer to the signaling

worker only if u(W ) > W
F

(
1−

(
1− 1

W

)F)
u(1). We conclude that under assumption B.2.1

there is no other non-babbling symmetric equilibrium in the offer game with signals. �

Proof of Proposition 5. We first calculate an explicit formula for the increase in the

expected number of matches from the introduction of the signaling mechanism.

Lemma B1. Consider a market with W workers and F > 2 firms. The expected number of

matches in the offer game with no signals equals

mNS(F,W ) = W
(

1−
(
1− 1

W

)F)
. (B.2.9)

The expected number of matches in the offer game with signals equals

mS(F,W ) = F

 1− (F−1
F

)W + W (F−1)2W−2

FW (F−2)W−1

(
1− F−1

W

(
1− (F−2

F−1
)W
))
∗

∗
(

1−
(
1− 1

W
(F−2
F−1

)W−1
)F−1

)  . (B.2.10)
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Proof of Lemma B1. Let us first calculate the expected number of matches in the pure

coordination game with no signals. Proposition A1 establishes that the unique symmetric

non-babbling equilibrium when agents use anonymous strategies is as follows. Each firm

makes an offer to its top worker and each worker accepts the best offer among those available.

We have already calculated the probability of firm f being matched to its top worker in

Proposition B1. The probability of this event is

W
F

(
1−

(
1− 1

W

)F)
.Therefore, the expected total number of matches in the game with no signals equals

mNS(F,W ) = W
(

1−
(
1− 1

W

)F)
(B.2.11)

Let us now calculate the expected number of matches in the offer game with signals.

Proposition B1 derives agent strategies in the unique symmetric non-babbling equilibrium

in the pure coordination game with signals. Each worker sends her signal to her top firm

and each firm makes its offer to its top signaling worker if it receives at least one signal,

otherwise it makes an offer to its top ranked worker.

We first calculate ex-ante probability of being matched by some firm f. We denote the

set of workers that send her signal to firm f as WS
f ⊂ W . If firm f receives at least one

signal, |WS
f | > 0, it is guaranteed a match because each worker sends her signal to her top

firm. If firm f receives no signals, it makes an offer to its top ranked worker Tf . This worker

accepts firm f ’s offer only if this offer is the best one among those she receives. Let us denote

the probability that Tf accepts firm f ′s offer (under the condition that firm f receives no

signals) as

PTf ,|WS
f |=0 ≡ P (Tf accepts firm f ′s offer|

∣∣WS
f

∣∣ = 0).

The ex-ante probability that firm f is matched then equals

Prob matchf (F,W ) = P (|WS
f | > 0) ∗ 1 + P (|WS

f | = 0) ∗ PTf ,|WS
f |=0. (B.2.12)

If firm f receives no signals, |WS
f | = 0, it makes an offer to Tf , which we will call worker

w. Worker w receives an offer from its top ranked firm, say firm f0, conditional on firm f

receiving no signals, |WS
f | = 0, with probability equal to

G = P (|WS
f0
| = 1||WS

f | = 0) ∗ 1 + ...+ P (|WS
f0
| = W ||WS

f | = 0) ∗ 1
W

(B.2.13)

=
∑W−1

j=0
Cj
W−1

(
1

F−1

)j
(1− 1

F−1
)W−j−1 1

j+1
. (B.2.14)
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Intuitively, firm f0 receives a signal from a particular worker with probability 1
F−1

(note that

firm f receives no signals). Then, if firm f0 receives signals from j other workers, worker

w receives an offer from firm f0 with probability 1
j+1

. Similarly to equation (B.2.3) the

expression for G simplifies to

G = F−1
W

(
1− (1− 1

F−1
)W
)
. (B.2.15)

Firm f can be matched with worker w only if worker w does not receive an offer from its

top firm, which happens with probability 1−G. If worker w does not receive an offer from

her top firm − firm f0 − firm f competes with other firms that have received no signals

from workers. The probability that some firm f ′ among firms F\{f, f0} receives no signals

conditional on the fact that worker w sends her signal to firm f0 and firm f receives no

signals (|WS
f | = 0) equals r = (1− 1

F−1
)W−1. Note that the probability that firm f ′ does not

receive a signal from a worker equals 1− 1
F−1

, because firm f receives no signals. There are

also only W − 1 workers that can send a signal to firm f ′, because worker w sends her signal

to firm f0.

Therefore, the probability that some firm f ′ among firms F\{f, f0} receives no signals

and makes an offer to worker w, conditional on the fact that worker w sends her signal to

firm f0, equals r
W

. Therefore, the probability that worker w prefers the offer of firm f to

other offers (conditional on the fact that firm f receives no signals and worker w sends her

signal to firm f0) equals34

∑F−2

j=0
Cj
F−2

(
r
W

)j
(1− r

W
)F−2−j 1

j+1
= W

(F−1)r

(
1−

(
1− r

W

)F−1
)
. (B.2.16)

The probability that worker w accepts firm f ′s offer then equals

PTf ,|WS
f |=0 = (1−G)

(
W

(F−1)r

(
1−

(
1− r

W

)F−1
))

.

Taking into account that firm f receives no signals with probability P (|WS
f | = 0) = (1− 1

F
)W ,

the probability of firm f being matched in the offer game with signals is then

Prob matchf (F,W ) = 1− (1− 1
F

)W + (1− 1
F

)W ∗ PTf ,|WS
f |=0

= 1− (1− 1
F

)W + (1− 1
F

)W W
(F−1)r

∗ (B.2.17)(
1− F−1

W

(
1− (1− 1

F−1
)W
))
∗
(

1−
(
1− r

W

)F−1
)

34Note that the maximum number of offers worker w could get equals to M − 1 as it does not receive an
offer from its top firm f0.
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where r = (1 − 1
F−1

)W−1. The expected total number of matches in the offer game with

signals equals mS(F,W ) = F ∗ Prob matchf (F,W ). �

Lemma B1 establishes the expected total number of matches in the offer game with and

without signals. Let us first fix W and calculate where the increase in the expected number

of matches from the introduction of the signaling mechanism, V (F,W ) = mS(F,W ) −
mNS(F,W ), attains its maximum. In order to obtain the proposition, we consider large

markets (markets where the number of firms and the number of workers are large) and we

use Taylor’s expansion formula:

(1− a)b = exp(−ab+O(a2b)). (B.2.18)

where O(a2b) is a function that is smaller than a constant for large values of a2b. Setting x ≡
F
W
, the expected number of matches in the offer game with no signals can be approximated

as

mNS(F,W ) = W
(

1−
(
1− 1

W

)F)
= W (1− e−x+O(x/W )).

Let us now consider the expected number of matches in the offer game with signals.

Using the result of Lemma B1 we get

mS(F,W ) = Wx
(

1− e−1/x+O(1/(x2W )) + A ∗B
)

where

A =
(
1− F−1

W

(
1− (F−2

F−1
)W
))

and

B = W (F−1)2W−2

FW (F−2)W−1

(
1−

(
1− 1

w
(F−2
F−1

)W−1
)F−1

)
.

We first calculate an approximation of A for large markets. Using (B.2.18) we have that

1− (1− 1
F−1

)W = 1− e−x+O(1/(x2W ))

and

A = 1− x
(

1− e−1/x+O(1/(x2W ))
)

+O(1/ (xW )).
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We now calculate an approximation of B for large markets:

W (F−1)2W−2

FW (F−2)W−1 = W
F

(
F−1
F

)W−1 (F−1
F−2

)W−1

= 1
x
e−(W−1)/F+O(1/(x2W ))e(W−1)/(F−1)+O(1/(x2W ))

= 1
x
eO(1/(x2W )).

Also, we have that (
1−

(
1− Z

W

)F−1
)

= 1− e−Z(F−1)/W+O(x/W )

= 1− e−Zx+O(x/W )

where Z = (F−2
F−1

)W−1 = e−1/x+O(1/(x2W )). Finally, we have

B = W (F−1)2W−2

FW (F−2)W−1 ∗
(

1−
(
1− 1

W
(F−2
F−1

)W−1
)F−1

)
= 1

x
eO(1/(x2W ))(1− e−xe−1/x+O(x/W )).

Putting it all together, we have

V (F,W ) = Wx

(
1− e−1/x+O(1/W ) +

(
1− x

(
1− e−1/x+O(1/W )

)
+O(1/W )

)
∗

∗ 1
x
eO(1/W )(1− e−xe−1/x+O(1/W ))

)
−

−W (1− e−x+O(1/W ))

= W
(
x− xe−1/x +

(
1− x

(
1− e−1/x

))
(1− e−xe−1/x

)− 1 + e−x
)

+O(1)

= Wα(x) +O(1)

where α(x) is a positive quasi-concave function that attains maximum at x0 ' 1.012113.

Therefore, for fixed W , V (F,W ) attains its maximum value at F = x0W +O(1).

Similar to the previous derivation, we can fix F and calculate the value of W where

V (F,W ) attains its maximum:

V (F,W ) = F

(
1− e−1/x+O(1/W ) +

(
1− x

(
1− e−1/x+O(1/W )

)
+O(1/W )

)
∗ 1
x
eO(1/W )(1− e−xe−1/x+O(1/W ))

)
−F

x
(1− e−x+O(1/F ))

= F
(

1− e−1/x +
(
1− x

(
1− e−1/x

))
1
x
(1− e−xe−1/x

)− 1
x

(
1− e−x

))
+O(1)

= Fβ(x) +O(1)

where β(x) is a positive quasi-concave function that attains maximum at x00 ' 0.53074.
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Therefore, for fixed F , V (F,W ) attains its maximum value at W = y0F + O(1), where

y0 = 1/x00 = 1.8842. �

B.3 Extension: Signaling with Many Positions and Many Signals

In this section we consider a model of matching markets in a symmetric environment that is

similar to the one in Sections 3 and 4. The difference is that each firm now has the capacity

to hire up to L workers, and each worker may send up to K identical costless private signals.

We assume that the number of signals each worker may send is less than the number of

firms, K < F, and each worker can send at most one signal to a particular firm.

We assume that firm utilities are additive, i.e. firm f with preferences θf over individual

workers values a match with a subset of workers W0 ⊂ W as u(θf ,W0) =
∑

w∈W0
u(θf , w),

where u(θf , ·) is a von-Neumann Morgenstern utility function. Worker w with preference

list θw values a match with firm f as v(θw, f). We keep all assumptions of Sections 3 and 4

regarding agent utilities u(·, ·) and v(·, ·).
The timing and strategies of agents of the offer game without signals can be adopted

from Section 3:

1. Agents’ preferences are realized. In the case of a signaling mechanism, each worker

sends up to K private, identical, costless signals to firms. Signals are sent simultane-

ously, and are observed only by firms who have received them.

2. Each firm makes an offer to at most L workers; offers are made simultaneously.

3. Each worker accepts at most one offer from the set of offers she receives.

Once again, sequential rationality ensures that workers will always select the best available

offer. Hence, we take this behavior for workers as given and focus on the reduced game

consisting of the first two stages.

A mixed strategy for worker w when deciding wether and to whom to send signals is a

map from the set of all possible preference lists to the set of distributions over subsets of

firms of size K or less that we denote as ∆(2FK), i.e. σw : Θw → ∆(2FK). Similarly, a mixed

strategy of firm f is a map from the set of all possible preference lists, Θf , and the set of

all possible combinations of received signals, 2W , to the set of distributions over subsets of

workers of size L or less, which we denote as ∆(2WL). That is, σf : Θf × 2W → ∆(2WL).

Preferences of both firms and workers are independently and uniformly chosen from all

possible preference orderings. Similarly to Sections 3 and 4 we define σW , σF , Σw,Σf , πw, and

πf . The definition of sequential equilibrium and anonymous strategies can also be adopted

in an analagous manner.
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We first consider an offer game without signals. If firms use anonymous strategies, the

chances of hiring any worker, conditional on making her an offer, are the same. Therefore,

each firm optimally makes its offers to the L highest-ranked workers on its preference list.

This is the unique symmetric equilibrium of the offer game without signals when firms use

anonymous strategies (see Proposition B3).

We now turn to the analysis of the offer game with signals. In any symmetric equilibrium

in which workers send signals and signals are interpreted as a sign of interest by firms and

hence increase the chance of receiving an offer, each worker sends her K signals to her K

most preferred firms (see Proposition B4). As in the case of one signal and each firm only

having one position, we pin down the behavior of workers in equilibrium: workers send their

signals to their highest ranked firms, and workers accept the best available offer. We now

examine offers of firms in the second stage of the game, taking the strategies of workers and

beliefs of firms about interpreting signals as given.35

In Section 4 each worker could send up to one signal, and each firm had L = 1 positions

to fill. Then, when all other firms used anonymous strategies, firm f decided between making

an offer to f ’s most preferred worker Tf (or T 1
f ) and f ’s most preferred worker in the subset of

signaled workers Sf (or S1
f ). Now, when all other firms use anonymous strategies, firm f can

make up to L offers. When deciding whom to make the first offer, firm f , once more, decides

between the most preferred worker Tf (or T 1
f ) and the most prefered worker among those

who sent a signal Sf (or S1
f ) where that decision may depend on the total number of signals

received. So, if firm f received |WS| signals and uses a cutoff strategy with corresponding

cutoff j|WS |, then f makes an offer to S1
f if and only if the rank of S1

f is lower or equal than

j|WS |. If firm f made an offer to S1
f , then, for the second position, the firm decides between

T 1
f and S2

f the most preferred worker among those that sent a signal to whom firm f has not

made an offer yet. Furthermore, firm f will use the same cutoff strategy as before: Firm f

still received |WS| signals and hence will make an offer to S2
f compared to T 1

f if and only if

the rank of S1
f is lower than j|WS |.

If the firm made its first offer to T 1
f , then for the second offer, firm f decides between T 2

f

and S1
f , where f can use a new cutoff strategy, since the alternative to a signaling worker

is now T 2
f , the overall second most preferred worker, and not T 2

f . We can show that in

equilibrium, the cutoff for T 2
f will be greater than for T 1

f for any number if received signals

(see Proposition B5). We can now define the notion of cutoff strategies for this setting.

35Note that in any non-babbling symmetric equilibrium, all information sets for firms are realized with
positive probability. Hence, the beliefs of firms are determined by Bayes’ Law: if a firm receives a signal
from a worker, it believes that it is on of the kth top firms, k ∈ {1, ...,K}, in the workers’ preference list and
the probability of having rank k is identical across ranks {1, ...,K}.
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Definition B1 (Cutoff Strategies in Case of Many Positions and Multiple Signals). Strategy

σf is a cutoff strategy for firm f if there are L vectors J l = (jl1, ..., j
l
W ), l = 1, ..., L such that

for any θf ∈ Θf and any setWS of workers who sent a signal to firm f we have the following:

For any number m of offers already made, let the most preferred worker to whom firm f

has not yet made an offer be T rf of rank 1 ≤ r < L and let the most preferred worker who

sent a signal and to whom f has not yet made an offer be Sqf of rank 1 ≤ q < L, where

m = q + r − 2. Then firm f makes its next offer to{
Sqf if rankθf

(Sqf ) ≤ jr|WS |

T rf otherwise.

We call (J1, . . . , JL) a cutoff matrix that has cutoff vectors for each of the top L ranked

workers as its components. Note that the probability of a firm’s offer being accepted by

any worker who has signaled to it is the same as in a symmetric equilibrium. Similarly, the

probability of a firm’s offer being accepted by any worker who has not signaled to the firm

is also the same across such workers (see Lemma B2).

Using an argument similar to the case of one position and one signal, we show that

cutoff strategies are optimal strategies for firms (see Proposition B6). We can also impose

a partial order on the cutoff strategies as in Section 4. However, strategies of firms are no

longer necessarily strategic complements. When other firms respond more to signals, this

decreases the payoff from making an offer to both workers who have and workers who have

not signaled to the firm. This is because receiving a signal does not guarantee acceptance in

case an offer is tendered to that worker. We can, however, assure the existence of symmetric

mixed strategy equilibrium.

Theorem B1 (Equilibrium Existence). There exists a symmetric equilibrium of the offer

game with signals where 1) workers send their signals to top K firms, and 2) firms play

symmetric cutoff strategies.

We now address the welfare implications from the introduction of a signaling mechanism.

Proposition B2 and Theorem B2 formally restate our welfare results from previous chapters

for the case when firms have many positions and workers can send multiple signals. The

logic of their proofs again begins with an incremental approach: we first study the effect of

a single firm increasing its cutoff, that is, responding more to signals. We then rank various

signaling equilibria in terms of their outcomes. Finally, we show how the introduction of a

signaling mechanism impacts our three measures of welfare.
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Proposition B2 (Welfare Across Equilibria). Consider any two symmetric cutoff strategy

equilibria where in one equilibrium firms have greater cutoffs. Compared to the equilibrium

with lower cutoffs, in the equilibrium with greater cutoffs we have the following:

• the expected number of matches is weakly greater,

• workers have weakly higher expected payoffs, and

• firms have weakly lower expected payoffs.

Theorem B2 (Welfare Impact of a Signaling Mechanism). Consider any non-babbling sym-

metric equilibrium of the offer game with signals. Then the following three statements hold.

i. The expected number of matches is strictly greater than in the unique equilibrium of

the offer game with no signals.

ii. The expected welfare of workers is strictly greater than in the unique equilibrium of the

offer game with no signals.

iii. The welfare of firms may be greater or smaller than in the unique equilibrium of the

offer game with no signals.

Proofs: Signaling with Many Positions and Many Signals

In addition to providing proofs for the above results, this section introduces Propositions

B3-B6 and Lemma B2 which help establish the main findings.

Proposition B3. The unique equilibrium of the offer game with no signals when firms use

anonymous strategies and workers accept the best available offer is σf (θf ) = (θ1
f , ..., θ

L
f ) for

all f ∈ F and θf ∈ Θf .

Proof. The proof repeats the argument of Proposition 1. �

Proposition B4. In any symmetric non-babbling equilibrium of the offer game with signals

each worker sends signals to her K top firms.

Proof. Select an arbitrary worker. Firms use symmetric anonymous strategies, signals are

identical, and the worker can send at most one signal to a given firm. Hence, from the

worker’s perspective the probability of getting an offer from a firm depends only on whether

the worker has sent a signal to this firm or not. Similar to the argument of the proof of
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Proposition 4 the probability of getting an offer from a firm that receives the worker’s signal is

greater than the probability of getting an offer from a firm that does not receive the worker’s

signal. Since this probability does not depend on the identity of the firm in a symmetric

equilibrium we conclude that the worker optimally sends her signals to her K top firms. �

Proposition B5. Suppose firms −f use anonymous strategies and workers send their signals

to their top K firms. Then firm f makes offers to its LNS ∈ {0, ..., L} top workers who have

signaled to it and to its LS = L − LNS top workers who have not signaled to it in any

non-babbling symmetric sequential equilibrium.

Proof. Note that firms use anonymous strategies, workers send their signal to their top K

firms, and workers accept the best available offer. We first prove a lemma that states that

from point of view of firm f , the probability that workers who have and have not signaled

to it accept its offer depends only on the number of signals firm f receives.

Lemma B2. Suppose firms −f use anonymous strategies and workers send their signals to

their top K firms. Consider two events, A and B. Event A is that firm f receives the set

of signals WS. Event B is that firm f receives the set of signals W̌S , where |WS| = |W̌S|.
Then

• the probability that worker w ∈ WS accepts firm f ’s offer conditional on event A equals

the probability that worker w′ ∈ W̌S accepts firm f offer conditional on event B;

• the probability that worker w ∈ W\WS accepts firm f ’s offer conditional on event A

equals the probability that worker w′ ∈ W\W̌S accepts firm f offer conditional on event

B.

Proof. Let us consider firm f with realized preference profile θ∗f ∈ Θf that receives

signals from the set of workers WS. We first prove that the probability that a worker from

WS accepts firm f ’s offer conditional on event A equals the probability that a worker from

W̌S accepts firm f ’s offer conditional on event B.

Note that firm f believes that it is one of the top K firms in worker preference list if it

receives an offer from her. Let us denote the set of possible agent profiles consistent with

firm f beliefs in both events as

ΘA ≡ {θ ∈ Θ|θf = θ∗f and rankθws (f) ∈ {1, ..., K} for each ws ∈ WS}

ΘB ≡ {θ ∈ Θ|θf = θ∗f and rankθws (f) ∈ {1, ..., K} for each ws ∈ W̌S}
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Since firm f receives the same number of signals for both events, i.e. |WS| = |W̌S|,
for each worker wa ∈ WS we pair some worker w′a ∈ W̌S, a = 1, ..., |WS|. Let us denote

rankθwa
(f) = ka and rankθw′a

(f) = k′a. Therefore, ka, k
′
a ∈ {1, ..., K} for each a. We denote

a permutation that changes ka and k′a’s positions in a worker’s preference list as

ρwa : (..., ka, ..., k
′
a, ...)→ (..., k′a, ..., ka, ...).

We also denote a permutation that changes the ranks of wa and w′a for every a in a firm

preference lists as

ρf : (..., wa, ..., w
′
a, ...)→ (..., w′a, ..., wa, ...).

Beginning with arbitrary profile of preferences θ ∈ ΘA, we construct a profile of prefer-

ences θ′ as follows:

• we do not change firm f preference list, i.e. θ′f = θ∗f ,

• the ranks of workers wa and w′a are exchanged in the preference lists of firms −f for

each a: for each firm f ′ ∈ −f, θ′f = ρf (θf ),

• firms in positions ka and k′a in worker wa and worker w′a preference profiles are ex-

changed for each a:

θ′wa
= ρwa(θwa), θ′w′a = ρwa(θw′a), and

• for any other w0 ∈ W\(WS⋃ W̌S), θw0 = θ′w0 .

Since firm f ’s preference list is unchanged, θ′f = θ∗, and firm f receives signals from the

set W̌S for profile θ′, this profile belongs to ΘB. Since firm −f strategies are anonymous for

any f ′ ∈ −f and for any WS
f ′
⊂ W , we have that

σf ′(ρ
f (θf ′), ρ

f (WS
f ′)) = ρf

(
σf ′(θf ′ ,WS

f ′)
)
.

Workers in WS and W̌S send their signals to the same firms among −f for both profiles θ

and θ′. Therefore, i.e. ρf (WS
f ′

) =WS
f ′
. Since θ′f = ρf (θf ) we have that

σf ′(θ
′
f ′ ,WS

f ′) = ρ
(
σf ′(θf ′ ,WS

f ′)
)

This means that the probability of firm f ′ making an offer to worker wa ∈ WS for profile θ

equals the probability of making an offer to a worker in w′a ∈ W̌S for profile θ′. Moreover,

since we exchange worker wa and w′a preference lists for profile θ′, whenever it is optimal for
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worker wa to accept firm f offer for profile θ, it is optimal for worker w′a to accept firm f ′s

offer for profile θ′.

Since firm types are independent the probability of firm f being matched when it makes

an offer to wa for profile θ equals the probability of firm f being matched when it makes

an offer to worker w′a for profile θ′. Therefore, for each θ ∈ ΘA there exists θ′ ∈ ΘB such

that the probability that firm f gets an offer from worker wa equals the probability that

firm f gets an offer from worker w′a. Moreover, profile θ′ is different for different θ by the

construction. Therefore, we have constructed a bijection between sets ΘA and ΘB. Since θ

and θ′ are equally probable, the likelihood that firm f ’s offer is accepted by worker wa in

the event A equals the probability that firm f ’s offer is accepted by worker w′a in the event

B.

An analagous construction works for the proof of the second statement that involves

workers in sets W\WS and W\W̌S. Therefore, the probability that worker w ∈ W\WS

accepts firm f offer conditional on event A equals the probability that worker w′ ∈ W\W̌S

accepts firm f offer conditional on event B. �

The statement of the proposition follows directly from the lemma. Since the probability

that the worker who has sent a signal to firm f accepts its offer is independent of the identity

of the worker, firm f prefers to make offers to its top workers among those who signaled

to it. Similarly, firm f prefers to make offers to its top workers among those who has not

signaled to it. Finally, firm f prefers to make all L offers. �

Proposition B6. Suppose workers send their signals to their top K firms. Then for any

strategy σf of firm f , there exists a cutoff strategy that provides f with a weakly higher

expected payoff than σf for any anonymous strategies σ−f of opponent firms −f .

Proof. Let us consider two sets of workers that firm f might receive WS and W̌S such that

WS=W̌S. Firm f makes an offer to workers Woffer =WS
offer

⋃
WNS

offer such thatWNS
offer ⊂

WS and WNS
offer ⊂ W\WS in equilibrium. Lemma B2 proves that identities of workers who

have sent a signal to firm f do not influence the probability that workers accept the firm’s

offer provided that the total number of signals firm f receives is constant. Therefore, if

workers WS
offer are amongW̌S, i.e. WS

offer ⊂ W̌S, it is still optimal for firm f to make its

offers to workers Woffer.

Let us again consider two sets of signals with the same power, i.e. WS and W̌S such

that WS=W̌S. However, these sets differ now in one worker: there exist w ∈ WS and

w′ ∈ W̌S such that WS\w=W̌S\w′. Moreover, firm f prefers worker w′ to worker w, i.e.

rankθf
(w′) > rankθf

(w). As a consequence of Lemma B2, if firm f makes an offer to worker
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w when it receives the set of signals WS in equilibrium, it should make an offer to w′ when

it receives the set of signals W̌S . Let us consider the case when sets WS and W̌S differ in

more than one worker. There are some workers in W̌0 ⊂ W̌S who are better than workers

in W0 ⊂ WS who receive an offer from firm f when it recieves signals from WS . Similar

argument shows that firm f should then optimally make an offer to W̌0 when it receives

signals from W̌S .

The two arguments presented above allows us to conclude that if firm −f use anonymous

strategies, firm f ’s optimal strategy could be represented as some cutoff strategy. �

Proof of Theorem B1.

The proof repeats the steps of the proof of Theorem 3. �

Lemma B3. Assume firms use cutoff strategies and workers send their signals to their top

K firms. Fix the strategies of firms −f as σ−f . Let firm f ’s strategy σf differ from σ′f only

in that σ′f has greater cutoffs (responds more to signals). Then we have

Eθ(m(σ′f , σ−f , θ)) ≥ Eθ(m(σf , σ−f , θ))

Eθ(πw(σ′f , σ−f , θ)) ≥ Eθ(πw(σf , σ−f , θ))

where m(·) denotes the total number of matches.

Proof. Let us consider firm f cutoff strategies σf and σ′f such that σ′f has weakly greater

cutoffs for profile θf :

σf (θf ,WS
f ) = WS

offer

⋃
WNS

offer

σ′f ′(θf ,WS
f ) = W̌S

offer

⋃
W̌NS

offer

In order to preserve anonymity firm f also should have the corresponding increase in cutoff

strategies for any profile of preferences and any set of received signals of the same power.

Firm f responds more to signals for profile θf means that WS
offer ⊂ W̌S

offer ⊂ WS
f and

W̌NS
offer⊂WNS

offer ⊂ W\WS
f . Proposition B5 shows that |WS

offer

⋃
WNS

offer| =|W̌S
offer

⋃
W̌NS

offer|=
L. We consider only the case when WS

offer\W̌S
offer = wS and W̌NS

offer\WNS
offer = wNS. More

general case directly follows.

We denoter two sets of preference profiles

Θ+ ≡ {θ ∈ Θ| m(σf , σ−f , θ) < m(σ′f , σ−f , θ)}
Θ− ≡ {θ ∈ Θ| m(σf , σ−f , θ) > m(σ′f , σ−f , θ)}
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For each profile θ from set Θ+ it must be the case that without firm f offer wNS has an

offer from another firm, and worker wS does not

m(σ′f , σ−f , θ)−m(σf , σ−f , θ) = 1. (B.3.1)

Similarly, if profile θ is from set Θ−, it must be the case that without firm f offer wS has an

offer from another firm and wNS does not

m(σ′f , σ−f , θ)−m(σf , σ−f , θ) = −1. (B.3.2)

We will now show that |Θ+| ≥ |Θ−|. Equations (B.3.1) and (B.3.2) along with the fact

that each θ ∈ Θ+ ∪Θ− happens equally likely will then be enough to prove the result.

If profile θ belongs to Θ−, without firm f ’s offer, worker wS has an offer from another

firm, name this firm f ′, and worker wNS does not. We construct function ψ : Θ → Θ as

follows. Let us considerLet ψ(θ) be the profile such that

• firms swap the positions of workers wNS and wS in their preference lists.

• if both wS and wNS send signals to firm f ′ for profile θ their preferences remain

unchanged

• if woker wS (wNS) sends her signal to firm f ′ but worker wNS (wS) does not for profile

θ, find a firm fy such that worker wS(wNS) does not send her signal to firm fy, and

worker wNS (wS)does. Exchange the positions of firm f ′ and firm fy in worker wNS

and worker wS preference lists.

Note that firm fy exists because each worker sends exactly K signals in any non-babling

symmetric equilibrium. We need the latter modification because each worker can send several

signals, and the fact that worker wSsends her signal to firm f does not guarantee that she

does not send another signal to firm f ′.

If profile θ belongs to Θ−, without firm f ’s offer, worker wS has an offer from firm f ′,

and worker wNS does not. Therefore, when preferences are ψ(θ), without firm f ’s offer the

following two statements should be true i) worker wNS must have another offer and ii)

worker wS cannot have another offer.

To see i), note that under θ, worker wS his outside offer comes from firm f ′. Under ψ(θ)

worker wNS take position of worker wS in firm f ′ preference list, and worker wNS sends a

signal to firm f ′ for profile ψ(θ) whenever worker wS sends a signal to firm f ′ for profile θ.

Anonymity of firm strategies guarantee that firm f ′ makes an offer to worker wNS.
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To see ii), suppose to the contrary that under ψ(θ), worker w does in fact receive an

outside offer from some firm f ′′. This cannot be firm f ′. Otherwise worker wNS should get

an offer from firm f ′ for profile θ by anonymity. This cannot be firm fy because worker wNS

would get an offer from firm fy for profile θ.

The main idea of the construction preserves the logic of Theorem 4. Specifically, if a

worker receives firm’s offer when she does not send a signal to the firm, she will definitely

receives an offer if she sends a signal to the firm.

From i) and ii), we have

θ ∈ Θ− ⇒ ψ(θ) ∈ Θ+.

Since function ψ is injective, we have |Θ+| ≥ |Θ−|.
In order to prove the second statement note that the expected number of matches of each

worker increases when firm f responds more to signals. Using the construction presented

above, one could show whenever worker w looses a match with firm f for profile θ (worker

w ranks firm f low) it is possible to construct profile θ′ when worker w obtains the match

(worker w ranks firm f high). The function that matches these profiles is again injective.

Moreover, worker w values more the match with high ranked firms. Therefore, ex-ante utility

of worker w increases when firm f responds more to signals. �

Proof of Proposition B2.

The result that the expected number of matches and the expected welfare of workers is

higher in the equilibrium with higher cutoffs is an immediate consequence of Lemma B3.

In order to show that firms have lower expected payoffs in the equilibrium with greater

cutoffs we first consider the following situation. We take some firm f such that its strategy

σf differs from σ′f only in that σ′f has weakly greater cutoffs. Let us consider some firm

f ′ ∈ −f . For each profile of preferences θf ′ and a set of signals WS, firm f ′ either makes an

offer to Sf ′(θf ′ ,WS) or Tf ′(θf ′ ,WS). If firm f responds more to signals this decreases the

probability that both Tf ′ and Sf ′ accept firm f ′ offer. Therefore, the expected payoff of firm

f ′ ∈ −f weakly decreases when firm f responds more to signals.

Eθ(πf ′(σf , σ−f , θ)) ≥ Eθ(πf ′(σ
′
f , σ−f , θ)).

Let us now consider two symmetric equilibria where firms play cutoff strategies σ̃ and σ̄

correspondingly such that σ̃ ≥ σ̄. From the definition of an equilibrium strategy we have:

Eθ[πf (σ̄f , σ̄−f , θ)] ≥ Eθ[πf (σ̃f , σ̄−f , θ)]

Using the result proved above we proceed with
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Eθ[πf (σ̃f , σ̄−f , θ)] ≥ Eθ[πf (σ̃f , σ̃−f , θ)]

Therefore

Eθ[πf (σ̄f , σ̄−f , θ)] ≥ Eθ[πf (σ̃f , σ̃−f , θ)]

�

Proof of Theorem B2.

Denote firm strategies in the unique equilibrium of the offer game with no signals as

σ0
F . Now consider a symmetric equilibrium of the offer game with signals where agents use

strategies (σF , σW ). If agents employ strategies (σ0
F , σW ), the expected number of matches

and the welfare of workers equal the corresponding parameters in the offer game with no

signals. Therefore, the result that the expected number of matches and the expected welfare

of workers in a symmetric equilibrium in the offer game with signals are weakly greater than

the corresponding parameters in the unique equilibrium of the offer game with no signals is a

consequence of sequential application of Lemma B3. The result for worker and firm welfare,

and the argument that the comparison is strict are analagous to those in Theorem 4. �
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