

Abstract - A clutter on a set X is a simple hypergraph with pairwise not-comparable hyperedges, hence in particular any set of Von Neumann-Morgenstern (VNM) -stable sets of an irreflexive simple digraph is a clutter. A clutter (X, E) is representable by VNM-stable sets or VNM if there exists an irreflexive simple digraph (X, Δ) such that E is a set of VNM-stable sets of (X, Δ). The class of VNM clutters on a set X is characterized.

Jel Classification: C70, C71

Keywords: VNM-stable sets, kernels, clutters, Sperner systems

Stefano Vannucci, Dipartimento di Economia Politica, Università degli Studi di Siena. e-mail:vannucci@unisi.it

Let $H = (X, \mathbf{E})$ be a simple hypergraph i.e. X is a set, and $\mathbf{E} \subseteq \mathcal{P}(X)$, where $\mathcal{P}(X)$ is the power set of X: X will also be referred to as the set of vertices of H, and \mathbf{E} as the set of hyperedges of H. Then, H is a *clutter* iff \mathbf{E} is a \subset -antichain, namely $E \not\subset E'$ for any two distinct $E, E' \in \mathbf{E}$. In particular the 'boundary' cases with $\mathbf{E} = \{\emptyset\}$, or $\mathbf{E} = \emptyset$ are allowed. [Notice that such a terminology is slightly at variance with that of other authors, who sometimes denote as 'simple hypergraphs', 'Sperner systems' or 'Sperner families' those clutters (X, \mathbf{E}) -as defined above- such that $\emptyset \notin \mathbf{E}$ and $\bigcup \mathbf{E} = X$: see e.g. Berge (1989)]. A simple digraph is a pair $D = (X, \Delta)$ where X is a set and $\Delta \subseteq X \times X$; D is *irreflexive* -or loopless- iff $(x, x) \notin \Delta$ for any $x \in X$. A Von Neumann-Morgenstern stable set (henceforth VNM-stable set) of an irreflexive simple digraph (X, Δ) is a set $S \subseteq X$ such that (i) internal stability i.e. $[(x, y) \notin \Delta$ for any $x, y \in S]$, and (ii) external stability i.e. [for any $z \in X \setminus S$ there exists $x \in S$ such that $(x, z) \in \Delta$] hold (see e.g. Von Neumann and Morgenstern (1953), Schmidt and Ströhlein (1985), and Ghoshal, Laskar and Pillone (1998)). Let $\mathcal{S}(X, \Delta)$ denote the set of all VNM-stable sets of (X, Δ) . Clearly, $S_1 \not\subseteq S_2$ for any two distinct $S_1, S_2 \in$ $\mathcal{S}(X,\Delta)$ (otherwise, properties (i) and (ii) of S_1 turn out to be mutually inconsistent). Thus, for any irreflexive simple digraph $(X, \Delta), (X, \mathcal{S}(X, \Delta))$ is a clutter. This observation motivates the following

Definition 1 (VNM clutters) A clutter $H = (X, \mathbf{E})$ is representable by VNM-stable sets or VNM iff there exists an irreflexive simple digraph (X, Δ) such that $\mathbf{E} \subseteq \mathcal{S}(X, \Delta)$.

In general, a clutter may or may not be VNM, as made clear by the following examples

Example 2 Consider $X = \{x, y, z\}$ with $x \neq y \neq z \neq x$, and $\mathbf{E} = \{\{x, y\}, \{x, z\}, \{y, z\}\}.$

It is easily checked that (X, \mathbf{E}) is a clutter, but not a VNM one. Indeed, suppose to the contrary that there exists an irreflexive simple digraph (X, Δ) such that $\mathbf{E} \subseteq \mathcal{S}(X, \Delta)$. Then, by property (ii) of VNM-stable sets as applied to $\{x, y\}, \Delta \cap \{(x, z), (y, z)\} \neq \emptyset$, which contradicts the assumption that both $\{x, z\}$ and $\{y, z\}$ satisfy property (i) of VNM-stable sets.

Example 3 Consider now X as defined above in the previous example, $\mathbf{E}' = \{\{x, y\}, \{x, z\}\}, and \Delta' = \{(y, z), (z, y)\}$. Clearly, $\mathbf{E}' = \mathcal{S}(X, \Delta')$ i.e. (X, \mathbf{E}') is indeed a VNM clutter.

Example 4 Let (X, \mathbf{E}) be a clutter such that $E \cap E' = \emptyset$ for any pair of distinct $E, E' \in \mathbf{E}$.

Then, define $\Delta = \{(x, y) \in X \times X : \{x, y\} \nsubseteq E \text{ for all } E \in \mathbf{E}\}.$

Clearly, for any $E \in \mathbf{E}$ and any $x, y \in E$, $(x, y) \notin \Delta$ by definition. Moreover, suppose there exists $z \in X \setminus E$ such that $(x, z) \notin \Delta$ for all $x \in E$. Then, for any $x \in E$ there exists $E' \in \mathbf{E}$ such that $\{x, z\} \subseteq E'$. Since by construction $E \neq E'$ and $E \cap E' \neq \emptyset$, the existence of such an E' contradicts our starting hypothesis. It follows that E is indeed a VNM-stable set of (X, Δ) . Therefore, (X, \mathbf{E}) is a VNM clutter.

Remark 5 (Kernel-representable clutters) Let (X, Δ) be an irreflexive simple digraph, and $\Delta^{-1} \subseteq X \times X$ the inverse of Δ , namely, for any $x, y \in X$, $(x, y) \in \Delta^{-1}$ iff $(y, x) \in \Delta$. Of course, (X, Δ^{-1}) is also an irreflexive simple digraph. A subset of vertices $K \subseteq X$ is a kernel of (X, Δ) - written $K \in \mathcal{K}(X, \Delta)$ - iff $K \in \mathcal{S}(X, \Delta^{-1})$. Now, consider any clutter (X, \mathbf{E}) and declare it kernel-representable (KR) iff there exists an irreflexive simple digraph such that $\mathbf{E} \subseteq \mathcal{K}(X, \Delta)$. It is immediately checked that, in view of the foregoing observations, a clutter is KR iff it is VNM.

The foregoing observations and examples raise the issue of identifying VNM clutters (in the same vein, a representation problem concerning finite lattices and stable matchings is addressed by Blair (1984)).

The aim of this note is in fact to provide a simple characterization of VNM clutters. In order to state our result in a most concise manner, let us first introduce some further auxiliary notions.

Definition 6 (Conjugation relation of a simple hypergraph) Let $H = (X, \mathbf{E})$ be a simple hypergraph. Then the conjugation relation $I_H \subseteq X \times X$ of H is defined as follows: for any $x, y \in X$, $(x, y) \in I_H$ iff there exists an $E \in \mathbf{E}$ such that $\{x, y\} \subseteq E$.

Definition 7 (Complete bigraph) Let Y, Z be two nonempty sets. A (simple, nontrivial) bigraph on (Y, Z) is a triple (Y, Z, R) where $R \subseteq Y \times Z$. A bigraph (Y, Z, R) is complete if $R = Y \times Z$.

Definition 8 Let (X, Δ) be a simple digraph. A Δ -basis of a complete bigraph is a $B \subseteq X$ such that $(B, X \setminus B, \Delta \cup \Delta^{-1})$ is a complete bigraph. **Definition 9** (Complete bigraph generator (CBG)) An hyperedge $E \in \mathbf{E}$ of a clutter $H = (X, \mathbf{E})$ is a complete bigraph generator iff it is an I_H -basis of a complete bigraph.

A clutter $H = (X, \mathbf{E})$ is *CBG-free* iff no $E \in \mathbf{E}$ is a complete bigraph generator. Moreover, clutter H is *conjugation-saturated* iff it is CBG-free and $I_H \neq I_{H'}$ for any CBG-free clutter $H' = (X, \mathbf{E}')$ such that $\mathbf{E} \subset \mathbf{E}'$.

Then, we have the following

Theorem 10 Let $H = (X, \mathbf{E})$ be a clutter. Then, H is VNM iff it is CBG-free.

Proof. Observe that, by definition, H is not CBG iff for any $E \in \mathbf{E}$ and any $z \in X \setminus E$ there exists $x_z \in E$ such that $(z, x_z) \notin I_H$.

Then, suppose $H = (X, \mathbf{E})$ is VNM, and let (X, Δ) be an irreflexive simple digraph such that $\mathbf{E} \subseteq \mathcal{S}(X, \Delta)$. Now, assume that there exist an hyperedge $E \in \mathbf{E}$ and a vertex $z \in X \setminus E$ such that $(z, x) \in I_H$ for all $x \in E$. Thus, for any $x \in E$ there exists an $E_{zx} \in \mathbf{E}$ such that $\{x, z\} \subseteq E_{zx}$ whence, by internal stability of E_{zx} , $(x, z) \notin \Delta$: but then, external stability of E is violated. It follows that H is not VNM, a contradiction.

Conversely, suppose that $H = (X, \mathbf{E})$ is such that for any $E \in \mathbf{E}$ and any $z \in X \setminus E$ there exists $x_z \in E$ with $(z, x_z) \notin I_H$. Then, define $\Delta^H \subseteq X \times X$ by the following rule: for any $x, y \in X$, $\{(x, y), (y, x)\} \subseteq \Delta^H$ if $(x, y) \notin I_H$, and $\{(x, y), (y, x)\} \cap \Delta^H = \emptyset$ if $(x, y) \in I_H$: notice that (X, Δ^H) is irreflexive. Therefore, for any $E \in \mathbf{E}$ and any $x, y \in E$, $(x, y) \notin I_H$ hence $(x, y) \notin \Delta^H$, and E satisfies internal stability with respect to (X, Δ^H) . Moreover, by hypothesis, for any $z \in X \setminus E$ there exists $x_z \in E$ with $(z, x_z) \notin I_H$ i.e. in particular $(x_z, z) \in \Delta^H$, by definition of Δ , hence E also satisfies external stability with respect to (X, Δ^H) as required.

Remark 11 Notice that, as it is easily checked, the trivial clutters $(\emptyset, \{\emptyset\})$ and $(X, \{\emptyset\})$ with a nonempty X are both VNM. Moreover, it is worth emphasizing that the foregoing Theorem also implies that clutter (X, \mathbf{E}) of Example 2 is not VNM because it is clearly not CBG-free (indeed, each of its hyperedges is a complete bigraph generator). On the contrary, its odd-ciclycity is not key to its being not VNM. To see this, consider clutter $(\{x, y, z, u, v\}, \mathbf{E})$ with $\mathbf{E} = \{\{x, y\}, \{y, z\}, \{z, u\}, \{u, v\}, \{v, x\}\},\$

which is also odd-cyclic (namely, there exist a positive integer k, and 2k + 1 distinct hyperedges $E_i \in \mathbf{E}$ and vertices x_i , i = 1, ..., 2k + 1 such

that $\{x_i, x_{i+1}\} \subseteq E_i$, i = 1, ..., 2k and $\{x_1, x_{2k+1}\} \subseteq E_{2k+1}$). However, $(\{x, y, z, u, v\}, \mathbf{E})$ is CBG-free hence by Theorem 10 is indeed a VNM clutter: to confirm the latter statement it is only to be checked that there is no $E_i \in \mathbf{E}$ comprising one of the following pairs: $\{x, z\}, \{x, u\}, \{y, v\}, \{y, u\}, \{z, v\}$.

Remark 12 In view of Theorem 10 it is easily checked that a remarkable class of clutters which are not VNM is provided by (nontrivial) Steiner triple systems i.e. clutters $H = (X, \mathbf{E})$ such that $\#X \ge 4$, $\mathbf{E} \subseteq \{Y \subseteq X : \#Y = 3\}$ and for any two distinct $x, y \in X$ there exists precisely one $E \in \mathbf{E}$ with $\{x, y\} \subseteq E$. Indeed, any hyperedge E of such a clutter is a CBG: to check the latter statement, take any $E \in \mathbf{E}$ and observe that there exist $x \in X \setminus E$ and $y \in E$, and for any such x, y there exists by assumption an $E' \in \mathbf{E}$ with $\{x, y\} \subseteq E'$.

Let us denote a clutter $H = (X, \mathbf{E})$ as (strictly) *VNM-complete* if it is representable as the set of all VNM-stable sets of (X, Δ^H) i.e. $\mathbf{E} = \mathcal{S}(X, \Delta^H)$, where $\Delta^H = (\bigcup \mathbf{E} \times \bigcup \mathbf{E}) \smallsetminus I_H$ as defined above in the proof of Theorem 10. Then, we have the following straightforward corollary of the previous theorem, namely

Corollary 13 A clutter $H = (X, \mathbf{E})$ is VNM-complete iff it is conjugationsaturated. In particular, that requires $\bigcup \mathbf{E} = X$.

Proof. Assume that $H = (X, \mathbf{E})$ is VNM-complete and there exists $\mathbf{E}' \supset \mathbf{E}$ such that $H' = (X, \mathbf{E}')$ is CBG-free and $I_H = I_{H'}$. But then, by definition $\mathcal{S}(X, \Delta^{H'}) = \mathcal{S}(X, \Delta^{H})$, and by Theorem 10, $\mathbf{E}' \subseteq \mathcal{S}(X, \Delta^{H'}) = \mathcal{S}(X, \Delta^{H})$, a contradiction since by hypothesis $\mathbf{E} = \mathcal{S}(X, \Delta^{H})$.

Conversely, let $H = (X, \mathbf{E})$ be conjugation-saturated, and suppose that it is not VNM-complete, namely $\mathbf{E} \subset \mathcal{S}(X, \Delta^H)$. Then, by Theorem 10 there exists a CBG-free $H' = (X, \mathbf{E}')$ such that $\mathbf{E} \subset \mathbf{E}' = \mathcal{S}(X, \Delta^H)$. Since H is conjugation-saturated, $I_H \neq I_{H'}$ hence by definition $I_H \subset I_{H'}$. But then, there exist $E' \in \mathcal{S}(X, \Delta^H) \setminus \mathbf{E}$ and $x, y \in E' \setminus \bigcup \mathbf{E}$ whence -by definition of $\Delta^H \cdot x \Delta^H y$ which contradicts internal stability of E' with respect to (X, Δ^H) .

Finally, observe that if $X \setminus \bigcup \mathbf{E} \neq \emptyset$ then $(x, y) \notin I_H$ for any $x \in X \setminus \bigcup \mathbf{E}$ and $y \in X \setminus \{x\}$ whence by definition $\{x\} \in \mathcal{S}(X, \Delta^H) \setminus \mathbf{E}$ and thus (X, \mathbf{E}) is not VNM-complete. \blacksquare As an example, observe that clutter $H = (\{x, y, z\}, \{\{x, y\}\})$ where $x \neq y \neq z \neq x$ is clearly CBG-free but *not* conjugation-saturated since clutter $H' = (\{x, y, z\}, \{\{x, y\}, \{z\}\})$ is such that $I_{H'} = \{(x, y), (y, x)\} = I_H$. Thus, the foregoing Corollary entails that H' is not VNM-complete.

On the contrary, for any set X with $\#X \ge 3$ and any $x \in X$ and positive integer 1 < r < #X take a 'minimal' r-uniform star-clutter with centre x, i.e. a clutter $H_x^* = (X, \mathbf{E})$ such that $\bigcup \mathbf{E} = X$, #E = r for every $E \in \mathbf{E}$, and for any two distinct $E, E' \in \mathbf{E}$, $E \cap E' = \{x\}$: by construction, H_x^* is CBG-free since for any two distinct $E, E' \in \mathbf{E}$ and any $y \in E \setminus \{x\}$, $z \in E' \setminus \{x\}$ it turns out that $\{(y, z), (z, y)\} \cap I_{H_x^*} = \emptyset$. Moreover, H_x^* is also a conjugation-saturated clutter since for any CBG-free clutter $H' = (X, \mathbf{E}')$ with $\mathbf{E}' \supset \mathbf{E}$, and any $E' \in \mathbf{E}' \setminus \mathbf{E}$ there exist two distinct $E_1, E_2 \in \mathbf{E}$ and $y \in E_1 \setminus E_2, z \in E_2 \setminus E_1$ such that $\{y, z\} \subseteq E'$, hence $\{(y, z), (z, y)\} \subseteq I_{H'}$ while $\{(y, z), (z, y)\} \cap I_{H_x^*} = \emptyset$ by construction of H_x^* . Therefore, Corollary 13 implies that H_x^* is indeed VNM-complete.

References

- [1] Berge C. (1989): *Hypergraphs*. North Holland: Amsterdam.
- [2] Blair C. (1984): Every finite distributive lattice is a set of stable matchings, Journal of Combinatorial Theory (Series A) 37, 353-356.
- [3] Ghoshal J., Laskar R., Pillone D. (1998): Topics on domination in directed graphs, in T.W. Haynes, S.T. Hedetniemi, P.J. Slater (eds.): Domination in Graphs. Advanced Topics. M.Dekker: New York.
- [4] Schmidt G., Ströhlein T. (1985): On kernels of graphs and solutions of games: a synopsis based on relations and fixpoints, SIAM Journal of Algebraic and Discrete Methods 6, 54-65.
- [5] Von Neumann J., Morgenstern O. (1953): Theory of Games and Economic Behavior (third edition). Princeton University Press: Princeton.