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Gestion décentralisée optimale d’une ressource naturelle  

Résumé 

Nous construisons un mécanisme économique pour décentraliser en équilibre de 
Nash une trajectoire optimale de consommation d’une ressource naturelle. Pour 
faciliter l’exposé, l’analyse est conduite dans le cadre formel initialement 
introduit par Levhari et Mirman (1980). Ceci nous permet de calculer 
explicitement les trajectoires de consommation de la ressource, associées au 
régime de libre-accès, à une gestion coopérative, et à l'équilibre de Nash (en 
stratégies Markoviennes) du jeu aux différences induit par le mécanisme 
construit. 

Mots-clés : Ressource naturelle; Guerre de la pêche ; Jeu aux differences ; 
Mécanisme incitatif  

 
 

Optimal decentralized management of a natural resource 
 

Abstract  

We construct an economic mechanism to realize in Nash equilibrium an optimal 
consumption time path of a natural resource. For exposition convenience, the 
analysis is conducted within the model initiated by Levhari and Mirman (1980). 
This framework allows us to explicitly calculate the consumption time paths of the 
resource, associated with an open-access regime, with a cooperative management 
and with a (stationary Markovian) Nash equilibrium of the di¤erence game 
induced by the proposed mechanism. 
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1 Introduction.

We build on the model initiated by Levhari and Mirman (1980). We thus
consider a fishery which is exploited by several countries. Following the standard
analysis, we first compare the unregulated open-access equilibrium with the
cooperative solution. We derive the corresponding consumption paths of the
fish population and restate a well-known result in the literature, namely, that
the unregulated open-access equilibrium leads to overfishing, compared with the
cooperative solution.
We then imagine that the fishery is under the juridiction of a regulator, hav-

ing in mind the European Union’s Common Fishery Policy. Many instruments
can be used to regulate the fishery, including entry limitation, licensing, taxes
on catches or individual transferable quotas. In theory, they all can implement
an optimal consumption path of the fish population (Clark, 1990). In reality,
the amount of information required to determine the optimal policy renders this
approach to fisheries management impractible (Arnason, 1990).
Arnason (1990) provides a original scheme which could overcome this diffi -

culty. It is based on a system of Individual Transferable Share Quota (ITSQ).
An ITSQ specifies a given share in the Total Allowable Catch (TAC). Assuming
perfect competition and rational expectations, Arnason (1990) gives a condition
about the fishing technology, under which the regulator can determine, at each
point of time, the optimal TAC, with a minimum information. Formally, the
prevailing market price of an ITSQ supplies all relevant information and the
optimal TAC should be chosen so as to maximize it, at each point of time.
In this paper, following Arnason (1990), we also supply an economic mecha-

nism capable of implementing an optimal consumption path of a resource, with a
minimum information. Under this mechanism, each participant decides both his
own consumption and that of the other participants. Individualized prices are
set by the participants themselves. In equilibrium, the prevailing price system
reflects the participants’ expected future rents, at each point of time. More-
over, each participant pays his consumption of the resource at a price equal
to the sum of the others’individualized prices. It follows that, in equilibrium,
the participants internalize the external opportunity cost of their consumption.
Finally, to ensure that the mechanism is balanced, each participant is paid his
individualized price, on each unit of the resource consumed by the others.
The proposed economic mechanism improves Arnason (1990) in several di-

rections. First, our implementation result is true, provided that at least three
countries fish the water, whereas Arnason (1990) relies on the assumption of a
perfectly competitive ITSQ market. Second, our implementation result can be
shown to be true under a large class of fishing technologies, whereas Arnason
(1990) is restricted to fishing technologies such that resource rents and profits
are equal within operating fishers (assumption 2). Third, under the mechanism
we propose, the regulator’s role is limited to enforcing the mechanism, whereas
Arnason (1990) requires that the quota authority adjusts the TAC, at each point
of time, so as to maximize the market value of ITSQ, but is silent about the
procedure to be used.
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To emphasize our contribution to the literature, it seems useful to say that
this paper stands at the junction between natural resource economics and im-
plementation theory (see Jackson, 2001, for a recent survey). Precisely, we use
methods from the mechanism design literature to manage a dynamic external-
ity. We thus provide an implementation result in a difference game. To the best
of our knowledge, this has never been done.
The rest of the paper is organized as follows. Section 2 sets the economic

model, based on Levhari and Mirman (1980). We derive and compare the con-
sumption paths arising in the situation of unregulated open-access to the fishery
and in the situation where the countries cooperate. In section 3, we construct
our economic mechanism to regulate the fishery and derive some of its proper-
ties. In section 4, we study the set of Nash equilibria of the associated difference
game and show our implementation result. Section 5 concludes and discusses
several generalizations.

2 The model.

Consider the standard model of fishery, as initiated by Levhari and Mirman
(1980). Let x (t) be the quantity of fish at time t. Suppose that, if uniterrupted,
the quantity of fish would grow according to the biological rule:

x (t+ 1) = x (t)
α , 0 < α ≤ 1.

Thus one easily observes that x (t) = 1, for all t, is a steady state of the fish
population.
Suppose, however, that n countries fish the waters. Let ci be the present

consumption of country i and assume that country i has a utility function ui =
ln (ci) for present consumption. Let 0 < δ < 1 be the common discount factor.
Suppose, moreover, that the objective of each country is to maximize the sum
of the discounted utility of fish.
A consumption path C gives a consumption ci (t), for all i and all t. It is

said to be feasible if:

x (0) = x0,
x (t+ 1) = [x (t)−

∑n
i=1 ci (t)]

α , t = 0, 1, 2, ...,
ci (t) ≥ 0, i = 1, ..., n, t = 0, 1, 2, ...,∑n
i=1 ci (t) ≤ x (t) , t = 0, 1, 2, ...,

where x0 is the initial state of the fish population.

2.1 The unregulated open-access fishery.

The behavior of the countries under open-access is analysed here. This situation
is formalized as a difference game (Clemhout and Wan, 1979), i.e., a discrete-
time analog of a differential game (Levhari et Mirman, 1980). Each country has
an interest in the long-run effect of its present catch. Moreover, each country
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must take the catch of the others countries into consideration when deciding on
his own catch. The former consideration is accounted for by using a dynamic
programming argument, and the latter by using the concept of Nash equilibrium.
Precisely, following Levhari et Mirman(1980), we compute a particular subgame-
perfect equilibrium in which players’strategies depend only on the current stock
of fish (called stationary Markovian strategies). For the sake of completeness,
we explicitly derive all results, although they can be found in Kwon (2006).
A (stationary Markovian) strategy of country i is a function si : R+ → R+,

which associates states x of the fish stock with consumptions ci = si (x) of
player i. A strategic profile is a vector s = (si)

n
i=1. It is said to be feasible if it

satisfies, for all x, si (x) ≥ 0, for all i, and
∑n
i=1 si (x) ≤ x 1 .

A (feasible) strategic profile s induces a unique consumption path C, as
follows. The initial state is x (0) = x0. In period 0, countries’ consump-
tions are ci (0) = si (x (0)), for all i. Then, at time t = 1, the state is
x (1) = [x (0)−

∑n
i=1 ci (0)]

α. From this, in period 1, countries consumptions
are ci (1) = si (x (1)), for all i. And so on...
Given any initial state κ, let wi (s,κ) be the sum of player i’s discounted

utility, along the consumption path C, induced by the strategic profile s:

wi (s,κ) =
∑∞
t=0 δ

t ln (ci (t)) , (1)

where: x (0) = κ,
x (t+ 1) = [x (t)−

∑n
i=1 ci (t)]

α , t = 0, 1, 2, ...,
ci (t) = si (x (t)) , i = 1, ..., n, t = 0, 1, 2, ....

A strategic profile s∗ is said to be a (stationary Markovian) Nash equilibrium
if it is feasible and if, for all κ:

wi (s
∗,κ) ≥ wi ((s∗/si) ,κ) , for all i and si,

where (s∗/si) =
(
s∗1, ..., s

∗
i−1, si, s

∗
i+1, ..., s

∗
n

)
is any (feasible) strategic profile.

Proposition 1. Let 0 < β ≡ αδ/ (n (1− αδ) + αδ) < 1. The strategic
profile s∗ = (s∗i )

n
i=1, where, for all i and all x, s

∗
i (x) = (1/n) (1− β)x, is a

(stationary Markovian) Nash equilibrium.

Proof. It is clear that s∗ is feasible, as 0 < β < 1.
Denote x∗ (t), for all t, the time path of the fish population, induced by the

strategic profile s∗, given the initial state κ 2 . Let λ (t) = α
1−α (1− α

t), for all
t. By recurrence, we show that:

x∗ (t) = βλ(t)κα
t

, t = 0, 1, 2, ....

Indeed, the assumption is true for t = 0 (i.e., x∗ (0) = κ). Assume it is true
at time t. By definition of s∗, in period t, the total catch is

∑n
i=1 s

∗
i (x
∗ (t)) =

1Feasibility is not a trivial problem in difference games (Clemhout and Wan, 1979). The
litterature on fishery largely disregards this problem.

2For notation ease, we choose here not to explicitly write x∗ (t) as function of κ.
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(1− β)x∗ (t). It follows that 3 :

x (t+ 1) = [x∗ (t)−
∑n
i=1 s

∗
i (x
∗ (t))]

α

=
[
βλ(t)+1κα

t
]α

= βλ(t+1)κα
t+1

= x∗ (t+ 1) ,

which proves that the assumption remains true at time t+ 1.
The corresponding consumption path C∗ is:

c∗i (t) = s∗i (x
∗ (t)) = (1/n) (1− β)x∗ (t) , i = 1, ..., n, t = 0, 1, 2, ....

Substituting into (1), we obtain:

wi (s
∗,κ) =

∑∞
t=0 δ

t ln (c∗i (t))

=
(1− αδ) ln ((1/n) (1− β)) + αδ ln (β) + (1− δ) ln (κ)

(1− δ) (1− αδ) . (2)

For all κ, denote vi (κ) = wi (s
∗,κ). By theorem (Sundaram, 1996, Th.

12.15), the strategy s∗i is a best-reply of player i if, and only if, for all κ, vi (κ)
satisfies the Bellman equation:

vi (κ) = max
ci∈R+

{
ln (ci) + δvi

([
κ − ci −

∑
j 6=i s

∗
j (κ)

]α)}
. (3)

The derivative of (2) is ∂wi
∂κ (s

∗,κ) = v′i (κ) = 1
(1−αδ)κ . From this, the RHS

of (3) is maximized if, and only if, ci satisfies the first-order condition:

1

ci
− αδ

(1− αδ)
(
κ − ci −

∑
j 6=i s

∗
j (κ)

) = 0.
Using s∗j (κ) = (1/n) (1− β)κ, for all j, we can show that:

ci = (1/n) (1− β)κ, for all κ.

Substituting into the RHS of (3), we finally obtain:

max
ci∈R+

{
ln (ci) + δvi

([
κ − ci −

∑
j 6=i π

∗
j (κ)

]α)}
= ln ((1/n) (1− β)κ) + δVi ([βκ]α)
= vi (κ) .

This completes our proof. �
3Note that λ (t+ 1) = α (λ (t) + 1).
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2.2 The optimal policy.

The behavior of the countries assuming a cooperative management of the fishery
is analysed here. Precisely, we suppose that a central planner determines each
country’s catch rate, in order to maximize the discounted sum of all countries’
utilities (Levhari et Mirman, 1980). For the sake of completeness, we explicitly
derive all results, although they can be found in Kwon (2006).
The social objective is to find a consumption path C, in order to maximize

the discounted sum of all countries’utilities:∑∞
t=0 δ

t [
∑n
i=1 ln (ci (t))] .

A solution to this problem is said to be optimal.
Anticipating on future needs, it is convenient to derive an optimal consump-

tion path, by means of dynamic programming.
A policy π = (πi)

n
i=1 is a sequence of n functions πi : R+ → R+, each of

which associates states x of the fish stock with country i’s consumption ci =
πi (x). It is said to be feasible if, for all x, πi (x) ≥ 0, for all i, and

∑n
i=1 πi (x) ≤

x.
A policy π determines a unique consumption path C, from any initial state

κ. Let W (π,κ) be the associated sum of all players’discounted utility:

W (π,κ) =
∑∞
t=0 δ

t [
∑n
i=1 ln (ci (t))] , (4)

where: x (0) = κ,
x (t+ 1) = [x (t)−

∑n
i=1 ci (t)]

α , t = 0, 1, 2, ...,
ci (t) = πi (x (t)) , i = 1, ..., n, t = 0, 1, 2, ....

A policy π◦ is optimal if it is feasible and if, for all κ,W (π◦,κ) ≥W (π,κ),
where π is any feasible policy.

Proposition 2. The policy π◦ = (πi
◦)
n
i=1, where, for all i and all x,

πi
◦ (x) = (1/n) (1− αδ)x, is optimal.

Proof. It is clear that π◦ is feasible, as 0 < αδ < 1.
Denote x◦ (t), for all t, the time path of the fish population, induced by the

policy π◦, given the initial state κ 4 . Adapting the proof of proposition 1, we
can show that:

x◦ (t) = (αδ)
λ(t) κα

t

, t = 0, 1, 2, ....

The associated consumption path C◦ is:

ci
◦ (t) = πi

◦ (x◦ (t)) = (1/n) (1− αδ)x◦ (t) , i = 1, ..., n, t = 0, 1, 2, ....

Substituting into (4), we get the value function:

W (π◦,κ) =
∑∞
t=0 δ

t [
∑n
i=1 ln (ci

◦ (t))]

= n

[
(1− αδ) ln ((1/n) (1− αδ)) + αδ ln (αδ) + (1− δ) ln (κ)

(1− δ) (1− αδ)

]
.(5)

4For the sake of notation ease, we do not explicitly write x◦ (t) as function of κ.
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For all κ, denote V (κ) = W (π◦,κ). By theorem (Sundaram, 1996, Th.
12.15), the policy π◦ is optimal if, and only if, for all κ, V (κ) satisfies the
Bellman equation:

V (κ) = max
(ci)

n
i=1∈Rn+

{∑n
i=1 ln (ci) + δV

(
[κ −

∑n
i=1 ci]

α)} , (6)

subject to:
∑n
i=1 ci ≤ κ.

The derivative of (5) is ∂
∂κW (π◦,κ) = V ′ (κ) = n

(1−αδ)κ . Thus, the RHS of
(6) is maximized if, and only if, (ci)

n
i=1 satisfies the first-order conditions:

1

ci
− αδn

(1− αδ) (κ −
∑n
i=1 ci)

= 0, i = 1, ..., n,

which imply:
(ci)

n
i=1 = ((1/n) (1− αδ)κ)

n
i=1 , for all κ.

Substituting into the RHS of (6), we finally obtain:

max
(ci)

n
i=1

{∑n
i=1 ln (ci) + δV

(
[κ −

∑n
i=1 ci]

α)} ,
=
∑n
i=1 ln ((1/n) (1− αδ)κ) + δV ([αδκ]

α
) ,

= V (κ) .

This proves the proposition. �

2.3 Social consequences of open-access.

As a corollary of propositions 1 and 2, we verify a well-known result in the lit-
terature (Gordon, 1954; Levhari and Mirman, 1980), namely that the situation
of unregulated open-access to the fishery leads to overfishing, as compared with
the optimal policy.
Indeed, from proposition 1, under open-access, all countries catch (1− β) %

of the current stock of the resource, in each period, with β = αδ/ (n (1− αδ) + αδ).
From proposition 2, it is optimal to harvest (1− αδ) % of the current stock of
the resource, in each period. As β is decreasing in n and is equal to αδ when
n = 1, the open-access situation always induces an excessive catch rate, as
compared with the optimum. Moreover, overfishing increases in the number of
countries.

3 Fishery regulation.

In this section,we imagine that the fishery is under the juridiction of a regulator,
having in mind the European Union’s Common Fisheries Policy. Following
Arnason (1990), we argue that the huge information required to manage fisheries
optimally, by means of standard regulatory instruments, appeals for alternative
management schemes. We review one such scheme, due to Arnason (1990), and
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discuss its weacknesses. We then provide a new management scheme, which
consists in an economic mechanism, to be used repeatedly to regulate the fishery.
We state its properties and define the (stationary Markovian) Nash equilibria
of the associated difference game.

3.1 Minimum information management schemes.

Many instruments are available to regulate fisheries, including entry limitation,
licensing, taxes on catches or individual transferable quotas. In principle, given
certain conditions, all these management measures can be shown to be capable
of restoring effi ciency in open-access fisheries (Clark, 1990).
In reality, the data required to determine the optimal policy greatly exceeds

the capacity of any resource manager, rendering that approach to the fisheries
management problem impracticable in most cases (Arnason, 1990). Moreover,
arguing that all information is already available within the fishing industry,
Arnason (1990) also explains that most of the work necessary for the authority
to determine the optimal policy will merely constitute a duplication of work
already carried out by private agents in the fishery.
Arnason (1990) thus proposes the following alternative scheme. A quota

autority initially allocates Individual and Transferable Share Quotas (ITSQ)
and decides the Total Allowable Catch (TAC) at each point of time. A share
quota allows the holder the stated share in the TAC in perpetuity.
Arnason (1990) shows this framework can realize an optimal utilization of

the resource with minimum information. If the market for ITSQ is perfectly
competitive, the TAC will always be fished in the most effi cient manner (lemma
1). Thus, the quota authority can ensure optimal utilization of the fish stock by
selecting the appropriate time path of TAC. Moreover, if the participants to the
market have perfect information and formulate rational expectations about the
current and future conditions in the fishery (assumption 1), the prevailing ITSQ
market price is equal to the present value of expected future rents generated in
the fishery (proposition 1). Thus, under an assumption about technologies, such
that resource rents and profits are equivalent within operating fishers (assump-
tion 2), the quota authority can ensure optimal utilization of the resource by
adjusting current TAC so as to maximize the market value of ITSQ at each
point of time (proposition 2).
However, the system of share quotas proposed by Arnason (1990) has sev-

eral shortcomings. First, proposition 1 relies on the assumption of a perfectly
competitive market for ITSQ. Although Arnason (1990) does not discuss the
converse assumption, one can easily foresee that proposition 1 may fail in this
case. Indeed, if the participants anticipate that the quota authority sets the
TAC depending on the prevailing market price of an ITSQ, they have an incen-
tive to manipulate it. Thus, the equilibrium price may not reveal the present
value of expected future rents generated in the fishery. Second, proposition 2
may also not be true if assumptions 1 and 2 above do not hold. Arnason (1990)
himself discusses this issue. He argues, however, that condition 1 is natural if
one seeks for a market-based management and condition 2 is not that restrictive.
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Third, Arnason (1990) is silent about the procedure the quota authority could
adopt to adjust the TAC, at each point of time, so as to maximize the market
value of ITSQ. Typically, one imagines some iterative procedure which, under
the assumption of immediate adjustement of the market to an equilibrium (Ar-
nason, 1990), is presumed to converge to the relevant TAC. However, Arnason
should have described more precisely the kind of procedure he has in mind.

3.2 The new mechanism.

A mechanism is a pair (M, g), consisting of a message space M ≡ ×ni=1Mi and
an outcome function g. Under the mechanism, each participant i is asked to
announce a message mi in Mi. The outcome function g is a mapping from M
into Rn+ × Rn, which translates joint messages m = (mi)

n
i=1 into consumptions

(Ci (m))
n
i=1 and transfers (Ti (m))

n
i=1 to be implemented by the participants.

The specific mechanism used below is as follows.
We let Mi ≡ Rn × Rn+, for all i. A generic message of agent i is denoted

mi =
(
mC
i ,m

P
i

)
= ((Cik)

n
k=1 , (Pik)

n
k=1).

The component Cik is interpreted as an increment of agent k’s fish con-
sumption that agent i is willing. (A negative Cik means agent i wants agent
k to reduce his consumption by an amount −Cik.) Likewise, the component
Cii is an increment that agent i is willing for his own fish consumption. The
component Pik is a compensatory price that agent i is proposing to pay to agent
k per fish consumed by himself. Finally, Pii is a compensatory price that agent
i is willing to receive per fish consumed by the other agents.
Agent i’s consumption is given by:

Ci (m) = max {0,
∑n
k=1 Cki} . (7)

In order to obtain the transfer to be paid by agent i, several steps are needed.
To begin with, for all k, rearrange the sequence (Pik)

n
i=1 in ascending order.

In case where Pik = Pjk, for some i and j, rearrange in ascending order of
indexes. Then, define the agent k’s personalized price Pk (m) as the N -th term
of the ordered sequence, with N = n/2, if n is even, and N = (n+ 1) /2, if n is
odd.
Finally, agent i’s transfer is given by:

Ti (m) =
∑
j 6=i Pj (m)Ci (m)− Pi (m)

∑
j 6=i Cj (m) . (8)

The following properties of the mechanism will prove to be useful below.

Property 1. For all m ∈M and all (ck)
n
k=1 ∈ Rn+, each participant i can re-

port a message m′i such that (Ck (m/m
′
i))

n
k=1 = (ck)

n
k=1 and (Pk (m/m

′
i))

n
k=1 =

(Pk (m))
n
k=1.

Property 1 means that under the mechanism, each participant is able to
decide the consumptions of everyone, without modifying the current system of
individualized prices.
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Proof. Pick m ∈ M and (ck)
n
k=1 ∈ Rn+. Consider any agent i. Let m′i =(

(C ′ik)
n
k=1 , (P

′
ik)

n
k=1

)
be such that, for all k, C ′ik = ck −

∑
j 6=i Cjk and P

′
ik =

Pik. It is immediate that Ck (m/m′i) = max
{
0, C ′ik +

∑
j 6=i Cjk

}
= ck and

Pk (m/m
′
i) = Pk (m), for all k. �

Proprerty 2. Assume that n ≥ 3. Given any (pk)nk=1 ∈ Rn+, let m ∈ M
be any joint message such that mP

i = (pk)
n
k=1, for all i. Then, (Pk (m))

n
k=1 =

(Pk (m/m
′
i))

n
k=1 = (pk)

n
k=1, for all i and m

′
i ∈Mi.

Property 2 states that, whenever all agents announce the same system of
individualized prices, then the mechanism implements it and no unilateral de-
viation by a single agent can modify it. (It is equivalent to say that, whenever
all agents but one report the same price system, then the mechanism enforces
it.)

Proof. Let (pk)
n
k=1 ∈ Rn+. Let m ∈ M be such that mp

i = (Pik)
n
k=1 =

(pk)
n
k=1, for all i.
By definition, for all k, Pk (m) is the N -th term of the sequence (Pik)

n
i=1,

rearranged in ascending order of values, and then of indexes. Since (Pik)
n
i=1 =

(pk, ..., pk), we have Pk (m) = pk.
Now, consider any i andm′i ∈Mi. Denotem

p′
i = (P

′
ik)

n
k=1 the associated vec-

tor of personalized prices announced by i. By definition, for all k, Pk (m/m′i) is
the N -th term of the sequence

(
P1k, ..., P(i−1)k, P

′
ik, P(i+1)k..., Pnk

)
, rearranged

in ascending order of values, and then of indexes. The ordered sequence is:

(P ′ik, pk, ..., pk) , if P
′
ik < pk,

(pk, ..., pk) , if P ′ik = pk,

(pk, ..., pk, P
′
ik) , if pk < P ′ik.

In any case, given that n ≥ 3, we obtain Pk (m/m′i) = pk. �

Property 3. For all m ∈M ,
∑n
i=1 Ti (m) = 0.

In other words, the mechanism (M, g) is balanced.

Proof. For all m ∈ M , notice that the transfer Ti (m) can also be written
as:

Ti (m) =
∑n
j=1 Pj (m)Ci (m)− Pi (m)

∑n
j=1 Cj (m) .

Summing over i, one directly obtains:∑n
i=1 Ti (m) = 0,

proving that the mechanism (M, g) is balanced. �

Remark 1. As defined above, the mechanism (M, g) is not always feasible.
Precisely, given a current state x of the fish population, there exists m in M
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such that
∑n
i=1 Ci (m) > x. However, if we assume that the regulator observes

the current stock, this problem can be dealt with, provided that the consump-
tion vector (Ci (m))

k
i=1 is defined as the solution to the following minimization

problem:

min
(Ci)

n
i=1

∑n
i=1 (Ci −

∑n
k=1 Cki)

2

subject to: Ci ≥ 0, i = 1, ..., n,∑n
i=1 Ci ≤ x.

Note that the results below would still be true under this amended definition,
with slight modifications in our proofs. However, this would request a more
active role of the regulator, who must then observe, at each point of time, the
current state of the resource.

3.3 Regulated equilibrium.

Suppose that the fishery is regulated by using repeatedly the mechanism defined
above. With the dynamic of the fish population, this defines a difference game
(Clemhout and Wan, 1979). We formally define here the (stationary Markovian)
Nash equilibria of this difference game.
Consider the difference game induced by (M, g).
A (stationary Markovian) strategy of country i is a function σi : R+ →Mi,

which associates states x of the fish stock with messages mi = σi (x) of player
i. A strategy profile is denoted σ = (σi)

n
i=1. It is said to be feasible if, for all

x, Ci (σ (x)) ≥ 0, for all i, and
∑n
i=1 Ci (σ (x)) ≤ x.

A (feasible) strategy profile σ determines a unique consumption path C,
from any initial state κ. Let Ji (σ,κ) be the associated sum of player i’s dis-
counted utility:

Ji (σ,κ) =
∑∞
t=0 δ

t [ln (ci (t))− ti (t)] , (9)

where: x (0) = κ,
x (t+ 1) = [x (t)−

∑n
i=1 ci (t)]

α , t = 0, 1, 2, ...,
ci (t) = Ci (σ (x (t))) , i = 1, ..., n, t = 0, 1, 2, ...,
ti (t) = Ti (σ (x (t))) , i = 1, ..., n, t = 0, 1, 2, ....

A strategic profile σ∗ is said to be a (stationary Markovian) Nash equilibrium
if it is feasible and if, for all κ:

Ji (σ
∗,κ) ≥ Ji ((σ∗/σi) ,κ) , for all i and σi,

where (σ∗/σi) =
(
σ∗1, ..., σ

∗
i−1, σi, σ

∗
i+1, ..., σ

∗
n

)
is any (feasible) strategic profile.

4 Implementation result.

We analyse here the properties of (stationary markovian) Nash equilibriums of
the difference game induced by the mechanism (M, g). Within the framework
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of Levhari and Mirman (1980), we first show that the difference game admits
at least one (stationary markovian) Nash equilibrium (proposition 3). We then
prove that any (stationary markovian) Nash equilibrium realizes an optimal
consumption of the resource (proposition 4). We finally argue that proposition
4 is valid in a general setting (remark 2).

Proposition 3. Assume n ≥ 3. The strategic profile σ∗ = (σ∗i )
n
i=1, where,

for all i and x:

σ∗i (x) =

((
(1− αδ)x

n2

)n
k=1

,

(
1

(1− αδ)x

)n
k=1

)
,

is a (stationary Markovian) Nash equilibrium of the difference game induced by
(M, g).

Proof. Consider the strategic profile σ∗ = (σ∗i )
n
i=1, where, for all i and x:

σ∗i (x) =

((
(1− αδ)x

n2

)n
k=1

,

(
1

(1− αδ)x

)n
k=1

)
.

By definition of (M, g), we have, for all x:

(Ci (σ
∗ (x)))

n
i=1 = ((1/n) (1− αδ)x)ni=1 ,

(Pi (σ
∗ (x)))

n
i=1 =

(
1

(1− αδ)x

)n
i=1

,

(Ti (σ
∗ (x)))

n
i=1 = (0)

n
i=1 ,

Notice that, for all x, (Ci (σ∗ (x)))
n
i=1 = π◦ (x), where π◦ is the optimal

policy given in proposition 2. Therefore, given any initial state κ, the strategic
profile σ∗ generated the same consumptions and resource time paths as π◦,
which are given by (see the proof of proposition 2):

ci
◦ (t) = Ci (σ

∗ (x◦ (t))) = (1/n) (1− αδ)x◦ (t) , i = 1, ..., n, t = 0, 1, 2, ...,

x◦ (t) = (αδ)
λ(t) κα

t

, t = 0, 1, 2, ....

Subsituting this into (9), we obtain 5 :

Ji (σ
∗,κ) =

∑∞
t=0 δ

t ln (ci
◦ (t))

=
(1− αδ) ln ((1/n) (1− αδ)) + αδ ln (αδ) + (1− δ) ln (κ)

(1− δ) (1− αδ) .(10)

For all κ, denote υi (κ) = Ji (σ
∗,κ). By theorem (Sundaram, 1996, Th.

12.15), the strategy σ∗i is a best-reply of country i if, and only if, for all κ,
5Remember that Ti (σ∗ (x)) = 0, for all i and x. Thus, we substitute in (9): ti (t) =

Ti (σ
∗ (x◦ (t))) = 0, for all t.
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υi (κ) satisfies the Bellman equation 6 :

υi (κ) = max
mi∈Mi

{
ln (Ci (m

∗/mi))− Ti (m∗/mi) + δυi
(
[κ −

∑n
i=1 Ci (m

∗/mi)]
α)} ,

where:

Ti (m
∗/mi) =

∑
j 6=i Pj (m

∗/mi)Ci (m
∗/mi)− Pi (m∗/mi)

∑
j 6=i Cj (m

∗/mi) .

Now, from property 1, country i can choose mi to attain any consumption
vector (Ck (m∗/mi))

n
k=1 = (ck)

n
k=1 ∈ Rn+. Moreover, since n ≥ 3, from prop-

erty 2, whatever the unilateral deviation mi of country i, (Pk (m∗/mi))
n
k=1 =

(Pk (m
∗))

n
k=1.

Therefore, σ∗i is a best-reply of i if, and only if, for all κ, υi (κ) satisfies:

υi (κ) = max
(ck)

n
k=1∈Rn+

{
ln (ci)−

∑
j 6=i Pj (m

∗) ci + Pi (m
∗)
∑
j 6=i cj

+δυi
(
[κ −

∑n
i=1 ci]

α) }
, (11)

where:

(Pi (m
∗))

n
i=1 =

(
1

(1− αδ)x

)n
i=1

.

The derivative of (10) is ∂
∂κJi (σ

∗,κ) = υ′i (κ) = 1
(1−αδ)κ . From this, the

RHS of (11) is maximized if, and only if, (ck)
n
k=1 satisfies the first-order condi-

tion:

1

ci
− n− 1
(1− αδ)x −

αδ

(1− αδ) (κ −
∑n
i=1 ci)

= 0, k = i,

1

(1− αδ)x −
αδ

(1− αδ) (κ −
∑n
i=1 ci)

= 0, k 6= i,

It follows that:

ci = (1/n) (1− αδ)κ,∑n
i=1 ci = (1− αδ)κ.

Substituting into the RHS of (11), we obtain:

max
(ck)

n
k=1∈Rn+

{
ln (ci)−

∑
j 6=i Pj (m

∗) ci + Pi (m
∗)
∑
j 6=i cj

+δυi
(
[κ −

∑n
i=1 ci]

α) }
=

(1− αδ) ln ((1/n) (1− αδ)) + αδ ln (αδ) + (1− δ) ln (κ)
(1− δ) (1− αδ)

= υi (κ)

which proves that the strategy σ∗i is a best-reply of country i.

6Here, we denote (m∗/mi) =
(
σ∗1 (κ) , ...,σ∗i−1 (κ) ,mi,σ

∗
i+1 (κ) , ...,σ

∗
n (κ)

)
.
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Finally, since this is true for all players, the strategy profile σ∗ is a Nash
equilibrium. �

Proposition 4. If σ∗ is a (stationary Markovian) Nash equilibrium, then
the policy π∗ = (π∗i )

n
i=1, where π

∗
i (x) = Ci (σ

∗ (x)), for all i and x, is an optimal
policy.

Proof. Let σ∗ be a (stationary Markovian) Nash equilibrium of the differ-
ence game induced by (M, g).
Assume, by way of contradiction, that there exists an initial state κ and a

feasible policy π such that:

W (π,κ) >
∑n
i=1 Ji (σ

∗,κ) . (12)

Denote (ci (t))
n
i=1 and x (t), for all t, the time paths of the country’s con-

sumptions and of the fish population, respectively, associated with the policy
π, starting from the initial state κ.

By property 1, used at each point x, each country i can find a strategy σi
such that, for all x:

(Ck ((σ
∗/σi) (x)))

n
k=1 = (πk (x))

n
k=1 , (13)

(Pk ((σ
∗/σi) (x)))

n
k=1 = (Pk (σ

∗ (x)))
n
k=1 . (14)

From (13), it is clear that the strategic profile (σ∗/σi) implements the same
time paths of the country’s consumptions and of the fish population as the
policy π. Moreover, from (14), the associated time path of the price system is
(Pk ((σ

∗/σi) (x (t))))
n
k=1 = (Pk (σ

∗ (x (t))))
n
k=1, for all t. Thus, we have:

Ji ((σ
∗/σi) ,κ) =

∑∞
t=0 δ

t [ln (ci (t))− ti (t)] ,

where, for all t:

ti (t) = Ti (((σ
∗/σi) (x (t))))

=
∑
j 6=i Pj (σ

∗ (x (t))) ci (t)− Pi (σ∗ (x (t)))
∑
j 6=i cj (t) .

Considering the above unilateral deviation σi, by each player i in turn, and
summing over i, we get: ∑n

i=1 ti (t) = 0,

and therefore:∑n
i=1 Ji ((σ

∗/σi) ,κ) =
∑∞
t=0 δ

t∑n
i=1 [ln (ci (t))] , (15)

= W (π,κ) .

Now, as σ∗ is a Nash equilibrium, we have, for all i:

Ji (σ
∗,κ) ≥ Ji ((σ∗/σi) ,κ) ,
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which implies, by summation over i:∑n
i=1 Ji (σ

∗,κ) ≥
∑n
i=1 Ji ((σ

∗/σi) ,κ) . (16)

Together, (15) and (16) imply:∑n
i=1 Ji (σ

∗,κ) ≥W (π,κ) ,

which contradicts our assumption (12).
Finally, as (M, g) is balanced by property 3 and

∑n
i=1 Ji (σ

∗,κ) ≥W (π,κ),
for all initial state κ and feasible policy π, it follows that the policy π∗ =
(π∗i )

n
i=1, where π

∗
i (x) = Ci (σ

∗ (x)), for all i and x, is an optimal policy. �

Remark 2. Note that the proof of proposition 4 is general. Precisely, it
also holds true if: the dynamic of the resource is x (t+ 1) = F (x (t)), where
F is an arbitrary function; and the utility of an agent i is ui (ci, x), where ui
is any function of the agent’s consumption and of the fish population. Thus,
provided that a Nash equilibrium of the difference game exists, the mechanism
proposed above realizes in Nash equilibrium an optimal consumption path of
the fish population, even in a framework far more general than that of Levhari
et Mirman (1980). In this paper, the reason why we restricted our analysis
to Levhari et Mirman (1980) is because it permits to calculate explicitely a
Nash equilibrium of the difference game (proposition 3), proving in passing its
existence. An important extension of this paper will be to construct a proof of
existence in the general setting above.

5 Conclusion.

In this paper, a new mechanism has been constructed to regulate the utilization
of a natural resource. We obtained the following results. On the one hand,
within a simple framework (Levhari and Mirman, 1980), we proved the existence
of a (stationary Markovian) Nash equilibrium of the difference game associated
by the proposed mechanism (proposition 3). On the other hand, within a general
framework, we showed that any (stationary Markovian) Nash equilibrium of
the difference game realizes an optimal consumption time path of the resource
(proposition 4 and remark 2).
Extensions of this work are expectable in two directions. On the one hand,

any attempt to simplify the proposed mechanism would be valuable. In particu-
lar, following Rouillon (2008), a close mechanism, with a smaller message space,
may be possible, in which each participant simply announces his own catch, the
total allowable catch, his individual price and the sum of other players’individ-
ual prices. However, we expect that the amended mechanism can only be made
weakly balanced (Rouillon, 2008). On the other hand, the robustness of the
mechanism should be analysed, when dealing with other features of fisheries. In
particular, one could wish to account for capital investments or multi-species
interelations (Fisher and Mirman, 1996).
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