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Abstract

In this paper we prove a general version of the Second Welfare Theorem
for a non-convex and non-transitive economy, with public goods and other
externalities in consumption. For this purpose we use the sub-gradient to
the distance function (normal cone) to define the pricing rule in this general
context.
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1 Introduction

In a convex economic setting, i.e. when the set of preferred elements and the pro-
duction sets are convex, to our mind one of the first general version of the Second
Welfare Theorem (from now on SWT) was proven by Arrow and Debreu (see [1],
[7] among others). To demonstrate this result, they assumed general hypothe-
ses on the economy and employed the well known convex separation property to
obtain a decentralizing vector price that supports a Pareto optimum allocation.

However, it wasn’t until the seventies that Guesnerie ([8]) obtained the first
general version of the SWT for non-convex economies. For that, the author
employed the Dubovickii-Miljutin’s tangent cone to define the pricing rule that
allows him to define the corresponding competitive equilibrium concept1.
∗This work was partially supported by FONDAP-Optimización and ICSI, Instituto Sistemas

Complejos en Ingenieŕıa, Chile.
†Departamento de Ingenieŕıa Matemática, Universidad de Chile, Casilla 170, correo 3, San-

tiago, Chile. email: ajofre@dim.uchile.cl
‡Departamento de Economı́a, Universidad de Chile, Diagonal Paraguay 257, Torre 26, Of.

1502, Santiago, Chile. email: jrivera@econ.uchile.cl
1In order to present the SWT in a non-convex setting, the Walras equilibrium concept is

replaced by a more general concept based on the employment of the so-called pricing rule: for a
non-convex economic framework, it does not make sense to assume that agents maximize profit
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From Guesnerie’s seminal paper, several authors contributed developing an
even more general version of the SWT, either considering weaker hypotheses on
the fundamentals of the economy and/or employing more general mathematical
tools to set the pricing rule in order to present the corresponding results. For
instance, in Bonnisseau and Cornet ([4]), Khan and Vohra ([12]) and Yun ([20]),
Clarke’s normal cone is employed to define the pricing rule (see Clarke ([6])),
whereas in Ioffe ([10]), Khan ([13]) and Mordukhovich ([14]) among others, the
authors use the normal cone introduced separately by Ioffe and Modukhovich (see
Ioffe ([9]) and Mordukhovich ([15])), which allows them to obtain decentralizing
prices for a more general economic setting than previously mentioned2. Com-
plementarily, see Mordukhovich ([16]), Sec. 8, for a comprehensive discussion on
this topic.

In this paper, we will employ the normal cone to both preferences and pro-
duction sets to define our pricing rule (similarly to Khan and Mordukhovich, op.
cit.). The main result of this work is Theorem 3.1, which to our mind improves
the Khan and Vohra’s Theorem 2 in [12] in three aspects. First we assume a
global condition over the economy that, as a particular case holds true under
the assumptions on preferences and/or production sets they assume. Second, we
prove the SWT for a strong Pareto allocation instead of for the weak notion they
employ. Finally, as mentioned, we use normal cone instead of Clarke’s normal
cone to define the pricing rule, which permit us to obtain sharper results in terms
of the geometrical conditions we need to assume over preferred and productions
sets in order to obtain the desired result.

Since in general the normal cone to a sum of sets at the sum of their elements
is not necessarily the intersection of the normal cones to each set at the corre-
sponding points (see Rockafellar and Wets ([18])), contrarily to Khan and Vohra,
in our version of the SWT, Theorem 3.1, we are unable to show the existence of
a decentralized prices for the public goods sector to each firm individually but
for industry, i.e., for the sum of production sets. Conditions that permit the pass
from industry to individual firms are related with the epi-lipschitzianity and/ot
the convexity of the involved sets (see Rockafellar and Wets op.cit.), which are
assumed by Khan and Vohra in their contribution. Under the same type of con-
ditions over production sets, we can obtain the same results as they regarding
production sector.

This paper is organized as follows. In Section 2 we introduce the model and
main concepts, and Section 3 is devoted to demonstrate the main result of the

(firms) or utility (consumers). Instead the equilibrium of an economy is defined according to a
rule that corresponds to the first order optimality conditions for an optimization problem that
generalizes the usual one that defines both supply and demand for economic agents (consumers
and produces), is such a way that under convexity coincide with the standard conditions that
determine the Walrasian equilibrium. For general sets, these necessary conditions are defined by
means of normal cones. Thus, the employment of normal cones appears naturally as an extension
of the marginal rate of substitution conditions that usually permit to determine the equilibria
allocation of an economy. See Brown ([5]) for a detailed discussion on previous concepts.

2The Ioffe-Modukhovich normal cone is called normal cone in Rockafellar and Wets ([18]),
from which we will adopt the terminology and notation in this paper. What is relevant to our
purpose is the fact that the normal cone can be calculated for any closed set.
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paper, including some direct consequences of it.

2 The model

In this Section we follow Khan and Vohra ([12]) for economic notation and main
concepts. Thus, we assume that in the economy there are ` ∈ IN \ {0} private
consumption goods and G ∈ IN \{0} public goods. Public goods are characterized
by the fact that their consumption is identical across individuals and they are not
subject to congestion (i.e. pure public goods). For private and public consumption
and/or production we use superscripts π and g respectively.

In the economy there are m ∈ IN,m 6= 0, consumers, indexed by i ∈ I =
{1, 2, . . . ,m}. Each of them is characterized by a consumption set

Xi = Xπ
i ×XG

i ⊆ IR`+G+ ,

and by a preference relation

Pi : Xi ×X−i → Xi,

with X−i =
∏
k∈I\{i}Xk. Thus, for x−i ∈ X−i, Pi(xi, x−i) ⊆ Xi corresponds

to the set of strictly preferred elements to xi ∈ Xi by individual i ∈ I. The
closure of this set, clPi(xi, x−i), denotes the preferred elements to xi by this
consumer. Since we are assuming that the preference relation for an individual
depends on the consumption of the other agents, we are considering the presence
of externalities in consumption besides public goods. Any consumption plan
xi ∈ Xi can be decomposed in their private and public components, namely
xπi ∈ IR` and xgi ∈ IRG respectively (thus, xi = (xπi , x

g
i )). The projection of

Pi(xi, x−i) on IR`×{0G} (resp. {0`}× IRG) will be denoted as P πi (xi, x−i) (resp.
P gi (xi, x−i)).

In our model we consider the presence of a production sector, characterized
by n ∈ IN firms indexed by j ∈ J = {1, 2, ..., n}. The set Yj ⊆ IR`+G denotes
the production set for a firm j ∈ J ; Y π

j ⊆ IR` and Y g
j ⊆ IRG are defined as in

previous paragraph and as for consumers, any production plan yj ∈ Yj can be
decomposed in its private and public components, yπj and ygj respectively.

Finally, we assume that the total initial endowments of private consumption
goods is ωπ ∈ IR`++ and zero for public goods. Let ω ≡ (ωπ, 0G) ∈ IR` × IRG be
the vector of total initial endowments of the economy.

An economy with public goods and other types of externalities is defined by

Eg = ((Xi)i∈I , (Pi)i∈I , (Yj)j∈J , ω).

The feasibility of a consumption - production bundle is defined for both private
and public components, considering that, by definition, public goods must be
consumed in identical quantities across individuals (see Khan and Vohra ([12])).
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Definition 2.1 A consumption - production bundle

((xi), (yj)) ∈ IRm·(`+G) × IRn·(`+G)

is a feasible allocation for the economy Eg if for each i ∈ I, j ∈ J , holds that

(a) xi ∈ Xi, yj ∈ Yj,

(b) xgi = xgi′, i
′ ∈ I,

(c)
∑
i∈I

xi −
∑
j∈J

yj = ω.

The set of feasible allocations for Eg is denoted by F .

Definition 2.2 We say that
(
(x∗i ), (y

∗
j )
)
∈ F is a Pareto optimum allocation for

the economy Eg if does not exists other feasible allocation ((x̃i), (ỹj)) such that

(a) for every i ∈ I, x̃i ∈ clPi(x∗i , x∗−i),

(b) for some i0 ∈ I, x̃i0 ∈ Pi0(x∗i0 , x
∗
−i0).

3 The Second Welfare Theorem

The main objective in this Section is to demonstrate a version of the SWT for
the economic framework previously described. In order to obtain this result we
employ a generalized version of the convex separation property demonstrated in
Jofré and Rivera ([11]). The key condition there used to establish the separation
property is the Asymptotically Included Condition (AIC), which for the purpose
of this paper can be presented in the following way3.

Definition 3.1 We say that ((x∗i ), (y
∗
j )) ∈ F satisfies AIC if there exists i0 ∈ I,

ε > 0, a sequence hk → 0`+G and k0 ∈ IN such that for all k ≥ k0,

−hk +
∑
i∈I

[clP ∗i ∩ clB(x∗i , ε)]−
∑
j∈J

[
Yj ∩ clB(y∗j , ε)

]
⊆ P ∗i0 +

∑
i∈I\{i0}

clP ∗i −
∑
j∈J

Yj ,

where P ∗i = Pi(x∗i , x
∗
−i) and B(x∗i , ε) the open ball with center x∗i and radius ε > 0

(similarly with B(y∗j , ε)).

Next proposition provides necessary conditions for AIC.

Proposition 3.1 Necessary conditions for AIC
A point ((x∗i ), (y

∗
j )) ∈ F satisfies AIC if any of the following holds true

3See Bao and Mordukhovich ([3]) and Mordukhovich ([14, 16]) for the relation among AIC and
the extremal principle, the extension of this type of condition to infinite dimensional spaces and
the relationship with the net demand qualification conditions they introduce; see also Rockafellar
and Wets ([18]) for an approximate version of this condition.

4



(a) there exists i0 ∈ I such that x∗i0 ∈ clP
∗
i0

and the interior of Clarke’s tangent
cone to P ∗i0 at x∗i0, denoted intTc(P ∗i0 , x

∗
i0

), is a non-empty set4,

(b) there exists i0 ∈ I such that x∗i0 ∈ clP
∗
i0

and P ∗i0 is convex with interior,

(c) there exists i0 ∈ I such that for every x ∈ clP ∗i0, {x}+ IR`+G++ ⊆ P ∗i0.

Proof.

(a) From Khan and Vohra ([12]), pag. 229, we know that y ∈ intTc(P ∗i0 , x
∗
i0

) if
and only if there are η > 0, ε > 0 and δ > 0 such that

clP ∗i0 ∩ clB(x∗i0 , δ) + [0, η]clB(y, ε) ⊆ P ∗i0 .

Thus, if for some i0, intTc(P ∗i0 , x
∗
i0

) 6= ∅ we can readily obtain the result.

(b) From AIC we know that there are x̃ ∈ P ∗i0 and δ > 0 such that clB(x̃, δ) ⊆
P ∗i0 . Given x∗i0 ∈ clP

∗
i0

, from Rockafellar ([17]), Theorem 6.1, given ε > 0
and 0 < δ1 < δ, holds that for every λ ∈ [0, 1[

(1− λ)clB(x̃, δ1) + λ
[
clP ∗i0 ∩ clB(x∗i0 , ε)

]
⊆ P ∗i0 .

Let {λk} a real sequence such that λk → 1−. Given ε1 > 0 and

hk = (1− λk) ·
(
x̃− x∗i0

)
→ 0 ∈ IR`

define z ∈ hk + clP ∗i0 ∩ clB(x∗i0 , ε1). From hypothesis, there exists x′ ∈
clP ∗i0 ∩ clB(x∗i0 , ε1) such that z = hk + x′, that is,

z = (1− λk)x̃− (1− λk)x∗i0 + x′ = (1− λk)
[
x̃+ x′ − x∗i0

]
+ λkx

′.

Note that for ε1 small enough,
(
x̃+ x′ − x∗i0

)
∈ clB(x̃, δ1), and then, given

ε1 as before, we conclude that

z ∈ (1− λk)clB(x̃, δ1) + λk
[
clP ∗i0 ∩ clB(x∗i0 , ε1)

]
⊆ P ∗i0 ,

i.e., hk + clP ∗i0 ∩ clB(x∗i0 , ε1) ⊆ P ∗i0 , which ends the proof.

(c) This part is obvious if we note that this condition is equivalent to assume
that

clP ∗i0 + IR`+G+ ⊆ P ∗i0 ,

and therefore is valid for clP ∗i0 ∩ clB(x∗i0 , ε), ε > 0. E.O.P

4For the Clarke’s tangent cone definition, see Clarke ([6]).
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In order to establish our main result (Theorem 3.1) we will employ the following
assumptions, which are quite standard in the literature.

Assumption C. For each i ∈ I, Xi = IR`+G+ .

Assumption P. For each j ∈ J , Yj is a closed set.

Assumption D. Public goods are desirable for each individual, that
is, for i ∈ I and zi ∈ clPi(xi, x−i), given h ∈ IRG++ holds that

zi + (0`, h) ∈ Pi(xi, x−i).

Assumption B. For every i ∈ I, xi ∈ clPi(xi, x−i) \ Pi(xi, x−i).

Assumption F. For some j0 ∈ J , Yj0 satisfies the free disposal hy-
pothesis, i.e., Yj0 − IR`+G+ ⊆ Yj0 .

Lemma 3.1 Boundary property
Let ((x∗i ), (y

∗
j )) be a Pareto optimum for economy Eg that satisfies AIC. If C,

D, B and F are verified, then

w ∈ bd

∑
i∈I

clP ∗i −
∑
j∈J

Yj

 .
Proof. For ε > 0, let us define

Γε =
∑
i∈I

[clP ∗i ∩ clB(x∗i , ε)]−
∑
j∈J

[
Yj ∩ clB(y∗j , ε)

]
.

From F, for each ε > 0 we have that intΓε 6= ∅ and, moreover, from B we
also have that ω ∈ Γε. Now, if for some ε0 > 0, ω /∈ bdΓε0 , then, from previous
considerations, follows that ω ∈ int Γε0 , i.e., for each sequence vk → 0`+G, there
exists K ∈ IN such that ω + vk ∈ Γε0 , for all k ≥ K. This last condition along
with AIC directly imply that for some i0 ∈ I

ω ∈ P ∗i0 +
∑

i∈I\{i0}
clP ∗i −

∑
j∈J

Yj ,

that is, there exists x̄i0 ∈ P ∗i0 , x̄i ∈ clP ∗i , i 6= i0 and ȳj ∈ Yj such that

ω =
∑
i∈I

x̄i −
∑
j∈J

ȳj .

Given δ > 0, for i ∈ I define x̃i = (x̃πi , x̃
g
i ), with

x̃πi = x̄πi , x̃gi =
[
max
s∈I
{x̄gis}+ δ

]
1G,
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where 1G = (1, 1, . . . , 1) ∈ IRG. Note that x̃gi = x̃gi′ , i, i
′ ∈ I, and from hypotheses

C and D we have that for each i ∈ I, x̃i ∈ Xi and x̃i ∈ P ∗i respectively. On the
other hand, by construction

∑
i∈I [x̃i − x̄i] ∈ IR`+G+ and then, defining

ỹj = ȳj , j ∈ J \ {j0}, ỹj0 = ȳj0 −
∑
i∈I

[x̃i − x̄i] ,

from F follows that for each j ∈ J , ỹj ∈ Yj . Given all the foregoing, it is easy to
check that ((x̃i), (ỹj)) is a feasible allocation that contradicts the optimality of
((x∗i ), (y

∗
j )), which ends the proof. E.O.P

In the remaining part of this work, the normal cone to a closed set A ⊆ IRn

at a ∈ IRn is denoted by N(A, a). Following properties of the normal cone will
be used in the demonstration of Theorem 3.1 (see Rockafellar and Wets ([18]) for
details): (i) for every ε > 0, N(A∩clB(x, ε), x) = N(A, x) (local property), (ii) for
any couple of closed sets A,B ⊆ IRn and a, b ∈ IRn, N(A×B, (a, b)) = N(A, a)×
N(B, b) (product property), and (iii) for every λ ∈ IR++, N(λA, λa) = N(A, a)
(homogeneity property) .

Finally, for a Pareto optimum allocation ((x∗i ), (y
∗
j )) of economy Eg, for i ∈ I

we denote P ∗πi = P πi (x∗i , x
∗
−i) and P ∗gi = P gi (x∗i , x

∗
−i).

Theorem 3.1 Second Welfare Theorem
Let ((x∗i ), (y

∗
j )) be a Pareto optimum allocation for economy Eg. If C, P, D,

B and F are satisfied, then there are prices pπ ∈ IR` and pgi ∈ IRG, i ∈ I, not all
zero, such that

−(pπ, pgi ) ∈ N (clP ∗i , x
∗
i ) (1)

pπ ∈
⋂
j∈J

N
(
Y π
j , y

∗π
j

)
(2)

∑
i∈I

pgi ∈ N

∑
j∈J

Y g
j ,
∑
j∈J

y∗gj

 (3)

Proof. For ε > 0 and i ∈ I, define

clP ∗πi (ε) = clP ∗πi ∩ clB(x∗πi , ε) ⊆ IR`, clP ∗gi (ε) = clP ∗gi ∩ clB(x∗gi , ε) ⊆ IR
G.

Clearly previous sets are non-empty and closed. Indeed, from B,we have that

x∗i = (x∗πi , x
∗g
i ) ∈ clP ∗πi (ε)× clP ∗gi (ε).

For i ∈ I = {1, 2, . . . ,m} \ {1,m}, and ε > 0 define now

Ai(ε) = clP ∗πi (ε)× {0G}i−1 × clP ∗gi (ε)× {0G}m−i ⊆ IR` × IRmG,

and
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A1(ε) = clP ∗π1 (ε)×clP ∗g1 (ε)×{0G}m−1, Am(ε) = clP ∗πm (ε)×{0G}m−1×clP ∗gm (ε).

From definition we have that for i, i′ ∈ I, x∗gi = x∗gi′ . Denote this value by x∗g

and therefore, from feasibility conditions hold that

x∗g =
1
m

∑
j∈J

y∗gj ∈
1
m

∑
j∈J

Y g
j ⊆ IR

G.

For ε > 0 and j ∈ J = {1, 2, . . . , n}, define now

Y π
j (ε) = Y π

j ∩ clB(y∗πj , ε), Yg =
1
m

∑
j∈J

Y g
j , Yg(ε) =

1
m

∑
j∈J

Y g
j ∩ clB(y∗g, ε),

with
y∗g =

1
m

∑
j∈J

y∗gj .

In order to continue with the demonstration, regarding the number of agents
we should consider two cases: m ≥ n and m < n. For the case m ≥ n, similarly
to the Ai(ε) definition, with the precaution for the cases 1 and m as before, for
m > n and k ∈ I define Bk(ε) as follows:

1 ≤ k ≤ n : Bk(ε) = Y π
k (ε)× {0G}k−1 ×Yg(ε)× {0G}m−k ⊆ IR` × IRmG

n < k ≤ m : Bk(ε) = {0`} × {0G}k−1 ×Yg(ε)× {0G}m−k ⊆ IR` × IRmG.

When m = n we omit the the case n < k ≤ m above. Finally, for i, k ∈ I
define

x∗i = (x∗πi , 0G, · · · , 0G, x∗g, 0G, · · · , 0G) ∈ Ai(ε),

y∗k = (z∗k, 0G, · · · , 0G,y∗g, 0G, · · · , 0G) ∈ Bk(ε),

with z∗k = y∗πk if 1 ≤ k ≤ n and 0` otherwise.

For the case m < n, given 1 ≤ k ≤ n and ε > 0, with the corresponding
precaution as before, define

Bk(ε) = Y π
k (ε)× {0G}k−1 ×Yg(ε)× {0G}n−k ⊆ IR` × IRnG,

and Ak(ε) considering the following cases

1 ≤ k ≤ m : Ak(ε) = clP ∗πk (ε)× {0G}k−1 × clP ∗gk (ε)× {0G}n−k ⊆ IR` × IRnG,

m < k ≤ n : Ak(ε) = {0`} × {0G}k−1 × clP ∗g1 (ε)× {0G}n−k ⊆ IR` × IRnG.
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Thus, given 1 ≤ k ≤ n and ε > 0, define

x∗k = (z∗k, 0G, · · · , 0G, x∗g, 0G, · · · , 0G) ∈ Ak(ε),

y∗k = (y∗πk , 0G, · · · , 0G,y∗g, 0G, · · · , 0G) ∈ Bk(ε),

with z∗k = x∗πk if 1 ≤ k ≤ m and 0` otherwise.
Under any of the previous situations regarding the number of agents in the

economy, following reasoning we develop for the case m > n conducts to the same
conclusions. Given that, it is easy to check that for ε > 0

∑
k∈I

Bk(ε) =

∑
j∈J

Y π
j (ε)

× [Yg(ε)]m ⊆ IR` × IRmG,

and ∑
i∈I

x∗i −
∑
k∈I

y∗k ∈
∑
i∈I

Ai(ε)−
∑
k∈I

Bk(ε).

Moreover, from Lemma 3.1 we can also assert

∑
i∈I

x∗i −
∑
k∈I

y∗k ∈ bd

∑
i∈I

Ai(ε)−
∑
k∈I

Bk(ε)

 ,
and then, from the separation property in Jofré and Rivera ([11]) and the local
property for normal cones (which permit us to avoid the balls in the calculus
of normal cones immediately below), there exists a non-null vector price p =
(pπ, pg1, ..., p

g
m) ∈ IR` × IRmG, such that

−p ∈ N
(∑
i∈I

clP ∗πi ×
∏
i∈I

clP ∗gi ,

(∑
i∈I

x∗πi , x
∗g, · · · , x∗g

))

and

p ∈ N

∑
j∈J

Y ∗π × [Yg]m,

∑
j∈J

y∗πj ,y∗g, · · · ,y∗g
 .

Separating private and public components in previous relations (product prop-
erty), holds that for each i ∈ I

−pπ ∈ N
(∑
i∈I

clP ∗πi ,
∑
i∈I

x∗πi

)
, pπ ∈ N

∑
j∈J

Y ∗πj ,
∑
j∈J

y∗πj

 ,
−pgi ∈ N

(
clP ∗gi , x∗g

)
, pgi ∈ N (Yg,y∗g) .

On the other hand, considering the homogeneity property, we have that
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N (Yg,y∗g) = N

 1
m

∑
j∈J

Y g
j ,

1
m

∑
j∈J

y∗gj

 = N

∑
j∈J

Y g
j ,
∑
j∈J

y∗gj

 ,
which directly implies that

∑
i∈I

pgi ∈ N

∑
j∈J

Y g
j ,
∑
j∈J

y∗gj

 .
Furthermore, considering that

ωπ =
∑
i∈I

x∗πi −
∑
j∈J

y∗πj ∈ bd

∑
i∈I

clP ∗πi −
∑
j∈J

Y π
j

 ,
from Jofré and Rivera op.cit. we finally conclude that

−pπ ∈
⋂
i∈I

N (clP ∗πi , x∗πi ) , pπ ∈
⋂
j∈J

N
(
Y ∗πj , y∗πj

)
,

which ends the proof. E.O.P

We remark that statements (1) - (3) in Theorem 3.1 can be considered as
the natural extension of the well know Samuelson’ condition for the assignment
of public goods in production economies (see [19]). However, in our framework
we are unable to show that the supporting price for public goods (pg =

∑
i∈I p

g
i )

satisfies the optimality conditions for each firm but for the industry

pg =
∑
i∈I

pgi ∈ N

∑
j∈J

Y g
j ,
∑
j∈J

y∗gj

 .
From the mathematical point of view, this incompatibility arises from the fact

that, in general, the normal cone to the sum of sets at a sum of points is not
necessarily included in the intersection of the corresponding normal cones (see
Rockafellar and Wets, op.cit.). In order to obtain a compatibility between firms
and industry as mentioned, we need extra conditions over the productions sets,
which are usually assumed in the literature. Examples of these conditions are:

(a) the convexity of the public production component of any firm (Y g
j ) (see

[18], Pag. 230, for details),

(b) all sets Yj satisfy the free disposal hypothesis,

(c) all sets Yj are epi-lipschitzian sets5,

5We recall that a set Y ⊆ IR` is epi-lipschitzian at a point y ∈ Y if there exists d ∈ IR` \ {0`}
and a couple of open neighborhoods Ny and Nd of y ∈ Y and d ∈ IR` respectively, and λ > 0
such that for each y′ ∈ Y ∩ Ny and t ∈ (0, λ), y′ + tNd ⊆ Y. See [18] for more details on this
concept.
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(d) the Clarke’s tangent cone to the sets Yj at the Pareto optimum allocation
has nonempty interior (see [12]).

Thus, under any of previous conditions (a) - (d), combining statements (2)
and (3) in Theorem 3.1, we can readily show that p∗ = (pπ,

∑
i∈I

pgi ) satisfies

p∗ ∈
⋂
j∈J

N(Yj , y∗j ).

It is worth to mention that condition (b) above is used by Khan and Vohra
([12]) to demonstrate that the interior of the tangent cone to the sum of pro-
duction sets is non-empty, which permits them to conclude that the supporting
price belongs to the normal cone to each production set instead of the aggregate
production sector (industry) as our general result.

Finally, in spite of the above mentioned for the general case, from the sum
formula in Rockafellar and Wets ([18]), Ch. 6, we can present an approximated
version of the SWT as follows. Thus, from this formula we already know that
there are ygj ∈ Y

g
j , j ∈ J, such that

∑
j∈J

ȳgj =
∑
j∈J

y∗gj and

pg ∈
⋂
j∈J
∈ N

(
Y g
j , y

g
j

)
.

Given that, Theorem 3.1 can be re-writen equivalently in the following way.

Theorem 3.2 Let ((x∗i ), (y
∗
j )) be a Pareto optimum for economy Eg. If C, P,

D, B and F are satisfied, then there are prices pπ ∈ IR`, pgi ∈ IRG, i ∈ I, not all
zero, and production plans ygj ∈ Y

g
j , j ∈ J, such that for each i ∈ I

∑
j∈J

y∗gj =
∑
j∈J

ygj

−(pπ, pgi ) ∈ N (clP ∗i , x
∗
i )

(pπ,
∑
i∈I

pgi ) ∈
⋂
j∈J

N
(
Yj , (y∗πj , ygj )

)
.
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