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Abstract

This paper analyzes the interaction between price and inventory decisions in an
oligopoly industry and its implications for the dynamics of prices. The work extends
existing literature and especially the work of Hall and Rust (2007) to endogenous
prices and strategic oligopoly competition. We show that the optimal decision rule
is an (S, s) order policy and prices and inventory are strategic substitutes. Fixed
ordering costs generate infrequent orders. Consequently, with strategic competition
in prices, (S, s) inventory behavior together with demand uncertainty generates en-
dogenous cyclical patterns in prices without any exogenous shocks. Hence, the devel-
oped model provides a promising framework for explaining dynamics of commodity

markets and especially observed autocorrelation in price fluctuations.

Keywords: Inventory dynamics, price competition, oligopoly, (S, s) order pol-

icy, commodity markets.

JEL classification numbers: D21, D43, E22, L81.

1 Introduction

This paper analyzes the interaction between price and inventory decisions in an oligopoly
industry and its implications for the dynamics of prices such as price dispersion. Cross-
sectional price dispersion is a common feature in many retail markets. Since Stigler’s

(1961) seminal work price dispersion has usually been explained by consumer search
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costs. In contrast, Aguirregabiria (1999) shows that retail inventories can generate (5, s)
dynamics of inventories which in turn can explain time variability of prices of super-
market chains.! However, as in his model monopolistic competition is analyzed price
dispersion between different firms can not be observed.

Extending the described work, this paper addresses the question how oligopolistic
competition affects these dynamics.?

Previous papers have characterized the optimal decision rules of similar dynamic
models. In addition to Aguirregabiria (1999) who analyzes price and inventories with
lump-sum costs under monopolistic competition Hall and Rust (2007) study optimal
inventory decisions with lump-sum costs under perfect competition. Their paper extends
the framework of Aguirregabiria (1999) in some ways but is otherwise limited to one
decision variable as prices are taken as given. Hall and Rust (2007) show that in their
perfect competition model the (S, s) policy is an optimal order strategy.® To the best
of our knowledge, these two works studying extreme cases of competition are by far the
most elaborated papers investigating these decision problems.* The analysis of optimal
decision rules under oligopolistic competition forms an obvious gap in the literature.

However, related studies of oligopolistic competition exists. Dutta and Sundaram
(1992) and Dutta and Rustichini (1995) analyze a discrete choice stochastic duopoly
game with lump-sum costs. In these frameworks the one abstract decision variable af-
fecting both firms’ payoffs cannot be interpreted as being related to inventory. Never-
theless, the optimality of an (S, s) policy can also be shown. More recently, Besanko and
Doraszelski (2004) study decisions about prices and capacity. However, the main and
important difference between inventory and capacity is that excess capacity is worthless
while keeping inventory affects future competition. Hence, additional strategic effects due
to kept stock are at place. This is especially important when investigating oligopolistic

competition.

This paper extends the literature by characterizing an equilibrium in a model of
price and inventory competition in oligopoly. We allow oligopolistic firms to interact

strategically. This allows for studying price dispersion between firms.

"Under an (S, s) rule inventory moves between the target inventory level, S, and the order threshold,
s, with s < S. Whenever the firm’s inventory level falls below the order threshold, a new order is placed

such that the target inventory level S is attained.
2 Additionally, the main focus of the paper by Aguirregabiria is an empirical analysis building on a

numeric simulation. The formal theoretical proof of the optimality of the considered inventory decision
is therefore not rigourously done and incomplete. Thus, our paper is the first to formally prove the
optimality of (S, s) policy with endogenous prices.

3Thereby Hall and Rust (2007) extend earlier work like Sethi and Cheng (1997) and Cheng and Sethi

(1999) to a more general specification of the Markov process.
4There exist also some papers analyzing dynamic oligopoly with inventories without considering lump-

sum ordering cost, like Kirman and Sobel (1974) or more recently Bernstein and Federgruen (2004).
However, without ordering cost stationary optimal strategies result which are in essence identical to

those of the corresponding static single period game.



Besides, such a model that is incorporating inventory and oligopoly in dynamic com-
petition provides the most plausible framework for retail industries. Retail industries
have become highly concentrated, i.e., in most categories like grocery, supermarkets,
and office supplies just a handful of rivals compete locally. In the supermarket industry
for example a small number of firms capture the majority of sales as supermarkets com-
pete in tight regional oligopolies. Thus, this industry is a prime example of oligopoly.
Besides, inventory costs are of major importance. Supermarkets invest in state of the art
distribution systems to minimize storage and transportation costs (see e.g. Beresteanu &
Ellickson, 2006; Ellickson, 2007). Hence, deciding the optimal inventory and store offer

forms an important optimization problem for supermarket chains.

In this work we study the decision problem of a central store, i.e., its decision about
retail prices and orders to suppliers, facing oligopolistic competition and taking into
account the existence of lump-sum ordering cost. We develop a model of retail competi-
tion in which the impact of inventories on competition and prices can be evaluated. We
analyze the characteristics of the optimal decision rule.

The main findings of our theoretical model of oligopoly support the simulation results
of Aguirregabiria (1999) studying monopoly. Key factors for price fluctuations are lump-
sum ordering costs and demand uncertainty. Lump-sum ordering cost generate (S, s)
inventory behavior. Demand uncertainty creates a positive probability of excess demand,
i.e., stockouts. The positive stockout probability has a negative effect on expected sales
which in turn creates substitutability between prices and inventories in the profit function
such that in equilibrium prices depend negatively and very significantly on the level of
inventories. This results in a cyclical pattern of inventories and prices where prices decline
significantly when an order is placed and consequently inventory reduction generates
price increase. The pricing behavior in this model can generate cross-sectional price

dispersion with cyclical patterns even without menu costs.

The rest of the paper is organized as follows. Section 2 introduces the model and
shows important characteristics of firms’ expected sales. Section 3 characterizes the op-
timal decision rules. Section 4 concludes while the Appendix contains the proofs of the

results stated in the text.

2 The Model

Consider an oligopoly market where risk neutral firms, indexed by i € {1,2,..., N},
sell differentiated storable products. Each firm sells a variety of the product. Firms
compete in prices and they have uncertainty about temporary demand shocks. In the
short run, firms cannot respond to these temporary shocks neither by changing prices
nor by increasing supply, in case of excess demand. Firms do not face any delivery lags

and cannot backlog unfilled orders. Thus, whenever demand exceeds quantity on hand,



the residual unfilled demand is lost. Therefore, the quantity sold by firm ¢ at period t is

the minimum of supply and demand:
yit = min {sit + qit, dit } (1)

where y;; is the quantity sold; s;; is the level of inventories at the beginning of period t;
¢;¢+ represents new orders to wholesalers during period ¢; and d;; is consumers’ demand.
Every period ¢ a firm knows the levels of inventories of all the firms in the market, i.e.,
the vector s; = {s1y, 52t ..., sn¢ }.> Given this information, the firm decides on prices and
new orders (p;t, ¢;t) to maximize its expected value Ey(> 2 811, +y,), where 5 € (0,1)
is the discount factor and Il; is the current profit of firm 7 at period t.

A firm’s current profit is equal to revenue minus ordering cost and inventory holding
cost:

1Lt = piryir — ciqir — kil{qit > 0} — hisg, (2)

where ¢; is the unit ordering cost; k; is the fixed or lump-sum ordering cost; and h; is
the inventory holding cost.

The transition rule of inventories, i.e., state variables, is:
Sit+1 = Sit + Git — Yir = max{0, s + qit — dit }. (3)

Firms have uncertainty about current demand. The demand of product ¢ at period ¢

is
dit = exp{ei }dyy.

Here, €;; is a temporary and idiosyncratic demand shock that is independently and iden-
tically distributed over time with cumulative distribution function F'(-) that is continu-
ously differentiable on the Lebesgue measure. These shocks are unknown to firms when
they decide prices and orders. Furthermore, d5, is the expected demand that depends on
the endogenous prices and the exogenous qualities of all products. The expected demand
df, is a function of the prices of all firms such that it is strictly increasing in the own
price, strictly decreasing in the prices of competitors, and the revenue function p;d; is
strictly concave in p;. By definition of expected demand, we have that E(exp{e;}) = 1.

For technical reasons it is useful to assume that F'(-) is such that the respective hazard

rate h(-) = g f l(p)() is smaller than one.® For examples and numerical exercises it may be

useful to consider a logit demand model for the expected demand:

S N ,
R R > j—1exp{wj — apjt}

where {w; : i = 1,2,..., N} are exogenous parameters that represent product qualities,

and « is a parameter that represents the marginal utility of income. The logit demand

This is a very reasonable assumption as firms can observe prices and are therefore able to learn and

deduce stock levels.
5This assumption is especially helpful for proving Lemma 2, although it is only a sufficient but not

necessary condition.



model is convenient for the derivation and illustration of some future results, but it can

be relaxed for all our results.”

2.1 Implications of Demand Uncertainty for Expected Sales

As a firm does not know the temporary demand shock &;;, it does not know actual sales
yit. Expected profits are IIS, = pir v, — ¢i qit — ki I{qix > O} — h;s;, where y§, repre-
sents expected sales, i.e., y5, = E[min{d;, sit + ¢i+}]. Demand uncertainty has important

implications for the relationship between prices and inventories.

Lemma 1. FExpected sales yi, are equal to expected demand df, times a function

Sit+qi :
A (%> ie.,

(5)

The function \(x) is defined as [ min{z, exp(e)}dF(g) and it has the following properties:

yz‘et = dft)‘ <$it - qit) .

e
dit

(i) It is continuously differentiable;

(i) it is strictly increasing;
(11i) A(0) =0;
(iv) AM(oo) = E(exp(e)) = 1; and

(v) for x>0, N(z) = flr;(j) dF(e) =1— F(In(z)) € (0,1).

Proof: See Appendix A.1.

Sit+qi
”—qut Stock_

In case of a very small (close to zero) supply-to-expected-demand-ratio 3
out probability is very large such that expected sales are much lower than expected de-
mand (approaching zero). On the other hand, a high ratio (approaching infinity) yields
low probability for stockouts such that expected sales are almost equal to expected de-
mand. The higher the supply-to-expected-demand-ratio the lower gets the probability
of stockout and the more do expected sales converge to expected demand. This is for-
malized in properties (i7) - (iv). From property (v) yielding \’(x) < 0 it is now clear
that the gain of a higher supply-to-expected-demand-ratio for expected sales is higher
the lower the ratio. For low ratios the gain is almost equal to the increase of stock as
one unit more in stock in essence is a unit more sold. For high ratios the probability of
selling an additional unit in stock decreases to zero.

Therefore, variability over time in the supply-to-expected-demand-ratio can generate

significant fluctuations in expected sales and thus in optimal prices.

"See Aguirregabiria (2007) for a derivation of this demand model from a model of consumer behavior

under possible excess demand.



2.2 Markov Perfect Equilibrium

The model has a Markov structure and we assume that firms play Markov strategies.
That is, a firm’s strategy depends only on payoff relevant state variables, which in this
model is the vector of inventories s;. Therefore, a strategy for firm i is a function o;(s)
from the space of the vector of inventories, RY, into the space of the decision variables
(pit, Git), Ri, i.e., 0;(s;) is a function from Rf into IR%F. Leto={0;:i=1,2,...,N} bea
set of strategy functions, one for each firm. Suppose that firm ¢ considers the rest of the
firms to behave according to their respective strategies in ¢. Under this condition, other
firms’ inventories, s_;, follow a Markov transition probability function FY (s_jti1s—t).
Note that this transition probability function depends on the other firms’ strategies in
o. Taking FY . as given, firm ¢’s decision problem can be represented using the Bellman

equation:

Vi(st) = {Tﬁiii} {Hf (pi, sit + ;) + 5 / Vi (sit+1, Sit+1)dF(5it)dFsoi(Sz’t+1|Sit)} .
(6)
The (expected) profit function is continuously differentiable and the standard regularity
conditions apply such that the value function V7 is uniquely determined as the fixed
point of a contraction mapping. Note that this value function is conditional to the other
firms’ strategies. A Markov perfect equilibrium (MPE) is a set of equilibrium strategies

o such that for every firm ¢ and for every vector s; € Rﬁ we have that

oi(st) = arg max {H? (pi, sit + ¢:)
Pisgi

+/3/VZ‘U(SZ‘,H-LS—it—f—l)dF(Eit)ng_i(S—it—l—l‘s—it)}- (7)

3 Optimal Decision Rule

Let us now characterize the optimal decision rule for a firm in this game of oligopolistic
competition.

In this section we will show that the (S, s) rule is indeed the best response not only
to an (5, s) rule but to any given strategy of the opponents. This, of course, implies that

the equilibrium resulting from (S, s) strategies by all players is a MPE.

In order to represent the optimal decision rule of the oligopolists, it is convenient to
represent the decision problem in terms of the variables p;; and z;; = s;;+¢;:. The variable
z;+ represents the total supply of the product during period t. It is also useful to define
the following ”value” function which is independent of the firm’s own current inventory,

i.e., the only state variable the firm can influence (however, it is not independent of the



current state per se), and taking the other firms’ strategies in o and so Fy . as given:

QF (zit, pit; S—it) = —cziy + Dit /min {zit; " d5y (pir) } dF (git)
iy / V7 (moc {0; 2 — €055 (pie)} :5iegr) AF (et dFS (s_ivalsit)  (8)
such that

Vi(st) = {I;}EZX {QF (sit + i, piss—it) — (hi — ci)sit — kil{g0 ) -

Given the function @Y, it is clear that an oligopolist chooses (zj,pit) as a best
response to the other firms’ strategies in o, i.e., other firms order and pricing decisions,
to maximize Q7 (2it, pit; S—it) — kI{zit > sit}. Making use of this ”"value” function Q7 we

can derive important characteristics of competition in prices and inventories:
Lemma 2. The function QY is such that:

(i) Q7 is strictly concave in prices, i.e., 0*°Q%(z;,p;)/0p;:Op; < 0.

(ii) Prices and total supply are strategic substitutes, i.e., 0*Q7 (i, p;)/OpiOz; < 0.

Proof: See Appendix A.2.

The positive stockout probability has a negative effect on expected sales which in turn
creates substitutability between prices and inventories in the profit function. This is the
case as with low inventory optimal expected demand (under given demand uncertainty)

is low and thus optimal price is high.

Using oy (s) and o7 (s) to represent the optimal response rules for p and z, respec-
tively, we have

{o7.(s),00(s)} = arg L na {Q7 (21, piss—it) — kI{z > si}}.

We define the optimal price as a function of current supply:

DY (zi;8—;) = arg T?a;?f QF (zi,pis85—i)- 9)
Pi

Since @Y is continuously differentiable and strictly concave in prices, pf(z;s—_;) is im-
plicitly defined by the first order condition %ﬁ“w =0.

It is now possible to show that the best response to any strategy is an (.5, s) rule:

Proposition 1. Firm i considers the rest of the firms to behave according to their
respective strategies in o. Taking Fg . as given, let firm i’s best response rule for total
supply and prices be of,(s) and Ufp(s), respectively. These functions are such that:

1. 0f,(8) = pj(0iz(s);s—), where p7(zi38—;) is continuous and strictly decreasing in

zi; and



2. 07.(s) has the following form.:

o7.(5) = 577(s—) if sit < 57(s—) (10)

y o
Sit if s > 57 (),
where 577 and s§ are scalars, with s77 > s7 Vs_;, and the following definitions:

57%(s—i) = argn{ﬂan?(zz‘,ﬁi(zz‘);s—i), (11)

Zi

57 (s—i) = Inf{s;|Q7 (5;7, pi(s;7);5-i) — k < QF (si, P(si); s—i) }- (12)
Proof: See Appendix A.3.

The proposition shows that consideration of oligopolistic competition does not affect
the optimality of (S, s) inventory rules.® Fixed ordering costs generate infrequent orders.
The upper band s;7 is defined as the optimal order quantity when the firm has no
inventory on hand, i.e., the optimal inventory level. The lower band s{ is the smallest
value of inventory such that the desired order quantity is zero. This order policy might
appear to be a very natural and intuitive strategy. However, as shown in the appendix
the value function is not concave such that a much more complex decision rule could in
principle be optimal. Additionally, oligopolistic competition assures that no additional
assumption on prices like the "no expected loss condition” of Hall and Rust (2007) is
necessary for the optimal trading strategy to be of the (.S, s) form.”

This (S, s) inventory behavior together with demand uncertainty generates cyclical
patterns in prices. The optimal price is a strictly decreasing function of a firm’s inventory
on hand z; as the positive probability of stockouts creates strategic substitutability
between prices and inventories. Thus, the price increases between two orders when the
stock level decreases and it drops down when new orders are placed. This is the case as
with low inventories the optimal expected demand is lower and hence the optimal price
is higher. When the level of inventories decreases between two orders, the probability of
stockout increases and so expected sales decrease and become more inelastic with respect
to the price. Thus, the optimal price increases between two orders, and decreases when
the elasticity of sales goes up as the result of positive orders.

The largest price increase occurs just after a positive order and the increments tend
to be smaller when we approach to the next positive order. The reason for this behavior
is that the cyclical path of prices generates a cyclical behavior in sales. The largest sales
and, consequently, the largest stock reductions and price increases, occur just after a

positive order.

8However, as thresholds depend on the competitors’ inventories, we have an (S(s_;), s(s_;)) decision
rule.

9The ”no expected loss condition” requires that the exogenous nonconstant retail price exceeds a
certain (endogenous) nonconstant threshold any time. With endogenous prices, we do not need to impose

such a condition.



The interesting result here is that the pricing behavior in this model can generate
cross-sectional price dispersion with cyclical patterns even without menu cost. The mag-
nitude of this price dispersion will depend on the magnitude of lump-sum ordering costs,
the sensitivity of the price elasticity of sales to changes in the probability of stockout,

and the degree of correlation between the demand shocks at individual firms.

4 Conclusion

We have shown that the best response not only to (S, s) strategies but to any strategy
is an (.59, s) rule. This result extends earlier findings of models without price competition
(Hall & Rust, 2007) and models without strategic competition (Aguirregabiria, 1999)
where fixed ordering costs generate infrequent orders. Thus, the (S,s) policy might
appear to be a very robust strategy. However, it is not hard to change assumptions in
ways that destroy its optimality.

Additionally, with strategic competition in prices (5, s) inventory behavior together

with demand uncertainty generates cyclical pattern in prices.

The model developed in this paper provides a very promising alternative for studying
commodity markets.

Commodity prices are extremely volatile and papers of the respective literature
strand are concerned whether theory is capable of explaining the actual behavior of
prices. The more recent literature on this topic (see for example Deaton & Laroque,
1992, 1996, and Pindyck, 1994) builds on the supply and demand tradition (see e.g.
Ghosh, Gilbert, & Hughes Hallett, 1987, for a review), but with explicit modeling of the
behavior of competitive speculators who hold inventories of commodities in the expec-
tation of making profits.'? However, perfect competition and the absence of lump-sum
ordering cost is always assumed in these papers. The studies are trying to explain ex-
tremely volatile prices as a result of exogenous shocks by modeling the behavior of
competitive speculators holding inventories.

Results are rather unsatisfying: In contrast to the models’ predictions, real price
fluctuations are not randomly distributed over time and this autocorrelation cannot be
explained by these types of models. In addition, some probably important characteristics
of commodity markets are not captured in this literature. Studies of these characteristics
(e.g. Carter & MacLaren, 1997, and Slade & Thille, 2006) find that commodity markets
are best described by oligopoly instead of perfect competition. Besides, lump-sum order-
ing cost are realistic in some markets (e.g. at London Metal Exchange where orders can
result in physical delivery and all contracts assume delivery). Incorporating oligopoly
competition and lump sum ordering costs could be important to study the dynamics of
some commodity prices. In a model like ours we are able to generate some kind of time

dependent pattern which is apparently in line with empirical evidence. This is in contrast

10 A5 even estimating the models is computational demanding authors mostly use simulations.



to the usual hypothesis that price fluctuations are the result of exogenous shocks and
therefore randomly distributed over time.

Making use of the developed model it should now be possible to relate findings
to commodity price dynamics and show that lump-sum ordering cost and oligopoly
competition can be important to explain extremely volatile prices and especially time

dependencies in price fluctuations.

However, due to the relatively high complexity of the framework further research
requires numerical experiments. By this means, other topics like precise reactions of
firms on competitors’ orders provide scope for interesting studies. This important work

is left for future research.
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A Appendix

A.1 Expected Sales: Proof of Lemma 1

Proof. For notational simplicity, we omit here the firm and time subindexes. By defini-

tion, expected sales y° are:

y' = /min{s +q,d° exp(e) }dF (¢) = d°A (Sji_eq>

where A (z) is defined as [‘min{xz, exp(¢)}dF(¢). The function A(z) has the following

properties:
lim \(z) = /min{O,eXp(E)})dF(a) =0.

x—0
Also,
1i_>m ANz) = li_)m /min{x,exp(s)})dF(s) = /exp(e)dF(e) =1
Finally,

N(x) = /I{x <exp(e)}dF(e) =1—F(Inz).

A.2 The ”Value” Function: Proof of Lemma 2

Proof. We use backwards induction and first show that the properties of Lemma 2 hold
for the finite horizon problem with time horizon equal to T

Let us consider Q%,(-) to represent the profit function in the last period, i.e.,

Qir(zi,piys—i) = —czi + piys” (2, pi)

.
= —cz; —i—pidf" Di)A ( egz )
M o)

= —cz; + p; / min {z;; e d5? (p;) } dF (&;).

Therefore,

Q7 ()

0y (2, pi)
“op =y (2, pi) + pi—

Opi 7
and ) )
Qir() _ 25?/50(21',1%) +p,a Y5 (2i, pi)
op? op; Coopr

(13)
Given that y£7 (2, pi) = d57 (pi)A (d‘?o'z—(ipi)>’ we have that

0ys? (2, pi) _ ods? (pi)
Op; Op;

F(Inz; —Ind°(p;)),

and

0%y (2, pi) _ 9%ds” (pi)
6p? ﬁp?

adf”(pn)? f(nz — Indg (pi)

F(lnz; —Ind;°(p;)) — —
( o - (*5, )

11



Inserting these expressions in equation (13), we get:

Qo () _, 047 (pi)
op? op;

2 JeT (.
+ i (mﬁ’(ln zi —Ind5% (p;))

F(lnz; —Ind°(p;))

8;0?

_ <ade(Pi))2 f(In z; — Ind< (p;))
Opi a5 ()

e (. 2 e0 (o
=F(Inz — Ind;? (p;)) (Q%iaip(ipz) +p; (%))

_ <8dz¢0(pi))2 f(lnz; — Ind$ (p;))
pi 37 (pi) '

€0 (). 2 Jeo (o).
The first term is negative because (2 adlép(ipZ) + p; (8 Cf;pg(p Z)>) is just the second deriva-

tive of the function p;d;?(p;), that is strictly concave by assumption. It is clear that the

20 (-
second term is also negative. Therefore, %ﬁg() < 0.

ayl ( Zi 7pz)

Furthermore, since , we have that

0Q%. (-
%Z—gi() ny (Zzapz)"'pz

PQr() 9y (i, i) . 0*y57 (21, pi)

= i 14

Opi0zi Ip; P Opioz 14

As we have shown above, %ﬁ:’pi) =\ (def("pl)> =1—F(Inz —Ind{?(p;)). We have
also shown that 24 (:9(: Pi) (p Z)F(lnz — Ind?(p;)), and therefore

322/?”(%1%‘) _0d57 (p;) f(Inz; — Ind§? (p;))

Opi0z; Op; Zi

Inserting these expressions into the equation (14), we get:

?Q7p(+) pi 0d57 (p;)
IEa) 1 Flnz — nd (p;)) + 2L P p 1y 0 Inde (py)).
A (1 = () + 2 0 iz~ e )

With n4(p;) = —ad’;;(ipi) def(i 3 > 0 as the elasticity of expected demand, and
7\ (W) =\ (devz(pz)> e )dea 7 < 0 as the elasticity of the A(-)-function the above
expression can be written as

TQrl) _ ()1 - ()1 = m() + A0 (15)
Op;0z;
With 2 / 2 "
OO0 + V)
77)\(') - )\(,)2 :

The term 77}, (-) is negative as \'(-)+ dw( )X’( )=1—F(-)— f(-) is positive for 1 — F(-) >
f(+) which is fulfilled by assumption. Thus, the second term of equation (15) is negative.

Now, let’s particularize expression (15) at (z,pr(z)). We can write
0Q7 ()

o Y7 (zi,pi) (1 —na(-) (1 —m(-)))

12



such that 1 —n4(-) (1 — nx(+)) can never be positive at the optimal decision and therefore

2o (.
T2 < 0 holds.

We will now show that if QF,_ () is strictly concave in prices and prices and supply
are strategic substitutes in ¢ 4 1, then Q% (-) is strictly concave in prices and prices and
supply are strategic substitutes in ¢ as well.

We make use of the fact that the profit function is bounded from above. More specif-

ically,

TN [ — ) — ez — ks
gy 0 ()~ e

is smaller than some constant 7 < co. This property guarantees that for any values of
z; and p;
Q7 (zi,pi) = lim Q7p(zi, pi).
T—o0

Thus, as in t + 1 the ”value” function given as
Q7 (2it+1, Pit+1; ) = —Czit41 + Dit+1 /min {zitr1; €57 (i) } AF (Sit41)
+ 0 / V7 (max {0; zig41 — €1 d5]  (Dirg1) } 1 +) dF (€i01)dFS (S_it42]S—it+1)
is strictly concave in prices and prices and supply are strategic substitutes, so is the
function in ¢. This completes the proof. O
A.3 Optimal Decision Rule: Proof of Proposition 1.

Following Scarf (1960), the key to proving that the optimal strategy is of the (S, s) form
is to show that the value function V' is k-concave. Our proof exploits several properties
of k-concave functions.

A real-valued function f(s) is a k-concave function if and only if for every sy and s;

such that sy < s; and every scalar 6 € (0,1):
6.f(s0) + (1 =08)f(s1) < (1= 0)k + f(ds0+ (1 —d)s1). (16)
Consider the following properties of k—concave functions:

(i) If f is strictly k-concave it has a unique global maximum.

(ii) If f is strictly k-concave, and s* is the global maximum, then the equation f(z) =
f(s*)—k has two solutions, s and s with s* < s. Furthermore, f(s) > f(s*)—k

if and only if s € (s”,sf).

(iii) If f(z,y) is k-concave in x for any value of y, and k-concave in y for any value of

z, and y*(z) = arg max, f(x,y), then g(z) = f(z,y*(x)) is k-concave.

(iv) If f1(-) is ki-concave, fo(-) is ke-concave, and aq, g are two positive scalars, then

a1 f1+ agfo is (a1k1 + OéQk?Q)—CODC&VQ.
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Before starting with the formal proof, we will briefly illustrate the main idea of why
k-concavity is important.

Consider the k-concave function V(s) to be a firm’s value function. If V' is a contin-
uous differentiable function from k-concavity V(s1) —k — V(sg) — (s1 — s0)V'(s0) < 0
directly follows. Thus for each local extremum s with V’(s") = 0, it is the case that
V(s') > V(s) =k Vs > s'. This means that each local extremum (minimum) s’ is at
most k£ units below a function’s maximum right of this local minimum. This property is
illustrated in Figure 1. The function on the left hand side is an arbitrary value function

that is not k-concave, while the function on the right graph fulfills the condition above.

A A

v

Order ;Nn Order Orcfzcrl No Order IOriicrI No Order Order | No Order H
S c ’ * ’ Ky

s LS s s S s s, s S5
Figure 1: Non-concave value function and respective order decisions when the value

function is not k-concave (left) and when it is k-concave (right).

With lump-sum ordering cost of k£ and a firm’s value function like the one depicted
on the left hand side a complex optimal order policy results where the firm orders when
inventory is below s or around s} such that inventory level s* is attained. Additionally,
the firm orders such that an even higher target level is reached when inventory is around
sh (which is even above s*).

With the value function being k-concave like the one depicted on the right hand side,
it is easy to see that the optimal strategy is of (5, s) type. In that case firms never order
with inventory above s* and firms never order around a local minimum in between the
inventory threshold s and the optimal inventory level s*.

In the following we will make use of this idea with regard to the decision problem of

our model.

Proof. Suppose that @Y is strictly k-concave in z; for any value of p; and strictly

k-concave in p; for any value of z; for all values of s_;;.

The optimal price decision can be written as

oip(s) = 07 (2i58-4).

14



That means, giving the optimal pricing function pJ(z;s_;) the firm chooses inventory
level o7, (s) which results in pricing Jg‘p(s) as a function of the pre-order inventory.

As Q7 (+) is strictly k-concave, s77(s_;) and p7(s;?(s—;),s—;) are unique and pY (-, )
is a real function. Furthermore, QY (z;, p7 (z;);s—i) is also strictly k-concave.

By definition of of,(s), 577 (s—;), and p7(sf?(-),), it is clear that

2

s;7(s—i) AE Q7 (577,17 (s77);-) — k> QF (50,97 (50); )

ol (s) =% "

S if Q;’( javﬁzg(sz )’ ) —k < qu(s’i?ﬁzq(si); )

Due to the k-concavity of Q7(z;,pJ(zi);-) the equation Q7(si?,p7(sf?);:) — k =
Q7 (si,p7 (si); ) has only two solutions.
Let these two solutions be s¥(-) and sf(-), where sF() < s:9(-) < sH (). Then,

7

k-concavity implies
Q7 (577,57 (s77); ) — k < QF (50,5 (s1); ) & 57 () < si() < s{ ().

It is clear that the conditions s; > sl- and s; < s do not play any role because the
stock level is always lower or equal to s77. With s7 as the smaller of the two solutions

by definition we can write the optimal decision as

0 s o
S; lfsigﬁia

s;  if s> 87,
The according optimal pricing decision for the inventory before ordering is
p7(s;7) if si < 87,
7 (si) otherwise.

It further remains to show that ()7 is indeed k-concave.

We proceed in three steps:

a) If V7(s) is strictly k-concave in s;, then Q¢ (-) is strictly k-concave in z; for any value
(] y 7 y y

of Ds-

(b) If V7 (s) is strictly k-concave in s;, then Q7 (+) is strictly k-concave in p; for any value

of Zi.

(c) V7(s) is strictly k-concave in s;.

(a) We will now show that if V,7(s) is strictly k-concave in s;, then Q7 (z;,pi;s—;) is

strictly k-concave in z; for any value of p;.

15



By the first part of the proof, there exist 577 and s{ satisfying 0 < sY < 577 for which

V7 can be represented as

V() = VIQN (8.0 (s)) = | L T PETsa) esi = hsi) = ks €10, D)
Q;‘T(Si’o-p(si); Sfi) +cs; — h(Si) if s > s.

(17)

V7(s) can be extended to be a function defined on R X errflz

Ve(0,s-;) +cs; if s; <0,
VZ(s) = ( )
V7 (s) else,

which is needed as the proof of (c) implies that V; is k-concave in s; over R.

We can write Q7 as

Q7 () = Q7" () + BRIV (),

where
;’R(-) = —czl-—i—pi/min{zi;eeidf”(pi)}dF(ei)
.
= —cz + pid;” (ps )\( — )
P G
and

Q7Y () = / V7 (max {0; zie — e d%7 (pin)} s 5it41) AF (i )AES (5t ]s—it).

Let us now consider the function [ V7 (s; — e=/d$7(-);-) dF (g;)dFY . Since each V7 (-)
is k-concave in s; over R, and since positive linear combinations of pointwise limits of
k-concave functions are k-concave, it follows that [ V7 (s; — e“d§7(-);-) dF (;)dFY . is
k-concave in s; on R. With &;(-) as the value of ¢; for which demand is equal to supply

zi, 1.e. z; = exp(&;(z))d®°(-), we have

/W (si — €51d§7(-);-) dF (g;)dFY

E}(Sﬂ

:/ V7 (si —€®1d?(-); ) dF (e;)dFy

K3
—0o0

4 / VO (s: — ¢de (); ) dF (e3)dFY
E::»;(si)

&i(sq) oo
— / VO (s; — e () ) dF () dFS .+ VE(0;0) / dF(e))dET

P i(s4)

vo [ (- e arte)

i(s4)

0%V (55,1 ) + ¢ / (5 — 51de7 (-)) dF (1),

€i(s4)
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Using the definition of ()7, we have

Q7() =Q7"() + 87" ()

=p; /min {zi;e7d7 (pi) } dF (g;) — ¢z
€i(zi)
8 / VO (2 — de (); ) dF (e:)dFY

+8 Vi (zi — €5di7 () ) dF (ei)dFY

&i(z:) '

o

— ﬁc/ (z; — €71d57 (1)) dF (&;).
gi(zi)

The sum of the third and fourth terms in the last equation is k-concave since

J V7 (si — €57 (-); ) dF (e;)dFY . is k-concave. Since cz; is a linear and hence convex

function of z;, a sufficient condition for the k-concavity of Q7(-) is that the function

pid (pi)A (m) ~ Be /&(Zi) (2 — S () dF(es)

is concave in z;. The function is continuously differentiable in z; with second derivatives

(pi = Be)(1 = F(lnz; — Indi?(-))).

As F'(-) < 1, this expression is non-positive and hence Q)Y is k-concave as long as p; > f¢;.
(Obviously, a weaker condition for that result exists.)

For proving that Q)7 is indeed k-concave we need to show that Jg‘p(s) — fec > 0 holds.
Recall

.
Q7 (21, piss—i) = —czi + pidi? (i )\< o >
( ) PO G o)

8 / V7 (max {05 2 — €d% (pi)} 5 5-ies1) dAF () AEY (s ivs]s—s)
and

V7 (st) = max {Q;‘T(Sit + iy pisS—it) — (hi — ci)sit — kil{qi>0}}-

{pi,ai

where the expected sales df?(p;)A (def—ep)> are always smaller than or equal to total
supply z;. Let’s suppose to the contrary that there is an optimal price o7, < fec < c.

In that case —cz; + pidS? (pi) A (%) would be negative. Thus, without a new order
the current value V7 (s;) would be smaller than the expected value V7 (s;11) after selling
the goods at price op(s;) although the inventory is larger, i.e., si > sjz41. This cannot
be the case in equilibrium. The same is true in the case with ordering. Ordering goods
and simultaneously selling them for a price lower than the purchase price cannot be an

optimal strategy. Thus, the optimal price O'qu is always greater c.
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(b) We will show that if V,7(s) is strictly k-concave in s;, then Q7(:) is strictly k-
concave in p; for any value of z;.

We can represent the function Q7% (-) as —cz; + piy°®(2i, pi;s—;), where y7¢(-) is the
expected sales function. The function Q7%(-) is the same as the function Q7 at the last

period Q7. We have shown in the proof of Lemma 2 that this function is convex.

PQ7E()
Bpf

An argumentation analogous to part (a) yields a similar sufficient condition for the

Therefore, < 0.

k-concavity of Q7(-) in p;, namely that the function

% &
AT (pIN [ —2— ) — i de9 () dF (e
pid;” (pi) <d’?o'(pi)> ﬁc/&(m (zi — e di7(+)) (€i)

is concave in p;. The function is continuously differentiable in p; with a second derivative

that is negative. Therefore, Q7(-) is k-concave in p;.

(c) Finally, we show that V,7(s) is strictly k-concave in s;.
Like in proof of Lemma 2 we make use of the fact that the profit function is bounded

from above. This property guarantees that for any value of s;

V7 (sis-) Vir(si;+)

= lim

T—o0
with V%.(s;) as the value function for the finite horizon problem with time horizon equal
to T'. We prove k-concavity by induction.

For T'= 1 we have Q% (-) is strictly concave in z; and p; due to (a) and (b). Using the
result of the first part of the proof, the optimal decision for this one-period problem has
the form of equations (9) and (10). Hence, the value function of this one period problem
is
Vi (si,+) = 1(si < s71) (QA(siT, DA (siT)) — k) + L(si > s71) Qi (si, D71 (86, +)) — (hi — ¢i)si
With Qf(-) being concave, it is simple to verify that V,(s;,-) fulfills the definition of

strict k-concavity.

Assume now that for any ¢t > 1, V.7(s;, ) is strictly k-concave. Then,
o —o —o €0 (=0 Zi
QF1 (2 D1 ()i S—it1) = —czi + Py ()57 (Pf41 (1) A (m)
48 [ Ve max {0125 = TG0 ()} 5) dFE)ES (s-ials-).

As pF, 1 ()d57 (P51 () A (Wm) — cz; is again strictly concave and V7 (s;,-) is
strictly k-concave, due to property (iv) of k-concave functions, Q% (2, P51 (-); ) is also
strictly k-concave. Hence, the optimal decision has again the form of equations (9) and

(10) and the value function of this finite-horizon problem is

i1 (8is0) =1(s; < 8%41) (Q%Jrl(sjtilaﬁJrl(s;‘TJrl)) - k)

+ I(si > 8511)Q741(86, Pizy1 (805 0)) — (hi — ¢i)ss.
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Similar to V;{(s;,-), this value function is strictly k-concave which completes the proof
by induction. Therefore, V,7(s;;-) = limr_o0 V7:(84;-) is strictly k-concave.

This completes the proof of the optimality of the described ordering strategy.

Properties of the optimal price. We complete the proof of Proposition 1 by showing
that p(-) is a continuous and strictly decreasing function.
The function pf is the value of p; that maximizes QY in p; for a given z;. Since Q)Y is

continuously differentiable and strictly concave in prices, p¢(2;s_;) is implicitly defined

by the first order condition %};?;S_i) = 0. By the implicit function theorem, we have
dp;(z:)° 02Q7 (2;,pi)/Opi0zi . .
that 2 d(;) = - 828;’5;;3582 : 8;’ that by Lemma 2 is negative.

This completes the proof. ]
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