
A TWO LEVEL DECENTRALIZED DISTRIBUTION SYSTEM WITH
COMPOUND RENEWAL DEMAND
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Abstract. In this paper we consider a two level decentralized distribution system, con-

sisting of one warehouse and N retailers. The warehouse and each retailer follows each his

own(s,nQ) order policy. We extended the models as known in the literature to compound

renewal demand.

1. Introduction

Within supply chain management the most commonly encountered problem is the model-

ing and optimization of the so called multi echelon production/distribution systems. These

systems are also called networks. The simplest structure is a series system, where the out-

put of each production or stocking point represents the input of the successive stage, hence

each stage supplies the next one (cf. [5]). There is only one finished product at the end of

the system, where demand occurs. To follow with we should mention the assembly system:

here is also one finished product, although there may be several raw materials, all supplied

exogenously. These are assembled into components, then in further stages assembled further

finally into the end product. A distribution system if represented on a diagram looks like

a reversed assembly system (cf. [5]). Further there are tree systems, which allow features

of both assembly and distribution systems and general systems which allow more complex

features. In this paper we consider a distribution system, restricting the analysis to only two

stages, which is very common to do in the literature.
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Information and control can be centralized or decentralized (localized). In the latter case

each retailer sees only its own demands and the warehouse sees only the incoming order

streams. The warehouse applies a first-come-first-served rule, and all the locations apply

local policies. On the other hand, with a centralized control, the warehouse already accounts

for demands when they occur at the retailers, thus it requires fully centralized information.

Hence, the essential difference between centralized and decentralized control systems is, that

the latter relies on the history rather then the current status of the system to make crucial

decisions (cf. [5]). The centralized control system works well for high-volume goods, while

the decentralized approach is better for low-volume items. In the first case the retailers often

compete for shipments, while for low volume items this is rarely the case, and most of the

time the shipments are more or less in the same size category (thus a first-come-first-served

rule makes sense). The system analyzed in this paper is a decentralized two-level distribution

system.

The classic model of a multi-level distribution system is METRIC, developed by Sherbrooke

(cf. [3]). He also assumes only two stages, demand at the retailers Poisson, all locations using a

base stock -(S−1, S)- policy. Variations on the METRIC models are also developed, although

they could only consider base stock policies. Deuermeyer and Schwarz (cf. [2]) published in

1981 one of the first articles considering decentralized distribution systems with non base stock

policies. They consider a one warehouse multiple identical retailers system, where external

demand is Poisson (unit), retailers apply (s,Q) policies. One of the major limitations of their

model is that it assumes ’no delay due to warehouse out-of-stock conditions’.

2. The model

Consider a two level distribution system, consisting of one warehouse and N retailers. The

warehouse and retailers follow (s, nQ) control policies, that is, the warehouse applies a policy

with parameters (s0, Q0), while at retailer i the policy parameters are (si, Qi), i = 1, . . . , N .

All the processes and characteristics describing or related to the retailers will be indexed with

i, i = 1, . . . , N , while for the warehouse we use index 0. Let {IPi(t) : t ≥ 0} , i = 0, . . . , N

denote the inventory position processes.
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Lemma 2.1. Let U be uniform distributed on [0, 1] and let a be a positive random variable..

Then (U + a)mod 1 is uniform distributed on [0, 1]. Moreover, (U + a)mod 1 is independent

of a.

Proof: It is sufficient to prove that for all α ≥ 0, (U+α)mod 1 is uniform distributed

on [0, 1]. This can be verified by a simple calculation.

This result has an important consequence for the IP under an (s, nQ) control policy.

Corollary 2.2. Suppose IP(0) is uniform distributed on [s, s + Q). For a (s, nQ) control

policies and all fixed t ≥ 0, IP(t) is independent of the demand process. Moreover, for all

fixed t ≥ 0, IP(t) is uniform distributed on (s, s + Q].

Proof: It is well-known that IP(t) − s = (IP(0) − s + D(t))mod Q. Hence the result

follows from lemma 2.1.

Assumption 2.3. For all the retailers and the warehouse IPi(0) is uniform distributed on

[si, si + Qi).

Demand is denoted by Di. Identifying the replenishment moments τ i = {τn
i : n ∈ IN}

Let us denote the stochastic counting process associated with the sequence τ i by Ni(t),

i = 1, . . . , N . Introduce the stochastic replenishment process by

Ri (t) :=
Ni(t)∑

n=1

Rn
i ,

where the Rn
i denote the sizes of the replenishment orders. Let further, Li, i = 0, . . . , N stands

for the leadtime of a replenishment order. Demand at the warehouse is the superposition of

the replenishment processes (τ i,Ri) of the retailers, that is,

(2.1) D0(0, t] =
N∑

i=1

Ri (t) .

Theorem 2.4. The replenishment process Ri is distributed as

R (t0, t1] = bD (t0, t1]− ((s + Q)− IP (t0))cQ
R (t0, t1] = bD (t0, t1] + (IP (t1)− s)cQ ,

where bxcQ denotes Q bx/Qc. Moreover, R is distributed as

R (t0, t1] = bD (t0, t1] + QUcQ ,
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with U and D are independent.

Proof: It is easily seen that

R (t0, t1]− (IP (t1)− s) = D (t0, t1]− (IP (t0)− s) .

Since Ri is always a multiple of Q and 0 ≤ IP− s < Q we obtain that

R (t0, t1] = bD (t0, t1] + ((s + Q)− IP (t0))cQ
R (t0, t1] = bD (t0, t1] + (IP (t1)− s)cQ .

The remainder part follows now from corollary 2.2.

Remark 2.5. Remark that until now we didn’t make any assumption about the demand

processes Di.

Let us proceed with the analysis of the warehouse.

3. The warehouse

In order to compute the long run average cost of the warehouse, related to the netstock

process, we make use of the flow conservation law:

IN0(t + L0) = IP0(t)−D0(t, t + L0].

In the spirit of Bázsa and den Iseger [1], to be able to use an efficient procedure, we need to

find out whether the inventory position process and the leadtime demand are asymptotically

independent. But this follows immediately from corollary 2.2. We also know that for all t ≥ 0,

IP0(t) is uniform distributed on [s0, s0 + Q0). It remains to analyze the (Cesaro) limiting

distribution of D0(t, t + L0]. From theorem 2.4 we obtain that

Ri(t, t + L0] = b(Di(t, t + L0] + QiU)cQi
,

Assumption 3.1. Demand, denoted by Di, at each retailer is described by a compound

renewal process with i.i.d. individual demands {Yn
i : n ∈ IN}, i = 1, . . . , N . The inter-arrival

time distributions are spread-out (cf. Sigman [4]).

Di(t, t+L0] is distributed as Di[0, L0−Ai (t)], where Ai the forward recurrence time residual

life processes Ai(t) := tNi(t)+1 − t. Since the inter-arrival time distributions are spread-out ,
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the stochastic process Ai(t) has a limiting distribution (cf. Proposition 5.1 of Sigman cf. [4]).

This implies that Ri(t, t + L0] and D0(t, t + L0] are asymptotic distributed as

RL0
i := b(Di[0, L0 −A∞i ] + QiU)cQi

and DL0
0 =

N∑

i=1

RL0
i

where A∞i is distributed with the limiting distribution of Ai(t). Hence, the average cost of

the warehouse is given by the expression

IEf
(
s0 + Q0U−DL0

0

)
.

It remains now to analyze the behaviour of the relevant stochastic processes at the retailers.

4. The retailers

The flow conservation law for the retailers is given by

(4.1) INi(t + Li + W(t)) = IPi(t)−Di(t, t + Li + W(t)],

where W(t) is the additional remaining waiting time at time t incurred by the event when

the warehouse is out of stock. By this definition of the waiting time it is clear that the flow

conservation law remains valid. In general the difficulty is to determine the distribution of

the remaining waiting time W(t).

Let us first attempt to determine the distribution of the remaining waiting time at t, W(t),

since, intuitively, that will also reveal the precise dependency structure. The state space of

W(t) is [0, L0], and its distribution can be characterized by the following relation:

IP{W(t) ≤ w} = IP{IN0(t + w) + D0(t, t + w] > 0}(4.2)

= IP{IP0(t + w − L0)−D0(t + w − L0, t] > 0}.(4.3)

Intuitively, relation (4.2) expresses the fact that if the remaining waiting time is w, then the

incoming order at the warehouse at time t + w raises the net inventory of the warehouse

IN0 to a positive level, if no demand is coming in at the warehouse during the time [t, t +w].

Hence, the distribution of the remaining waiting time only depends on the retailer in question

indirectly, through the demand D0(t, t + w]. In relation (4.3) the flow conservation law is

used for IN0(t + w).

The demand, as defined earlier, D0(t + w − L0, t] =
∑N

k=1 Ri(t + w − L0, t]. All the

Rk, k = 1, . . . N are independent, and we can determine the superposition D0 as before.
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However, we have to take care for the dependency of W(t) and {IPi (t) ,Di(t, t + w]}. We

obtain from theorem 2.4 that

Ri(t + w − L0, t] = bDi(t + w − L0, t] + IPi (t)− sicQi
,

with Di(t+w−L0, t] and IPi(t)− si are independent. This implies that given the forward

recurrence time residual life processes Ai(t) := tNi(t)+1−t, W(t) is independent of Di(t, t+w].

Hence, the average cost of retailer i is given by the expression

IEU,A∞i {IE {f (IPi −Di[0, Li + W −A∞i ])}|A∞i , IPi − si = QiU} .

Observation 4.1. The waiting time W with distribution given by (4.3), is not only important

for the calculation of long run average costs, but it yields service measure, frequently used in

practice: the probability that a customer has to wait more than certain amount of time T > 0.

Remark 4.2. The analysis of the two level distribution system described above remains valid

also in the case when the system starts in an arbitrary state, not in equilibrium. In this case

we need the additional assumption of a finite expected delay-cycle cost.
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