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Abstract. An analysis is presented of the circumstances under which, by the

extraction of elementary factors, an analytic Banach algebra valued function
can be transformed into one taking invertible values only. Elementary factors

are generalizations of the simple scalar expressions λ − α, that is functions

of the type e − p + (λ − α)p with p an idempotent. The analysis elucidates
old results (such as on Fredholm operator valued functions) and yields new

insights which are brought to bear on the study of vector-valued logarithmic

residues. Examples illustrate the subject matter and show that new ground is
covered. Also a long standing open problem is discussed from a fresh angle.
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1. Introduction
secint

Let B be a unital complex Banach algebra. A logarithmic residue in B is a
contour integral of a logarithmic derivative of an analytic B-valued function F .
There is a left version and there is a right version of this notion. The left version
corresponds to the left logarithmic derivative F ′(λ)F (λ)−1, the right version to the
right logarithmic derivative F (λ)−1F ′(λ).

The first to consider integrals of this type in a vector valued context, was L.
Mittenthal [M]. His goal was to generalize the spectral theory of a single Banach
algebra element (i.e., the case where F (λ) = λe − b with e the unit element in B
and b ∈ B). He succeeded in giving sufficient conditions for a logarithmic residue
to be an idempotent. The conditions in question, however, are very restrictive. On
the other hand they elucidate why the spectral case ”works”. An unclear point in
[M] was clarified in [B]).

Logarithmic residues also appear in the paper [GS1] by I. Gohberg and E. Sigal.
The setting there is B = L(X), the Banach algebra of all bounded linear operators
on a complex Banach space, and F is a Fredholm operator valued function. For
such functions Gohberg and Sigal introduced the concept of algebraic (or null)
multiplicity. It turns out that the algebraic multiplicity of F with respect to a
given contour is equal to the trace of the corresponding (left/right) logarithmic
residues (see also [BKL2] and [GGK]). For analytic matrix functions, such a result
was obtained in [MS].

Further progress was made in [BES2]–[BES8]. In these papers, logarithmic
residues are studied from different angles and perspectives. For an overview of
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the issues dealt with, see for instance the Introduction of [BES8]. Two of those lie
at the heart of the present paper. First, and mainly,

Problem 1 What kind of elements are logarithmic residues?

Second, and to a lesser extent,

Problem 2 If a logarithmic residue vanishes, under what circumstances does it
follow that the function in question takes invertible values inside the integration
contour?

These problems are investigated here for functions satisfying certain restrictions:
they allow for a certain type of representation modelled after what has been ob-
served in important cases such as analytic Fredholm operator valued functions.
These representations are interesting in their own right as they involve the extrac-
tion of elementary factors of the form e− p + (λ− α)p with p ∈ B an idempotent.
Such elementary factors generalize the scalar functions λ−α familiar from complex
function theory.

Apart from the introduction (Section 1) and the list of references, the paper
consists of eight sections. Here is a brief description of their contents.

Section 2 is concerned with vector valued logarithmic residues and is mainly
meant for easy reference. The material can be skipped, at least in first reading,
and later be consulted as far as need arises.

Section 3 deals with elementary functions. As already indicated above, these are
functions of the type e− p + (λ−α)p where p ∈ B is an idempotent. The emphasis
is on commutativity properties of elementary functions which are important for the
study of plain functions.

Section 4 contains the basic facts about plain functions. Their defining property
is that they can be written as the product of an everywhere invertible analytic
function and an elementary polynomial. Here an elementary polynomial is a prod-
uct of elementary functions (so simply a polynomial in the scalar case). In view of
the commutativity properties of elementary functions referred to above, plain func-
tions are characterized by the fact that, in the sense of [GKL], they are analytically
equivalent to an elementary polynomial.

The notion of a plain function has its roots [GS1], [GS2], [BKL1] and [T]. The
idea of extracting factors that are in a sense elementary or irreducible also appears
in systems theory. See, for instance, the material on the Callier-Desoer class of
transfer functions in [CZ], Chapter 7; cf., also [BGK], Sections 1.3 and 3.2, and
[BKZ].

Section 5 continues the analysis of plain functions. Matrix valued analytic func-
tions and, more generally, analytic Fredholm valued functions, are plain on each
open set containing only a finite number of points where non-invertible values are
assumed. A similar theorem is true for functions having a simply meromorphic
resolvent. Underlying these results is the notion of an annihilating idempotent for
a zero product in the Banach algebra under consideration. With the help of this
concept it is possible to formulate a quite general sufficient condition for a function
to be plain.

Section 7 contains three striking examples on the extraction of elementary fac-
tors. Two of these are concerned with non-plain functions.

The general sufficient condition for a function to be plain meant in the all but
last paragraph should be appreciated in light of examples where it is satisfied. Such
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examples are discussed in Section 6. One of them covers the situation where the
underlying Banach algebra is of the type L(H), where H is a complex Hilbert space.
Special attention is paid to the finite dimensional case.

Section 8 deals with logarithmic residues of plain functions. In earlier publi-
cations, several instances have been given where logarithmic residues are sums of
idempotents. On the other hand there are also cases in which they not even belong
to the closed algebra generated by the idempotents. The plain functions considered
here occupy an intermediate position: their logarithmic residues turn out to be
linear combinations of (monomials in) idempotents with integer coefficients. This
adds to the understanding of Problem 1. The section also contains a contribution
to the discussion of Problem 2. Here families of traces on Banach algebras play an
essential role. The paper closes with a discussion concerning a long standing open
question concerning Problem 2 and zero sums of idempotents.

2. Basics on vector valued logarithmic residues
logres

We shall here recall the introductory background material on vector valued loga-
rithmic residues needed later. Also some fundamental facts concerning the relation-
ship with sums of idempotents are reviewed (cf., Problem 1 from the Introduction).
One can postpone consulting this section until need arises.

As before, B is a unital complex Banach algebra. If F is a B-valued function with
domain ∆, then F−1 stands for the resolvent of F . Thus F−1 is the function given
by F−1(λ) = F (λ)−1, the domain being the resolvent set of F , that is the set of all
λ ∈ ∆ such that F (λ) is invertible. If ∆ is an open subset of the complex plane C
and F : ∆ → B is analytic, then so is F−1 on the resolvent set of F . Further, the left,
respectively right, logarithmic derivative of F is the function given by F ′(λ)F−1(λ),
respectively F−1(λ)F ′(λ), where F ′ denotes the derivative of F . These logarithmic
derivatives are defined and analytic on the resolvent set of F .

Logarithmic residues are contour integrals of logarithmic derivatives. To make
this notion more precise, we shall employ bounded Cauchy domains in C and their
positively oriented boundaries. For a discussion of these notions, see [TL].

Let D be a bounded Cauchy domain in C. The (positively oriented) boundary of
D will be denoted by ∂D. We write A∂(D;B) for the set of all B-valued functions
F with the following properties: F is defined and analytic on a neighborhood of
the closure D = D ∪ ∂D of D and F takes invertible values on all of ∂D (hence
F−1 is analytic on a neighborhood of ∂D). For F ∈ A∂(D;B), one can define the
contour integrals

LRleft(F ;D) =
1

2πi

∫
∂D

F ′(λ)F−1(λ)dλ, (1) p1

LRright(F ;D) =
1

2πi

∫
∂D

F−1(λ)F ′(λ)dλ. (2) p2

The elements of the form (1) or (2) are called logarithmic residues in B. More
specifically, we call LRleft(F ;D) the left and LRright(F ;D) the right logarithmic
residue of F with respect to D.

It is convenient to introduce a local version of these concepts too. Given a
complex number λ0, we let A(λ0;B) be the set of all B-valued functions F with the
following properties: F is defined and analytic on an open neighborhood of λ0 and



4 H. BART, T. EHRHARDT AND B. SILBERMANN

F takes invertible values on a deleted neighborhood of λ0. For F ∈ A(λ0;B), one
can introduce

LRleft(F ;λ0) =
1

2πi

∫
|λ−λ0|=%

F ′(λ)F−1(λ)dλ, (3) p3

LRright(F ;λ0) =
1

2πi

∫
|λ−λ0|=%

F−1(λ)F ′(λ)dλ, (4) p4

where % is a positive number such that both F and F−1 are analytic on an open
neighborhood of the punctured closed disc with center λ0 and radius %. The ori-
entation of the integration contour |λ− λ0| = % is, of course, taken positively, that
is counterclockwise. Note that the right hand sides of (3) and (4) do not depend
on the choice of %. In fact, (3) and (4) are equal to the coefficient of (λ − λ0)−1

in the Laurent expansion at λ0 of the left and right logarithmic derivative of F
at λ0, respectively. Obviously, LRleft(F ;λ0), respectively LRright(F ;λ0), is a left,
respectively right, logarithmic residue of F in the sense of the definitions given in
the preceding paragraph (take for D the open disc with radius % centered at λ0).
We call LRleft(F ;λ0) the left and LRright(F ;λ0) the right logarithmic residue of F
at λ0.

In certain cases, the study of logarithmic residues with respect to bounded
Cauchy domains can be reduced to the study of logarithmic residues with respect
to single points. The typical situation is as follows. Let D be a bounded Cauchy
domain, let F ∈ A∂(D;B) and suppose F takes invertible values on D except in a
finite number of distinct points α1, . . . , αn ∈ D. Then

LRleft(F ;D) =
n∑

j=1

LRleft(F ;αj), (5) p5

LRright(F ;D) =
n∑

j=1

LRright(F ;αj). (6) p6

This occurs, in particular, when F−1 is meromorphic on D with a finite number of
poles in D, a state of affairs that we will encounter in what follows.

The particular case when all poles of F−1 of are simple, i.e., they have order one,
is of special interest here. Indeed, the functions that we will investigate turn out to
be products of functions of this type. Also, there is an important connection with
Problem 1 from the Introduction, as is seen from the following two results taken
out of [BES6].

tp3 Theorem 2.1. Let λ0 ∈ C, let F ∈ A(λ0;B), and suppose F−1 has a simple pole
at λ0. Write p and q for the left and right logarithmic residue of F at λ0, i.e.,

p =
1

2πi

∫
|λ−λ0|=%

F ′(λ)F−1(λ)dλ,

q =
1

2πi

∫
|λ−λ0|=%

F−1(λ)F ′(λ)dλ,

where % is positive and sufficiently small. Then p and q are non-zero idempotents.
Also p and q are similar, i.e., p = s−1qs for some invertible s ∈ B.

tp1 Theorem 2.2. Let x ∈ B , where B is a complex Banach algebra, and let D be a
bounded Cauchy domain in C. The following statements are equivalent:



LOGARITHMIC RESIDUES AND ELEMENTARY FACTORS 5

(i) x is a sum of idempotents in B;
(ii) x is the left logarithmic residue with respect to D of a function F in

A∂(D;B) such that F−1 is meromorphic on D with a finite number of
poles each of which is simple;

(iii) x is the right logarithmic residue with respect to D of a function F in
A∂(D;B) such that F−1 is meromorphic on D with a finite number of
poles each of which is simple.

The implications (ii)⇒(i) and (iii)⇒(i) follow from Theorem 2.1 with the help
of (5) and (6). The fact that (i) implies both (ii) and (iii) is easy to prove when
the number of connected components in D is larger than or equal to the number
of terms in the sum of idempotents x (cf., [BES2]). Things are considerably more
complicated when this is not the case, especially when D is connected. This sit-
uation is covered by the following theorem which is a slight reformulation of the
result obtained by one of the authors (T. Ehrhardt) in [E]. A Banach algebra valued
function is called entire when it is defined and analytic on all of C.

tp2 Theorem 2.3. Let p1, . . . , pn be nonzero idempotents in the complex Banach al-
gebra B and let λ1, . . . , λn be distinct (but otherwise arbitrary) complex numbers.
Then there exists an entire analytic B-valued function F such that F takes invert-
ible values on all of C, except for λ1, . . . , λn, where F−1 has simple poles, while in
addition,

LRleft(F ;λj) = LRright(F ;λj) = pj , j = 1, . . . , n.

For completeness, we mention that the function F constructed in [E] is a product
of 3n factors, each of them a function of the form e−p+ϕ(λ)p where p is one of the
given idempotents and ϕ is an entire scalar function. For a refinement of Theorem
2.3, see Theorem 2.1 in [BES8].

3. Elementary functions: a calculus
elfcalc

As before B stands for a unital Banach algebra. Its unit element will be denoted
by e.

Given an idempotent p in B and a complex number α, let Ep,α be the (entire)
function defined by

Ep,α(λ) = e− p + (λ− α)p, λ ∈ C.

Such functions will be called elementary. More precisely, we will say that Ep,α is
an elementary function based at α.

If p is the zero element in B, then Ep,α(λ) is identically equal to e, so multipli-
cation with Ep,α amounts to the same as multiplication with the scalar 1. If p is
the unit element element in B, then Ep,α(λ) is equal to (λ− α)e, so multiplication
with Ep,α amounts to the same as multiplication with the scalar function λ− α.

Taking α equal to zero, we get Ep,0 with Ep,0(λ) = e− p + λp. This function is
multiplicative:

Ep,0(λµ) = Ep,0(λ)Ep,0(µ), λ, µ ∈ C.

Also Ep,0(1) = e and Ep,0

(
1
λ

)
= Ep,0(λ)−1 whenever λ 6= 0.

Returning to the general situation, note that

Ep,α(λ) = Ep,0(λ− α), λ ∈ C.
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and the multiplicativity property for Ep,0 translates into

Ep,α(α + λµ) = Ep,α(α + λ)Ep,α(α + µ), λ, µ ∈ C.

Finally, Ep,α(λ) is invertible whenever λ 6= α and

Ep,α(λ)−1 = e− p +
1

(λ− α)
p = Ep,α

(
α +

1
λ− α

)
, λ ∈ C; λ 6= α.

In case p is not equal to the zero element in B, the function E−1
p,α has a simple pole

(that is a pole of order one) at α. For α = 0 the expression for the inverse reduces
to the simple identity

Ep,0(λ)−1 = e− p + λ−1p = Ep,0

(
λ−1

)
, λ ∈ C; λ 6= 0 (7) inver

which will be used in Example 8.1 below.
Elementary functions have certain commutativity properties that will be used

later. The first result in this direction is the following proposition which features as
Remark 4.1 in [BES6]. For the convenience of the reader we present it with proof.

comelf1 Proposition 3.1. Let ∆ be a non-empty open subset of C, let G : ∆ → B be
analytic, let p ∈ B be an idempotent and let α ∈ ∆. Suppose G takes invertible
values on all of ∆ and put q = G(α)−1pG(α). Then q is an idempotent (similar
to p) and there exists an analytic function H : ∆ → B such that H takes invertible
values on all of ∆ and

Ep,α(λ)G(λ) = H(λ)Eq,α(λ), λ ∈ ∆. (8) cfe1

Proof. Introduce

H(λ) =

{
Ep,α(λ)G(λ)E−1

q,α(λ), λ ∈ ∆, λ 6= α,

G(α) + (e− p)G′(α)G(α)−1pG(α), λ = α.

Then H is analytic on ∆ \ {α} and takes invertible values there. Also H(λ) → H(α)
when λ → α, so H is analytic on all of ∆. One verifies easlily that H(α) is invertible
with inverse H(α)−1 = G(α)−1 − G(α)−1(e − p)G′(α)G(α)−1p. For values of λ
different from α, the identity (8) is obvious from the definition of H(λ). For λ = α
it follows by continuity, but a direct computation using the definition of H(α) works
too. �

Proposition 3.1 says that when we have a product with an elementary function
Ep,α on the left and an everywhere invertible function G on the right, we can bring
the elementary function to the right and the everywhere invertible function to the
left at the expense of changing p into a similar idempotent q and G into another
everywhere invertible function H. Here ”everywhere” means: everywhere on the
given domain of G, i.e., the open subset ∆ of C.

Of course the proposition has an analogue in which one starts with a function H
and an idempotent q, and comes up with a function G and an idempotent p such
that (8) holds. The details are as follows: p = H(α)qH(α)−1, so p is an idempotent
similar to q,

G(λ) =

{
E−1

p,α(λ)H(λ)Eq,α(λ), λ ∈ ∆, λ 6= α,

H(α) + H(α)qH(α)−1H ′(α)(e− q), λ = α,

and G(α)−1 = H(α)−1 − qH(α)−1H ′(α)(e− q)H(α)−1.
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Now start with the data of Proposition 3.1. With these we produce H and q
as indicated in the proof. But then, in turn, we can go on along the lines indi-
cated in the previous paragraph and transform H and q into a new function and
a new idempotent. Let us denote these now by G0 and p0, respectively. At this
point, it is natural to ask for the relationship between G0 and p0 on the one hand
and the original function G and idempotent p on the other. We look here at the
idempotents leaving the functions to the reader. From the definitions, we have
p0 = H(α)qH(α)−1 = H(α)G(α)−1pG(α)H(α)−1 and a simple computation gives

p0 = p + (e− p)G′(α)G−1(α)p. (9) relipot

At first sight, this might be somewhat surprising because the natural thing to expect
is p0 = p. Things become transparent when one notes that q = G(α)−1pG(α) is
the right logarithmic residue (cf., Section 2 for the definition) at the point α of
the function Ep,α(λ)G(λ) and, similarly, p0 = H(α)qH(α)−1 is the left logarithmic
residue of the function H(λ)Eq,α(λ). However, the functions Ep,α(λ)G(λ) and
H(λ)Eq,α(λ) coincide. Thus p0 = p if and only if p (the idempotent that we started
with) happens to be the left logarithmic residue at α of the function Ep,α(λ)G(λ).
By the way, it can also be seen directly that this left logarithmic residue is equal to
the right hand side of (9). Indeed, observe that for the left logarithmic derivative
of the function Ep,α(λ)G(λ) we have the expression

(λ− α)−1p +
(
e− p + (λ− α)p

)
G ′(λ)G−1(λ)

(
e− p + (λ− α)−1p

)
and determine the coefficient of (λ− α)−1.

To finish the discussion of Proposition 3.1, consider once more the function
Ep,α(λ)G(λ). From what we have seen, we may suspect that certain changes in p
and G will not affect this function, and this is indeed true. In fact, the freedom one
has (and, in fact, all of it) is to replace p by p + (e − p)bp (again an idempotent)
and G by (

e + (1 + α− λ)(e− p)bp
)
G(λ)

(again invertible on all of ∆), were b ∈ B is arbitrary. One of the possible choices
concerns a ”distinguished” idempotent, namely the left logarithmic residue p0 of the
function Ep,α(λ)G(λ) at the point α, and the preceding paragraph makes clear that
in a sense this is the natural choice (cf., (9); see also [BES6]). Analogous remarks
can be made, of course, concerning functions of the alternative type H(λ)Eq,α(λ).

Proposition 3.1 is concerned with elementary functions based at one given point
α. In our second commutativity observation, we look at a situation involving two
elementary functions based at possibly different points. The result can be obtained
quickly from [BES6], Lemma 3.2, but we prefer to give a direct proof providing
some details.

comelf2 Proposition 3.2. Let p and q be idempotents in B, and let α and β be points in
C. Then there exist idempotents p̂ and q̂ in B, and an entire function G : C → B,
such that G takes invertible values on all of C and

Ep,α(λ)Eq,β(λ) = Eq̂,β(λ)Ep̂,α(λ)G(λ), λ ∈ C. (10) cfe4

In case α and β are different, p̂ and q̂ can be chosen such that p̂ is similar to p and
q̂ is similar to q.
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Combining this with Proposition 3.1, one sees that there is an analogous result
where G is the first factor in the right hand side of (10) or G is in the middle
between the elementary functions Eq̂,β and Ep̂,α.

Proof. The situation α = β is trivial: just take q̂ = p, p̂ = q and let G be identically
equal to the unit element in B. So we (may) assume that α 6= β. In view of the
remarks made above, it need not come as a surprise that logarithmic residues play
a role in the argument (see also [BES6]).

Let q̂ be the left logarithmic residue of the function Ep,α(λ)Eq,β(λ) at β. Looking
at the Laurent expansion of the left logarithmic derivative of this function, and
actually computing its coefficient for (λ− β)−1, we get

q̂ = Ep,α(β)qE−1
p,α(β).

Note here that the invertibility of Ep,α(β) is guaranteed by the assumption α 6= β.
Clearly, q̂ is an idempotent similar to q. Further, let p̂ be the left logarithmic residue
of the function E−1

q̂,β(λ)Ep,α(λ)Eq,β(λ) at α. Again using Laurent expansions, we
obtain

p̂ = E−1
q̂,β(α)

(
p +

1
α− β

(e− p)qp
)
Eq̂,β(α),

which can be rewritten as

p̂ = E−1
q̂,β(α)

(
e +

1
α− β

(e− p)qp
)
p
(
e +

1
β − α

(e− p)qp
)
Eq̂,β(α)

= E−1
q̂,β(α)

(
e +

1
β − α

(e− p)qp
)−1

p
(
e +

1
β − α

(e− p)qp
)
Eq̂,β(α).

Thus p̂ is an idempotent similar to p. Define G : C → B by

G(λ) =



E−1
p̂,α(λ)E−1

q̂,β(λ)Ep,α(λ)Eq,β(λ), λ 6= α, β,

E−1
p̂,α(β)Ep,α(β)

(
e + 1

β−αqp(e− q)
)
, λ = β,

E−1
q̂,β(α)

(
e + 1

α−β (e− p)qp
)(

e + 1
β−αpq̂(e− p)

)
Eq,β(α), λ = α.

Then G is analytic. The (rather tedious) detailed verification of this (by considering
the Laurent expansions of G at β and α) is omitted. Evidently G takes invertible
values on C \ {α, β} and it is easily seen that G(α) and G(β) are invertible too. We
finish the proof by noting that (10) is satisfied. �

With respect to Proposition 3.2, one can raise a ”back and forth issue” somewhat
analogous to the one discussed above for Proposition 3.1. We refrain from pursuing
this point here. Instead we present an interpretation of Propositions 3.1 and 3.2
which is perhaps somewhat loose, but nevertheless elucidating. Write I for the set
of B-valued functions that take invertible values on all of their domain and Eα for
the set of B-valued elementary functions based at α. On and between these sets the
multiplication in B induces an (associative) multiplicative structure. Proposition
3.1 can now be rephrased (with a notation that speaks for itself) as

Eα × I = I × Eα.

Thus it is fair to say that the sets I and Eα commute. Proposition 3.2 can be
written as Eα × Eβ ⊂ Eβ × Eα × I. Since I × I = I, it follows that

(Eα × I)× (Eβ × I) = (Eβ × I)× (Eα × I) .
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So the sets Eα ×I or, what comes down to the same, the sets I × Eα, are mutually
commuting.

We conclude this section with a simple observation showing that the presence
of I is essential here. In other words, in Proposition 3.2 the factor G cannot be
missed.

comelf3 Proposition 3.3. Let p, q, p̂, q̂ be idempotents in B and let α, β be complex num-
bers, α 6= β. Then

Ep,α(λ)Eq,β(λ) = Eq̂,β(λ)Ep̂,α(λ), λ ∈ C (11) cfe5

if and only if p = p̂, q = q̂ and pq = qp.

Proof. For the only if part, the argument is as follows. In (11), substitute first
λ = 1 + α to obtain q = q̂, and then λ = 1 + β to get p = p̂. Here the assumption
α 6= β is used. With p = p̂ and q = q̂, the expression (11) becomes

Ep,α(λ)Eq,β(λ) = Eq,β(λ)Ep,α(λ), λ ∈ C.

Comparing the coefficients of λ2 in the two sides of this identity gives pq = qp as
desired. The if part of the proposition is trivial (and true also when α = β). �

4. Plain functions: preliminaries and first results
plainprel

Products of elementary functions will be called elementary polynomials. Thus P
is an elementary polynomial if it admits a representation

P (λ) =
n∏

k=1

Epk,αk
(λ), (12) elpol1

with α1, . . . , αn points in C (not necessarily distinct) and p1, . . . , pn idempotents in
B. To avoid possible confusion: in products written in the Π-notation and involving
possibly non-commuting factors, the order of the factors corresponds to the order of
the indices. So in (12), the first factor is Ep1,α1(λ) and the last factor is Epn,αn(λ):

P (λ) = Ep1,α1(λ) · · ·Epn,αn
(λ). (13) elpol

To include the case n = 0, we adhere to the standard practice of letting an empty
product be equal to the unit element in B. In the expressions (12) and (13), one
can leave out the factors with pj = 0, thereby obtaining representations involving
non-zero idempotents only.

elpres Proposition 4.1. Let P be an elementary polynomial given by (13) and with all
the idempotents p1, . . . , pn non-zero. Then P takes invertible values on C, except
in the points α1, . . . , αn where P takes non-invertible values and the meromorphic
resolvent P−1 has its poles.

Poles are always meant to have positive order.

Proof. For λ not one of the points α1, . . . , αn, we have that P (λ) is invertible while

P (λ)−1 =
n∏

j=1

(
e− pn+1−j +

1
λ− αn+1−j

pn+1−j

)
.

Hence P−1 is analytic on C \ {α1, . . . , αn} and meromorphic on C. Also, the poles
of P−1 are clearly among the points α1, . . . , αn.
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Let α be one of these points. We shall first prove that P (α) is not invertible. Let
k be the smallest index such that α = αk. Then α 6= α1, . . . , αk−1 and, therefore,
Ep1,α1(α), . . . , Epk−1,αk−1(α) are invertible. But then the product of these elements∏k−1

j=1 Epj ,αj (α) is invertible too. Suppose P (α) is invertible. From

P (α) =
( k−1∏

j=1

Epj ,αj (α)
)( n∏

j=k

Epj ,αj (α)
)

we may then infer the invertibility of
∏n

j=k Epj ,αj
(α). Now Epk,αk

(α) = e− pk and
so

pk

n∏
j=k

Epj ,αj
(α) = pk(e− pk)

n∏
j=k+1

Epj ,αj
(α) = 0.

Thus it would follow that pk = 0, contrary to assumption. And so P (α) is not
invertible indeed.

Next assume that P−1 does not have a pole (of positive order) at α, i.e.,
the principal part of the Laurent expansion of P−1 at α vanishes. Then Pα =
limλ→α P (λ)−1 exists and a continuity argument gives P (α)Pα = e = PαP (α).
This contradicts the result obtained in the previous paragraph. �

Let ∆ be a non-empty open subset of the complex plane C and let F be a
B−valued function which is analytic on ∆. We say that F is plain on ∆ if there
exist an elementary polynomial P and an analytic function G : ∆ → B such that
G takes invertible values on all of ∆ and

F (λ) = P (λ)G(λ), λ ∈ ∆,

i.e., assuming P is given by (13),

F (λ) = Ep1,α1(λ) · · ·Epn,αn
(λ)G(λ), λ ∈ ∆. (14) plain1

In the next section, we will encounter interesting classes of plain vector or operator
valued functions. For the moment, we just note that the notion of a plain function
is clearly modelled after the situation for scalar analytic functions.

Here are some remarks in connection with the representation (14). First, chang-
ing (if necessary) G and the idempotents p1, . . . , pn, we can bring G to the left and
position it as the first (instead of the last) factor. This follows from Proposition 3.1.
More generally, one can put G somewhere in between, so that the representation is
of the type

F (λ) =

k−1∏
j=1

Epj ,αj
(λ)

G(λ)

 n∏
j=k

Epj ,αj
(λ)

 , λ ∈ ∆.

Here k can be any integer among 1, . . . , n + 1.
Along these lines, we have the following characterization of plain functions. Let

∆ be a non-empty open subset of C and let F : ∆ → B. Then F is plain on
∆ if and only if there exist an elementary polynomial P and analytic functions
G, H : ∆ → B, taking invertible values on all of ∆, such that

F (λ) = H(λ)P (λ)G(λ), λ ∈ ∆.

Using terminology from [GKL] (see also [GGK]), this can be rephrased as follows:



LOGARITHMIC RESIDUES AND ELEMENTARY FACTORS 11

an.eq Proposition 4.2. Let ∆ be a non-empty open subset of C and let F : ∆ → B.
Then F is plain on ∆ if and only if F is analytically equivalent on ∆ to an ele-
mentary polynomial.

Next let us consider the location of the points α1, . . . , αn. An elementary function
based at a point outside ∆ takes invertible values on all of ∆. Thus, applying
Proposition 3.1 once again, one can come to the case where α1, . . . , αn belong to ∆.
On top of that the factors involving zero idempotents can always be left out. In the
resulting situation where α1, . . . , αn ∈ ∆ and p1, . . . , pn are non-zero, Proposition
4.1 guarantees that F takes invertible values on ∆, except in the points α1, . . . , αn

where F takes non-invertible values and the (meromorphic) resolvent F−1 of F has
poles (of positive order).

We now push this line of reasoning a little further and bring to bear Proposition
3.2 too.

cfeT2 Proposition 4.3. Let ∆ be a non-empty open subset of C, let F : ∆ → B be
plain, and let β1, . . . , βn be the distinct points in ∆ where F takes non-invertible
values (in any given order). Then there exist an analytic function Q : ∆ → B
taking invertible values on all of ∆, positive integers m1, . . . ,mn, and non-zero
idempotents q

(i)
j (i = 1, . . . ,mj ; j = 1, . . . , n) in B such that

F (λ) =

(
m1∏
i=1

E
q
(i)
1 ,β1

(λ)

)
. . .

(
mn∏
i=1

E
q
(i)
n ,βn

(λ)

)
Q(λ), λ ∈ ∆.

The case n = 0 corresponds to the situation where F coincides with Q and takes
invertible values on all of ∆.

Here are two simple non-trivial example of a non-plain function. For another
one (with spectacular additional features), see Example 7.2 below.

nonplain Example 4.4. Let n ≥ 2 and write Tn for the (commutative) Banach subalgebra
of Cn×n consisting of all upper triangular n×n Toeplitz matrices. Let F : C → Tn

be given by F (λ) = λIn − Jn, where In is the n× n identity matrix and Jn is the
n×n upper triangular nilpotent Jordan block. Then F is entire and takes invertible
values on all of C, except in the origin where

F−1(λ) =
n∑

k=1

1
λk

Jk−1
n

has a pole of order n. The function F is not plain on any open subset of C containing
the origin. Suppose it is. Then F admits a representation of the form

F (λ) =
(
In − P1 + λP1

)
. . .
(
In − Pk + λPk

)
G(λ) (15) tpl

with P1, . . . , Pk non-zero idempotents in Tn, the function G analytic on an open
neighborhood of the origin, and G(0) invertible. However, the only non-zero idem-
potent in Tn is the n×n identity matrix. So in the present situation, the expression
(15) amounts to F (λ) = λkG(λ), and F has a zero at the origin of order k. Since
F (0) = −Jn 6= 0 (because n ≥ 2), it follows that k = 0. Hence F (0) = G(0) has to
be invertible, which F (0) = −Jn obviously is not. �

The next example involves a Banach algebra that has been examined in [BES7]
and [BES8]. The space of all bounded linear operators on a Banach space X will
be denoted by L(X).
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nonplain.comp Example 4.5. Let X be an infinite-dimensional separable Hilbert space (for in-
stance `2), and let I be the identity operator on X. Consider the Banach subalgebra
LC(X) of L(X) given by LC(X) = {αI + C | α ∈ C, C ∈ C(X)} , where C(X) is the
closed ideal in L(X) consisting of all compact (bounded) linear operators on X.
Define F : C → LC(X) by F (λ) = λI − A, where A is a compact operators on X
with A2 = 0 and having range and null space of infinite dimension and codimension,
respectively. Concrete examples of such an operator A are easy to construct when
X = `2. The function F is entire and takes invertible values on all of C, except in
the origin where F−1 has pole of order 2. Indeed,

F−1(λ) =
1
λ2

A +
1
λ

IX ,

where IX the identity operator on X. We shall now prove that F is not plain
on any open subset of C containing the origin. Suppose it is. Then F admits a
representation of the form

F (λ) =
(
IX − P1 + λP1

)
. . .
(
IX − Pk + λPk

)
G(λ),

with P1, . . . , Pk non-zero idempotents in LC(X), the function G analytic on an
open neighborhood of the origin, and G(0) invertible. It is sufficient to show that
P1, . . . , Pk then necessarily are of finite rank. Indeed, because this would imply
that A = −F (0) = −

(
IX − P1

)
. . .
(
IX − P1

)
G(0) is a Fredholm operator, which

obviously it is not.
The function

(
IX − P1 + λ−1P1

)
F (λ) =

(
IX − P1 + λP1

)−1
F (λ) is analytic at

the origin (or, if one prefers, it has a removable singularity there). Hence P1A = 0.
In other words, Im A is contained in KerP1, and we may conclude that KerP1 has
infinite dimension. From [BES7], Proposition 2.1 we know that the idempotents
in LC(X) are the projections on X for which either the range or the null space
has finite dimension, and it follows that P1 has finite rank. We proceed by (finite)
induction. So assume P1, . . . , Pl−1 are of finite rank, 2 ≤ l ≤ k. We need to show
that Pl is then of finite rank too. Let L be the function defined by the expression

L(λ) =
(

IX − Pl +
1
λ

Pl

)
. . .

(
IX − P1 +

1
λ

P1

)
F (λ).

Then L is analytic at the origin. Also introduce

L0(λ) = IX −
(

IX − Pl−1 +
1
λ

Pl−1

)
. . .

(
IX − P1 +

1
λ

P1

)
,

and note that L0 is a polynomial in λ−1 with finite rank coefficients (including the
constant term). Hence the coefficients in the Laurent expansion of L0(λ)F (λ) =
L0(λ)(λIX −A) at the origin have finite rank too. For λ 6= 0, we have(

IX − Pl +
1
λ

Pl

)
F (λ) = L(λ) +

(
IX − Pl +

1
λ

Pl

)
L0(λ)F (λ).

The coefficient of λ−1 in the left hand side of this expression is −PlA, that in the
right hand side clearly has finite rank. Thus PlA is of finite rank again. From
this we see that the codimension of Im A ∩ KerPl in Im A is finite. As Im A is
infinite dimensional, it follows that so is Im A ∩ KerPl. But then, a fortiori, the
dimension of KerPl is infinite. Using [BES7], Proposition 2.1 once more, we may
now conclude that Pl is of finite rank, as desired. �
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We could have introduced a somewhat more general notion of a plain function
by requiring that a representation of the type (14) should hold, maybe not on all
of ∆, but on every bounded open set whose closure (in C) is contained in ∆. Such
a definition would accommodate situations where the number of points where F
takes non-invertible values is infinite without accumulation point in ∆. Since we
are mainly interested in logarithmic residues and the Cauchy domains involved are
bounded (cf., Section 2), there is no need to consider such a generalization here.

5. Plain functions and zero divisors
zdivA

In this section, we will exhibit some relevant classes of plain functions. Let us
start with a heuristic remark.

Let ∆ be a non-empty open subset of the complex plane C and let F be an
analytic B−valued function. Then F is plain on ∆ if (and only if) it can be trans-
formed into an analytic function taking invertible values on all of ∆ by multiplying
from the left (or from the right) with resolvents of elementary functions, i.e., with
functions of the type

E−1
p,α(λ) = e− p +

1
λ− α

p (16) zdiv.1A

with p ∈ B an idempotent. In such a transformation process the analytic function F ,
whose resolvent F−1 (generally) does have poles, changes into a function, analytic
still, but with a resolvent which is analytic on all of ∆ too. Thus the effect of
the multiplication is pole order reduction while keeping analyticity intact. It is
instructive to consider this phenomenon in some detail. For simplicity we will take
α = 0, so that the right hand side of (16) becomes e− p + λ−1p.

Let the B-valued function F be analytic on a neighborhood U of the origin,
taking invertible values on the deleted neighborhood U \ {0}, but with F (0) not
invertible. Suppose the resolvent F−1 has a pole of order m at the origin, so the
Laurent expansion of F−1 at the origin looks like

F−1(λ) =
∞∑

j=−m

λjBj

with B−m 6= 0 and, as F (0) is not invertible, m ≥ 1. Now let p be an idempotent
in B such that the function F̂ (λ) =

(
e− p+λ−1p

)
F (λ) is analytic at the origin (so

on all of U) while, moreover, there is pole order reduction. The latter in the sense
that the Laurent expansion of F̂−1 at the origin has the form

F̂−1(λ) = F−1(λ)
(
e− p + λp

)
=

∞∑
j=−m+1

λjB̂j

with B̂−m+1 automatically non-zero, otherwise B−m would be zero too which is
obvious from the identity F−1(λ) = F̂−1(λ)

(
e − p + λ−1p

)
. The analyticity of

F̂ at the origin amounts to the identity pF (0) = 0, the pole order reduction to
B−m(e − p) = 0. Equivalently: F (0) = (e − p)F (0) and B−m = B−mp . These
identities are in line with the fact that B−mF (0) = 0 (obtained by multiplying the
Laurent expansion for F−1 with the Taylor expansion for F , both of course taken at
the origin). Indeed, writing B−mF (0) = 0 as B−mF (0) = B−mp(e−p)F (0) = 0, we
see that ”behind” B−mF (0) = 0, there is the particular zero product p(e− p) = 0.
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We now take the converse route starting from B−mF (0) = 0. Suppose this
zero product comes about in the way indicated above, so by the existence of an
idempotent p ∈ B such that F (0) = (e − p)F (0) and B−m = B−mp. The first
identity, rewritten as pF (0) = 0, makes it possible to extract an elementary factor
from F in the sense that F can be written as

F (λ) =
(
e− p + λp

)
F̂ (λ), λ ∈ U,

with F̂ analytic, not only on the deleted neighborhood U \ {0} of the origin, but also
at the origin itself. Just put F̂ (λ) =

(
e−p+λ−1p

)
F (λ) and observe that pF (0) = 0

implies the analyticity of F̂ at the origin. The second identity B−m = B−mp,
restated as B−m(e − p) = 0, guarantees that there is pole reduction in the sense
that either F̂−1 has a pole at the origin of order m − 1 (namely when m ≥ 2), or
(when m = 1) the principal part of the Laurent expansion of F̂−1 at the origin
vanishes altogether, in which case F̂ (0) is invertible.

Similar things arise in considering the extraction of elementary factors at the
right. The basic identity F (0)B−m = 0 playing a role there comes about now as
F (0)(e− p)pB−m = 0 and so corresponds to the special zero product (e− p)p = 0.
In this sense the roles of the idempotent and its complementary idempotent are
interchanged.

These considerations suggest the following definition. An idempotent p ∈ B is
called annihilating for the (ordered) pair a, b of elements in B if

pa = b(e− p) = 0,

or, what amounts to the same,

a = (e− p)a, b = bp.

A necessary condition for such an idempotent to exist is that ba = 0. Indeed, given
the above identities, we have ba = bp(e − p)a = 0. Note that e is an annihilating
idempotent for the pair 0, b and 0 is one for the pair a, 0. Thus the definition is
only relevant for the situation where we have zero divisors. In this connection we
also observe that if q is an idempotent B, then q is annihilating for the pair e− q, q.

As a first application of these ideas, we consider functions possessing a simply
meromorphic resolvent. A B-valued function is said to be simply meromorphic on
an open subset ∆ of C if it is meromorphic on ∆ with only simple poles (i.e., poles
of order one). The following result improves on [BES6], Lemma 3.2. We present it
with a fair indication of the proof.

simplyA Theorem 5.1. Let ∆ be a non-empty open subset of C and let F : ∆ → B be
analytic. If F−1 is simply meromorphic on ∆ with a finite number of poles, then
F is plain. In fact, the following more detailed result holds true. Suppose F takes
invertible values on ∆, except in a finite number of distinct points α1, . . . , αn where
F−1 has simple poles. Then there exist an analytic function G : ∆ → B taking
invertible values on all of ∆ and non-zero idempotents p1, . . . , pn in B such that

F (λ) = Ep1,α1(λ) . . . Epn,αn(λ)G(λ), λ ∈ ∆.

In such a representation, the idempotents p1, . . . , pn are necessarily similar to the
left logarithmic residues LRleft(F ;α1), . . . , LRleft(F ;αn), respectively.

This is the left version of the theorem. There is also a right version in which
the elementary factors are on the right hand side of G. We leave the details to the
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reader. Note also that we can now characterize the plain functions as those that
are the product of analytic functions possessing a simply meromorphic resolvent.

Proof. In the case n = 0 there is nothing to prove. So assume n is positive.
Write p1 = LRleft(F ;α1) and

F−1(λ) =
1

λ− α1
F−1 + F0 + (λ− α1)F1 + . . . .

Then p1 = F ′(α1)F−1. Now F (α1)F−1 = 0 and F−1F
′(α1) + F0F (α1) = e. Hence

p2
1 = F ′(α1)

(
e− F0F (α1)

)
F−1 = F ′(α1)F−1 = p1,

so p1 is an idempotent. In an analogous fashion we have

(e− p1)F (α1) = F (α1), F−1p1 = F−1.

Thus p1 is an annihilating idempotent for the pair F (α1), F−1. Put

F̂ (λ) =
(
e− p1 + (λ− α1)−1p1

)
F (λ)

Then F̂ is analytic at α1 and we have pole reduction there, which in the present
case of pole order one means that F̂ (α1) is invertible. Proceeding by induction, one
obtains a representation as in the theorem.

The only thing left to verify is that in such a representation the idempotents
p1, . . . , pn are necessarily similar to the left logarithmic residues

LRleft(F ;α1), . . . , LRleft(F ;αn),

respectively. For this the argument is as follows. Let j be one of the integers
1, . . . , n, put α = αj , p = pj and write

F (λ) = H(λ)Ep,α(λ)G(λ), λ ∈ ∆,

with H(α), G(α) invertible. Suppressing the variable λ where convenient, one has

F ′F−1 = H ′H−1 + HE ′
p,αE−1

p,αH−1 + HEp,αG ′G−1E−1
p,αH−1

= H ′H−1 +
1

λ− α
HpH−1 +

+H
(
e− p + (λ− α)p

)
G ′G−1

(
e− p +

1
λ− α

p
)
H−1.

As LRleft(F ;α) is the coefficient of (λ− α)−1 in this expression, we get

LRleft(F ;α) = H(α)pH−1(α) + H(α)(e− p)gpH−1(α)

= H(α)
(
p + (e− p)gp

)
H−1(α)

with g = G ′(α)G−1(α). Along with p, the element p + (e− p)gp is an idempotent.
Also, e + (e− p)gp is invertible with inverse e− (e− p)gp and(

p + (e− p)gp
)(

e + (e− p)gp
)

=
(
e + (e− p)gp

)
p.

So, putting s = H(α)
(
e + (e− p)gp

)
, we have p = s−1LRleft(F ;α)s. �
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Elaborating on the first part of the proof, note that p1 can be chosen to be
LRleft(F ;α1). More generally, for p1, . . . , pn we can take the idempotents induc-
tively defined as follows:

p1 = LRleft(F ;α1),
p2 = LRleft(E−1

p1,α1
F ;α2),

p3 = LRleft(E−1
p2,α2

E−1
p1,α1

F ;α3),
...

pn = LRleft(E−1
pn−1,αn−1

. . . E−1
p1,α1

F ;αn).

An argument analogous to that presented in the second part of the proof yields
that this can be rewritten as

p1 = q1,

p2 = Ep1,α1(α2)−1q2Ep1,α1(α2),

p3 = Ep2,α2(α3)−1Ep1,α1(α3)−1q3Ep1,α1(α3)Ep2,α2(α3),
...

pn = Epn−1,αn−1(αn)−1 . . . Ep1,α1(αn)−1qnEp1,α1(αn) . . . Epn−1,αn−1(αn),

where q1, . . . , qn are the left logarithmic residues of F at α1, . . . , αn, respectively.
Note that in this way, the idempotents p1, . . . , pn are fully (albeit implicitly) ex-
pressed in terms of q1, . . . , qn and α1, . . . , αn.

The following example is concerned with annihilating idempotents in L(X), the
Banach algebra of all bounded linear operators on a complex Banach space X. If
S ∈ L(X), the expressions KerS and Im S stand for the null space and image of S,
respectively. The closure in X of Im S is denoted by Im S.

zdiv.ex1A Example 5.2. Let S, T ∈ L(X) where X is a complex Banach space. An idempo-
tent P ∈ L(X), i.e., a bounded projection on X, is annihilating for the pair S, T if
and only if

Im S ⊆ KerP ⊆ KerT.

We conclude that there exists an annihilating idempotent for the pair S, T if and
only if Im S ⊆ Z ⊆ KerT for some complemented subspace Z of X. Thus a
sufficient condition for the pair S, T to have an annihilating idempotent is that
TS = 0 (which amounts to Im S ⊆ KerT ) and either Im S or KerT is complemented
(take Z = Im S ⊆ KerT or Z = Ker T ⊇ Im S). Hence, in the situation when X is
isomorphic to a Hilbert space, the pair S, T ∈ L(X) has an annihilating idempotent
if and only if TS = 0. When X actually is a Hilbert space, the annihilating
idempotent can be chosen to be an orthogonal projection on X. �

We will now consider analytic Fredholm operator valued operator functions. For
background material (including relevant references), see [GGK], Ch. XI. Here we
briefly review a few results directly pertaining to the topic of the present paper.

Let X be a complex Banach space. A bounded linear operator T on X is called a
Fredholm operator if its null space KerT is finite dimensional and its range Im T has
finite codimension in X (and is therefore closed). For what follows it is important
to recall that T ∈ L(X) is Fredholm if and only if T is invertible modulo the finite
rank operators on X. Thus T is Fredholm if and only if there exist L,R ∈ L(X)
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such that both LT − I and TR− I have finite rank. Here I is the identity operator
on X.

Let ∆ be a non-empty open subset of C and let F : ∆ → L(X) be analytic and
Fredholm operator valued. Assume the resolvent set of F is non-empty, i.e., F (λ)
is invertible for at least one λ ∈ ∆, and ∆ is connected. Then the set

Ξ = {λ ∈ ∆ |F (λ) is not invertible}

is at most countable and has no accumulation point in ∆. The points of Ξ are poles
of the resolvent F−1 of F (of positive order). Further the coefficients of the principal
part of the Laurent expansion of F−1 at such a pole are finite rank operators on
X and the constant term is a Fredholm operator (of index zero). Finally, if D is a
bounded set whose closure (in C) is contained in ∆, then the intersection of Ξ and
D is a finite set (cf., the last paragraph of Section 4).

The following result is a slight refinement of [BES5], Proposition 3.1. Relevant
references that were already given there are [T] and [GS2]. We will not repeat the
proof here, but there is also no need to consult [BES5] on this point: the essentials
can be found in the argument given for Theorem 5.5 below.

FredholmA Theorem 5.3. Let ∆ be a non-empty open subset of C and let F : ∆ → L(X)
be analytic and Fredholm operator valued. If the number of points in ∆ where F
assumes non-invertible values is finite, then F is plain on ∆. In fact, the following
more detailed result holds true. Let α1, . . . , αn be the distinct points in ∆ where F
takes non-invertible values (in any given order) and, for j = 1, . . . , n, let mj be
the (positive) order of αj as a pole of F−1. Then there exist an analytic function
G : ∆ → B taking invertible values on all of ∆ and non-zero finite rank projections
P

(i)
j (i = 1, . . . ,mj ; j = 1, . . . , n) on X such that

F (λ) =

(
m1∏
i=1

E
P

(i)
1 ,α1

(λ)

)
. . .

(
mn∏
i=1

E
P

(i)
n ,αn

(λ)

)
G(λ), λ ∈ ∆.

Here we have the ”everywhere” invertible factor G as the last. There is an
analogous result where it is the first. Allowing for such factors both in the first and
the last position, we enter the situation where F is analytically equivalent to the
elementary polynomial in the middle (see Proposition 4.2). It is a remarkable fact
that in the Fredholm case the middle term can be chosen to be of diagonal type
involving mutually disjoint (commuting) projections, as indicated in [GGK], Ch.
XI and [GS2]. For the matrix case (where X is finite dimensional), things come
down to the Smith canonical form (see, for instance, [G], Ch. VI or [LT], Ch.7).

Returning to the general situation, let J be a (possibly non-closed two-sided)
ideal in B. An element y from B is said to be J−invertible if there exist x and z in
B such that both xy − e and yz − e belong to J . Here, without loss of generality,
x and z may be taken to be the same. Note that each invertible element of B is
J−invertible too. Also, the product of two J−invertible elements is J−invertible
again. Finally, if u and y are elements in B, at least one of the products uy and yu
belongs to J and y is J−invertible, then u ∈ J . Here is the (routine) argument
for this. Suppose yu ∈ J . Since y is J−invertible, there exists x ∈ B such that
xy − e ∈ J . But then xyu− u = (xy − e)u ∈ J too. Since yu ∈ J by assumption,
xyu ∈ J as well. Hence u = xyu− (xyu− u) ∈ J . The case when uy ∈ J can be
treated similarly.
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The following proposition will be used in the proof of the next theorem. The
choice for the origin as the point under consideration is made for simplicity of
notation. Any other point in the complex plane will do of course.

idealmeromorphy Proposition 5.4. Let J be an ideal in B and let F be a B−valued function, defined
and analytic on a neighborhood of the origin. Suppose the resolvent F−1 of F has
a pole at the origin. Then F (0) is J−invertible if and only if the coefficients of the
Laurent expansion of F−1 at the origin belong to J .

In the case when J is closed, the argument is practically trivial (and an essential
singularity at the origin does just as well as a pole): just pass through the quotient
algebra B/J .

Proof. Suppose F (0) is J−invertible and write

F (λ) =
∞∑

k=0

λkFk, F−1(λ) =
∞∑

k=−m

λkGk

with m a positive integer. Then G−mF0 = 0. Since F0 = F (0) is J−invertible, we
may conclude that G−m ∈ J . Assume now that G−m, . . . , G−n are all in J , where
n is one of the integers 2, . . . ,m. Clearly

G−n+1F0 + G−nF1 + · · ·+ G−mF−n+m+1 = 0.

But then G−n+1F0 = −(G−nF1 + · · · + G−mF−n+m+1) ∈ J and again we obtain
G−n+1 =∈ J , as desired.

By (finite) induction this proves the only if part of the proposition. The if part
follows immediately from the identities

G0F0 + G−1F1 + · · ·+ G−mF−m = e,

F0G0 + F1G−1 + · · ·+ F−mG−m = e,

combined with the assumption G−1, . . . , G−m ∈ J . �

Let J be an ideal in B (two-sided and possibly non-closed, as always in this
paper) and let P be a (non-empty) family of idempotents in B. We say that P is
J−annihilating for the commuting zero divisors in B if for each (ordered) pair a, b
of elements in B, with J−invertible a and ba = ab = 0 (hence b ∈ J ), there exist
idempotents p and q in P such that

pa = b(e− p) = 0, (e− q)b = aq = 0,

i.e., p is annihilating for the pair a, b and e−q is annihilating for the pair b, a. Com-
bining the J−invertibility of a with the identities pa = aq = 0, we see that p and q
necessarily belong to the ideal J . Thus, if the family P is J−annihilating for the
commuting zero divisors in B, then so is P ∩ J . In other words, a J−annihilating
family for the commuting zero divisors in B can always be taken to be a subset
of J . The examples of annihilating families that we will give in the next section
reflect this fact.

ann Theorem 5.5. Let J be an ideal in B, let P be a family of idempotents in B, and
assume P is J−annihilating for the commuting zero divisors in B . Let ∆ be a non-
empty open subset of C, let F : ∆ → B be analytic and suppose F takes invertible
values on ∆ except for a finite number of points where F−1 has a pole. Suppose, in
addition, that the (non-invertible) values of F are J−invertible. Then F is plain.
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In fact, the following more detailed result holds true. Let α1, . . . , αn be the distinct
points in ∆ where F has non-invertible (but J−invertible) values (in any given
order) and, for j = 1, . . . , n, let mj be the (positive) order of αj as a pole of F−1.
Then there exist analytic functions G, H : ∆ → B, taking invertible values on all of
∆, and non-zero idempotents p

(i)
j , q

(i)
j ∈ P ∩ J , i = 1, . . . ,mj , j = 1, . . . , n, such

that

F (λ) =

(
m1∏
i=1

E
p
(i)
1 ,α1

(λ)

)
. . .

(
mn∏
i=1

E
p
(i)
n ,αn

(λ)

)
G(λ), λ ∈ ∆

and

F (λ) = H(λ)

(
m1∏
i=1

E
q
(i)
1 ,α1

(λ)

)
. . .

(
mn∏
i=1

E
q
(i)
n ,αn

(λ)

)
, λ ∈ ∆.

Proof. Put M = m1 + · · · + mn. We may assume that M is positive, otherwise
there is nothing to prove.

Consider the situation at the point α1. Write

F−1(λ) =
∞∑

j=−m

(λ− α1)jFj (17) pr

for the Laurent expansion of F−1 there. Here m = m1, the order of α1 as a
pole of F−1. Clearly F−mF (α1) = F (α1)F−m = 0 and, by assumption, F (α1) is
J−invertible. But then there exist idempotents p, q ∈ P such that p is annihilating
for the pair F (α1), F−m and e − q is annihilating for the pair F−m, F (α1). This
means that the following identities hold

pF (α1) = F−m(e− p) = 0, (e− q)F−m = F (α1)q = 0.

Note that p and q are non-zero as the same is true for F−m. Introduce

F̂ (λ) =
(
e− p + (λ− α1)−1p

)
F (λ),

F̃ (λ) = F (λ)
(
e− q + (λ− α1)−1q

)
,

Then F̂ is analytic at α1 and we have pole reduction there in the sense that either
F̂−1 has a pole at α1 of order m − 1 (when m ≥ 2), or the principal part of the
Laurent expansion of F̂−1 at α1 vanishes altogether (when m = 1), in which case
F̂ (α1) is invertible. In fact, at α1 the function F̂−1 has the expansion

F̂−1(λ) = F−1(λ)
(
e− p + (λ− α1)p

)
=

∞∑
j=−m+1

(λ− α1)j
(
Fj(e− p) + Fj−1p

)
.

Now F−m, . . . , F−1 belong to J and the latter is an ideal in B. Hence the coefficients
of the principal part of the the Laurent expansion of F̂−1 at α1 belong to J which,
by Proposition 5.4, amounts to the same as saying that F̂ (α1) is J−invertible.

The function F̂ takes invertible values on ∆ except in the points α2, . . . , αn

and possibly α1. As we saw F̂ (α1) is J−invertible (possibly even invertible). For
k = 2, . . . , n, the function value F̂ (αk) is the product of a J−invertible element,
namely F (αk), and an invertible one. Hence F̂ (αk) is J−invertible itself. Finally,
F̂−1 has poles at α2, . . . , αn of order m2, . . . ,mn, respectively, and a pole at α1 of
order m1 − 1 (= m− 1). Summarizing, F̂ is a function of the same type as F but
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with the sum of the pole orders reduced with one from M to M − 1. The same
conclusion holds for F̃ . But then the desired result follows by induction. �

It is possible to refine Theorem 5.5 in the sense that it can be split into two
results, one dealing with left ideals (and extraction of elementary factors from the
right), the other with right ideals (and extraction of elementary factors from the
left). The refinement is straightforward and will not be pursued here (but see
Example 7.4 below).

Theorem 5.5 should be considered in combination with examples of annihilating
families of idempotents. They will be given in Section 6. Here we just emphasize
that Theorem 5.3 is a particular case of Theorem 5.5 (see Example 6.1 below);
Theorem 5.1, however, does not correspond to such a specialization of Theorem
5.5. Its proof, however, has a significant overlap with that of Theorem 5.5.

6. Annihilating families of idempotents
annfamidem

As was already remarked, Theorem 5.5 should be appreciated in combination
with examples of annihilating families of idempotents. The first example is the one
that lies ”behind” Theorem 5.3.

ann0A Example 6.1. Let B = L(X) where X is a complex Banach space and let J be
the ideal in L(X) consisting of all finite rank operators. Then the family of finite
rank projections on X is J−annihilating for the commuting zero divisors in L(X).
This is clear by looking at Example 5.2. Recall that J−invertibility here amounts
to Fredholmness. �

Closely related to this example is the following one, involving a Banach algebra
a special instance of which featured already in Example 4.5.

ann0A.comp Example 6.2. Let X be an infinite-dimensional complex Banach space, and let I
be the identity operator on X. Consider the Banach algebra

LC(X) = {αI + C | α ∈ C, C ∈ C(X)} ,

where C(X) is the closed ideal in L(X) consisting of all compact (bounded) lin-
ear operators on X. First let J be any (possibly non-closed) ideal contained in
C(X). Then J−invertibility implies C(X)−invertibility, hence it comes down to
Fredholmness. Thus, as in the previous example, the family of finite rank projec-
tions on X is J−annihilating for the commuting zero divisors in LC(X). Next
let J be all of LC(X), so that J− invertiblity is an empty requirement. Then
the above conclusion cannot be drawn. To illustrate this, let A be a a compact
operators on X with A2 = 0 and having range and null space of infinite dimension
and codimension, respectively. Concrete examples are easy to construct when X
is a separable Hilbert space. Suppose P is an annihilating idempotent for the pair
A,A. So PA = A(I − P ) = 0. Then the dimension and codimension of the null
space of P are both infinite. However, we know from [BES7], Proposition 2.1 that
the idempotents in LC(X) are the projections on X for which either the range or
the null space has finite dimension, and a contradiction is immediate. Thus, when
J = LC(X), no J−annihilating family of idempotents for the commuting zero
divisors in LC(X) exists. �

Here are some more examples related to Theorem 5.5.
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ann1A Example 6.3. Consider the (commutative) Banach algebra L∞(X, µ) where (X, µ)
is a measure space. Fix a measurable subset X0 of X and let J be the set of all
f ∈ L∞(X, µ) such that f vanishes a.e. on X0. Then J is an ideal in L∞(X, µ). Let
P be the subset of L∞(X, µ) determined by the characteristic functions vanishing
a.e. on X0. Then P is a J−annihilating family of idempotents for the (commut-
ing) zero divisors in L∞(X, µ). As each non-zero idempotent in L∞(X, µ) has norm
one, this family is norm bounded (cf., Example 6.4). Note that f ∈ L∞(X, µ) is
J−invertible if and only if the absolute value of f is essentially bounded away from
zero on X0. When X0 = X, one has the uninteresting case J = {0}; when X0 has
measure zero, J is the full Banach algebra L∞(X, µ). �

Next we indicate how to build new examples from given ones.

ann3Aideal Example 6.4. Let F = {Bω}ω∈Ω be a (non-empty) family of unital Banach alge-
bras and let B(Ω,F) consist of all functions f : Ω →

⋃
ω∈Ω Bω such that f(ω) ∈ Bω

for each ω in Ω while, in addition,

‖f‖F = sup
ω∈Ω

‖f(ω)‖ω < ∞.

Here ‖.‖ω stands for the norm in Bω. With ‖.‖F as norm and, of course, the usual
point-wise operations, B(Ω,F) is a unital Banach algebra.

For ω ∈ Ω, let Jω be an ideal in Bω. Write J for the collection of all functions
j : Ω →

⋃
ω∈Ω Jω such that j(ω) ∈ Jω for each ω in Ω. Then, clearly, J is an ideal

in B(Ω,F).
Suppose now that for each ω in Ω, we have a family Pω of idempotents in Bω,

each of them norm bounded, and even with a uniform upper bound in the sense
that

sup
ω∈Ω

sup
p∈Pω

‖p‖ω < ∞

(cf., Example 6.3 above and Example 6.8 below). Introduce P as the collection
of all functions p : Ω →

⋃
ω∈Ω Pω such that p(ω) ∈ Pω for each ω in Ω. Then,

clearly, P is a (norm bounded) family of idempotents in B(Ω,F). If for all ω ∈ Ω,
the family Pω is Jω−annihilating for the commuting zero divisors in Bω, then P is
J−annihilating for the commuting zero divisors in B(Ω,F). The straightforward
argument is left to the reader. �

annJ1 Example 6.5. Consider the situation of the previous example but without the
(uniform) boundedness condition on the families of idempotents Pω. Write J0 for
the subset of J consisting of all functions j ∈ J such that j(ω) = 0 for all but a finite
number of points in Ω. Similarly, let P0 be the subset of P consisting of all functions
p ∈ P such that p(ω) = 0 for all but a finite number of points in Ω. Then J0 is an
ideal in B(Ω,F). Also P0 is a family of idempotents in B(Ω,F). This is true (due
to the finiteness condition) in spite of the fact that, as we dropped the (uniform)
boundedness requirement on the families Pω, P need not be subset of B(Ω,F) any
more. Suppose now that for all ω ∈ Ω, the family Pω is Jω−annihilating for the
commuting zero divisors in Bω. Then P0 is J0−annihilating for the commuting zero
divisors in B(Ω,F). The argument is as follows. Assume we have a, b ∈ B(Ω,F)
with ba = ab = 0 and b ∈ J0. Then

b(ω)a(ω) = a(ω)b(ω) = 0, b(ω) ∈ Jω, ω ∈ Ω.
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Hence there exist p(ω), q(ω) ∈ Pω such that

p(ω)a(ω) = b(ω)
(
e− p(ω)

)
= 0, ω ∈ Ω,(

e− q(ω)
)
b(ω) = a(ω)q(ω) = 0, ω ∈ Ω,

where by slight (and customary) abuse of notation e stands for the unit element
in Bω. The functions p, q : Ω →

⋃
ω∈Ω Bω arising in this way will generally not

belong to P0 and, due to possible unboundedness, not even to B(Ω,F). However,
we can make them belong to P0 by taking p(ω) = q(ω) = 0 whenever b(ω) = 0
which happens outside a finite subset of Ω as b ∈ J0. �

Specifying the data in the previous example in an certain way, one gets the
following rather concrete example.

annJ1A Example 6.6. Consider the sequence space `n×n
∞ of all bounded sequences of com-

plex n×n matrices, and let J be the set of all such sequences having finite support.
Then J is an ideal in `n×n

∞ . Further, let P be the subset of J consisting of all P ∈ J
such that the matrix P (ω) is idempotent for each ω ∈ Ω. Clearly, P is a family of
idempotents in `n×n

∞ . We claim that it is J−annihilating for the commuting zero
divisors in `n×n

∞ . The argument is as follows.
Assume we have A,B ∈ `n×n

∞ with J− invertible A and BA = AB = 0 (hence
B ∈ J ). Then

BkAk = AkBk = 0, k = 1, 2, 3, . . . .

From Example 6.1 (with X = Cn), we see that there exist idempotent n×n matrices
Pk and Qk such that

PkAk = Bk

(
In − Pk

)
= 0, k = 1, 2, 3, . . . ,(

In −Qk

)
Bk = AkQk = 0, k = 1, 2, 3, . . . ,

where In stands for the n×n identity matrix. Due to possible unboundedness, the
sequences P and Q arising in this way will generally not belong to `n×n

∞ . However,
we can make them belong to `n×n

∞ by taking Pk = Qk = 0 whenever Bk = 0
which happens for all but a finite number of positive integers k. Doing this, we
even get P,Q ∈ P, and we finish the argument by observing that P and I −Q are
annihilating idempotents for, respectively, the pairs A,B and B,A. Here I denotes
the identity element in `n×n

∞ (i.e., the sequence each term of which is equal to In).
What does J−invertibility mean in this case? Let Y ∈ `n×n

∞ be J−invertible.
Then there exists X ∈ `n×n

∞ such that both XY − I and Y X − I belong to J . But
then, for all but a finite number of k,

XkYk = YkXk = In.

Thus, if Y ∈ `n×n
∞ is J−invertible, the matrix Yk is invertible for all but a finite

number of k and

sup{‖Y −1
k ‖ |Yk is invertible, k = 1, 2, 3, . . . } < ∞.

As is easily verified, the converse also holds. �

In Example 5.2 we already touched on the situation B = L(H) where H is
a complex Hilbert space. Here we will look at this situation more closely. We
shall do this under the assumption that the ideal J coincides with the full Banach
algebra (and so J−invertibility becomes an empty requirement). In such cases
we will drop the reference to the ideal altogether and simply write annihilating
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instead of B-annihilating. So a (non-empty) family P of idempotents in B is called
annihilating for the commuting non-zero divisors in B if for each (ordered) pair a, b
of elements in B with ba = ab = 0, there exist p, q ∈ P such that pa = b(e− p) = 0
and (e− q)b = aq = 0.

hilbert Proposition 6.7. Let H be a complex Hilbert space and let P be a family of idem-
potents in L(H). Then P is annihilating for the commuting zero divisors in L(H)
if and only if both

{KerP | P ∈ P} and {Im P | P ∈ P} (18) famH

coincide with the collection of all closed subspaces of H.

The two sets in (18) coincide provided that P is closed under the operation of
taking the complementary projection.

Proof. Take A, B ∈ L(H), and assume BA = AB = 0. This means that Im A ⊆
KerB and Im B ⊆ KerA or, alternatively, Im A ⊆ KerB and Im B ⊆ KerA.
Assuming (18), it is possible to choose P,Q ∈ P such that Ker P = KerB and
Im Q = Im B. But then Im A ⊆ KerB = Ker P = Im (I − P ) and Ker (I − Q) =
Im Q = Im B ⊆ KerA, where I is the identity operator on H. Hence PA =
B(I − P ) = 0 and (I − Q)B = AQ = 0, and we have proved the if part of the
proposition.

For the only if part, we argue as follows. Suppose P is annihilating for the
commuting zero divisors in L(H), and let N be an arbitrary closed subspace of H.
As H is a Hilbert space, N is complemented and so there is an idempotent R in
L(H) such that KerR = N . Now R(I − R) = (I − R)R = 0 and, by assumption,
we have P (I −R) = R(I − P ) = 0 for some P ∈ P. But then KerP = KerR = N .
Interchanging the roles of R and I−R, we also find an idempotent Q ∈ P for which
Im Q = KerR = N , and the proof is complete. �

From Proposition 6.7 it is evident that there is an abundance of annihilating
families of idempotents in L(H). Here is a specific one.

ann2A Example 6.8. Consider L(H) where H is a complex Hilbert space. The family
of orthogonal projections on H is annihilating for the commuting zero divisors in
L(H). Since each non-zero orthogonal projection on H has norm one, this family
is norm bounded (cf., Example 6.4). �

In the remainder of this section, we give additional details for the finite di-
mensional case. So we consider Cn×n, the Banach algebra of all complex n × n
matrices. The orthogonal projections mentioned in Example 6.8 correspond here
to the selfadjoint idempotent matrices. So these constitute an annihilating family
of idempotents for the commuting zero divisors in Cn×n. As will become clear
from the subsequent analysis, there are other structural elements (besides selfad-
jointness) that can be taken into account too. We begin with the following general
matrix result.

uppA Proposition 6.9. Let M be an n × n matrix. Then there exist invertible n × n
matrices F and G such that FM and MG are upper triangular idempotents.

Taking transposes, one sees that upper triangular may be replaced by lower
triangular.
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Proof. Via row operations, bring M into reduced row echelon form. Then permute
the rows in the echelon form in such a way that the pivots enter the diagonal. The
resulting matrix P is clearly upper triangular and easily seen to be idempotent (see
[L], the discussion on Algorithm III or [SW], Corollary of Lemma 1; cf., also [S],
the material on special solutions). Obviously P is of the form P = FM with an
invertible matrix F .

This proves the existence of F . Next we turn to G. Let E be the n × n
reversed identity matrix (having ones on the antidiagonal and zeros everywhere
else). Applying the result of the previous paragraph to M>E, we find an invert-
ible matrix H such that HM>E is an upper triangular idempotent. But then
EHM> = E

(
HM>E

)
E is a lower triangular idempotent and, taking transposes,

we see that MH>E is an upper triangular idempotent again. Thus G = H>E has
the desired properties. �

ann4A Example 6.10. Combining Proposition 6.7 and Proposition 6.9, one sees that the
family of all upper triangular idempotents in Cn×n is annihilating for the commut-
ing zero divisors in Cn×n. Of course this remains true when upper triangular is
replaced by lower triangular. �

We end this section with an example showing that there are situations where,
formally, Theorem 5.5 applies but where, materially, the result is empty.

ann5A Example 6.11. The Banach algebra will be that of the upper triangular n × n
complex matrices, denoted by Cn×n

upp . From the preceding example it is obvious
that the family of all idempotents in Cn×n

upp is annihilating for the commuting zero
divisors in Cn×n

upp . This means that it is J−annihilating for every ideal J in Cn×n
upp .

Thus Theorem 5.5 applies, regardless of how one selects the ideal J . There is,
however, a special choice of J for which the result becomes empty. Take J to be
the radical in Cn×n

upp , that is the collection of all n×n matrices that are strictly upper
triangular. Then ordinary invertibility in Cn×n

upp and J−invertibility come down to
the same. So, with this choice of J , the hypothesis in Theorem 5.5 concerning the
function F means that F takes invertible values only, a state of affairs rendering
the situation completely trivial. Note that with this choice of J , the singleton
{0} is a J−annihilating family of idempotents. Indeed, if A,B ∈ Cn×n

upp and A is
J−invertible (hence invertible), then BA = AB = 0 implies B = 0. �

7. Examples on extraction of elementary factors
ex.extr.el.fact

We shall now present some (counter)examples that shed additional light on the
issues discussed in the previous sections.

In the situations of Theorems 5.3, 5.1 and 5.5, the number of elementary factors
extracted in order to arrive at a function which is everywhere invertible is equal
to the sum of the relevant pole orders. This is what happens when one can make
use of the step by step method suggested in the opening paragraphs of this section.
In general, however, the situation is different: in the following example we are
considering a function which is the product of three elementary factors (based at
the origin), whose inverse has a pole of order two at the origin, but which nonetheless
cannot be written in the form discussed above involving only two elementary factors.
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extr1A Example 7.1. Let C6×6
0 be the (inverse closed) Banach subalgebra of C6×6 con-

sisting of the matrices of the type


u 0 0 0 0 0
x v 0 0 0 0
0 0 u 0 0 0
0 0 y w 0 0
0 0 0 0 v 0
0 0 0 0 z w



with u, v, w, x, y, z in C. For λ ∈ C, introduce

F (λ) =


λ 0 0 0 0 0

λ− 1 λ 0 0 0 0
0 0 λ 0 0 0
0 0 λ− 1 λ 0 0
0 0 0 0 λ 0
0 0 0 0 λ− 1 λ

 ,

and note that F = E1E2E3 with

E1(λ) =


λ 0 0 0 0 0

λ− 1 1 0 0 0 0
0 0 λ 0 0 0
0 0 λ− 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

E2(λ) =


1 0 0 0 0 0
0 λ 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 λ 0
0 0 0 0 λ− 1 1

 ,

E3(λ) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 λ 0 0
0 0 0 0 1 0
0 0 0 0 0 λ

 .
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As is easily seen E1, E2 and E3 are elementary functions based at the origin and
with corresponding idempotents

P1 =


1 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

P2 =


0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0

 ,

P3 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 ,

members of C6×6
0 indeed. So F is an elementary polynomial taking invertible values

on C \ {0}. The order of the origin as a pole of F−1 is two. Nevertheless F cannot
be written in the form F = E(1)E(2)G with E(1), E(2) elementary functions based
at the origin and with G an entire function taking invertible values on all of C.
Assume, contrarily, that it can. Then we come to a contradiction by arguing as
follows.

Suppose the idempotents in C6×6
0 corresponding to E(1) and E(2) are Q(1) and

Q(2), respectively. So

E(j)(λ) = I6 −Q(j) + λQ(j), λ ∈ C; j = 1, 2,

where I6 is the 6× 6 identity matrix. Now introduce the block forms

Q(j) =

Q
(j)
1 0 0
0 Q

(j)
2 0

0 0 Q
(j)
3

 (19) Q

with Q
(j)
1 , Q

(j)
2 , Q

(j)
3 lower triangular matrices of order 2 and, analogously,

G(λ) =

G1(λ) 0 0
0 G2(λ) 0
0 0 G3(λ)

 .

Then, for k = 1, 2, 3 and λ ∈ C, the lower triangular 2×2 matrix Gk(λ) is invertible
and (

λ 0
λ− 1 λ

)
=
(
I −Q

(1)
k + λQ

(1)
k

)(
I −Q

(2)
k + λQ

(2)
k

)
Gk(λ)



LOGARITHMIC RESIDUES AND ELEMENTARY FACTORS 27

where I is the 2 × 2 identity matrix. The left hand side assumes a non-zero value
at the origin and its inverse has a pole of order two there. It follows that the
idempotents Q

(j)
k cannot be equal to 0 or I. Thus Q

(j)
k is a non-trivial idempotent

lower triangular 2×2 matrix and must therefore have one of the following two forms(
1 0
∗ 0

)
,

(
0 0
∗ 1

)
.

But with these two possibilities for Q
(j)
k , the right hand side of (19) can never be a

member of C6×6
0 , and we have the desired contradiction. �

Confronting the above situation with Theorem 5.5, we conclude that the Banach
algebra C6×6

0 lacks a sufficient supply of annihilating idempotents. In fact, if A is
the coefficient of λ−2 in the Laurent expansion of F−1 at the origin and B = F (0),
then AB = BA = 0 but the pair A,B does not have annihilating idempotent in
C6×6

0 . The verification of the details is left to the reader.
The number of factors in the elementary polynomial in Example 7.1 is three.

Working with higher order matrices, one can also describe a situation where the
number of factors is equal to a given arbitrary integer n larger than three while the
elementary polynomial in question cannot be reduced to an everywhere invertible
function via extraction of less than n elementary factors. In fact one can do this
by allowing for matrices of order n(n − 1) built up of the same 2 × 2 constituents
as used above (cf., Example 7.2 below where this idea is even stretched further).

Example 7.1 was cast in the language of 6 × 6 matrices and for the extension
suggested in the previous paragraph matrices of order n(n− 1) were indicated. We
could have worked instead with 3–tuples, more generally with 1

2n(n − 1)–tuples,
of lower triangular 2 × 2 matrices. Next let us work with matrix tuples of infinite
length (so basically sequences) in order to exhibit a striking phenomenon that can
occur in the context of extracting elementary factors.

extr2A Example 7.2. Let Ω be the set of all ordered pairs (k, j) of positive integers j and
k satisfying k > j. With the familiar lexicographic ordering

(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (5, 1), (5, 2), . . .

this set can be viewed as a simple sequence. Write C2×2
lower for the Banach algebra of

lower triangular 2×2 matrices and let B0 be the Banach subalgebra of B(Ω, C2×2
lower)

consisting of all (norm bounded) functions M : Ω → C2×2
lower satisfying the follow-

ing extra condition: there exists a (bounded) sequence SeqM = (a1, a2, a3, . . . ) of
complex numbers (depending on M) such that M(k, j) has the form

M(k, j) =
(

aj 0
∗ ak

)
for all (k, j) ∈ Ω. For λ ∈ C and (k, j) ∈ Ω, put

F (λ)(k, j) =
(

λ 0
λ− 1 λ

)
.

Then F (λ) ∈ B0, the corresponding sequence SeqF (λ) consisting of nothing else
than λ’s. The resulting function F : C → B0 is entire (actually F is a linear pencil
with coefficients in B0), takes invertible values on C \ {0}, and its resolvent F−1

has a pole of order two at the origin. We shall analyze the situation on the point
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of the extraction of elementary factors based at 0. All the time n is allowed to take
the values 1, 2, 3, . . . .

For λ ∈ C and (k, j) ∈ Ω, let En(λ)(k, j) be given by

En(λ)(k, j) =



(
1 0
0 1

)
, j, k 6= n,(

λ 0
λ− 1 1

)
, j = n,(

1 0
0 λ

)
, k = n.

Observe that En(λ) ∈ B0, the determining sequence SeqEn(λ) having λ at the n-th
position and ones everywhere else. The function En : C → B0 defined this way is
elementary, the corresponding idempotent Pn being given by

Pn(k, j) =



(
0 0
0 0

)
, j, k 6= n,(

1 0
1 0

)
, j = n,(

0 0
0 1

)
, k = n,

where (k, j) ∈ Ω. Also introduce

Gn(λ)(k, j) =



(
1 0
0 1

)
, k ≤ n,(

λ 0
λ− 1 λ

)
, k > j > n,(

1 0
0 λ

)
, k > n ≥ j.

As is easily seen Gn(λ) ∈ B0, the sequence SeqGn(λ) starting with n ones and
continuing with λ’s. The function Gn : C → B0 thus introduced is entire (again it
is a pencil) , with invertible values on C \ {0}, and its resolvent G−1

n has a pole of
order two at the origin. So on these counts Gn has the same properties as F .

Inspection shows that for all λ ∈ C

F (λ) = E1(λ) · · ·En(λ)Gn(λ). (20) fact1A

So it is possible to extract an arbitrary number of non-trivial elementary factors
from F without losing the analyticity. On the other hand, the resolvents F−1 and
G−1

n both have a pole at the origin of order two, ie., (20) does not involve pole
reduction. In fact, the function F is not plain. To see this, we assume to the
contrary that it is, and argue as follows. Write F in the form

F (λ) = E(1)(λ) . . . E(n)(λ)G(λ) (21) fact2A

with E(1), . . . , E(n) elementary functions based at the origin and with G an entire
function taking invertible values on all of C. For m = 1, . . . , n, let

E(m)(λ) = I − P (m) + λP (m)
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where I is the unit element and P (m) is an idempotent in B0. Specifying SeqP (m)

as (p(m)
1 , p

(m)
2 , p

(m)
3 , . . . ), we have that P (m)(k, j) is of the form

P (m)(k, j) =

(
p
(m)
j 0
∗ p

(m)
k

)
. (22) seqA

Here, as always, (k, j) ∈ Ω. As P (m) is an idempotent in B0, the lower tri-
angular 2 × 2 matrices in (22) are idempotents too. In particular the sequence
(p(m)

1 , p
(m)
2 , p

(m)
3 , . . . ) consists of no other numbers than zeros and ones.

For λ ∈ C, let SeqGn(λ) = (g1(λ), g2(λ), g3(λ), . . . ), so

G(λ)(k, j) =
(

gj(λ) 0
∗ gk(λ)

)
.

The functions g1, g2, g3, . . . are entire and do not vanish on C. In view of (21) and
the definition of F we have that for (k, j) ∈ Ω, the matrixgj(λ)

∏n
m=1

(
1− p

(m)
j + λp

(m)
j

)
0

∗ gk(λ)
∏n

m=1

(
1− p

(m)
k + λp

(m)
k

)


is equal to
(

λ 0
λ− 1 λ

)
and, consequently,

gj(λ)
n∏

m=1

(
1− p

(m)
j + λp

(m)
j

)
= λ, λ ∈ C; j = 1, 2, 3, . . . .

As observed above, p
(m)
j is either zero or 1. In the first case the term 1−p

(m)
j +λp

(m)
j

is 1, in the second it is λ. Hence, given j, there is an mj among the integers 1, . . . , n

with p
(mj)
j = 1. The integers m1,m2,m3, . . . are all from {1, . . . , n} and so it is

impossible that they are all different. Suppose ms = mt for some s and t with
t > s. Then (t, s) ∈ Ω and, with l = ms = mt, the matrix P (l)(t, s) has the form

P (l)(t, s) =

(
p
(l)
s 0
∗ p

(l)
t

)
=

(
p
(ms)
s 0
∗ p

(mt)
t

)
=
(

1 0
∗ 1

)
.

Since this matrix is an idempotent, it follows that P (l)(t, s) is the 2 × 2 identity
matrix. But then

E(l)(λ)(t, s) =
(

λ 0
0 λ

)
,

and we see from (21) that F (0)(t, s) is the 2 × 2 zero matrix. This, however,
contradicts the definition of F which says that

F (0)(t, s) =
(

0 0
−1 0

)
.

Elaborating on the above, we note that if on a deleted neighborhood of the origin,
one has a factorization of the type (21) with E(1), . . . , E(n) elementary functions
based at 0 and G analytic there, then G−1 necessarily has a pole at the origin of
order two. Here is the reasoning. If the principal part of G−1 vanishes, then the
usual continuity argument (cf., the last paragraph of the proof of Proposition 4.1)
gives that G(0) is invertible and F would be plain, which as we have seen it is not.
Hence G−1 has a (genuine) pole at the origin, clearly of order not exceeding two
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(the order of 0 as a pole of F−1). However, the order of 0 as a pole of G−1 cannot
be one. If it is, Theorem 5.1 guarantees that G is plain. But then again we would
arrive at the conclusion that F is plain, contrary to the facts.

Summarizing, on the one hand one can extract as many elementary non-trivial
factors from F as desired without losing the analyticity, while on the other hand,
no matter how this is done, pole reduction does not come to pass. �

The Banach algebra in Example 7.2 is infinite dimensional. Is a similar example
possible in a finite dimensional context, more precisely can one make do in a matrix
setting? The answer is negative. Suppose F is an n × n matrix valued function,
defined and analytic on a neighborhood U of the origin, and taking invertible values
on U \ {0}. Assume, in addition, that F can be written as

F (λ) = (In − P1 + λP1) . . . (In − Pk + λPk)G(λ),

where P1, . . . , Pk are non-zero idempotents and G is analytic on U . Observe that G
takes invertible values on U \ {0}. Also note that for an idempotent n × n matrix
P , one has

det(In − P + λP ) = λr(P ),

with r(P ) = rank P = trace P . This can be seen by diagonalizing P via a similarity
transformation. It follows that

det F (λ) = λr(P1)+...+r(Pk) detG(λ), λ ∈ U.

Now detF (λ) and detG(λ) do not vanish on U \ {0}. Hence the orders of the origin
as zeros af the analytic functions det F (λ) and det G(λ) are finite, say mF (0) and
mG(0), respectively. But then

mF (0) = r(P1) + . . . + r(Pk) + mG(0),

and we see that k ≤ r(P1) + . . . + r(Pk) = mF (0)−mG(0) ≤ mF (0).
In both the Examples 7.1 and 7.2, the resolvent F−1 of the function F has a

pole at the origin of order two. It is possible to refine the examples in such a way
that this pole order is a prescribed number m larger than two. We refrain from
presenting this refinement here.

A question that comes to mind in connection with the heuristic observations
from the beginning of Section 5, and in view of the left versus right symmetry for
the representation of plain functions exhibited in Section 4, is the following. Let
the B-valued function F be analytic on a neighborhood of the origin and assume
the resolvent F−1 has a pole there. Suppose it is possible to extract an elementary
factor (based at the origin) from the left in the sense that the analyticity is kept
intact and that there occurs pole order reduction for the resolvent. Does it follow
that a non-trivial elementary factor can be extracted from the right such that
analyticity is retained? The following example shows that the answer is negative.

lvr1 Example 7.3. Let C3×3
∗ be the (inverse closed) Banach subalgebra of C3×3 con-

sisting of the matrices of the type u x y
0 u z
0 0 v
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with u, v, x, y, z in C. For λ ∈ C, let F (λ) be the 3 × 3 upper triangular Jordan
block with eigenvalue λ, so

F (λ) =

λ 1 0
0 λ 1
0 0 λ

 .

Then F : C → C3×3
∗ is analytic and F−1 has a pole at the origin of order 3. Writing

F in the form

F (λ) =

1 0 0
0 1 0
0 0 λ

λ 1 0
0 λ 1
0 0 1

 =

1 0 0
0 1 0
0 0 0

+ λ

0 0 0
0 0 0
0 0 1

λ 1 0
0 λ 1
0 0 1


we have extracted an elementary factor from the left (keeping the analyticity intact
and with pole order reduction (to order 2) for the resolvent, as stipulated above).
We shall now prove that it is impossible to extract a non-trivial elementary factor
from the right such that analyticity is kept intact. Suppose, contrarily, that we can,
so for some non-zero idempotent P ∈ C3×3

∗ we have a representation

F (λ) = F̃ (λ)
(
I − P + λP

)
such that F̃ is analytic at the origin. Here I is the unit element in C3×3

∗ , i.e.,
the 3 × 3 identity matrix. Taking λ = 0, we get F (0) = F̃ (0)(I − P ) and hence
F (0)P = 0. But F (0) is the 3× 3 upper triangular nilpotent Jordan block. Hence
P has the form u x y

0 0 0
0 0 0


with u, x, y ∈ C. As P belongs to C3×3

∗ , the first and second element on the diagonal
have to be equal. Thus u = 0, so P = P 2 = 0, and we have reached a contradiction.

Without going into the details, we mention that the above argument can easily
be transformed to the level of annihilating idempotents. �

Elaborating on this example we note that one cannot do with a pole order for
the resolvent F−1 less than 3. Indeed, suppose F−1 has a pole at the origin of
order 2 and assume that we can extract an elementary factor from the left (in the
sense given to this above). The resolvent F̃−1 of the resulting function F̃ then has
a simple pole at the origin and this is a special situation in that then it is always
possible to extract an elementary factor (see Theorem 5.1). Doing this, one arrives
at a function which takes invertible values on a neighborhood of the origin and it
would follow that F is plain on this neighborhood. But then it is possible to extract
elementary factors from the right too.

The asymmetry with regard to left and right extraction of elementary factors is
further illustrated by the next example (cf., the remark made just after the proof
of Theorem 5.5).

lvr2 Example 7.4. Let C2×2
upp be the Banach algebra of 2× 2 upper triangular complex

matrices, and let J be the ideal in C2×2
upp consisting of all matrices of the form(

x y
0 0

)
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with x, y ∈ C. Note that a matrix (
a1 a0

0 a2

)
in C2×2

upp is J−invertible if and only if a2 is non-zero.
Now consider an analytic C2×2

upp -valued function F , defined on an open neighbor-
hood of the origin, and write

F (λ) =
(

f1(λ) f0(λ)
0 f2(λ)

)
.

Suppose F (0) is J−invertible or, what amounts to the origin of (positive) order m.
This means that the scalar function f1 has a zero at the origin of order m, and so
we can write

F (λ) =
(

λmg(λ) f0(λ)
0 f2(λ)

)
.

with g(0) and f2(0) both non-zero.
Let Pright be the singleton set having the upper triangular idempotent(

1 0
0 0

)
as its only member, and let Pleft be the (infinite) family of upper triangular idem-
potents consisting of the matrices of the form(

1 x
0 0

)
with x ∈ C. Clearly F can be written as

F (λ) =
(

g(λ) f0(λ)
0 f2(λ)

)(
λ 0
0 1

)m

with the first factor invertible at the origin and the second the m-th power of the
elementary function (

0 0
0 1

)
+ λ

(
1 0
0 0

)
involving the single element of Pright.

So far about extraction from the right. Now what about extraction from the
left? This is also possible, after m steps resulting in function which is invertible at
the origin. However, here one cannot do with one single idempotent, but one has
to use the idempotents from the (infinite) family Pleft. We describe the first step,
leaving the rest of the (straightforward induction) argument to the reader. Put

x = −f0(0)
f2(0)

,

and introduce

h(λ) =

{ 1
λ

(
f0(λ) + xf2(λ)

)
− xf2(λ), λ 6= 0,

f ′
0 (0) + xf ′

2 (0)− xf2(0), λ = 0.

Then h(λ) → h(0) when λ → 0, so h is analytic. One easily verifies the identity

F (λ) =
(

λ λx− x
0 1

)(
λm−1g(λ) h(λ)

0 f2(λ)

)
.
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The resolvent of the second factor has a pole at the origin of order m− 1. The first
factor can be written as (

0 −x
0 1

)
+ λ

(
1 x
0 0

)
which shows that it is an elementary function involving an idempotent from the
family Pleft. �

8. Logarithmic residues of plain functions
logrpl

Theorem 8.3 below is concerned with Problem 1 from the introduction. It implies
that logarithmic residues of plain functions are always in the (possibly non-closed)
subalgebra of B generated by the idempotents in B.

To give the theorem its proper background, we first present two examples. The
first, taken from [BES6] and repeated here as a service to the reader, features a
function having a logarithmic residue not belonging to the closure of the subalgebra
mentioned above. The second example is motivated by Proposition 4.3 and deals
with the special situation where we have a ”pure” elementary polynomial, i.e., a
product of elementary functions based at a single point (taken to be the origin for
simplicity).

lrpfE2 Example 8.1. Let C3×3
0 be the the Banach algebra of all 3× 3 matrices (aij)3i,j=1

such that aij = 0 (i, j = 1, 2, 3; i > j) and akk = a11 (k = 1, 2, 3). In other words,
C3×3

0 is the Banach subalgebra of C3×3 consisting of all upper triangular 3 × 3
matrices with constant diagonal. Introduce F : C → C3×3

0 by

F (λ) =

λ λ2 0
0 λ 1
0 0 λ

 .

Then F is entire and F takes invertible values on all of C, except in the origin. The
left logarithmic residue of F at the origin is

LRleft(F ; 0) =
1

2πi

∫
|λ|=1

F ′(λ)F−1(λ)dλ =

1 0 −1
0 1 0
0 0 1

 .

Now the only idempotents in C3×3
0 are the unit element and the zero element in

C3×3
0 . So the algebra generated by the idempotents in C3×3

0 consists of the scalar
multiples of the 3 × 3 identity matrix. It is now clear that LRleft(F ; 0) does not
belong to (the closure of) this algebra. �

Returning to the case where there are no restrictions on the underlying Banach
algebra B, we now compute the logarithmic residues of an elementary polynomial
involving only factors based at the origin.

lrpfE1 Example 8.2. Let p1, . . . , pn be idempotents in the Banach algebra B, and intro-
duce P = Ep1,0 . . . Epn,0, i.e.,

P (λ) =
n∏

j=1

(
e− pj + λpj

)
, λ ∈ C. (23) pp

The aim is to compute LRleft(P ; 0) and LRright(P ; 0).
For m = 0, . . . , n−1, let Pm by given by Pm = Ep1,0 . . . Epm,0, where as usual the

empty product (in the case m = 0) is read as e, the unit element in B. Recall that
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LRleft(P ; 0) is the coefficient of λ−1 in the Laurent expansion of the left logarithmic
derivative of P at the origin given by

P ′(λ)P−1(λ) =
n∑

m=1

Pm−1(λ)
(
λ−1pm

)
Pm−1(λ)−1, λ 6= 0. (24) lrpf03

It follows that LRleft(P ; 0) is the constant term in the Laurent expansion at the
origin of the function

n∑
m=1

Pm−1(λ)pmPm−1(λ)−1. (25) lrpf03A

From this we immediately see that LRleft(P ; 0) is a linear combination of monomials
in idempotents in B, with non-negative integers as coefficients and the idempotents
coming from p1, . . . , pn and the complementary idempotents e−p1, . . . , e−pn. The
same conclusion holds for the right logarithmic residue LRright(P ; 0). It is, however,
possible to make things more explicit.

Observe that

Pm(λ) =
m∏

j=1

(
e + (λ− 1)pj

)
=

m∑
k=0

∑
1≤j1<j2<···<jk≤m

(λ− 1)kpj1pj2 . . . pjk

=
m∑

k=0

∑
1≤j1<j2<···<jk≤m

k∑
l=0

(−1)k−l

(
k

l

)
λlpj1pj2 . . . pjk

,

which, after rearranging terms, gives

Pm(λ) =
m∑

l=0

λl

 m∑
k=l

(−1)k−l

(
k

l

) ∑
1≤j1<j2<···<jk≤m

pj1pj2 . . . pjk

 .

Taking into account that

Pm(λ)−1 =
m∏

j=1

Epm+1−j ,0

(
λ−1

)
=

m∏
j=1

(
e +

(
λ−1 − 1

)
pm+1−j

)
,

one also has

Pm(λ)−1 =
m∑

l=0

λ−l

 m∑
k=l

(−1)k−l

(
k

l

) ∑
1≤i1<i2<···<ik≤m

pik
. . . pi2pi1

 ,

where, of course, λ 6= 0. As was already observed, LRleft(P ; 0) is the constant term
in the Laurent expansion at the origin of (25) and a straightforward computation
gives that it is equal to

n∑
m=1

m−1∑
s,t=0

(−1)s+t

min{s,t}∑
l=0

(
s

l

)(
t

l

) ∑
1≤i1<i2<···<is≤m−1
1≤j1<j2<···<jt≤m−1

pj1pj2 . . . pjt
pmpis

. . . pi2pi1 .

Simplifying with the help of
min{s,t}∑

l=0

(
s

l

)(
t

l

)
=
(

s + t

s

)
,
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an identity which can be quickly verified by comparing the coefficients of xt in the
left and right hand sides of

(1 + x)s+t = (1 + x)s(1 + x−1)txt,

we arrive at
n∑

m=1

m−1∑
s,t=0

(−1)s+t

(
s + t

t

) ∑
1≤i1<i2<···<is≤m−1
1≤j1<j2<···<jt≤m−1

pj1pj2 . . . pjtpmpis . . . pi2pi1 (26) left

for LRleft(P ; 0).
For the right logarithmic residue LRright(P ; 0) there is the analogous expression

n∑
m=1

n−m∑
s,t=0

(−1)s+t

(
s + t

t

) ∑
n≥i1>i2>···>is≥m+1
n≥j1>j2>···>jt≥m+1

pj1pj2 . . . pjt
pmpis

. . . pi2pi1 . (27) right

Note that it can be obtained from (26) by reversing the order of the idempotents.
Here is the precise formulation that makes this completely transparent: if P̃ =
Epn,0 . . . Ep1,0, i.e.,

P̃ (λ) =
n∏

j=1

(
e− pn+1−j + λpn+1−j

)
, λ ∈ C,

then
LRleft(P̃ ; 0) = LRright(P ; 0). (28) rev

This can be seen as follows. For m = 0, . . . , n − 1, write P̃m = Epn,0 . . . Epn+1−m,0

and Qm = Epn+1−m,0 . . . Epn,0. Then LRleft(P̃ ; 0) and LRright(P ; 0) are the con-
stant terms in the Laurent expansions of

L̃(λ) = λP̃ ′(λ)P̃ (λ)−1 =
n∑

m=1

P̃m−1(λ)pn+1−mP̃m−1(λ)−1 (29) llpf03A

and

R(λ) = λP (λ)−1P ′(λ) =
n∑

m=1

Qm−1(λ)−1pn+1−mQm−1(λ) (30) rrpf03A

respectively. For λ 6= 0 and k = 0, . . . , n− 1, we have

P̃k(λ−1) = Epn,0(λ−1) . . . Epn+1−k,0(λ−1)

= Epn,0(λ)−1 . . . Epn+1−k,0(λ)−1 = Qk(λ)−1.

Here we used the simple observation (7) from Section 3. With (29) and (30) it
follows that

L̃
(
λ−1

)
= R(λ), λ 6= 0.

Hence the constant terms in (29) and (30) are the same, and with this the desired
identity (28) has been established.

The expressions (26) and (27) are what we will call integer combinations of the
idempotents p1, . . . , pn. That is, they are linear combinations of monomials in these
idempotents with integer coefficients. The number of different monomials involved
is 1

3 (4n − 1) and so it grows fast when n becomes larger. However, in the case where
the idempotents p1, . . . , pn commute, things can be enormously simplified. Indeed,
in that situation all terms except the given idempotents themselves (corresponding
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to the values m = 1, . . . , n; s = t = 0 of the summation indices) cancel each other,
so that

LRleft(P ; 0) = LRright(P ; 0) =
n∑

k=1

pk.

This can be seen by analyzing the coefficients of (26) and (27), but also (and more
quickly) from the fact that in the commutative case

P ′(λ)P−1(λ) = P−1(λ)P ′(λ) =
n∑

m=1

1
λ

pm, λ 6= 0.

To put things in perspective, it is proved in [BES3] that logarithmic residues
of commutative functions are always sums of idempotent. It is also elucidating
to recall that [BES3], Example 2.4 exhibits a situation where the left logarithmic
residue

p1 + p2 − p1p2 − p2p1 + 2p1p2p1

of an elementary polynomial P of the form P = Ep1,0Ep2,0 is not a sum of idem-
potents. The underlying Banach algebra in the example is almost commutative in
the sense that it is a polynomial identity algebra (cf., [AL]). Similar things can of
course be done for the right logarithmic residue

p2 + p1 − p2p1 − p1p2 + 2p2p1p2.

obtained from the above formula by interchanging p1 and p2. �

Next we turn to logarithmic residues of general plain functions. The difference
with Example 8.2 lies in the fact that now we are faced with the disturbing influence
of an everywhere invertible factor. Nevertheless some of the basic features of the
example remain.

lrpfT2 Theorem 8.3. Let ∆ be a bounded Cauchy domain in C, let F ∈ A∂(∆;B) and
suppose F is plain on ∆. Then the (left and right) logarithmic residues of F with
respect to ∆ belong to the (possibly non-closed) subalgebra of B generated by the
idempotents. In fact, the logarithmic residues of F with respect to ∆ are integer
combinations of the idempotents of B.

From the theorem it is clear that Example 8.1 provides another example, besides
Example 4.4, of a non-plain function. The advantage of Example 4.4 is that the
Banach algebra there is commutative. The one in Example 8.1, being a subalgebra
of C3×3, is a polynomial identity algebra, but it is not commutative.

Proof. We begin with some preliminary material. Let p ∈ B be an idempotent, let
b ∈ B be arbitrary, and consider the element p+pb(e−p). Clearly

(
p+pb(e−p)

)2 =
p + pb(e − p), so p + pb(e − p) is again an idempotent. Also s = e + pb(e − p) is
invertible with inverse s−1 = e−pb(e−p) and s

(
p+pb(e−p)

)
= ps. So p+pb(e−p)

is similar to p. An analogous observation holds for p + (e− p)bp.
Let q1, . . . , qm ∈ B be idempotents and let a1, b1, . . . , am, bm be arbitrary el-

ements in B. For k = 1, . . . ,m, introduce Lk = Lq1,...,qk

a1,b1,...,ak,bk
(inductively) as
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follows:

L1 = q1 + q1a1(e− q1) + (e− q1)b1q1,

L2 = q2 + q2L1q2 + (e− q2)L1(e− q2) + q2a2(e− q2) + (e− q2)b2q2,

...
Lm = qm + qmLm−1qm + (e− qm)Lm−1(e− qm) + qmam(e− qm) + (e− qm)bmqm.

Note that Lk = Lq1,...,qk

a1,b1,...,ak,bk
is an integer combination of 3k idempotents each of

which is equal or similar to one of the idempotents q1, . . . , qk (cf., the observations
of the first paragraph).

Since the function F is plain on ∆, it has only a finite number of points there
where it takes a non-invertible value. This enables us to reduce the situation to the
local case (cf., the identities (5) and (6) in Section 2). So we consider the situation
at a single point in ∆, for simplicity of notation assumed to be the origin.

From Sections 3 and 4, we know that there exist idempotents q1, . . . , qm in B, a
neighborhood ∆ of the origin and an analytic function G : ∆ → B such that G has
invertible values on ∆ and

F (λ) = G(λ)Eq1,0(λ) . . . Eqm,0(λ), λ ∈ ∆.

When m = 0, the functions F and G coincide on ∆ and, the logarithmic residues
being zero, there is nothing to prove. So we assume that m is positive. Restricting
ourselves to the right version of the logarithmic residue, it is sufficient to prove that
there exist a1, b1, . . . , am, bm ∈ B such that

LRright(F ; 0) = Lq1,...,qm

a1,b1,...,am,bm
.

The argument goes by induction.
For m = 1, the situation is simple. Indeed, for λ ∈ ∆ we have

F−1(λ)F ′(λ) = λ−1q1 +
(
e− q1 + λ−1q1

)
G−1(λ)G ′(λ)

(
e− q1 + λq1

)
= λ−1q1 + q1G

−1(λ)G ′(λ)q1 + (e− q1)G−1(λ)G ′(λ)(e− q1) +
+λ−1q1G

−1(λ)G ′(λ)(e− q1) + λ(e− q1)G−1(λ)G ′(λ)q1,

and, computing the coefficient of λ−1, it follows that

LRright(F ; 0) = q1 + q1G
−1(0)G ′(0)(e− q1).

So we can take a1 = G−1(0)G ′(0) and b1 = 0.
Next assume that m is at least 2 and write F (λ) = F̃ (λ)Eqm,0 with

F̃ (λ) = G(λ)Eq1,0(λ) . . . Eqm−1,0(λ), λ ∈ D.

Then, for λ ∈ ∆,

F−1(λ)F ′(λ) = λ−1qm +
(
e− qm + λ−1qm

)
F̃−1(λ)F̃ ′(λ)

(
e− qm + λqm

)
= λ−1qm + qmF̃−1(λ)F̃ ′(λ)qm + (e− qm)F̃ ′(λ)F̃−1(λ)(e− qm) +

+qm

(
λ−1F̃−1(λ)F̃ ′(λ)

)
(e− qm) + (e− qm)

(
λF̃−1(λ)F̃ ′(λ)

)
qm,

and from this one infers that LRright(F ; 0) is equal to

qm+qmLRright(F̃ ; 0)qm+(e−qm)LRright(F̃ ; 0)(e−qm)+qma(e−qm)+(e−qm)bqm,
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where, for % a sufficiently small positive number,

a =
1

2πi

∫
|λ|=%

λ−1F̃−1(λ)F̃ ′(λ)dλ, b =
1

2πi

∫
|λ|=%

λF̃−1(λ)F̃ ′(λ)dλ.

By induction hypothesis, we may assume that

LRright(F̃ ; 0) = L
q1,...,qm−1
a1,b1,...,am−1,bm−1

.

So with am = a, bm = b and Lm−1 = L
q1,...,qm−1
a1,b1,...,am−1,bm−1

, the above expression for
LRright(F ; 0) becomes

qm + qmLm−1qm + (e− qm)Lm−1(e− qm) + qmam(e− qm) + (e− qm)bmqm

and this is just Lq1,...,qm

a1,b1,...,am,bm
. �

We now turn to material connected with Problem 2 from the introduction. Since
the example in [BES2] of a non-trivial situation where the logarithmic residue
vanishes involves a plain function, some extra structure is needed. In line with [GS1]
and [BKL2], we find this in the notion of a trace, here meant to be a (possibly non-
continuous) linear function τ : B → C with the following additional commutativity
property: τ(ab) = τ(ba) for all a and b in B. There are important examples where
non-trivial traces do exist. One such an example is concerned with the so called
rotation C∗-algebras considered in [Bo]. The tracial state, as it is called there, is
even defined on the full algebra itself (J = B). Another instance is provided by the
polynomial identity Banach algebras in the sense of [AL] and [K]. We shall come
back to this in the somewhat more general framework of Theorem 8.7 below. First,
however, we make the connection with logarithmic residues of plain functions.

lrpfT3 Theorem 8.4. Let ∆ be a bounded Cauchy domain in C, let F ∈ A∂(∆;B) be
plain on ∆ and suppose F is represented in the form

F (λ) = H(λ)Ep1,α1(λ) · · ·Epn,αn
(λ), λ ∈ ∆, (31) Aa

with α1, . . . , αn points in ∆ (not necessarily distinct), p1, . . . , pn idempotents in B
and H : ∆ → B an analytic function taking invertible values on ∆. Assume τ is a
trace on B. Then

τ
(
LRleft(F ;D)

)
= τ

(
LRright(F ;D)

)
=

n∑
j=1

τ (pj) . (32) A

As a consequence, the sum of traces appearing in (32) is independent of the (non-
unique) representation (31). There is a version of the theorem with the function H
appearing in (31) as the last factor instead of the first.

Proof. We first focus on the local situation at a single point. Take α ∈ {α1, . . . , αn}
and let j1, . . . , jm be the different integers j among 1, . . . , n such that αj = α. By
Proposition 3.2 we can write F in the form

F (λ) = G(λ)Eq1,α(λ) . . . Eqm,α(λ), λ ∈ D,

where q1, . . . , qm are idempotents in B, similar to pj1 , . . . , pjm respectively, and G
takes invertible values on an open neighborhood of α. From the proof of Theorem
8.3 we know that for appropriately chosen a1, b1, . . . , am, bm ∈ B

LRright(F ;α) = Lq1,...,qm

a1,b1,...,am,bm
. (33) B
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Here (and below) we employ the special notation introduced in the proof of Theorem
8.3. Now consider the elements Lq1,...,qk

a1,b1,...,ak,bk
, k = 1, . . . ,m. Via a simple induction

argument, based on the identities

τ
(
pb(e− p)

)
= τ

(
(e− p)pb

)
= τ(0) = 0,

τ
(
(e− p)bp

)
= τ

(
p(e− p)b

)
= τ(0) = 0,

τ
(
pbp + (e− p)b(e− p)

)
= τ

(
pb + (e− p)b

)
= τ(eb) = τ(b),

holding for arbitrary b ∈ B provided p ∈ B is an idempotent, one proves that

τ
(
Lq1,...,qk

a1,b1,...,ak,bk

)
=

k∑
i=1

τ (qi) , k = 1, . . . ,m.

Since qi is similar to pji , we have τ (qi) = τ (pji), and we get

τ
(
Lq1,...,qk

a1,b1,...,ak,bk

)
=

k∑
i=1

τ (pji) , k = 1, . . . ,m.

Combining this identity (for k = m) with (33), one obtains

τ
(
LRright(F ;α)

)
= τ

(
Lq1,...,qm

a1,b1,...,am,bm

)
=

m∑
i=1

τ (pji) =
n∑

j=1
αj=α

τ (pj) .

So far for the local situation. To make the step to the global level, note that F
takes invertible values on ∆ \ {α1, . . . , αn}. Hence

LRright(F ;∆) =
∑

α∈{α1,...,αn}

LRright(F ;α).

But then

τ
(
LRright(F ;∆)

)
=

∑
α∈{α1,...,αn}

τ
(
LRright(F ;α)

)
=

∑
α∈{α1,...,αn}

 n∑
j=1

αj=α

τ (pi)

 ,

and the second identity in (32) follows.
For the first identity in (32) one can argue along the lines indicated in [GS1]) or

[BKL2]). It is also possible to take the following route. From Proposition 3.1 we
know

F (λ) = Ep̂1,α1(λ) . . . Ep̂n,αn
(λ)Ĥ(λ), λ ∈ ∆,

where Ĥ takes invertible values on all of ∆ and with p̂1, . . . , p̂n similar to p1, . . . , pn,
respectively. An argument analogous to the one given above yields

τ
(
LRleft(F ;∆)

)
=

n∑
j=1

τ (p̂j) .

To finish the proof, note that τ (p̂j) = τ (pj) , j = 1, . . . , n. �

From the material presented in Section 3 it is clear that the pointwise product
of plain functions (on the same domain) is again plain. In connection with this, we
now show that traces of logarithmic residues of plain functions satisfy a logarithmic
property.
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lrpfC1 Corollary 8.5. Let ∆ be a bounded Cauchy domain in C and suppose τ is a trace
on B. If F1 and F2 in A∂(∆;B) are plain on ∆, then the product function F1F2 is
again plain on ∆ and

τ
(
LRleft(F1F2;∆)

)
= τ

(
LRleft(F1;∆)

)
+ τ

(
LRleft(F2;∆)

)
.

The identity remains true when the left logarithmic residue is replaced by the
right logarithmic residue.

Proof. Write Fj in the same form as the function F in Theorem 8.4. Thus, sup-
pressing the variable, Fj = HjEp

(j)
1 ,α

(j)
1

. . . E
p
(j)
nj

,α
(j)
nj

, so that

τ
(
LRleft(Fj ;∆)

)
=

nj∑
i=1

τ
(
p
(j)
i

)
, j = 1, 2. (34) Ab

For the product F1F2, we have

F1F2 = H1Ep
(1)
1 ,α

(1)
1

. . . E
p
(1)
n1 ,α

(1)
n1

H2Ep
(2)
1 ,α

(2)
1

. . . E
p
(2)
n2 ,α

(2)
n2

.

By (possibly) repeated application of Proposition 3.1 this can be transformed into

F1F2 = HE
p̃
(1)
1 ,α

(1)
1

. . . E
p̃
(1)
n1 ,α

(1)
n1

E
p
(2)
1 ,α

(2)
1

. . . E
p
(2)
n2 ,α

(2)
n2

,

where H takes invertible values on all of ∆ and with p̃
(j)
i similar to p

(j)
i (hence

having the same value for τ) for all relevant values of i and j. It follows that

τ
(
LRleft(F1F2;∆)

)
=

n1∑
i=1

τ
(
p̃
(1)
i

)
+

n2∑
i=1

τ
(
p
(2)
i

)
=

n1∑
i=1

τ
(
p
(1)
i

)
+

n2∑
i=1

τ
(
p
(2)
i

)
,

and in combination with (34) the desired result follows. �

Let T be non-empty family of traces on B. We will say that T is resolving if the
only sums of idempotents in B that are annihilated by all the traces from T are the
trivial ones. More precisely, T is resolving if (and only if) the following holds: the
situation where p1, . . . , pn are idempotents in B and τ(p1 + · · ·+ pn) = 0 for every
trace τ in T can only occur when pj = 0, j = 1, . . . , n. If B has a resolving family
of traces, then B has only zero sums of idempotents (cf., [BES1]-[BES8]).

We now have the following partial answer to the Problem (B) from the intro-
duction, specialized to plain functions as indicated after Example 8.2.

lrpfC2 Corollary 8.6. Let ∆ be a bounded Cauchy domain in C and let F ∈ A∂(∆;B) be
plain on ∆. Assume B has a resolving family of traces, T say. Then the following
statements are equivalent:

(a) F takes invertible values on all of ∆;
(b) LRleft(F ;∆) = 0;
(c) τ

(
LRleft(F ;∆)

)
= 0 whenever τ ∈ T .

For definiteness, the result is stated in terms of the left version of the logarithmic
residue but of course it is also valid for the right variant.

Proof. The implications (a)⇒ (b) and (b)⇒ (c) are trivial. So we concentrate on
(c)⇒ (a). Write F as in (31) from Theorem 8.4 so that (32) holds with p1, . . . , pn
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idempotents in B. Suppose (c) is satisfied. Then, for τ ∈ T ,

τ

 n∑
j=1

pj

 =
n∑

j=1

τ (pj) = τ
(
LRleft(F ;∆)

)
= 0.

By assumption, the family T of traces is resolving. Hence pj = 0, j = 1, . . . , n, and
we see from (31) that F coincides with the function G having invertible values on
all of ∆. �

A sufficient condition for T to be resolving is that τ(p) ≥ 0 for all idempotents
p ∈ B and each τ ∈ T , while τ(p) = 0 for every τ ∈ T (if and) only if p = 0.
This is used in the proof of the next theorem for which we now prepare with some
definitions (cf., [K]; see also [BES1] and [BES2]).

By a matrix representation of B we mean a (possibly non-continuous) unital
homomorphism from B into a matrix algebra Cn×n. So µ is a matrix representation
of B if there exists a positive integer nµ such that µ : B → Cnµ×nµ is a linear and
multiplicative function mapping the unit element e in B into µ(e) = In. Let M
be a (non-empty) family of matrix representations µ : B → Cnµ×nµ of B. We say
that M is a sufficient family of matrix representations for B if an element a ∈ B
is invertible in B if (and only if) µ(a) is invertible for each µ ∈ M. We emphasize
that we do not require the homomorphisms µ to be continuous. Also we do not
require that the collection of integers nµ with µ from M be bounded.

sep.tr Theorem 8.7. Each unital Banach algebra possessing a sufficient family of matrix
representations has a resolving family of continuous traces.

In particular, each polynomial identity Banach algebra has a resolving family of
continuous traces (cf., [AL] and [K]).

Proof. Let B be a unital Banach algebra, and assume M is a sufficient family
of matrix representations for B. The case when the matrix representations in B
are continuous is easy. Indeed, we then proceed as follows. Take µ ∈ M. Then
µ : B → Cn×n for some n = nµ depending on µ, µ is continuous, linear and
multiplicative, while in addition µ(e) = In. Now, for b ∈ B, let τµ(b) be the trace of
the n× n matrix µ(b). Then, obviously, τµ is a continuous trace on B. Introducing
T = {τµ | µ ∈ M}, we obtain a non-empty family of continuous traces on B. Let
p be an idempotent in B. If µ ∈ M, then µ(p)2 = µ(p2) = µ(p). Thus µ(p) is an
idempotent matrix and so its trace is equal to its rank. In particular τµ(p) ≥ 0.
Now assume τµ(p) = 0 whenever µ ∈M. Each µ in M sends p into an idempotent
matrix µ(p) with zero trace, that is into the zero matrix of appropriate size. But
then µ(e − p) = µ(e) − µ(p) = µ(e) is an identity matrix, hence invertible. Since
the family M is sufficient, it follows that e− p is invertible. From p(e− p) = 0, it
is now clear that p = 0, as desired.

It remains to consider the general case where the matrix representations in M
are allowed to be non-continuous. This situation is handled by showing that M
can be changed into a sufficient family of continuous matrix representations for
B. The argument for this rests heavily on what is known as Burnside’s theorem
holding that every proper algebra of matrices (over an algebraically closed field) has
a non-trivial invariant subspace (cf., [LR]). Here is a sketch of the reasoning. Using
Burnside’s Theorem one can see that M can be transformed into a sufficient family
of surjective matrix representations for B. However, the null space of a surjective



42 H. BART, T. EHRHARDT AND B. SILBERMANN

matrix representation of B is a maximal ideal in B, hence closed. But, having a
closed null space, the matrix representation must be continuous. �

Recall from [K] that the class of Banach algebras possessing a sufficient family of
matrix representations includes all polynomial identity Banach algebras (cf., [AL]).
Here is an example of a Banach algebra not possessing a sufficient family of matrix
representations, but nevertheless having a resolving family of traces.

nKr.res Example 8.8. Let A be the unital Banach algebra of bounded sequences A =
(A1, A2, A3, . . .) with An an n × n matrix, n = 1, 2, 3, . . . . Here boundedness is
with respect to the usual matrix norm for the entries An ∈ Cn×n. The algebraic
operations in A are defined coordinate-wise, and the norm on A is given by

‖A‖ = sup{‖An‖ | n = 1, 2, 3, . . .}.
For n = 1, 2, 3 . . . , let τn(A) be the trace of the n × n matrix An. Then τn is a
trace on A. If P is an idempotent in A, then obviously τn(P) ≥ 0. Also P = 0
whenever τn(P) vanishes for every n. Hence T = {τn | n = 1, 2, 3 . . .} is a resolving
family of traces for A. The Banach algebra A is not a polynomial identity algebra.
Suppose it is. Then there exists a polynomial Ψ, in k non-commuting variables say,
such that Ψ annihilates A. Now clearly Ψ also annihilates Cn×n. But then the
number k cannot be smaller than 2n (see Theorem 20.2 in [K]) and the references
given there). As this holds for all n, we come to a contradiction. Actually, A does
not even have a sufficient family of matrix representations. The argument for this
is quite involved, and will be presented elsewhere. �

The material concerning resolving families of traces has been inspired by [BES2],
Theorems 3.1 and 4.1. The first of these result deals with Fredholm operator valued
functions (cf. [BES5] and Example 6.1 above); the second with the situation of
Theorem 8.7. Thus Corollary 8.6 applies to a wider class of functions than those
from [BES2], Theorem 3.1 and also to a less restricted class of Banach algebras
than the ones featuring in [BES2], Theorem 4.1. On the other hand, the functions
in [BES2], Theorems 4.1 are not required to be plain as is the case in Corollary 8.6.

There is a connection here with a question concerning Problem (B) from the
introduction, a question which has been open from the start of the series of pub-
lications [BES1]–[BES8]. Problem (B) can be summarized as follows: under what
circumstances, does Corollary 8.6(b) imply Corollary 8.6(a). Banach algebras for
which this implication holds have the property that they possess only trivial zero
sums of idempotents (see [BES2], Theorem 5.1). The issue is now: is the converse
true? So, if we have a Banach algebra possessing only trivial zero sums of idempo-
tents, does it follow that Corollary 8.6(b) ⇒ Corollary 8.6(a)? The negative answer
that we expect could come about by constructing an example showing that the as-
sumption that F is plain in Corollary 8.6 is essential for the implication Corollary
8.6(b)⇒Corollary 8.6(a). Indeed, such an example would exhibit a situation where
Corollary 8.6(b) does not imply Corollary 8.6(a) while the underlying Banach alge-
bra (having a resolving family of traces) has only trivial zero sums of idempotents.
Although at first sight Example 8.8 might look like a suitable candidate, we have
strong reasons that it fails on this count.
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