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In this note we give a short and easy proof of the equivalence of Hakimi's one-median problem and the k-server-facility-loss 
median problem as discussed by Chiu and Larson in Computer and Operation Research. The proof makes only use of a stochastic 
monotonicity result for birth and death processes and the insensitivity of the M / G / k / k  loss model. 
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1. Model formulation and results loss model. For this queueing process it is well- 
known (cf. [2]) that for fixed x ~ 9-  the random 

In [1] Chiu and Larson consider the so-called variable Xt(x)  converges in distribution to the 
k-server-single-facility-loss median model (k- random variable J ( x )  representing the number  
SFLM). In this model customers at fixed loca- of customers being served in the steady state if 
tions generate  calls according to a Poisson pro- x c 9-  denotes the location. Moreover, the distri- 
cess with rate A > 0. If  upon arrival of  a cus- bution of X ( x )  depends only on the arrival rate 
tomer 's  call at the service facility all its k identi- and the first moment  re(x) of the service time 
cal servers are busy this customer is lost at cost distribution (Erlang's Loss Formula). If the facil- 
Q > 0. Moreover,  if upon arrival some of the ity is located at x ~ ~-, the cost function z(x) 
servers are idle one of them is assigned to this takes the following form (cf. [1]). 
customer and travels to the location of that cus- 
tomer  at a fixed cost rate. The objective is now to z (x)  =Pk(x)Q + (1 - P k ( x ) ) m ( x )  (1) 
determine among a set ~___ ~2 of feasible loca- 
tions that location for the service facility which with 
will minimize the average cost of the system. In • Pk(x):= Pr{customer finds upon arrival in 
order to analyze this model define steady state all k servers busy) = Pr{customer 
• J ' t ( x )  := number  of customers being served at arriving in steady state is lost), 

time t by one of the k servers if the facility is • m(x) := expected total travel time of server to 
located at x ~ ~-. arbitrary customer when the facility is located 

As argued in [1] the queueing process underlying at x, and 
the k-SFLM location problem is a M / G / k / k  * Q := cost per lost customer, Q > 0. 

The main result proved in [1] using lengthy 
calculations states that the cost function z(x) is 
increasing in m(x). This implies that the k-SFLM 

Correspondence to: J.B.G. Frenk, Econometric Institute, Eras- location problem is solved by determining the 
mus University, Rotterdam, The Netherlands. location x ~ 9-  which minimizes the expected 
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total travel time m(x). Hence, in the special case particular for the Markovian loss model with ar- 
where ,qr denotes some network X this reduces rival rate I and service rate 1/m(x)  d and so we 
to finding the so-called Hakimi median (cf. [3]) at are finished by showing that A/"(1) < X (z) with 
one of the nodes of X .  The above result can be JV (i) the number of customers in the steady state 
verified easily without any calculations by using a in a Markovian M / M / k / k  loss system i with 
well-known stochastic monotonicity result for arrival rate h and service r a t e  1/m(x i ) .  If Xt  (° 
birth and death processes. Before proving this we denotes the number of customers at time t in the 
need the following observations. By Little's for- same Markovian loss system i then the stochastic 
mula (cf. [5]) the quantity (1 - P~(x))m(x) equals processes {Art ~i), t >_ 0}, i = 1, 2, are birth and 
(1 /h)L(x)where  L(x)  is the expected number of death processes on the finite state space 
customers in the system and h is the arrival rate {0, 1 . . . . .  k} with nonzero transition rates qs,s+~ = 
of the Poisson process. Moreover, by the PASTA A, 0 < j  < k - 1 and qj, j-1 =j/m(xg)  for system i, 
property, i.e. Poisson Arrivals See Time Averages j = 1 . . . . .  k. By assumption we know that m(x t) 
(cf. [5]), we obtain < m ( x  2) and hence by a well-known monotonic- 
P~(x)  = P r { X ( x )  = k} ity result for birth and death processes (cf. Prop d. 

4.2.10 of [4]) it follows that for every t > 0 APt (1) < 
and hence by (1) Xt  (2). This implies A/°) d AP(2) and so the result is 

1 proved. [] 
z ( x )  = Q P r { X ( x )  =k}  + -~L(x) .  (2) 

Using (2) one can now prove the following result. Acknowledgement 
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Proof. Since the expected number L(x)  of cus- 
tomers in the steady state equals ~k Pr{A;'(x) References j = l  
>j}, it is sufficient by (2) to show that At(x1) is 
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