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A note on a stochastic location problem
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In this note we give a short and easy proof of the equivalence of Hakimi’s one-median problem and the k-server-facility-loss
median problem as discussed by Chiu and Larson in Computer and Operation Research. The proof makes only use of a stochastic
monotonicity result for birth and death processes and the insensitivity of the M/G/k /k loss model.
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1. Model formulation and results

In [1] Chiu and Larson consider the so-called
k-server-single-facility-loss median model (k-
SFLM). In this model customers at fixed loca-
tions generate calls according to a Poisson pro-
cess with rate A > (0. If upon arrival of a cus-
tomer’s call at the service facility all its k identi-
cal servers are busy this customer is lost at cost
Q > 0. Moreover, if upon arrival some of the
servers are idle one of them is assigned to this
customer and travels to the location of that cus-
tomer at a fixed cost rate. The objective is now to
determine among a set % C R? of feasible loca-
tions that location for the service facility which
will minimize the average cost of the system. In
order to analyze this model define
o #(x) = number of customers being served at

time ¢ by one of the k servers if the facility is

located at x € &
As argued in [1] the queueing process underlying
the k-SFLM location problem is a M/G/k/k
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loss model. For this queueing process it is well-
known (cf. [2]) that for fixed x € ¥ the random
variable .#,(x) converges in distribution to the
random variable .#'(x) representing the number
of customers being served in the steady state if
x €. denotes the location. Moreover, the distri-
bution of .#(x) depends only on the arrival rate
and the first moment m(x) of the service time
distribution (Erlang’s Loss Formula). If the facil-
ity is located at x €.%, the cost function z(x)
takes the following form (cf. [1]).

z(x) =P(x)Q + (1 = P(x))m(x) (1)

with

e P.(x):= Pr{customer finds upon arrival in
steady state all k servers busy} = Pr{customer
arriving in steady state is lost},

e m(x):= expected total travel time of server to
arbitrary customer when the facility is located
at x, and

e () := cost per lost customer, Q > 0.

The main result proved in [1] using lengthy
calculations states that the cost function z(x) is
increasing in m(x). This implies that the k-SFLM
location problem is solved by determining the
location x €.% which minimizes the expected
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total travel time m(x). Hence, in the special case
where ¥ denotes some network # this reduces
to finding the so-called Hakimi median (cf. [3]) at
one of the nodes of .#". The above result can be
verified easily without any calculations by using a
well-known stochastic monotonicity result for
birth and death processes. Before proving this we
need the following observations. By Little’s for-
mula (cf. [5]) the quantity (1 — P,(x))m(x) equals
(1/M)L(x) where L(x) is the expected number of
customers in the system and A is the arrival rate
of the Poisson process. Moreover, by the PASTA
property, i.e. Poisson Arrivals See Time Averages
(cf. [5]), we obtain

Py (x) =Pr{.7(x) =k}
and hence by (1)

1
z(x)=Q Pr{r(x) =k} +XL(x). (2)
Using (2) one can now prove the following result.

Lemma 1.1. Let x|, x, € F. Then m(x,) <m(x,)
implies z(x) < z(x,).

Proof. Since the expected number L(x) of cus-
tomers in the steady state equals T¥_, Pr{.#(x)
>j}, it is sufficient by (2) to show that H(x)) 1s
stochastically smaller than .#(x,X/(x,) g
H(x,), ie. P{A#(x) =)} <Pr{sr(x,) =)} for
every 0 <j < k. In order to prove this we observe
that for the M /G /k /k loss model corresponding
to a facility location in x (cf. [2]

p(x) /j!

k .

2 p(x)'/i!
i=0

Pr{(x)=j} =

for 0 <j <k with p(x)=Am(x). This holds in
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particular for the Markovian loss model with ar-
rival rate A and service rate 1/m(x) and so we
are finished by showing that #® < #?® with
49 the number of customers in the steady state
in a Markovian M/M /k/k loss system { with
arrival rate A and service rate 1/m(x)). If 4
denotes the number of customers at time ¢ in the
same Markovian loss system i then the stochastic
processes {#), t>0}, i=1, 2, are birth and
death processes on the finite state space
{0, 1,..., k} with nonzero transition rates q;; , =
A, 0<j<k-—1and g;;_,=j/m(x) for system i,
j=1,..., k. By assumption we know that m(x,)
<m(x,) and hence by a well-known monotonic-
ity result for birth and death processes (cf. Prop
4.2.10 of [4)) it follows that for every ¢ > 0 ¥V g
#@_ This implies .7 £.#® and so the result is
proved. 0O
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