A note on a stochastic location problem

J.B.G. Frenk

Econometric Institute, Erasmus University, Rotterdam, The Netherlands

M. Labbé

NFSR Research Associate, C.E.M.E., Université Libre de Bruxelles, Belgium

S. Zhang

Department of Econometrics, University of Groningen, Groningen, The Netherlands

In this note we give a short and easy proof of the equivalence of Hakimi's one-median problem and the k-server-facility-loss median problem as discussed by Chiu and Larson in *Computer and Operation Research*. The proof makes only use of a stochastic monotonicity result for birth and death processes and the insensitivity of the M/G/k/k loss model.

stochastic location; Hakimi median; stochastic monotonicity

1. Model formulation and results

In [1] Chiu and Larson consider the so-called k-server-single-facility-loss median model (k-SFLM). In this model customers at fixed locations generate calls according to a Poisson process with rate $\lambda > 0$. If upon arrival of a customer's call at the service facility all its k identical servers are busy this customer is lost at cost Q > 0. Moreover, if upon arrival some of the servers are idle one of them is assigned to this customer and travels to the location of that customer at a fixed cost rate. The objective is now to determine among a set $\mathcal{F} \subseteq \mathbb{R}^2$ of feasible locations that location for the service facility which will minimize the average cost of the system. In order to analyze this model define

• $\mathcal{N}_{t}(x)$:= number of customers being served at time t by one of the k servers if the facility is located at $x \in \mathcal{F}$.

As argued in [1] the queueing process underlying the k-SFLM location problem is a M/G/k/k

Correspondence to: J.B.G. Frenk, Econometric Institute, Erasmus University, Rotterdam, The Netherlands.

loss model. For this queueing process it is well-known (cf. [2]) that for fixed $x \in \mathcal{F}$ the random variable $\mathcal{N}_t(x)$ converges in distribution to the random variable $\mathcal{N}(x)$ representing the number of customers being served in the steady state if $x \in \mathcal{F}$ denotes the location. Moreover, the distribution of $\mathcal{N}(x)$ depends only on the arrival rate and the first moment m(x) of the service time distribution (Erlang's Loss Formula). If the facility is located at $x \in \mathcal{F}$, the cost function z(x) takes the following form (cf. [1]).

$$z(x) = P_k(x)Q + (1 - P_k(x))m(x)$$
 (1)

with

- P_k(x) := Pr{customer finds upon arrival in steady state all k servers busy} = Pr{customer arriving in steady state is lost},
- m(x) := expected total travel time of server to arbitrary customer when the facility is located at x, and
- $Q := \cos \varphi$ per lost customer, $Q \ge 0$.

The main result proved in [1] using lengthy calculations states that the cost function z(x) is increasing in m(x). This implies that the k-SFLM location problem is solved by determining the location $x \in \mathcal{F}$ which minimizes the expected

total travel time m(x). Hence, in the special case where \mathscr{F} denotes some network \mathscr{N} this reduces to finding the so-called Hakimi median (cf. [3]) at one of the nodes of \mathscr{N} . The above result can be verified easily without any calculations by using a well-known stochastic monotonicity result for birth and death processes. Before proving this we need the following observations. By Little's formula (cf. [5]) the quantity $(1 - P_k(x))m(x)$ equals $(1/\lambda)L(x)$ where L(x) is the expected number of customers in the system and λ is the arrival rate of the Poisson process. Moreover, by the PASTA property, i.e. Poisson Arrivals See Time Averages (cf. [5]), we obtain

$$P_k(x) = \Pr\{\mathcal{N}(x) = k\}$$

and hence by (1)

$$z(x) = Q \Pr{\mathcal{N}(x) = k} + \frac{1}{\lambda}L(x).$$
 (2)

Using (2) one can now prove the following result.

Lemma 1.1. Let $x_1, x_2 \in \mathcal{F}$. Then $m(x_1) \le m(x_2)$ implies $z(x_1) \le z(x_2)$.

Proof. Since the expected number L(x) of customers in the steady state equals $\sum_{j=1}^{k} \Pr{\mathcal{N}(x)} \ge j$, it is sufficient by (2) to show that $\mathcal{N}(x_1)$ is stochastically smaller than $\mathcal{N}(x_2)(\mathcal{N}(x_1) \le \mathcal{N}(x_2))$, i.e. $\Pr{\mathcal{N}(x_1) \ge j} \le \Pr{\mathcal{N}(x_2) \ge j}$ for every $0 \le j \le k$. In order to prove this we observe that for the M/G/k/k loss model corresponding to a facility location in x (cf. [2])

$$\Pr\{\mathcal{N}(x) = j\} = \frac{\rho(x)^{j}/j!}{\sum_{i=0}^{k} \rho(x)^{i}/i!}$$

for $0 \le j \le k$ with $\rho(x) = \lambda m(x)$. This holds in

particular for the Markovian loss model with arrival rate λ and service rate 1/m(x) and so we are finished by showing that $\mathcal{N}^{(1)} \leq \mathcal{N}^{(2)}$ with $\mathcal{N}^{(i)}$ the number of customers in the steady state in a Markovian M/M/k/k loss system i with arrival rate λ and service rate $1/m(x_i)$. If $\mathcal{N}_i^{(i)}$ denotes the number of customers at time t in the same Markovian loss system i then the stochastic processes $\{\mathcal{N}_t^{(i)}, t \ge 0\}$, i = 1, 2, are birth and death processes on the finite state space $\{0, 1, \dots, k\}$ with nonzero transition rates $q_{j,j+1} =$ λ , $0 \le j \le k-1$ and $q_{j,j-1} = j/m(x_i)$ for system i, j = 1, ..., k. By assumption we know that $m(x_1)$ $\leq m(x_2)$ and hence by a well-known monotonicity result for birth and death processes (cf. Prop. 4.2.10 of [4]) it follows that for every t > 0 $\mathcal{N}_t^{(1)} \stackrel{d}{\leq} \mathcal{N}_t^{(2)}$. This implies $\mathcal{N}_t^{(1)} \stackrel{d}{\leq} \mathcal{N}_t^{(2)}$ and so the result is proved.

Acknowledgement

The authors like to thank the anonymous referee for his useful comments.

References

- S.S. Chiu and R.C. Larson, "Locating an n-server facility in a stochastic environment", Comp. Oper. Res. 12, 509-516 (1985).
- [2] J.W. Cohen, On Regenerative Processes in Queueing Theory, Lecture notes in economics and mathematical systems, volume 121, Springer-Verlag, Berlin, 1976.
- [3] S.L. Hakimi, "Optimal locations of switching centers in a communication network and median of a graph", Oper. Res. 12, 450-459 (1964).
- [4] D. Stoyan, Comparison Methods for Queues and other Stochastic Models, Wiley, New York, 1983.
- [5] H.C. Tijms, Stochastic modelling and analysis (A computational approach), Wiley, New York, 1986.