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Abstract

This paper sheds new light on herding of institutional investors by using a unique
and superior database that identifies every transaction of financial institutions.
First, the analysis reveals herding behavior of institutions. Second, the replica-
tion of the analysis with low-frequent and anonymous transaction data, on which
the bulk of literature is based, indicates an overestimation of herding by previous
studies. Third, our results suggest that herding by large financial institutions is
not intentional but results from sharing the same preference and investment style.
Fourth, a panel analysis shows that herding on the sell side in stocks is positively
related to past returns and past volatility while herding on the buy side is nega-
tively related to past returns. In contrast to the literature, this indicates that large
financial institutions do not show positive feedback strategies.
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1 Introduction

A growing literature has established the tendency of investors to accumulate on the

same side of the market, called herding behavior. This kind of trading pattern is often

held responsible for the destabilization of stock prices, increasing price volatility and

the threatening of financial market stability, see e.g. Scharfstein and Stein (1990),

Hirshleifer and Teoh (2003) or Hwang and Salmon (2004). The theory suggests several

kinds of herd behavior, defined by the various explanations of the comovement. Under

the common categorization, see e.g. Bikhchandani and Sharma (2001), herding is

segregated into sentiment-driven intentional herding and unintentional herding driven

by fundamentals. The distinction of the different sources of herding is crucial for

regulatory purposes and to determine whether herding leads to market inefficiency or

the emergence of financial bubbles.

The aim of this paper is to shed more light on the herding behavior of institutional

investors, including banks and other financial institutions. Due to the dominance of

this class of investors in the stock market, institutions indeed have the ability to move

the market and impact prices, even more, if they herd. This potential emphasizes the

importance to investigate first whether they herd and second the determinants of the

herding behavior.

The previous literature on institutional herding has been severely handicapped by the

availability of data. The studies rely either on low frequent data or on anonymous

transaction data.

Empirical assessment of herding requires disaggregated investor-level data. In general,

positions of institutions are, if at all, reported on very low frequency. For example in

the case of U.S. mutual funds, reports of holdings are available on a quarterly basis, see

e.g. Wermers (1999). For German funds, semi-annual reports are required, see Walter

and Weber (2006). Using such low frequent data does not allow to capture trades that

are completed within the period and does not reveal herding if it occurs within a shorter

time interval. Such studies are also limited in investigating the determinants of herding.
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There is no resolution on intra-quarter covariances of trades and returns. Thus, studies

fail to conclude whether institutions are reacting to stock price movements or causing

price movements, see Lakonishok, Shleifer and Vishny (1992).

Studies including Barber, Odean and Zhu (2009) try to overcome the problem of data

frequency by using anonymous transaction data instead of reported holdings. However,

those data do not allow an identification of the trader. Therefore, these papers follow

the procedure to separate trades by size and identify trades above a specific cutoff size

as institutional. While large trades are almost exclusively the province of institutions,

institutions with superior information will split their trades to hide their informational

advantage. Moreover, these studies are unable to identify the type of institution and

thus cannot built up sub-samples of traders.

The dataset used in this paper overcomes these limitations. The paper utilizes a new

dataset, including high-frequent investor-level data directly identifying institutional

transactions. The analysis provides new evidence on the short-term herding behavior

of financial institutions for a broad cross section of stocks over the period from July

2006 until March 2009. Moreover, this paper offers the first empirical investigation of

herding by banks and other financial institutions in the German stock market.

By replicating the analysis with low-frequent data as well as with cutoff levels, results

imply an overestimation of herding by previous studies. As second contribution, ad-

vancing on previous descriptive approaches, daily data combined with a panel analysis

allow the investigation of possible sources of herding. The results reveal that financial

institutions indeed show herding behavior and this herding depends on stock character-

istics as well as on past returns and volatility of stocks. In particular, we find -contrary

to previous evidence- that herding is more pronounced in larger and more liquid stocks.

The mean herding measure for the 30 most professional institutions in DAX 30 stocks

constitutes 5.17%. Moreover, herding on the sell side is positively related to past re-

turns and past volatility while herding on the buy side is negatively related to past

returns. These new results can be explained by unintentional herding that results from
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sharing the same investment style and risk models.

The rest of the paper is structured as follows: Section 2 reviews the theory behind

herding behavior and Section 3 summarizes the previous literature. Section 4 introduces

the data and Section 5 discusses the herding measure. Section 6 presents the empirical

analysis. Section 7 offers a summary of the main results and concluding remarks.

2 Herding Theory

2.1 Types of Herding

2.1.1 Intentional vs. Unintentional Herding

The term ’herding’ describes the tendency of institutions or individuals to show simi-

larity in their behavior and thus acting like a herd. The theory suggests several kinds of

herd behavior, defined by the various explanations of the comovement. Under the com-

mon categorization, see e.g. Bikhchandani and Sharma (2001), herding is segregated

into intentional herding and unintentional or spurious herding.

Unintentional herding is mainly fundamental driven and arises because institutions may

examine the same factors and receive correlated private information, causing them to

arrive at similar conclusions regarding individual stocks, see e.g. Hirshleifer, Sub-

rahmanyam and Titman (1994). Moreover, professionals may constitute a relative

homogenous group. They share a similar educational background and professional

qualifications and tend to interpret informational signals similarly.

From an macroeconomic perspective, unintentional herding can be an efficient outcome

if it is driven by fundamentals. In contrast, intentional herding is generally considered

as inefficient. Intentional herding is more sentiment-driven and refers to the imitation of

other market participants resulting in simultaneous buying or selling the same stocks

regardless of prior beliefs or information sets. This herding can lead to asset prices

failing to reflect fundamental information, exacerbate volatility, destabilize markets

and thus may give rise or contribute to bubbles and crashes on financial markets, see
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e.g. Scharfstein and Stein (1990), Shiller (1990), Morris and Shin (1999) or Persaud

(2000).

From a psychological viewpoint, the impetus underlying imitation has often been as-

sumed to stem from the human nature itself, in the sense that people may tend towards

conformity (Hirshleifer (2001)) as a result of their interactive communication. Yet, in-

tentional herding might be rational from the traders perspective and can be attributed

to several factors leading to two major theoretical models.

2.1.2 Models of Intentional Herding

Information Cascade Model

According to the information cascade model (Bikhchandani, Hirshleifer and Welch

(1992), Banerjee (1992) and Avery and Zemsky (1998)) trader copy the investment

activities of other market participants because they might infer (from observed trad-

ing behavior) that the others have relevant information, resulting in the formation of

informational cascades. This might be the case, if the trader himself possesses no in-

formation or he considers his own information as uncertain and regards the others as

better informed. The trader might ignore his information, even if this information is

superior, because it is not strong enough to reverse the decision of the crowd. However,

under this model, herding mainly occurs in the short-term, since the arrival of public

information and price adjustments will stop ’incorrect’ information cascades. This is

especially the case in developed capital markets. Advanced regulatory frameworks gen-

erally ensure the efficient flow of information to the market. Due to higher turnovers

in developed markets information is usually timely incorporated into asset prices, thus

rendering them more informative.

Reputation Based Model

Another set of rational herding incentives relates to the reputation based model orig-

inally developed by Scharfstein and Stein (1990). According to this considerations,
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institutions or professional investors are subject to reputational risk when they act dif-

ferently from the crowd. Thus, they may ignore information they possess and imitate

the decisions of the majority. Professionals are subject to periodic evaluation that of-

ten occurs against each other. Thus, at least traders with lower reputation face the

incentive to imitate the higher reputed ones. Overall, traders might perceive the risk

from potential failures higher compared to the benefits from a potential success if they

go alone (Graham (1999)). Scharfstein and Stein (1990) call this effect ’sharing the

blame’.

These models of intentional herding are closely related to each other and result both

from the starting point that there is only little reliable information in the market and

the trader are uncertain about their decision and thus follow the crowd. In contrast,

in the case of unintentional herding, trader recognize public information as reliable,

interpret them similar and thus end up at the same side of the market. Therefore, all

types of herding are linked to the uncertainty or availability of information.

2.2 Revealing the Type of Herding

The distinction of the different sources of herding is crucial for regulatory purposes

and to determine whether herding leads to market inefficiency. But the empirical

discrimination of the different kinds is difficult because the number of factors that may

influence an investment decision is very ample and the motives behind a trade are

not discernable. The empirical literature sheds light on the determinants of herding

by considering the link between herding and information or uncertainty and by using

variables that proxy e.g. information availability.

Lakonishok et al. (1992) and Wermers (1999) segregate stocks by size. Market cap-

italization of firms usually reflects the quantity and quality of information available.

Thus, one would expect higher levels of herding in trading small stocks as evidence for

intentional herding.

As unintentional herding arises due to the simultaneous reaction on common signals,
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a manifestation of this kind of herding is momentum investment, i.e. positive feedback

trading. If herding is driven by past returns, i.e. all react on price signals, this would

be interpreted as evidence for unintentional herding (see Froot, Scharfstein and Stein

(1992)).

Even though herding resulting from correlated positive feedback trading is considered

as informed herding according to the theory above, such herding might also have an

destabilizing impact on financial markets. Short-term strategies based on past returns,

see e.g. De Long, Shleifer, Summers and Waldmann (1990), imply pro-cyclical behavior

that aggravates downward or upward pressures in the market.

Persaud (2002) argues that market-sensitive risk management systems used by banks

such as Value at Risk (VaR) models require banks to sell when prices decline and/or

volatility rises. Thus, banks act like a herd, selling the same stocks at the same time in

response to negative shocks. Although, this kind of trading is considered as uninten-

tional herding, it leads to further slumps in prices. This is not offset by other classes

of investors, causing destabilization and a lack of liquidity on equity markets. As in-

stitutions are increasingly using the same VaR models, as this is forced by regulators

claiming high and common standards, the tendency is convergence of the market par-

ticipants behavior. The market-sensitive risk management systems reduce the diversity

of decision rules. Therefore, Persaud (2002) recommends regulators not to neglect the

macro-prudential aspects of risks and incentive diversity of behavior among the market

participants, through the use of different risk management systems.

3 Related Empirical Literature

3.1 First Evidence

One of the earliest work related to herding was that of Kraus and Stoll (1972) who

analyzed parallel trading on a monthly basis among institutional investors such as

mutual funds and banks and concluded that the institutions do not tend to trade
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in parallel with one another. Lakonishok et al. (1992) adapted the main idea and

constructed a herding measure that has become a standard in the empirical literature.1

Lakonishok et al. (1992) test for herd behavior within a quarterly time span using a

sample of US equity funds covering the period 1985 to 1989. They find only low values

of herding for their overall sample.

3.2 Size and Performance of Stocks

Lakonishok et al. (1992) constructed also subsamples based on past performance and

the size of the stocks. While different past performances of stocks did not lead to signif-

icant higher herding measures, they find evidence of herding being more intense among

small companies compared to large stocks. Contrary, Grinblatt, Titman and Wermers

(1995) find a relation between past performance and herding. They documented that

positive feedback strategies are employed by the majority of the 274 US mutual funds

analyzed, that demonstrated herding behavior in the 1975-1984 period. Further empir-

ical evidence on the link between herding, size and performance is provided by Wermers

(1999) who presents a slightly higher level of herding than Lakonishok et al. (1992) for

a comprehensive sample of US mutual funds during 1975-1994. He also found higher

herding measures for small stocks and for funds following positive feedback strategies.

Wylie (2005) also applies the measure proposed by Lakonishok et al. (1992). In con-

trast to the US studies, he found for UK mutual funds over the period from 1986 to

1993, that funds herd out of stocks that have performed well in the past.

3.3 Development of the Market

Walter and Weber (2006) report significant positive and higher levels of herding for

German mutual funds compared to the US research based on semi-annually data. An-

other study analyzing German fund herding is Oehler and Wendt (2009) finding herding

on a semi-annually basis in the period from 2002-2005. Walter and Weber (2006) link

the finding of herding to the stage of development of the financial market. They argue

1The measure of Lakonishok et al. (1992) is explained in Section 5.
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that the German market is not as highly developed as the US and UK capital mar-

kets. In relation, other studies show the existence of higher herding levels in emerging

markets compared to developed ones. For example, Lobao and Serra (2007) document

strong evidence of herding behavior for Portuguese mutual funds. Significant herding

is also analyzed for Indonesia (Bowe and Domuta (2004)), Poland (Voronkova and Bohl

(2005)), Korea (Choe, Kho and Stulz (1999), Kim and Wei (2002)) and South Africa

(Gilmour and Smit (2002)).

Such high herding in emerging markets may be attributed to incomplete regulatory

frameworks especially in the area of market transparency. Deficiencies in corporate

disclosure and information quality create uncertainty in the market, hamper reliability

of public information and thus fundamental analysis, see Antoniou, Ergul, Holmes and

Priestley (1997) and Gelos and Wei (2002). Kallinterakis and Kratunova (2007) argued

that in such an environment it is reasonable to assume that investors will prefer to base

their trading upon their peers’ observed actions. Thus, intentional herding through

information cascades is more likely to occur in less developed markets.

3.4 State of the Market

There is also evidence revealing that herding behavior can depend on the state of the

overall market. Choe et al. (1999) found for the Korean stock market higher herding

levels before the Asian crisis of 1997 than during the crises. Hwang and Salmon (2004)

find more evidence of herding during relatively quiet periods than during periods when

the market is under stress, using data from US and South Korean stock markets. In

contrast, the results of Bowe and Domuta (2004) indicate that herding of foreigners

increased following the outbreak of the crisis using data from Jakarta Stock Exchange.

Borensztein and Gelos (2003) found significant herding of funds but no variation be-

tween crisis and non-crisis periods investigating the Czech and Asian Crisis in 1997,

Russian ruble collapse in 1998 and Brazilian devaluation in 1999.
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4 Data and Sample

4.1 Data Problems of Previous Literature

The previous literature on herding reviewed above is severely handicapped by the avail-

ability of data. The studies rely either on holding positions of institutions or on anony-

mous transaction data.

4.1.1 Low Frequency

The first group of studies identifies institutional transactions as changes in reported

positions in a stock. However, positions are reported, if that, on a very low frequency.

Most studies focus on mutual funds as institutions. In the US those funds generally

report on a quarterly basis. For German mutual funds, half-year reports are required.2

Semi-annual and also quarterly data provide only a crude basis for inferring trades and

the frequency is especially too low in a rapid changing stock market environment. On

the one hand, herding might be understated, since trades that are completed within the

period are not captured and herding is not revealed if it occurs within a shorter time

interval. Moreover, the theory predicts that intentional herding arises due to informa-

tional cascades. However, in markets with frequent public information flows and higher

turnovers that lead to the timely incorporation of information, informational cascades

are likely to occur only in the short-term, until public information arrive in the market.

On the other hand, in longer time intervals, herding might also be overstated since buys

at the beginning of the period that are not completed within the period and buys of

others at the end are regarded as herding. For long time intervals, the concepts of paral-

lel and imitative behavior are severely stretched, probably beyond the level that causes

concern. The studies are also limited in investigating the determinants of herding. It

may be difficult to correlate herding measures with stock specific characteristics that

change throughout the quarter. In particular there is no resolution on intra-quarter

2There are also studies that rely on yearly ownership data, see e.g. Kim and Nofsinger (2005) who
investigate herding of financial institutions in Japan.
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covariances of trades and returns, thus studies fail to conclude whether institutions are

reacting to stock price movements or causing price movements, see Lakonishok et al.

(1992).

4.1.2 Identification of Trader

The second set of studies are forced to make assumptions on the person behind the

trade. They use a naive cutoff approach to determine institutional trades. Transac-

tions above a specific cutoff size are considered as proxy for institutional trades, since

large trades might be the province of institutions. For example, Lee and Radhakrishna

(2000) suggest a cutoff of $50,000 for larger stocks. However, institutions could split

their trades to hide a possible superior information advantage. Thus, the most infor-

mative institutional trades are not likely to be the largest. In fact, our dataset suggests

that institutions trade often during a day but not necessarily at those large amounts.

Although, since trades below $5,000 are regarded as retail trades according to Lee and

Radhakrishna (2000), a large number of trades (between the range) remain unclassified.

4.2 Description of the Database

This study overcomes these problems by using disaggregated high frequent investor-

level data. Our dataset includes all real-time transactions carried out on German

stock exchanges. The data are provided by the German Federal Financial Supervisory

Authority (BaFin). According to section 9 of the German Securities Trading Act, all

credit institutions and financial services institutions are required to report to BaFin any

transaction in securities or derivatives which are admitted to trading on an organized

market. Currently, about 4,000 institutions report their trades.

These records enable us to identify all relevant trade characteristics. In particular

the trader (the identification of the institution), the particular stock, time, number of

traded shares, price and the volume of the transaction. Moreover, the records identify

on behalf of whom the trade was executed, i.e. whether the institution trade for its own

10



account or in connection with an investment service on behalf of a client that is not

a financial institution. Since the aim of our study is the investigation of institutional

trades, in particular, the trades of financial institutions, we will focus on the trading of

own accounts, i.e. if a bank or an financial services institution is clearly the originator

of the trade. The direct identification of the trading financial institution also enables

us to built subgroups of institutions in order to examine differences in their behavior.

Using data from July 2006 until March 2009, and thus 698 trading days, we cover

market upturns as well as the recent market downturn. We will investigate whether

trading behavior has changed according to the market turmoil.

The analysis focuses on the shares included in the three major German stock indices,

i.e. the DAX 30 (the index of the thirty largest and most liquid stocks), the MDAX

(a mid-cap index of fifty stocks that rank behind the DAX 30 in terms of size and

liquidity) and the SDAX (a small-cap index of fifty stocks that rank behind the MDAX

components). Those values allow to distinguish between trading behavior in small and

large stocks. Over the observation period we possess in those stocks overall 167,422,502

records of the proprietary transactions of 1,120 institutions on German stock exchanges.

Following the related literature using daily data, for each institution we compute the

daily trade imbalance.

The stocks were selected according to the index compositions at the end of the obser-

vation period at 31 March 2009. The time series of 5 stocks of the MDAX and 5 stocks

of the SDAX are not complete for the whole period. We have therefore an unbalanced

panel of stocks and days with overall 88,435 observations.

5 Do Institutions Herd?

5.1 The Herding Measure

Following the empirical literature on herding behavior, we use the herding measure

introduced by Lakonishok et al. (1992). According to this measure, herding is defined as
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the tendency of traders to accumulate on the same side of the market in a specific stock

and at the same time, relative to what could be expected if they traded independently.

A starting point of the herding measure is the assumption that under the null hypothesis

of no herding, the decision to buy and to sell is a bernoulli distributed random variable

with equal success probability for all stocks at a given time period.3

Consider a number of nit institutions trading in stock i on time t. Out of these nit

transactions, a number of bit are buy transactions. The buyers ratio brit is then defined

as brit = bit
nit

. The random variable bit is binomially distributed.

The probability pit that an institution buys stock i in t is determined by the overall

probability to buy in time t for all stocks b̄rt and additionally by the degree of herding

hit in the specific stock i in t:

pit = b̄rt + hit. (1)

Consequently, under the null of no herding, pit = b̄rt, i.e. the probability to buy the

specific stock i in t corresponds to the overall probability to buy (b̄rt) in time t. The

number of buys in stock i in time t is then the result of nit independent draws from a

bernoulli distribution with probability b̄rt of success.

The buy probability b̄rt results from an overall signal in the market at time t. It is

measured as the expected value of the buyers ratio in t, Et[brit] = b̄rt, i.e. the period

average of the buyers ratio and thus the number of net buyers in t aggregated across

all stocks i divided by the number of all traders in t:

b̄rt =
∑I

i=1 bit∑I
i=1 nit

. (2)

Under these assumptions, herding (hit) is defined as a deviation from the overall buy

probability during t, i.e. as excess dispersion of what would be expected for that time.

3One implication of this assumption is that short selling must be possible. This assumption is not
problematic for our investigated institutions, for which short selling is in general feasible. In contrast,
most mutual funds investigated by previous studies, are not allowed to undertake short sales. Thus,
if they have no holding in stock i, they can only be a buyer and the actions would not be binomially
distributed.
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Therefore, the measure captures similar trading patterns beyond the market trend and

eliminates the influence of market-wide herding.

The traditional herding statistic proposed by Lakonishok et al. (1992) is given by

HMit = |brit − b̄rt| − Et[|brit − b̄rt|]. (3)

The first term captures the deviation of the buyers ratio in i and t from the overall

buy probability during t. The latter term Et[|brit − b̄rt|] is the expected value of the

difference between buyers ratio and period-average buyers ratio.

Under the assumption that the number of buys bit is binomially distributed with prob-

ability b̄rt and nit independent draws it is given by

Et[|brit − b̄rt|] =
nit∑

k=0

(
nit

k

)
b̄r

k
t (1− b̄rt)nit−k| k

nit
− b̄rt|. (4)

Subtracting this term, accounts for the possibility to observe more variation in the

buyers ratio in stocks with only few trades, since buy decisions are stochastic. The

variance of brit depends on nit and rises as the number of traders declines. Then,

even if no herding exist the absolute value of |brit − b̄rt| is likely to be greater than

zero. Doing this adjustment, the herding measure HMit gets zero if the trades are

independent. The adjustment term declines as nit rises.4

The empirical literature following Lakonishok et al. (1992), calculates the mean across

all stocks and all periods, leading to the mean herding measure HM . A positive and

significant value of HM then indicates the average tendency of the investigated group

to accumulate in their trading decisions. The higher the HM , the stronger the herding.

For example a HM of 2% indicates that for a given stock in one day, out of every 100

4Following previous studies, e.g. Wermers (1999), HMit is only computed if at least 5 traders are
active in i at time t, leading to a loss of observations and an unbalanced panel. However, Table 6 in the
Appendix shows that even in the SDAX stocks on average 10.78 institutions are active each day. Out
of the overall panel of stocks and days (88,435 observations) we calculated 87,839 herding measures,
i.e. for 542 observations there were no trade imbalances by any institution. Due to the constraint to a
minimum of 5 traders, we loose 3,997 observations for the sample of all institutional trader, i.e. 83,842
observations remain. Tables 11 and 12 in the Appendix display results with different minimum traders
and reveal that results are robust with respect to the presumed minimum traders.
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transaction, 2 more trader trade on the same side of the market than would be expected

if each trader had decided randomly and independently. However, it should be noted

that the maximum value of HM is not equal to one, even if all traders buy stock i

during t, since HMit is defined as excess or additional herding over the overall trend

b̄rt. Thus, only stock-picking herding and similar trading patterns beyond the market

trend are analyzed.

The herding measure HMit gauges herding without regard to the direction of the trades

(buy or sell). Following Grinblatt et al. (1995) and Wermers (1999), we also determine

’buy herding’ BHMit and ’sell herding’ SHMit, to distinguish whether institutions

buy or sell a stock i in herds. The sample is therefore separated in BHMit = HMit if

brit > b̄rt and SHMit = HMit if brit < b̄rt. Note that brit = b̄rt is not captured by

BHMit or SHMit because in this case no herding exist, i.e. herding is neither on the

buy nor on the sell side.5

The discrimination between BHMit and SHMit is useful if institutions show asymme-

try in their behavior on the buy and sell side. The separate measurement of herding

into stocks and out of stocks becomes even necessary when analyzing the determinants

of their trading behavior in Section 6.2.

5.2 Preliminary Statistics on Herding

5.2.1 Overall Sample

Our sample comprises 1,120 institutional traders, active in the investigated stocks dur-

ing our observation period. Among these, 1,044 institutions trade in the DAX 30 stocks,

742 in the MDAX stocks and 512 in the SDAX stocks. These institutions have an av-

erage daily market share in DAX 30 stocks of about 46%. Interestingly, the market

share declined after the start of the recent financial crises, implying a retraction from

trading business. In the period from 01 July 2006 until 08 August 2007 the proportion

5Comparing the observations in e.g. Table 5, the loss of data is not empirically relevant.
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constituted 66%, shrinking to 32% after 09 August 2007. Table 6 in the Appendix

provides further summary statistics.

Table 1: Mean Daily Herding Measures (1)

All Stocks DAX 30

HM BHM SHM HM BHM SHM

Whole sample 1.40
(0.02)

1.36
(0.04)

1.45
(0.04)

3.65
(0.04)

3.42
(0.06)

3.85
(0.06)

Observations 83,842 42,193 41,644 20,901 9,990 10,910

<08/09/07 1.32
(0.04)

1.29
(0.05)

1.27
(0.05)

4.35
(0.06)

4.23
(0.09)

4.46
(0.08)

Observations 33,257 16,832 16,425 8,427 4,106 4,321

≥08/09/07 1.60
(0.03)

1.38
(0.05)

1.58
(0.05)

3.17
(0.06)

2.86
(0.08)

3.45
(0.08)

Observations 50,585 25,361 25,219 12,474 5,884 6,589

Notes: This table reports mean values of HM , BHM and SHM in percentage terms
for the whole sample of stocks and for DAX 30 stocks considering all institutions in the
sample. Standard errors are given in parentheses. The measures are calculated considering
a minimum number of 5 traders for each stock on each trading day. The herding measures
are first computed over the whole sample stocks and over all trading days and than averaged
across the different time spans and the sub-sample of stocks.

Our results regarding overall herding are presented in Table 1. The mean value of the

herding measure HM at daily frequency over the complete period and over all stocks

in our datasample is 1.40%. The value is statistically significant but small and slightly

lower than in previous studies using low frequency data, e.g. Lakonishok et al. (1992)

or Walter and Weber (2006) who both found herding about 2.70%.

We found a significantly higher herding measure in DAX 30 stocks. Considering only

stocks in this major German index, the mean herding measure is 3.63%, i.e. about

2.5 times larger than in the whole sample. Therefore, in contrast to previous findings,

e.g. Wermers (1999) or Lakonishok et al. (1992), who report that correlated trading is

higher in small stocks, our sample institutions herd into and out of large stocks. Table

7 in the Appendix shows that daily herding measures for MDAX stocks are significantly
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lower, i.e. 1.24% and daily herding in SDAX is even insignificant. This result is also

contradicting to the theory of intentional herding which predicts higher herding levels

in stocks with less information availability and asymmetry. The herding behavior might

therefore more likely fall in the category of unintentional herding.

We also consider different periods for the computation of the average herding measure to

investigate whether herding varies between the crisis and non-crisis period. 09 August

2007 is widely considered as starting point of the financial crises, manifesting in tensions

in the European money market leading to a rapid increase of the overnight rate at this

date, owing to the liquidity impasses caused by the problems in the US subprime

mortgage loan market.

Differentiating across these non-crisis and crisis periods reveals that herding exists in

both periods. In line with the mixed evidence in the previous literature, see Section

3, our results are not uniform. We find slightly higher evidence for herding in DAX

30 stocks before the financial crises but herding in MDAX and SDAX stocks is higher

during the crises. However, the difference between buy and sell herding suggests, that

institutions more likely herd out of stocks during the crises period. This might be a

result of higher volatility of stocks in the financial crisis but could also be related to

lower or negative returns of the stocks, suggesting positive feedback trading. Empirical

analysis discussed in Section 6.2 will shed light on this issue.

5.2.2 The Role of Low-Frequency and Cutoff Size

The bulk of the literature on herding is forced to rely either on lower frequency data

or to use transaction data and make assumptions regarding the identity of the trader

using a cutoff approach to determine institutional trades. For the sake of comparison

and to shed more light on the impact of these data limitations on the herding measure,

we re-calculate the measures constraining our sample to quarterly data and to trades

above a specific size.
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Simulation with Low-Frequency

Table 2: Mean Quarterly Herding Measures (1)

All Stocks DAX 30

HM BHM SHM HM BHM SHM

Whole sample 2.29
(0.15)

2.09
(0.19)

2.49
(0.23)

3.59
(0.26)

3.29
(0.34)

3.91
(0.42)

Observations 1,395 688 707 331 170 161

<3.Q./07 1.63
(0.20)

1.92
(0.31)

1.35
(0.27)

2.98
(0.41)

2.84
(0.64)

3.12
(0.53)

Observations 523 260 263 123 61 62

≥3.Q./07 2.69
(0.20)

2.19
(0.25)

3.16
(0.32)

3.95
(0.35)

3.54
(0.40)

4.40
(0.60)

Observations 872 428 444 208 109 99

Notes: This table reports mean values of HM , BHM and SHM in percentage terms for
the whole sample of stocks and for DAX 30 stocks considering all institutions in the sample.
The measures are calculated considering a minimum number of 5 traders for each stock
during the quarter. The herding measures are first computed over the whole sample stocks
and over all quarters and than averaged across the different time spans and the sub-sample
of stocks. Standard errors are given in parentheses.

Instead of using the daily trade imbalance of a specific institution, we calculate the

monthly and the quarterly trade imbalances. In line with previous studies using quar-

terly data e.g. Lakonishok et al. (1992) or Wermers (1999), results displayed in Table

2 reveal that herding measures are higher on a quarterly horizon. Comparing daily,

monthly and quarterly results (see also Tables 13 - 15 in the Appendix), the herding

measure rises when the frequency gets lower, indicating a slightly overestimation of

herding measures when using low frequency data.

Simulation with Cutoff Size

Following studies that use cutoff approaches to identify institutional transactions (e.g.

Barber et al. (2009)), we drop institutional trades from our sample that are below a

17



Table 3: Mean Daily Herding Measures - Cutoff Size (1)

All Stocks DAX 30

HM BHM SHM HM BHM SHM

Whole sample 4.58
(0.02)

4.45
(0.04)

4.71
(0.04)

4.39
(0.04)

4.34
(0.05)

4.43
(0.05)

Observations 80,012 39,882 40,129 20,865 10,353 10,511

<08/09/07 2.54
(0.03)

2.55
(0.04)

2.54
(0.04)

2.47
(0.03)

2.41
(0.04)

2.53
(0.04)

Observations 32,751 16,894 15,857 8,426 4,165 4,261

≥08/09/07 5.99
(0.04)

5.86
(0.06)

6.12
(0.06)

5.68
(0.05)

5.64
(0.08)

5.73
(0.08)

Observations 47,261 22,988 24,272 12,439 6,188 6,250

Notes: This table reports mean values of HM , BHM and SHM in percentage terms
for the whole sample of stocks and for DAX 30 stocks considering all institutions in the
sample but dropping transactions below e34,000 for DAX stocks, e14,000 for MDAX
stocks and e7,000 for SDAX stocks. Standard errors are given in parentheses. The
measures are calculated considering a minimum number of 5 traders for each stock on
each trading day. The herding measures are first computed over the whole sample stocks
and over all trading days and than averaged across the different time spans and the
sub-sample of stocks.

specific size. Lee and Radhakrishna (2000) suggests the cutoffs of $50,000, $20,000 and

$10,000 for large, medium, and small stocks. Assuming the current level of exchange

rates, we adopt the main idea and consider only trades in DAX stocks, MDAX stocks,

and SDAX stocks that have a volume of more than e34,000, e14,000 and e7,000, re-

spectively. Out of our overall 167,422,502 records we loose 118,307,150 due to those

cutoffs. We ignore the identification of the trader, thus treating every remaining trans-

action independently, i.e. if the same institution trades more than one time during a

day, those transactions are regarded as trades of different institutions.

The results for the mean daily herding measures are displayed in Table 3 and for MDAX

and SDAX stocks in Table 16 in the Appendix. The calculated means now reveal much

higher herding levels, suggesting an overestimation of herding when using a cutoff
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approach. Moreover, herding is much more pronounced during the crises period. The

difference between buy and sell herding is quite small, suggesting a high correlation of

large buy trades as well as large sell trades during the crises. Overall, the results of

the re-calculations indicate that earlier literature might have overestimated the herding

level.

5.2.3 Subgroups of Institutions

The theory of unintentional herding predicts higher herding levels among institutions

which share the same investment style and same professional qualifications (see Hirsh-

leifer et al. (1994)). Moreover, according to the reputation based model higher inten-

tional herding can be expected in a more homogenous group of professionals that are

evaluated against each other (see Scharfstein and Stein (1990)). The overall sample

investigated in Section 5.2.1 contains a large heterogeneous group of institutions. It

might be more interesting to investigate herding into subgroups of institutions.

Among the 1,120 institutions, the 30 most active traders, according to their trading

volume in the investigated shares, account for 80% of the whole trading volume over

all institutions and can thus be regarded as most professional and most important for

the stock market. These professionals can be considered as belonging to the same peer

group.

Building a subsample according to trading activity reveal a higher herding measure for

the 30 most active traders, see Table 4.6 The mean daily herding measure across all

stocks is 2.6%. There is evidence for more herding on the buy side in the non-crisis

period and higher herding on the sell side during the crisis. This might be a result of

higher volatility of stocks in the financial crisis but could also be related to lower or

negative returns of the stocks, suggesting positive feedback trading. Empirical analysis

discussed in Section 6.2 provides more insights.

6Note that considering a subgroup of 30 institutions instead of e.g. 10 ensures that enough traders
are active in a specific stock on a specific day. Nevertheless, 14,879 observations are lost, i.e. 68,963
observations remain.
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Table 4: Daily Herding Measures of 30 Most Active Traders (1)

All Stocks DAX 30

HM BHM SHM HM BHM SHM

Whole sample 2.48
(0.03)

2.67
(0.05)

2.30
(0.05)

5.18
(0.06)

5.28
(0.08)

5.08
(0.08)

Observations 68,963 35,806 33,130 20,853 10,692 10,154

<08/09/07 2.93
(0.05)

3.55
(0.07)

2.15
(0.08)

5.84
(0.08)

6.26
(0.12)

5.35
(0.12)

Observations 30,362 16,868 13,494 8,427 4546 3,881

≥08/09/07 2.14
(0.05)

1.87
(0.07)

2.41
(0.07)

4.73
(0.08)

4.55
(0.12)

4.92
(0.12)

Observations 38,601 18,938 19,636 12,426 6,146 6,273

Notes: This table reports mean values of HM , BHM and SHM in percentage terms for
the whole sample of stocks and for DAX 30 stocks considering only the 30 most active
institutions in the sample. These 30 institutions are identified according to their overall
trading volume over the whole sample period and all sample stocks. The measures are
calculated considering a minimum number of 5 traders for each stock on each trading day.
The herding measures are first computed over the whole sample stocks and over all trading
days and than averaged across the different time spans and the sub-sample of stocks.
Standard errors are given in parentheses.

Considering DAX 30 stocks, the herding measure even rises to 5.17%. This can be

interpreted as a high level of herding compared to previous findings. Also for MDAX

and SDAX stocks the herding measure is higher as for the whole group of institutions,

but still small, see Table 8 in the Appendix.

The subgroup of 30 most active traders includes a few financial institutions other than

banks (i.e. financial service institutions) and also foreign investment banks. We build

another subsample comprising only the 40 most active German banks that are en-

gaged in proprietary trading on stock markets.7 Those banks are subject to the same

regulatory regime and oversight by the financial authority. Although, the regulatory

7We select those institutions according to their trading volume over the observation period in the
selected stocks. We select only German institutions according to section 1 paragraph 1 of the German
banking act. Note that we now use 40 instead of 30 to ensure that enough traders are active in a
specific stock on a specific day. The sample than comprises 69,257 observations.
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framework and risk management systems for the foreign banks are expected to be sim-

ilar, for those German banks we were able to ensure -due to an investigation of the

risk reports included in their annual reports- that they commonly use VaR models and

implement regulatory or internal VaR limits.

The results shown in Table 9 in the Appendix are similar to that for the subgroup

of 30. Again, the herding measure is much higher in DAX 30 stocks with a mean of

5.21%. In line with the results above, buy herding is higher in the pre-crises period

while sell herding is more pronounced during the crisis. Results for MDAX and SDAX

stocks are again significantly lower and get even insignificant in case of buy herding in

SDAX stocks, see Table 10 in the Appendix. The analogy of the results suggests that

both subgroups are similar homogenous.

6 Detecting the Determinants of Herding

6.1 Possible Determinants of Herding

Theory described in Section 2.1 predicts that herding behavior centers around infor-

mation in the market. On the one hand intentional herding results from information

asymmetry or information uncertainty. On the other hand unintentional herding is

related to reliable public information. By investigating the sources of herding we will

therefore especially focus on empirical proxies to measure information availability, in-

formation asymmetry or uncertainty in the market and on those determinants that may

imply a destabilizing procyclicality.

First, following the previous literature on herdingwe use as one possible determinant

the firm size (Size). Firms with small size are usually less transparent, i.e. less public

information is available. The model of intentional herding would therefore predict an

inverse relation between herding and firm size. Also previous evidence reviewed in

Section 3 finds a higher herding level in smaller stocks. In contrast, our results in

Section 5.2 indicated higher herding in larger stocks. Firm size is measured by the

logarithm of previous day’s closing market capitalization of the specific stock.
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A second factor related to herding might be the trading volume (V ol) of a specific

stock. A vast literature highlights the relation between information quality, market

liquidity and information asymmetries. In particular, Diamond and Verrecchia (1991)

predict higher information asymmetry in less liquid markets. The model of Suominen

(2001) suggests that higher trading volume indicate better information quality. Leuz

and Verrecchia (2000) and Welker (2006) argue that market liquidity could be measured

by transaction volumes or bid-ask spreads. We will therefore use market volumes of

stocks as proxy for information asymmetry and would expect from intentional herding

theory that lower trading volumes are associated with higher herding levels.

Third, we compute stock return volatility (Std) based on the standard deviation of

past 250 daily stock return.8 On the one hand, stock return volatility is assumed to

reflect the extent of disagreement among market participants thus proxy the degree of

uncertainty in the market. Intentional herding models would therefore predict higher

herding in stocks that experienced higher degree of volatility. Note that higher infor-

mation uncertainty is equally likely to induce herding on both the buy and sell side. On

the other hand, higher levels of herding in more volatile stocks might also be related to

a common use of VaR models or other volatility sensitive models for risk management

purposes and according to regulatory requirements, see Persaud (2002). The minimum

observation period according to Basel II market risk standards is one year, i.e. 250

trading days. We therefore expect in our subsample of 30 most active traders more

sell herding in stocks with higher past year standard deviation of stock returns, since

those regulated institutions highly engaged in trading generally use such risk manage-

ment models. Moreover, our subgroup of 40 German banks include exclusively banks

using VaR models and implementing regulatory or internal VaR limits.9 A positive

impact of volatility on sell herding but not on buy herding could then be considered as

unintentional herding.

Fourth, we consider past returns of stocks (r). As unintentional herding arises due to

8We also use past 90 and 30 stock returns to check robustness.
9According to statements in their risk reports included in annual reports.
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the simultaneous reaction on common signals, a manifestation of this kind of herding

is momentum investment. De Long et al. (1990) argued that institutions follow short-

term strategies based on positive feedback trading and thus show pro-cyclical behavior.

Such trading pattern could result in herding, i.e. if all react on the same price signals,

see Froot et al. (1992).

6.2 Empirical Results of a Fixed Effects Panel Model

6.2.1 Empirical Determinants of Herding Behavior

To examine the relation between institutional herding and its possible determinants,

we estimate the following fixed effects panel regression model:

HMit = a + b|ri,t−1|+ cStdit + dSizei,t−1 + eV olit + αi + γt + εit, (5)

where HMit is the herding measure as calculated according to equation (3). |ri,t−1| is

the absolute value of the return of stock i measured from the closing prices on day t−1

and t − 2. The absolute value is used since HMit does not discriminate between the

buy and the sell side. Stdit is the volatility, measured as standard deviation of past 250

daily stock returns. Sizei,t−1 is measured by the logarithm of previous day’s closing

market capitalization of the stock i. V olit captures the logarithm of the trading volume

of stock i during the trading day t. αi are heterogenous stock specific effects and γt are

time dummies.10

We concentrate on the herding measures for the two more homogeneous subgroups of

30 most active traders and 40 most active German banks. We are especially interested

whether their higher herding measures result from unintentional herding due to the

same investment style or from intentional herding due to the belonging to the same

peer group, see Section 2.1. Moreover, these institutions are the most relevant for the

10An F-test strongly suggests the inclusion of time dummies γt in the regressions and a Breusch-Pagan
Lagrange Multiplier test on H0 : σ2

i = 0 indicates the existence of individual effects αi.
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stock market. The detection of intentional herding or procyclical behavior within these

groups would suggest a high potential hazard for financial stability.

Table 5: Fixed Effects Panel Regression - Herding of 30 Most Active Trader

HMit BHMit SHMit

Impact of Regressors

Sizei,t−1 0.0020
(0.0027)

0.0014
(0.0046)

−0.0039∗
(0.0023)

V olit 0.0069∗∗∗
(0.0012)

0.0067∗∗∗
(0.0017)

0.0087∗∗∗
(0.0009)

|ri,t−1| −0.0001
(0.0003)

ri,t−1 −0.0014∗∗∗
(0.0002)

0.0008∗∗∗
(0.0002)

Stdit 0.0031∗∗∗
(0.0012)

−0.0011
(0.0012)

0.0048∗∗∗
(0.0012)

Diagnostics

Wooldridge F = 0.346
(Prob>F=0.5573)

F = 0.377
(Prob>F=0.5402)

F = 0.385
(Prob>F=0.5359)

Cook −Weisberg χ2 = 3383.14
(Prob>χ2=0.0000)

χ2 = 4924.52
(Prob>χ2=0.0000)

χ2 = 1290.95
(Prob>χ2=0.0000)

Sargan−Hansen χ2 = 10.343
(Prob>χ2=0.0350)

χ2 = 11.122
(Prob>χ2=0.0252)

χ2 = 14.026
(Prob>χ2=0.0072)

Observations 65,846 34,130 31,691

Notes: The herding measure HMit for the subgroup of 30 most active traders is regressed on
variables Sizei,t−1, V olit, |ri,t−1| and Stdit. The buy and sell herding measures BHMit and
SHMit is regressed on variables Sizei,t−1, V olit, ri,t−1 and Stdit. The variable Sizei,t−1 is
the logarithm of market capitalization, V olit is the logarithm of the trading volume of stock,
ri,t−1 is the daily stock return and |ri,t−1| is its absolute value. Stdit measures the standard
deviation of past 250 daily stock returns. The statistical significance at 1%, 5% and 10% is
represented as ***, **, and * respectively. Standard errors are given in parentheses in the upper
part of the table. The lower part of the table reports test statistics and p-values in parentheses.
Wooldridge and Cook−Weisberg are tests on serial correlation and heteroscedasticity of error
terms. Sargan − Hansen displays the overidentification test on the independence of random
effects.

The upper part of Table 5 shows the results of a fixed effects panel regression with 30

most active traders. Results for the 40 largest German banks are again similar and are
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displayed in Table 17 in the Appendix.

The results for the regression with the unsigned herding measure HM are displayed in

the first column. The coefficient estimate for Size is insignificant and the coefficient

V ol is positive and statistically significant. First, this suggest that the evidence of

higher herding levels for DAX 30 stocks in Section 5.2 is more likely to result from the

higher liquidity of those stocks than from the higher market capitalization. Second,

since higher trading volume is related to lower information asymmetry and higher

information quality, see e.g. Diamond and Verrecchia (1991), this result suggests that

those large financial institutions do less likely show intentional herding. The result

could be an indication for characteristic herding, i.e. unintentional herding, whereby

the institutions share a common investment style and prefer to buy and sell stocks with

higher trading volume.

The parameter estimate for volatility of returns Std, measured as standard deviation

of stock returns over the last year shows that Std has a positive impact on herding,

indicating that there is more herding for more volatile stocks. Volatility in the market

is related to uncertainty and thus, at first glance, this estimate provide an inconsistent

story, since this is a hint on intentional herding. However, the estimate could also be

related to the common use of risk management models that indicate selling of more

volatile stocks. Results on buy and sell herding discussed subsequently will shed more

light on this issue.

6.2.2 Empirical Determinants of Buy and Sell Herding

The variables described above might affect buy and sell herding in an asymmetric

fashion. We therefore estimate the model (5) separately for herding on the buy and

sell side with almost the same set of explanatory variables, except that the absolute

return |r| is replaced by signed return r as the direction of the recent price movement

will affect whether momentum investors herd more on the buy or sell side:
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BHMit = ab + bbri,t−1 + cbStdit + dbSizei,t−1 + ebV olit + αb
i + γb

t + εb
it (6)

SHMit = as + bsri,t−1 + csStdit + dsSizei,t−1 + esV olit + αs
i + γs

t + εs
it (7)

The results for the fixed effects regressions on buy and sell herding are reported in the

second and third column of Table 5. Estimates for V ol reveal that herding on the buy

and sell side is positively related to the liquidity of stocks. Again market capitalization

measured as Size does not play an important role.

The results for r and Std are interesting: First, the coefficient estimate for Std on buy

herding is negative but insignificant. In case of sell side herding Std has a significant

positive impact. Hence, the higher the volatility of a stock, all the more herding occurs

on the sell side. It is therefore unlikely that intentional herding occurs which results

from uncertainty in the market, since this would equally effect buy and sell herding.

Apparently, institutions share the preference to sell stocks that have shown a high

volatility. This is a clear indication for unintentional herding that might be a result of

risk management purposes, see Persaud (2002).11

The estimated impact of returns r are statistically significant for buy and sell herding

regressions. As in case of Std the coefficient estimates are of opposite signs - i.e. buy

herding is significantly negatively related to past returns, while past returns have a

positive impact on sell herding. This contradicts the conclusions drawn in previous

studies, e.g. Grinblatt et al. (1995), Wermers (1999) or Walter and Weber (2006) who

claim that institutions are momentum investors and follow positive feedback strategies.

In contrast, in our sample, institutions share the preference to buy past looser and sell

past winner. Overall, the results indicate that herding occurs more unintentionally and

results from sharing the same preferences and investment style.12

11The results are robust with respect to shorter periods for the calculation of the standard deviation.
Using past 90 daily stock returns or past 30 daily stock returns do not change the results significantly.
For brevity, these results are not presented and are available on request.

12We also included additionally lagged returns up to 5 trading days, ri,t−2,..,ri,t−5, in the regressions,
to check whether further past returns influence herding. Our results do not change qualitatively. The
coefficient estimates of all past returns have the same sign, i.e. are all negative in the buy herding
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The lower part of Table 5 presents the relevant test statistics and p-values of diagnos-

tic tests. The three models (5) - (7) were estimated as fixed effects panel regressions

using the within estimator, i.e. the Ordinary Least Squares (OLS) of deviations from

stock-specific means. This estimator is feasible, since according to a Hausman test on

endogeneity of the regressors, the null hypothesis of exogeneity cannot be rejected. The

OLS assumption of no serial correlation in the idiosyncratic errors, i.e. E[εitεis] = 0

for all s 6= t, is tested according to Wooldridge (2002). The null of no serial corre-

lation cannot be rejected. A Breusch-Pagan/Cook Weisberg test is used to test on

homoscedasticity, E[ε2it] = σ2
ε . The test reveals the presence of heteroscedasticity in the

error terms. We therefore conduct our analysis with heteroscedasticity-robust stan-

dard errors, see Stock and Watson (2008). An overidentification test using the Hansen

Sargan statistic on fixed effects vs. random effects with robust standard errors rejects

the null of independence of random effects and regressors and confirms the presence of

fixed effects.

7 Conclusion

This paper contributes to the empirical literature on herding by using high-frequent

investor-level data directly identifying the institutional transactions. The analysis

therefore overcomes the data problems that previous studies face and provides new

evidence on the short-term herding behavior of financial institutions.

Applying the measure of Lakonishok et al. (1992) for a broad cross section of German

stocks over the period from August 2006 until April 2009, we find an overall level of

herding of 1.44% for all investigated financial institutions which is quite low. By build-

ing more homogeneous subgroups of institutions, the level of herding rises substantially.

As opposed to findings in prior studies, our results do not confirm that small capital-

regression and all positive in the sell herding regression. However, coefficient estimates of returns prior
to t− 2 are insignificant. Moreover, instead of measuring daily ri,t−1 with regard to the closing prices
on day t− 1 and t− 2, we also use a weekly return measure, i.e. calculated from closing prices on t− 1
and t− 6. Our results in all regressions do not change qualitatively. For brevity, these results are not
presented and are available on request.
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ization stocks are more vulnerable to herding behavior. We find that herding is more

pronounced in DAX 30 shares with a herding level of 3.63% for all institutions and

5.17% for the 30 most active institutions. These results suggest that herding behavior

is not attributed to less information availability or information asymmetry but rather

occurs unintentionally.

Our regression analysis confirms this conclusion and gives further insights on the deter-

minants of herding. Herding depends on past volatility and past returns of the specific

stock. Herding on the buy side is negatively related, whereas herding on the sell side

is positively related to past returns. These results imply contrary to previous studies,

that financial institutions are not engaged in positive feedback strategies.

Moreover, we found that financial institutions herd more on the sell side according to

a rise in volatility of the stocks. This result is in line with the predictions of Persaud

(2002) who argued that the common use of VaR models reduce the diversity of decision

rules forcing banks to act like a herd. Regulators should therefore keep in mind the

macro-prudential aspects of risks and incentive diversity of behavior among the market

participants through the use of different risk management systems.
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A Appendix

Table 6: Statistics on Trading of Institutions

All DAX 30 MDAX SDAX

Average daily number of traders active

Whole sample 25.14 50.79 23.41 10.78
<08/09/07 31.96 65.26 28.80 13.10
≥08/09/07 20.80 41.01 20.00 9.34

Average daily market share in percent

Whole sample 51.00 45.97 51.00 54.30
<08/09/07 70.34 65.91 75.33 68.71
≥08/09/07 39.45 32.46 37.43 45.82

Notes: The first part of the table reports the average of investigated
institutions active in a specific stock on a specific day. The numbers are
computed according to the daily trade imbalance of the institutions.
The second part of the table reports the share that the investigated
institutions have in the trading volume of a specific stock on a specific
day averaged over all stocks and days in percentage terms.
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Table 7: Mean Daily Herding Measures (2)

MDAX SDAX

HM BHM SHM HM BHM SHM

Whole sample 1.24
(0.04)

1.33
(0.05)

1.16
(0.07)

−0.03
(0.05)

−0.04
(0.07)

−0.01
(0.07)

Observations 33,616 17,395 16,219 29,325 14,808 14,515

<08/09/07 0.99
(0.05)

1.10
(0.08)

0.87
(0.08)

−0.59
(0.07)

−0.49
(0.10)

−0.68
(0.10)

Observations 13,005 6,695 6,310 11,825 6,031 5,794

≥08/09/07 1.41
(0.05)

1.47
(0.07)

1.34
(0.08)

0.34
(0.07)

0.26
(0.10)

0.43
(0.10)

Observations 20,611 10,700 9,909 17,500 8,777 8,721

Notes: This table reports mean values of HM , BHM and SHM in percentage terms for
the MDAX and SDAX stocks considering all institutions in the sample. The measures
are calculated considering a minimum number of 5 traders for each stock on each trading
day. The herding measures are first computed over the whole sample stocks and over
all trading days and than averaged across the different time spans and the sub-sample of
stocks. Standard errors are given in parentheses.
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Table 8: Daily Herding Measures of 30 Most Active Traders (2)

MDAX SDAX

HM BHM SHM HM BHM SHM

Whole sample 1.18
(0.05)

1.39
(0.07)

0.96
(0.07)

1.59
(0.09)

1.86
(0.12)

1.28
(0.14)

Observations 31,668 16,439 15,211 16,442 8,675 7,765

<08/09/07 1.78
(0.07)

2.67
(0.11)

0.65
(0.10)

1.85
(0.12)

2.39
(0.16)

1.14
(0.20)

Observations 12,749 7,137 5,612 9,186 5,185 4,001

≥08/09/07 0.76
(0.07)

0.40
(0.09)

1.15
(0.10)

1.25
(0.14)

1.07
(0.21)

1.43
(0.20)

Observations 18,919 9,302 9,599 7,256 3,490 3,764

Notes: This table reports mean values of HM , BHM and SHM in percentage terms for
MDAX and SDAX stocks considering only the 30 most active institutions in the sample.
These 30 institutions are identified according to their overall trading volume over the whole
sample period and all sample stocks. The measures are calculated considering a minimum
number of 5 traders for each stock on each trading day. The herding measures are first com-
puted over the whole sample stocks and over all trading days and than averaged across the
different time spans and the sub-sample of stocks. Standard errors are given in parentheses.
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Table 9: Daily Herding Measures of 40 Most Active German Banks (1)

All Stocks DAX 30

HM BHM SHM HM BHM SHM

Whole sample 2.16
(0.03)

2.11
(0.05)

2.31
(0.05)

5.21
(0.05)

5.05
(0.08)

5.30
(0.08)

Observations 69,274 34,573 34,694 20,897 10,132 10,764

<08/09/07 1.96
(0.05)

2.07
(0.04)

1.85
(0.08)

4.78
(0.08)

5.65
(0.09)

4.86
(0.12)

Observations 27,635 13,728 13,907 8,425 4,044 4,381

≥08/09/07 2.39
(0.04)

2.13
(0.07)

2.45
(0.07)

5.48
(0.04)

5.41
(0.12)

5.73
(0.10)

Observations 41,639 20,845 20,787 12,472 6,088 6,383

Notes: This table reports mean values of HM , BHM and SHM in percentage terms for
the whole sample of stocks and for DAX 30 stocks considering only the 40 largest German
banks that are engaged in proprietary trading. The measures are calculated considering a
minimum number of 5 traders for each stock on each trading day. The herding measures are
first computed over the whole sample stocks and over all trading days and than averaged
across the different time spans and the sub-sample of stocks. Standard errors are given in
parentheses.
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Table 10: Daily Herding Measures of 40 Most Active German Banks (2)

MDAX SDAX

HM BHM SHM HM BHM SHM

Whole sample 1.22
(0.05)

1.29
(0.07)

1.15
(0.07)

0.22
(0.08)

0.11
(0.12)

0.34
(0.12)

Observations 31,630 16,050 15,575 16,747 8,391 8,355

<08/09/07 1.25
(0.07)

1.40
(0.11)

1.10
(0.10)

0.14
(0.12)

0.31
(0.18)

0.63
(0.17)

Observations 12,072 6,043 6,029 7,138 3,641 3,497

≥08/09/07 1.21
(0.07)

1.22
(0.09)

1.18
(0.08)

0.50
(0.11)

0.04
(0.16)

1.05
(0.16)

Observations 19,558 10,007 9,546 9,609 4,750 4,858

Notes: This table reports mean values of HM , BHM and SHM in percentage terms for
MDAX and SDAX stocks considering only the 40 largest German banks that are engaged
in proprietary trading. The measures are calculated considering a minimum number of 5
traders for each stock on each trading day. The herding measures are first computed over
the whole sample stocks and over all trading days and than averaged across the different
time spans and the sub-sample of stocks. Standard errors are given in parentheses.
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Table 11: Mean Daily Herding Measures - Different Minimum Numbers of Trader
Active (1)

All Stocks DAX 30

HM BHM SHM HM BHM SHM

>0 trader 1.55
(0.02)

1.54
(0.04)

1.56
(0.02)

3.65
(0.04)

3.43
(0.06)

3.84
(0.06)

Observations 87,839 44,044 43,773 20,904 9,991 10,909

>5 trader 1.40
(0.02)

1.36
(0.04)

1.45
(0.04)

3.65
(0.04)

3.42
(0.06)

3.85
(0.06)

Observations 83,842 42,193 41,644 20,901 9,990 10,910

>10 trader 1.71
(0.02)

1.69
(0.03)

1.73
(0.03)

3.63
(0.04)

3.38
(0.06)

3.86
(0.06)

Observations 69,474 35,035 34,426 20,900 9,965 10,931

>20 trader 2.57
(0.03)

2.56
(0.04)

2.57
(0.04)

3.62
(0.04)

3.42
(0.06)

3.80
(0.06)

Observations 42,385 21,270 21,108 20,201 9,729 10,468

Notes: This table reports mean values of HM , BHM and SHM in percentage terms for
the whole sample of stocks and the sub-sample of DAX 30 stocks considering all institutions
in the sample but different minimum numbers of traders active (0, 5, 10 or 20) for each
stock on each trading day. The herding measures are first computed over the whole sample
stocks and over all trading days (but only for that cases were the respective minimum trader
amount is given) and than averaged across the different sub-sample of stocks. Standard
errors are given in parentheses.
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Table 12: Mean Daily Herding Measures - Different Minimum Numbers of Trader
Active (2)

MDAX SDAX

HM BHM SHM HM BHM SHM

>0 trader 1.25
(0.04)

1.33
(0.05)

1.16
(0.06)

0.54
(0.05)

0.62
(0.08)

0.46
(0.08)

Observations 33,673 17,455 16,209 33,262 16,598 16,655

>5 trader 1.24
(0.04)

1.33
(0.05)

1.16
(0.07)

−0.03
(0.05)

−0.04
(0.07)

−0.01
(0.07)

Observations 33,616 17,395 16,219 29,325 14,808 14,515

>10 trader 1.30
(0.04)

1.41
(0.05)

1.19
(0.06)

0.06
(0.06)

0.25
(0.08)

−0.13
(0.08)

Observations 31,864 16,451 15,408 16,710 8,619 8,087

>20 trader 1.74
(0.04)

1.95
(0.07)

1.53
(0.07)

0.77
(0.10)

1.23
(0.17)

0.20
(0.17)

Observations 19,116 9,833 9,280 3,068 1,708 1,360

Notes: This table reports mean values of HM , BHM and SHM in percentage terms for
MDAX and SDAX stocks considering all institutions in the sample but different minimum
numbers of traders active (0, 5, 10 or 20) for each stock on each trading day. The herding
measures are first computed over the whole sample stocks and over all trading days (but
only for that cases were the respective minimum trader amount is given) and than averaged
across the different sub-sample of stocks. Standard errors are given in parentheses.
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Table 13: Mean Monthly Herding Measures (1)

All Stocks DAX 30

HM BHM SHM HM BHM SHM

Whole sample 1.97
(0.07)

1.67
(0.13)

2.27
(0.13)

3.03
(0.16)

2.76
(0.23)

3.30
(0.23)

Observations 4,171 2,092 2,079 990 491 499

<08/07 1.36
(0.12)

1.35
(0.18)

1.38
(0.16)

3.00
(0.22)

3.18
(0.35)

2.85
(0.28)

Observations 1,710 850 860 410 182 228

≥08/07 2.39
(0.13)

1.89
(0.18)

2.89
(0.20)

3.06
(0.23)

2.52
(0.30)

3.68
(0.37)

Observations 2,461 1,242 1,219 580 309 271

Notes: This table reports mean values of HM , BHM and SHM in percentage terms for
the whole sample of stocks and for DAX 30 stocks considering all institutions in the sample.
The measures are calculated considering a minimum number of 5 traders for each stock
during each month. The herding measures are first computed over the whole sample stocks
and over all months and than averaged across the different time spans and the sub-sample
of stocks. Standard errors are given in parentheses.
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Table 14: Mean Monthly Herding Measures (2)

MDAX SDAX

HM BHM SHM HM BHM SHM

Whole sample 1.98
(0.14)

1.95
(0.19)

2.02
(0.21)

1.29
(0.17)

0.62
(0.24)

1.87
(0.24)

Observations 1,597 862 735 1,584 739 845

<08/07 1.05
(0.18)

1.17
(0.26)

0.91
(0.25)

0.65
(0.22)

0.50
(0.34)

0.80
(0.30)

Observations 650 353 297 650 315 335

≥08/07 2.62
(0.20)

2.50
(0.27)

2.77
(0.30)

1.73
(0.24)

0.71
(0.34)

2.58
(0.34)

Observations 947 509 438 934 424 510

Notes: This table reports mean values of HM , BHM and SHM in percentage terms for
the MDAX and SDAX stocks considering all institutions in the sample. The measures are
calculated considering a minimum number of 5 traders for each stock during each month.
The herding measures are first computed over the whole sample stocks and over all months
and than averaged across the different time spans and the sub-sample of stocks. Standard
errors are given in parentheses.
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Table 15: Mean Quarterly Herding Measures (2)

MDAX SDAX

HM BHM SHM HM BHM SHM

Whole sample 2.14
(0.23)

2.44
(0.30)

1.81
(0.35)

1.63
(0.27)

0.79
(0.36)

2.29
(0.31)

Observations 534 285 249 530 233 297

<3.Q./07 1.62
(0.32)

2.19
(0.44)

1.01
(0.46)

0.82
(0.35)

1.05
(0.55)

0.61
(0.43)

Observations 200 103 97 200 96 104

≥3.Q./07 2.46
(0.31)

2.58
(0.40)

2.32
(0.49)

2.12
(0.38)

0.60
(0.48)

3.20
(0.55)

Observations 334 182 152 330 137 193

Notes: This table reports mean values of HM , BHM and SHM in percentage terms for
the MDAX and SDAX stocks considering all institutions in the sample. The measures are
calculated considering a minimum number of 5 traders for each stock during each quarter.
The herding measures are first computed over the whole sample stocks and over all quarters
and than averaged across the different time spans and the sub-sample of stocks. Standard
errors are given in parentheses.
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Table 16: Mean Daily Herding Measures - Cutoff Size (2)

MDAX SDAX

HM BHM SHM HM BHM SHM

Whole sample 5.27
(0.04)

5.22
(0.06)

5.31
(0.06)

3.90
(0.06)

3.61
(0.08)

4.19
(0.08)

Observations 32,438 16,180 16,258 26,709 13,349 13,360

<08/09/07 2.54
(0.03)

2.76
(0.06)

2.55
(0.06)

2.47
(0.07)

2.41
(0.10)

2.54
(0.11)

Observations 12,857 6,656 6,201 11,468 6,073 5,395

≥08/09/07 5.99
(0.04)

6.94
(0.09)

7.02
(0.09)

4.97
(0.08)

4.61
(0.12)

5.30
(0.12)

Observations 19,581 9,524 10,057 15,241 7,276 7,965

Notes: This table reports mean values of HM , BHM and SHM in percentage terms
for the MDAX and SDAX stocks considering all institutions in the sample but dropping
transactions below e14,000 for MDAX stocks and e7,000 for SDAX stocks. Standard errors
are given in parentheses. The measures are calculated considering a minimum number of 5
traders for each stock on each trading day. The herding measures are first computed over
the whole sample stocks and over all trading days and than averaged across the different
time spans and the sub-sample of stocks.
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Table 17: Fixed Effects Panel Regression - Herding of 40 Most Active German Banks

HMit BHMit SHMit

Impact of Regressors

Sizei,t−1 0.0028∗
(0.0016)

0.0058
(0.0040)

0.0104∗∗∗
(0.0032)

V olit 0.0122∗∗∗
(0.0006)

0.0170∗∗∗
(0.0018)

0.0083∗∗∗
(0.0015)

|ri,t−1| 0.0006∗∗
(0.0002)

ri,t−1 −0.0004∗∗
(0.0002)

0.0003∗
(0.0001)

Stdit 0.0015∗∗
(0.0007)

−0.0018
(0.0012)

0.0022∗∗
(0.0010)

Diagnostics

Wooldridge F = 1.298
(Prob>F=0.2568)

F = 3.382
(Prob>F=0.0782)

F = 0.873
(Prob>F=0.3518)

Cook −Weisberg χ2 = 3869.82
(Prob>χ2=0.0000)

χ2 = 1924.52
(Prob>χ2=0.0000)

χ2 = 1617.43
(Prob>χ2=0.0000)

Sargan−Hansen χ2 = 18.188
(Prob>χ2=0.0011)

χ2 = 27.207
(Prob>χ2=0.0000)

χ2 = 15.107
(Prob>χ2=0.0565)

Observations 66,350 33,079 33,265

Notes: The herding measure HMit for the subgroup of 40 largest German banks is regressed
on variables Sizei,t−1, V olit, |ri,t−1| and Stdit. The buy and sell herding measures BHMit

and SHMit is regressed on variables Sizei,t−1, V olit, ri,t−1 and Stdit. The variable Sizei,t−1

is the logarithm of market capitalization, V olit is the logarithm of the trading volume of stock,
ri,t−1 is the daily stock return and |ri,t−1| is its absolute value. Stdit measures the standard
deviation of past 250 daily stock returns. The statistical significance at 1%, 5% and 10% is
represented as ***, **, and * respectively. Standard errors are given in parentheses in the upper
part of the table. The lower part of the table reports test statistics and p-values in parentheses.
Wooldridge and Cook−Weisberg are tests on serial correlation and heteroscedasticity of error
terms. Sargan − Hansen displays the overidentification test on the independence of random
effects.
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