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Abstract

We study the joint determination of the lag length, the dimension of the cointegrating space
and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model
using model selection criteria. We consider model selection criteria which have data-dependent
penalties as well as the traditional ones. We suggest a new two-step model selection procedure
which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove
its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy
that can arise from the joint determination of lag-length and rank using our proposed procedure,
relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure
of selecting the lag-length only and then testing for cointegration. Two empirical applications
forecasting Brazilian in�ation and U.S. macroeconomic aggregates growth rates respectively show
the usefulness of the model-selection strategy proposed here. The gains in di¤erent measures of
forecasting accuracy are substantial, especially for short horizons.
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1 Introduction

There is a large body of literature on the e¤ect of cointegration on forecasting. Engle and Yoo (1987)

compare the forecasts generated from an estimated vector error correction model (VECM) assuming

that the lag order and the cointegrating rank are known, with those from an estimated VAR in

levels with the correct lag. They �nd out that the VECM only produces forecasts with smaller mean

squared forecast errors (MSFE) in the long-run. Clements and Hendry (1995) note that Engle and

Yoo�s conclusion is not robust if the object of interest is di¤erences rather than levels, and use this

observation to motivate their alternative measures for comparing multivariate forecasts. Ho¤man

and Rasche (1996) con�rm Clements and Hendry�s observation using a real data set. Christo¤ersen

and Diebold (1998) also use Engle and Yoo�s setup, but argue against using a VAR in levels as a

benchmark on the grounds that the VAR in levels not only does not impose cointegration, it does

not impose any unit roots either. Instead, they compare the forecasts of a correctly speci�ed VECM

with forecasts from correctly speci�ed univariate models, and �nd no advantage in MSFE for the

VECM. They use this result as a motivation to suggest an alternative way of evaluating forecasts

of a cointegrated system. Silverstovs et al. (2004) extend Christo¤ersen and Diebold�s results to

multicointegrated systems. Since the afore-mentioned papers condition on the correct speci�cation

of the lag length and cointegrating rank, they cannot provide an answer as to whether we should

examine the cointegrating rank of a system in multivariate forecasting if we do not have any a priori

reason to assume a certain form of cointegration.

Lin and Tsay (1996) examine the e¤ect on forecasting of the mis-speci�cation of the cointegrat-

ing rank. They determine the lag order using the AIC, and compare the forecasting performance

of estimated models under all possible numbers of cointegrating vectors (0 to 4) in a four-variable

system. They observe that, keeping the lag order constant, the model with the correct number of

cointegrating vectors achieves a lower MSFE for long-run forecasts, especially relative to a model

that over-speci�es the cointegrating rank. Although Lin and Tsay do not assume the correct speci-

�cation of the lag length, their study also does not address the uncertainty surrounding the number

of cointegrating vectors in a way that can lead to a modelling strategy for forecasting possibly coin-

tegrated variables. Indeed, the results of their example with real data, in which they determine the

cointegrating rank using a sequence of hypothesis tests, do not accord with their simulation results.

At the same time, there is an increasing amount of evidence of the advantage of considering rank

restrictions for short-term forecasting in stationary VAR (and VARMA) models (see, for example,

Ahn and Reinsel 1988, Vahid and Issler 2002, Athanasopoulos and Vahid 2008). One feature of

these papers is that they do not treat lag-length and rank uncertainty, di¤erently. Their quest is to

identify the dimension of the most parsimonious state vector that can represent the dynamics of a

system. Here, we add the cointegrating rank to the menu of unknowns and evaluate model selection
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criteria that determine all of these unknowns simultaneously. Our goal is to determine a modelling

strategy that is useful for multivariate forecasting.

There are other papers in the literature that evaluate the performance of model selection criteria

for determining lag-length and cointegrating rank, but they do not evaluate the forecast performance

of the resulting models. Gonzalo and Pitarakis (1999) show that in large systems the usual model

selection procedures may severely underestimate the cointegrating rank. Chao and Phillips (1999)

show that the posterior information criterion (PIC) performs well in choosing the lag-length and the

cointegrating rank simultaneously.

In this paper we evaluate the performance of model selection criteria in the simultaneous choice

of the lag-length p, the rank of the cointegrating space q, and the rank of other parameter matrices

r in a vector error correction model. We suggest a hybrid model selection strategy that selects p and

r using a traditional model selection criterion, and then chooses q based on PIC. We then evaluate

the forecasting performance of models selected using these criteria.

Our simulations cover the three issues of model building, estimation, and forecasting. We examine

the performances of model selection criteria that choose p; r and q simultaneously (IC(p; r; q)),

and compare their performances with a procedure that chooses p using a standard model selection

criterion (IC(p)) and determines the cointegrating rank using a sequence of likelihood ratio tests

proposed by Johansen (1988). We provide a comparison of the forecasting accuracy of �tted VARs

when only cointegration restrictions are imposed, when cointegration and short-run restrictions are

jointly imposed, and when neither are imposed. These comparisons take into account the possibility

of model misspeci�cation in choosing the lag length of the VAR, the number of cointegrating vectors,

and the rank of other parameter matrices. In order to estimate the parameters of a model with both

long-run and short-run restrictions, we propose a simple iterative procedure similar to the one

proposed by Centoni et al. (2007).

It is very di¢ cult to claim that any result found in a Monte Carlo study is general, especially in

multivariate time series. There are examples in the VAR literature of Monte Carlo designs which

led to all model selection criteria overestimating the true lag in small samples, therefore leading to

the conclusion that the Schwarz criterion is the most accurate. The most important feature of these

designs is that they have a strong propagation mechanism.1 There are other designs with weak

propagation mechanisms that result in all selection criteria underestimating the true lag and leading

to the conclusion that AIC�s asymptotic bias in overestimating the true lag may actually be useful in

�nite samples (see Vahid and Issler 2002, for references). We pay particular attention to the design

of the Monte Carlo to make sure that we cover a wide range of data generating processes in terms

of the strength of their propagation mechanisms.

1Our measure of the strength of the propagation mechanism is proportional to the trace of the product of the
variance of �rst di¤erences and the inverse of the variance of innovations.
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The outline of the paper is as follows. In Section 2 we study �nite VARs with long-run and

short-run restrictions and motivate their empirical relevance. In Section 3, we outline an iterative

procedure for computing the maximum likelihood estimates of parameters of a VECM with short-

run restrictions. We provide an overview of model selection criteria in Section 4, and in particular

we discuss model selection criteria with data dependent penalty functions. Section 5 describes our

Monte Carlo design. Section 6 presents the simulation results and Section 8 concludes.

2 VAR models with long-run and short-run common factors

We start from the triangular representation of a cointegrated system used extensively in the coin-

tegration literature (some early examples are Phillips and Hansen 1990, Phillips and Loretan 1991,

Saikkonen 1992). We assume that the K-dimensional time series

yt =

�
y1t
y2t

�
; t = 1; :::; T

where y1t is q � 1 (implying that y2t is (K � q)� 1) is generated from:

y1t = �y2t + u1t (1)

�y2t = u2t

where � is a q � (K � q) matrix of parameters, and

ut =

�
u1t
u2t

�
is a strictly stationary process with mean zero and positive de�nite covariance matrix. This is a

data generating process (DGP) of a system of K cointegrated I(1) variables with q cointegrating

vectors, also referred to as a system of K I(1) variables with K � q common stochastic trends (some
researchers also refer to this as a system ofK variables withK�q unit roots, which can be ambiguous
if used out of context, and we therefore do not use it here).2 The extra feature that we add to this

fairly general DGP is that ut is generated from a VAR of �nite order p and rank r (< K).

In empirical applications, the �nite VAR(p) assumption is routine. This is in contrast to the

theoretical literature on testing for cointegration, in which ut is assumed to be an in�nite VAR,

and a �nite VAR(p) is used as an approximation (e.g. Saikkonen 1992). Here, our emphasis is on

building multivariate forecasting models rather than hypothesis testing. The �nite VAR assumption

is also routine when the objective is studying the maximum likelihood estimator of the cointegrating

vectors, as in Johansen (1988).

2While in theory every linear system of K cointegrated I(1) variables with q cointegrating vectors can be represented
in this way, in practice the decision on how to partition K-variables into y1t and y2t is not trivial, because y1t are
variables which must de�nitely have a non-zero coe¢ cient in the cointegrating relationships.
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The reduced rank assumption is considered for the following reasons. Firstly, this assumption

means that all serial dependence in the K-dimensional vector time series ut can be characterised

by only r < K serially dependent indices. This is a feature of most macroeconomic models, in

which the short-run dynamics of the variables around their steady states are generated by a small

number of serially correlated demand or supply shifters. Secondly, this assumption implies that

there are K � r linear combinations of ut that are white noise. Gourieroux and Peaucelle (1992)
call such time series �codependent,� and interpret the white noise combinations as equilibrium

combinations among stationary variables. This is justi�ed on the grounds that, although each

variable has some persistence, the white noise combinations have no persistence at all. For instance,

if an optimal control problem implies that the policy instrument should react to the current values

of the target variables, then it is likely that there will be such a linear relationship between the

observed variables up to a measurement noise. Finally, many papers in multivariate time series

literature provide evidence of the usefulness of reduced rank VARs for forecasting (see, for example,

Velu et al. 1986, Ahn and Reinsel 1988). Recently, Vahid and Issler (2002) have shown that failing

to allow for the possibility of reduced rank structure can lead to developing seriously misspeci�ed

vector autoregressive models that produce bad forecasts.

The dynamic equation for ut is therefore given by (all intercepts are suppressed to simplify the

notation)

ut = B1ut�1 +B2ut�2 + � � �+Bput�p + "t (2)

where B1; B2; :::; Bp are K � K matrices with rank
�
B1 B2 ::: Bp

�
= r, and "t is an i.i.d.

sequence with mean zero and positive de�nite variance-covariance matrix and �nite fourth moments.

Note that the rank condition implies that each Bi has rank at most r, and the intersection of the

null-spaces of all Bi is a subspace of dimension K � r. The following lemma derives the vector error
correction representation of this data generating process.

Lemma 1 The data generating process given by equations (1) and (2) has a reduced rank vector

error correction representation of the type

� yt = 
�
Iq ��

�
yt�1 + �1� yt�1 + �2� yt�2 + � � �+ �p� yt�p + �t; (3)

in which rank
�
�1 �2 ::: �p

�
� r:

Proof. Refer to the working paper version of the current paper.

This lemma shows that the triangular DGP (1) under the assumption that the dynamics of

its stationary component (i.e. ut) can be characterised by a small number of common factors, is

equivalent to a VECM in which the coe¢ cient matrices of lagged di¤erences have reduced rank and

their left null-spaces overlap. Hecq et al. (2006) call such a structure a VECM with weak serial

correlation common features (WSCCF).
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We should note that the triangular structure (1) implies K � q common Beveridge-Nelson (BN)
trends, but the reduced rank structure assumed for ut does not imply that deviations from the BN

trends (usually refereed to as BN cycles) can be characterised as linear combinations of r common

factors. Vahid and Engle (1993) show that a DGP with common BN trends and cycles is a special

case of the above under some additional restrictions and therefore a stricter form of comevement.

Hecq et al. (2006) show that the uncertainty in determining the rank of the cointegrating space can

adversely a¤ect inference on common cycles, and they conclude that testing for weak common serial

correlation features is a more accurate means of uncovering short-run restrictions in vector error

correction models.

Our objective is to come up with a model development methodology that allows for cointegration

and weak serial correlation common features. For stationary time series, Vahid and Issler (2002)

show that allowing for reduced rank models is bene�cial for forecasting. For partially non-stationary

time series, there is an added dimension of cointegration. Here, we examine the joint bene�ts of

cointegration and short-run rank restrictions for forecasting partially non-stationary time series.

3 Estimation of VARs with short-run and long-run restrictions

The maximum likelihood estimation of the parameters of a VAR written in error-correction form

� yt = � yt�1 + �1� yt�1 + �2� yt�2 + � � �+ �p� yt�p + �t (4)

under the long-run restriction that the rank of � is q, the short-run restriction that rank of

[ �1 �2 ::: �p ] is r and the assumption of normality, is possible via a simple iterative pro-

cedure that uses the general principle of the estimation of reduced rank regression models Anderson

(1951). Noting that the above model can be written as

� yt =  �0yt�1 + C [D1� yt�1 +D2� yt�2 + � � �+Dp� yt�p] + �t; (5)

where � is a K � q matrix of rank q and C is a K � r matrix of rank r, one realises that if �
was known, C and Di; i = 1; : : : ; p, could be estimated using a reduced rank regression of � yt on

� yt�1; � � � ;� yt�p after partialling out �0yt�1. Also, if Di; i = 1; : : : ; p, were known, then  and �
could be estimated using a reduced rank regression of� yt on yt�1 after controlling for

Pp
i=1Di� yt�i.

This points to an easy iterative procedure for computing maximum likelihood estimates for all

parameters.

Step 0. Estimate [D̂1; D̂2; : : : ; D̂p] from a reduced rank regression of � yt on (�yt�1; :::;�yt�p) con-

trolling for yt�1. Recall that these estimates are simply coe¢ cients of the canonical variates

corresponding to the r largest squared partial canonical correlations (PCCs) between � yt and

(�yt�1; :::;�yt�p), controlling for yt�1.
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Step 1. Compute the PCCs between � yt and yt�1 conditional on

[D̂1� yt�1 + D̂2� yt�2 + � � � + D̂p� yt�p]: Take the q canonical variates �̂0yt�1 correspond-
ing to the q largest squared PCCs as estimates of cointegrating relationships. Regress � yt on

�̂0yt�1 and [D̂1� yt�1 + D̂2� yt�2 + � � �+ D̂p� yt�p], and compute ln j
̂j; the logarithm of the

determinant of the residual variance matrix.

Step 2. Compute the PCCs between � yt and (�yt�1; :::;�yt�p) conditional on �̂0yt�1: Take the r

canonical variates [D̂1� yt�1 + D̂2� yt�2 + � � � + D̂p� yt�p] corresponding to the largest r
PCCs as estimates of [D1� yt�1 + D2� yt�2 + � � � + Dp� yt�p]. Regress � yt on �̂0yt�1 and
[D̂1� yt�1+ D̂2� yt�2+ � � �+ D̂p� yt�p], and compute ln j
̂j; the logarithm of the determinant

of the residual variance matrix. If this is di¤erent from the corresponding value computed in

Step 1, go back to Step 1. Otherwise, stop.

The value of ln j
̂j becomes smaller at each stage until it achieves its minimum, which we denote by
ln j
̂p;r;qj. The values of �̂ and [D̂1; D̂2; : : : ; D̂p] in the �nal stage will be the maximum likelihood

estimators of � and [D1; D2; : : : ; Dp]. The maximum likelihood estimates of other parameters are

simply the coe¢ cient estimates of the �nal regression. Note that although  and �, and also C

and [D1; D2; : : : ; Dp], are only identi�ed up to appropriate normalisations, the maximum likelihood

estimates of � and [�1;�2; : : : ;�p] are invariant to the choice of normalisation. Therefore, the nor-

malisation of the canonical correlation analysis is absolutely innocuous, and the �raw� estimates

produced from this procedure can be linearly combined to produce any desired alternative normali-

sation. Also, the set of variables that are partialled out at each stage should include constants and

other deterministic terms if needed.

4 Model selection

The modal strategy in applied work for modelling a vector of I(1) variables is to use a model selection

criterion for choosing the lag length of the VAR, then test for cointegration conditional on the lag-

order, and �nally estimate the VECM. Hardly ever any further step is taken to simplify the model,

and if any test of the adequacy of the model is undertaken, it is usually a system test. For example,

to test the adequacy of the dynamic speci�cation, additional lags of all variables are added to all

equations, and a test of joint signi�cance for K2 parameters is used. For stationary time series,

Vahid and Issler (2002) show that model selection criteria severely underestimate the lag order in

weak systems, i.e. in systems where the propagation mechanism is weak. They also show that

using model selection criteria (suggested in Lütkepohl 1993, p. 202) to choose lag order and rank

simultaneously can remedy this shortcoming signi�cantly.

In the context of VECMs, one can consider selecting (p; r) with these model selection criteria

�rst, and then use a sequence of likelihood ratio tests to determine the rank of the cointegrating
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space q. Speci�cally, these are the analogues of Akaike information criterion (AIC), the Hannan and

Quinn criterion (HQ) and the Schwarz criterion (SC), and are de�ned as

AIC(p; r) = T
KX

i=K�r+1
ln
�
1� �̂2i (p)

�
+ 2(r(K � r) + rKp) (6)

HQ (p; r) = T

KX
i=K�r+1

ln
�
1� �̂2i (p)

�
+ 2(r(K � r) + rKp) ln lnT (7)

SC (p; r) = T

KX
i=K�r+1

ln
�
1� �̂2i (p)

�
+ (r(K � r) + rKp) lnT; (8)

where K is the dimension of (number of series in) the system, r is the rank of

[ �1 �2 ::: �p ], p is the number of lagged di¤erences in the VECM, T is the number of observa-

tions, and �̂
2

i (p) are the sample squared PCCs between�yt and the set of regressors (�yt�1; :::;�yt�p)

after the linear in�uence of yt�1 (and deterministic terms such as a constant term and seasonal dum-

mies if needed) is taken away from them, sorted from the smallest to the largest. Traditional model

selection criteria are special cases of the above when rank is assumed to be full, i.e. when r is

equal to K: Here, the question of the rank of �; the coe¢ cient of yt�1 in the VECM, is set aside,

and taking the linear in�uence of yt�1 away from the dependent variable and the lagged dependent

variables concentrates the likelihood on [ �1 �2 ::: �p ]: Then, conditional on the p and the r

that minimise one of these criteria, one can use a sequence of likelihood ratio tests to determine q:

While in the proof of Theorem 2 we show that the estimators of p and r based on HQ and SC are

consistent, the estimator of q from the sequential testing method with a �xed level of signi�cance

is obviously not. Moreover, the asymptotic distribution of the likelihood ratio test statistic for q

conditional on selected p and r may be far from that when the true p and r are known Leeb and

Potscher (2005). Here, we study model selection criteria which choose p; r and q:

We consider two classes of model selection criteria. First, we consider direct extensions of the

AIC, HQ and SC to the case where the rank of the cointegrating space, which is the same as the

rank of �; is also a parameter to be selected by the criteria. Speci�cally, we consider

AIC(p; r; q) = T ln j
̂p;r;qj+ 2(q(K � q) +Kq + r(K � r) + rKp) (9)

HQ(p; r; q) = T ln j
̂p;r;qj+ 2(q(K � q) +Kq + r(K � r) + rKp) ln lnT (10)

SC(p; r; q) = T ln j
̂p;r;qj+ (q(K � q) +Kq + r(K � r) + rKp) lnT; (11)

where ln j
̂p;r;qj (the minimised value of the logarithm of the determinant of the variance of the

residuals of the VECM of order p; with � having rank q and [ �1 �2 ::: �p ] having rank r) is

computed by the iterative algorithm described above in Section 3. Obviously, when q = 0 or q = K;

we are back in the straightforward reduced rank regression framework, where one set of eigenvalue
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calculations for each p provides the value of the log-likelihood function for r = 1; :::;K: Similarly,

when r = K; we are back in the usual VECM estimation, and no iterations are needed.

We also consider a model selection criterion with a data dependent penalty function. Such model

selection criteria date back at least to Poskitt (1987), Rissanen (1987) and Wallace and Freeman

(1987). The model selection criterion that we consider in this paper is closer to those inspired by the

�minimum description length (MDL)�criterion of Rissanen (1987) and the �minimummessage length

(MML)�criterion of Wallace and Freeman (1987). Both of these criteria measure the complexity of a

model by the minimum length of the uniquely decipherable code that can describe the data using the

model. Rissanen (1987) establishes that the closest the length of the code of any emprical model can

possibly get to the length of the code of the true DGP P� is at least as large as 12 ln jE�(FIMM (�̂))j,
where FIMM (�̂) is the Fisher information matrix of model M (i.e., [�@2lnlM=@�@�0], the second
derivative of the log-likelihood function of the modelM) evaluated at �̂, and E� is the mathematical

expectation under P�. Rissanen uses this bound as a penalty term to formulate the MDL as a model

selection criterion,

MDL = � ln lM (�̂) +
1

2
ln jFIMM (�̂)j:

Wallace and Freeman�s MML is also based on coding and information theory but is derived from

a Bayesian perspective. The MML criterion is basically the same as the MDL plus an additional

term that is the prior density of the parameters evaluated at �̂ (see Wallace 2005, for more details

and a summary of recent advances in this line of research). While the in�uence of this term is

dominated by the other two terms as sample size increases, it plays the important role of making

the criterion invariant to arbitrary linear transformations of the regressors in a regression context.

Based on their study of the asymptotic form of the Bayesian data density, Phillips (1996) and

Phillips and Ploberger (1996) design the posterior information criterion (PIC), which is similar to

MML and MDL criteria. Their important contribution has been to show that such criteria can be

applied to partially nonstationary time series as well.3 Chao and Phillips (1999) use the PIC for

simultaneous selection of the lag length and cointegration rank in VARs.

There are practical di¢ culties in working with PIC that motivates simplifying this criterion.

One di¢ culty is that FIMM (�̂) must be derived and coded for all models considered (The details

of the Fisher information matrix for a reduced rank VECM is given in the appendix). A more

important one is the large dimension of FIMM (�̂). For example, if we want to choose the best

VECM allowing for up to 4 lags in a six variable system, we have to compute determinants of square

matrices of dimensions as large as 180. These calculations are likely to push the boundaries of

3Ploberger and Phillips (2003) generalised Rissanen�s result to show that even for trending time series, the distance
between any empirical model and the P� is larger or equal to 1

2
ln jE�(FIMM )j almost everywhere on the parameter

space. They use the outer-product formulation of the information matrix, which has the same expected value as the
negative of the second derivative under P�:
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numerical accuracy of computers, in particular when these matrices are ill-conditioned4. This, and

the favourable results of the HQ criterion in selecting lag p and rank of stationary dynamics r, led

us to consider a two step procedure.

4.1 A two-step procedure for model selection

In the �rst step, the linear in�uence of yt�1 is removed from �yt and (�yt�1; :::;�yt�p), then

HQ(p; r), as de�ned in (7), is used to determine p and r. Then PIC is calculated for the chosen

values of p and r; for all q from 0 to K. This reduces the task to K + 1 determinant calculations

only.

Theorem 2 If the data generating process is

�yt = c+�yt�1 + �1�yt�1 + �2�yt�2 + � � �+ �p0�yt�p0 + �t

in which

(i) all roots of the characteristic polynomial of the implied VAR for yt are on or outside the unit

circle and all those on the unit circle are +1;

(ii) the rank of � is q0 � K, which implies that � can be written as �0 where  and � are full rank
K � q0 matrices;
(iii) 0? (I �

Pp0
i=1 �i)�? has full rank where ? and �? are full rank K � (K � q0) matrices such

that 0? = �
0
?� = 0;

(iv) the rank of [ �1 �2 ::: �p0 ] is r0 � K;
(v) the rank of �p0 is not zero;

(vi) E(�t j Ft�1) = 0 and E(�t�0t j Ft�1) = 
 positive de�nite where Ft�1 is the �-�eld generated by
f�t�1; �t�2; : : :g, and E(�4it) <1 for i = 1; 2; : : : ;K;

and the maximum possible lag considered pmax � p0; then the estimators of p, r and q obtained from
the two step procedure explained above are consistent.

Proof. See Appendix B.

5 Monte-Carlo design

To make the Monte-Carlo simulation manageable, we use a three-dimensional VAR. We consider

VARs in levels with lag lengths of 2 and 3, which translates to 1 and 2 lagged di¤erences in the

VECM. This choice allows us to study the consequences of both under- and over-parameterisation

of the estimated VAR.
4 In our simulations, we came across one case where the determinant was returned to be a small negative number

even though the matrix was symmetric positive de�nite. This happened both using GAUSS and also using MATLAB.
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For each p0, r0 and q0 we draw many sets of parameter values from the parameter space of

cointegrated VARs with serial correlation common features that generate di¤erence stationary data.

In order to ensure that the DGPs considered do not lie in a subset of the parameter space that implies

only very weak or only very strong propagation mechanisms we choose 50 DGPs with system R2s

(as de�ned in Vahid and Issler 2002) that range between 0.3 and 0.65, with a median between 0.4

and 0.5 and 50 DGPs with system R2s that range between 0.65 and 0.9, with a median between 0.7

and 0.8.

From each DGP, we generate 1,000 samples of 100, 200 and 400 observations (the actual generated

samples were longer, but the initial part of each generated sample is discarded to reduce the e¤ect

of initial conditions). In summary, our results are based on 1,000 samples of 100 di¤erent DGPs �

a total of 100,000 di¤erent samples � for each of T = 100, 200 or 400 observations.

The Monte-Carlo procedure can be summarised as follows. Using each of the 100 DGPs, we gen-

erate 1,000 samples (with 100, 200 and 400 observations). We record the lag length chosen by tradi-

tional (full-rank) information criteria, labelled IC(p) for IC={AIC, HQ, SC}, and the corresponding

lag length chosen by alternative information criteria, labelled IC(p; r; q) for IC={AIC, HQ, SC, PIC,

HQ-PIC} where the last is the hybrid procedure we propose in Section 4.1.

We should note that although we present the results averaged over all 100 DGPs we have also

analysed the results for the DGPs with low and high R2s separately. We indeed found that any

advantage of model selection criteria with a relatively smaller (larger) penalty factor was accentuated

when only considering DGPs with relatively weaker (stronger) propagation mechanisms. In order

to save space we do not present these results here but they are available upon request.

For choices made using the traditional IC(p) criteria, we use Johansen�s (1988, 1991) trace test

at the 5% level of signi�cance to select q, and then estimate a VECM with no short-run restrictions.

For choices made using IC(p; r; q), we use the two step procedure of Section 4.1 to obtain the triplet

(p; r; q), and then estimate the resulting VECM with SCCF restrictions using the algorithm of Section

3. For each case we record the out-of-sample forecasting accuracy measures for up to 16 periods

ahead. We then compare the out-of-sample forecasting accuracy measures for these two types of

VAR models.

5.1 Measuring forecast accuracy

We measure the accuracy of forecasts using the traditional trace of the mean-squared forecast error

matrix (TMSFE) and the determinant of the mean-squared forecast error matrix jMSFEj at di¤erent
horizons. We also compute Clements and Hendry�s (1993) generalized forecast error second moment

(GFESM). GFESM is the determinant of the expected value of the outer product of the vector of

stacked forecast errors of all future times up to the horizon of interest. For example, if forecasts up
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to h quarters ahead are of interest, this measure will be:

GFESM =

���������E
0BBB@
~"t+1
~"t+2
...

~"t+h

1CCCA
0BBB@
~"t+1
~"t+2
...

~"t+h

1CCCA
0��������� ;

where ~"t+h is the K-dimensional forecast error of our K-variable model at horizon h. This measure

is invariant to elementary operations that involve di¤erent variables (TMSFE is not invariant to

such transformations), and also to elementary operations that involve the same variable at di¤erent

horizons (neither TMSFE nor jMSFEj is invariant to such transformations). In our Monte-Carlo,
the above expectation is evaluated for every model, by averaging over replications.

There is one complication associated with simulating 100 di¤erent DGPs. Simple averaging

across di¤erent DGPs is not appropriate, because the forecast errors of di¤erent DGPs do not have

identical variance-covariance matrices. Lütkepohl (1985) normalises the forecast errors by their true

variance-covariance matrix in each case before aggregating. Unfortunately, this would be a very

time consuming procedure for a measure like GFESM, which involves stacked errors over many

horizons. Instead, for each information criterion, we calculate the percentage gain in forecasting

measures, comparing the full-rank models selected by IC(p), with the reduced-rank models chosen

by IC(p; r; q). This procedure is done at every iteration and for every DGP, and the �nal results are

then averaged.

6 Monte-Carlo simulation results

6.1 Selection of lag, rank, and the number of cointegrating vectors

Simulation results are reported in �three-dimensional� frequency tables. The columns correspond

to the percentage of times the selected models had cointegrating rank smaller than the true rank

(q < q0), equal to the true rank (q = q0) and larger than the true rank (q > q0). The rows correspond

to similar information about the rank of short-run dynamics r. Information about the lag-length is

provided within each cell, where the entry is disaggregated on the basis of p. The three numbers

provided in each cell, from left to right, correspond to percentages with lag lengths smaller than the

true lag, equal to the true lag and larger than the true lag. The �Total�column on the right margin

of each table provides information about marginal frequencies of p and r only. The row titled �Total�

on the bottom margin of each table provides information about the marginal frequencies of p and q

only. Finally, the bottom right cell provides marginal information about the lag-length choice only.

We report results of two sets of 100 DGPs. Table 1 summarises the model selection results for 100

DGPs that have one lag in di¤erences with a short-run rank of one and cointegrating rank of two, i.e.,

(p0; r0; q0) = (1; 1; 2). Table 2 summarises the model selection results for 100 DGPs that have two
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lags in di¤erences with a short-run rank of one and cointegrating rank of one (p0; r0; q0) = (2; 1; 1).

These two groups of DGPs are contrasting in the sense that the second group of DGPs have more

severe restrictions in comparison to the �rst one.

The �rst three panels of the tables correspond to all model selection based on the traditional

model selection criteria. The additional bottom row for each of these three panels provides informa-

tion about the lag-length and the cointegrating rank, when the lag-length is chosen using the simple

version of that model selection criterion and the cointegrating rank is chosen using the Johansen

procedure, and in particular the sequential trace test with 5% critical values that are adjusted for

sample size. Comparing the rows labelled �AIC+J�, �HQ+J�and �SC+J�, we conclude that the in-

ference about q is not sensitive to whether the selected lag is correct or not. In Table 1 all three

criteria choose the correct q approximately 54%, 59% and 59% of the time for sample sizes 100, 200

and 400, respectively. In Table 2 all three criteria choose the correct q approximately 70%, 82% and

82% of the time for sample sizes 100, 200 and 400, respectively.

From the �rst three panels of Table 1 we can clearly see that traditional model selection criteria

do not perform well in choosing p; r and q jointly in �nite samples. The percentages of times the

correct model is chosen are only 22%, 26% and 29% with the AIC, 39%, 52% and 62% with HQ,

and 42%, 63% and 79% with SC, for sample sizes of 100, 200 and 400, respectively. Note that when

we compare the marginal frequencies of (p; r), HQ is the most successful for choosing both p and r,

a conclusion that is consistent with results in Vahid and Issler (2002).

The main reason for not being able to determine the triplet (p; r; q) correctly is the failure of these

criteria to choose the correct q. Ploberger and Phillips (2003) show that the correct penalty for free

parameters in the long-run parameter matrix is larger than the penalty considered by traditional

model selection criteria. Accordingly, all three criteria are likely to over-estimate q in �nite samples,

and of them SC is likely to appear relatively most successful because it assigns a larger penalty to all

free parameters, even though the penalty is still less than ideal. This is exactly what the simulations

reveal.

The fourth panel of Table 1 includes results for the PIC. The percentages of times the correct

model is chosen increase to 52%, 77% and 92% for sample sizes of 100, 200 and 400, respectively.

Comparing the margins, it becomes clear that this increased success relative to HQ and SC is almost

entirely due to improved precision in the selection of q. The PIC chooses q correctly 76%, 91% and

97% of the time for sample sizes 100, 200 and 400, respectively. Furthermore, for the selection of p

and r only, PIC does not improve upon HQ.

Similar conclusions can be reached from the results for the (2; 1; 1) DGPs presented in Table 2.

We note that in this case, even though the PIC improves on HQ and SC in choosing the number

of cointegrating vectors, it does not improve on HQ or SC in choosing the exact model, because it

severely underestimates p. This echoes the �ndings of Vahid and Issler (2002) in the stationary case
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that the Schwarz criterion (recall that the PIC penalty is of the same order as the Schwarz penalty in

the stationary case) severely underestimates the lag length in small samples in reduced rank VARs.

Our Monte-Carlo results show that the advantage of PIC over HQ and SC is in the determination

of the cointegrating rank. Indeed, HQ seems to have an advantage over PIC in selecting the correct

p and r in small samples. These results coupled with the practical di¢ culties in computing the PIC

we outline in Section 4 motivated us to consider the two-step alternative procedure to improve the

model selection task.

The �nal panels in Tables 1 and 2 summarise the performance of our two-step procedure. In

both tables we can see that the hybrid HQ-PIC procedure improves on all other criteria in selecting

the exact model. The improvement is a consequence of the advantage of HQ in selecting p and r

better, and PIC in selecting q better.

Note that our hybrid procedure results in over-parameterised models more often than just using

PIC as the model selection criterion. We examined whether this trade-o¤ has any signi�cant conse-

quences for forecasting and found that it does not. In all simulation settings, models selected by the

hybrid procedure with HQ-PIC as the model selection criteria forecast better than models selected

by PIC. Again, we do not present these results here, but they are also available upon request.

6.2 Forecasts

Recall that the forecasting results are expressed as the percentage improvement in forecast accuracy

measures of possibly rank reduced models over the unrestricted VAR model in levels selected by SC.

Also, note that the object of interest in this forecasting exercise is assumed to be the �rst di¤erence

of variables, although GFESM gives a measure of accuracy that is the same for levels or di¤erences.

We label the models chosen by the hybrid procedure proposed in the previous section and esti-

mated by the iterative process of Section 3 as VECM(HQ-PIC). We label the models estimated by the

usual Johansen method with AIC as the model section criterion for the lag order as VECM(AIC+J).

Table 3 presents the forecast accuracy improvements in a (1; 1; 2) setting. In terms of the trace

and determinant of the MSFE matrix, there is some improvement in forecasts over unrestricted VAR

models at all horizons. With only 100 observations, GFESM worsens for horizons 8 and longer. This

means that if the object of interest was some combination of di¤erences across di¤erent horizons

(for example, the levels of all variables or the levels of some variables and �rst di¤erences of others),

there may not have been any improvement in the MSFE matrix. With 200 or more observations,

all forecast accuracy measures show some improvement, with the more substantial improvements

being for the one-step-ahead forecasts. Also note that the forecasts of the models selected by the

hybrid procedure are almost always better than those produced by the model chosen by the AIC

plus Johansen method, which only pays attention to lag-order and long-run restrictions.

Table 4 presents the forecast accuracy improvements in a (2; 1; 1) setting. This set of DGPs
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have more severe rank reductions than the (1; 1; 2) DGPs, and, as a result, the models selected by

the hybrid procedure show more substantial improvements in forecasting accuracy over the VAR

in levels, in particular for smaller sample sizes. Forecasts produced by the hybrid procedure are

also substantially better than forecasts produced by the AIC+Johansen method, which does not

incorporate short-run rank restrictions. Note that although the AIC+Johansen forecasts are not as

good as the HQ-PIC forecasts, they are substantially better than the forecasts from unrestricted

VARs at short horizons.

Following a request from a referee in Tables 3 and 4 we have also presented Diebold and Mariano

(1995) tests for equal predictive accuracy between the rank reduced speci�cations and the unre-

stricted VARs for the TMSFE. In general the results are as expected. Models that incorporate

reduced rank restrictions rarely forecast signi�cantly worse than the unrestricted models. They

either perform the same or signi�cantly better than the unrestricted VARs.

7 Empirical example

The techniques discussed in this paper are applied to two di¤erent data sets in forecasting exercises.

The �rst data set contains Brazilian in�ation, as measured by three di¤erent types of consumer-

price indices, available on a monthly basis from 1994:9 through 2009:11, with a span of more than 15

years (183 observations). It was extracted from IPEADATA �a public database with downloadable

Brazilian data (http://www.ipeadata.gov.br/). The second data set being analyzed consist of real

U.S. per-capita private output5, personal consumption per-capita, and �xed investment per-capita,

available on a quarterly basis from 1947:1 through 2009:03, with a span of more than 62 years (251

observations). It was extracted from FRED�s database of the Federal Reserve Bank of St. Louis

(http://research.stlouisfed.org/fred2/). Considering that we will keep some observations for forecast

evaluation (90 observations), the size of these data bases are close to the number of simulated

observations in the Monte-Carlo exercise for T = 100 and T = 200 respectively.

7.1 Forecasting Brazilian In�ation

The Brazilian data set consists of three alternative measures of CPI price indices. The �rst is the

o¢ cial consumer price index used in the Brazilian In�ation-Targeting Program. It is computed by

IBGE, the statistics bureau of the Brazilian government, labelled here as CPI-IBGE. The second is

the consumer price index computed by Getulio Vargas Foundation, a traditional private institution

which computes several Brazilian price indices since 1947, labelled here as CPI-FGV. The third is

the consumer price index computed by FIPE, an institute of the Department of Economics of the

University of São Paulo, labelled here as CPI-FIPE.

5Private Output is GNP minus Real Federal Consumption Expenditures and Gross Investment.
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These three indices capture di¤erent aspects of Brazilian consumer-price in�ation. First, they

di¤er in terms of geographical coverage. CPI-FGV collects prices in 12 di¤erent metropolitan areas in

Brazil, 11 of which are also covered by CPI-IBGE6. On the other hand, CPI-FIPE only collects prices

in São Paulo �the largest city in Brazil �also covered by the other two indices. Tracked consumption

bundles are also di¤erent across indices. CPI-FGV focus on bundles of the representative consumer

with income between 1 and 33 minimum wages. CPI-IBGE focus on bundles of consumers with

income between 1 and 40 minimum wages, while CPI-FIPE focus on consumers with income between

1 and 20 minimum wages.

Although all three indices measure consumer-price in�ation in Brazil, Granger Causality tests

con�rm the usefulness of conditioning on alternative indices to forecast any given index in the models

estimated here. Despite the existence of these forecasting gains, one should expect a similar pattern

for impulse-response functions across models, re�ecting a similar response of di¤erent price indices

to shocks to the dynamic system.

We compare the forecasting performance of (i) the VAR in (log) levels, with lag length chosen by

the standard Schwarz criterion; (ii) the VECM, using standard AIC for choosing the lag length and

Johansen�s test for choosing the cointegrating rank; and (iii) the reduced rank model, with rank and

lag length chosen simultaneously using the Hannan-Quinn criterion and cointegrating rank chosen

using PIC, estimated by the iterative process described in Section 3. All forecast comparisons are

made using the �rst di¤erence of the (log) levels of the price indices, i.e., price in�ation.

For all three models, the estimation sample starts from 1994:09 through 2001:02, with 78 ob-

servations. With these initial estimates, we compute the applicable choices of p, r, and q for each

model and forecast in�ation up to 16 months ahead. Keeping the initial observation �xed (1994:9),

we add one observation at the end of the estimation sample, choose potentially di¤erent values for p,

r, and q for each model, and forecast in�ation again up to 16 months ahead. This procedure is then

repeated until the �nal estimation sample reaches 1994:9 through 2008:7, with 167 observations.

Then, we have a total of 90 out-of-sample forecasts for each horizon (1 to 16 months ahead), which

are used for forecast evaluation. Thus, the estimation sample varies from 78 to 167 observations and

mimics closely the simulations labelled T = 100 in the Monte-Carlo exercise.

Results of the exercise described above are presented in Table 5. For any horizon, there are

substantial forecasting gains of the VECM(HQ-PIC) over the VAR in levels: for example, for 4

months ahead, GFESM , TMSFE and jMSFEj show gains of 91:0%, 45:2% and 32:4% respectively.
Results for 8 months ahead are even more impressive. Upon comparison, the forecasting gains of the

VECM(AIC+J) over the latter are not as large for the shorter horizons, but it increases substantially

for horizons 12 and 16 as expected. The comparison between VECM(HQ-PIC) and VECM(AIC+J)

shows gains for the former almost everywhere, with substantial improvement in shorter horizons.

6There are no metropolitan areas covered by CPI-IBGE that are not covered by CPI-FGV.
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For 4 months ahead, GFESM , TMSFE and jMSFEj show gains of 79:9%, 39:0% and 22:4%

respectively.

Table 5 also shows Diebold-Mariano statistics for equal forecast variances among pair of forecasts

for individual series and all horizons. As a rule, forecasting using the VAR in levels produces

signi�cant higher variances than either the VECM(HQ-PIC) or the VECM(AIC+J). Testing the

equality of the variances of the forecast errors using the VECM(HQ-PIC) and the VECM(AIC+J)

show signi�cant di¤erences at moderate horizons (4 and 8), although, most of the time, we cannot

reject the null of equal variances. It should be noticed that there is no case where either the VAR in

levels or the VECM(AIC+J) generate a smaller signi�cant variance vis-a-vis the VECM(HQ-PIC)

for any in�ation series at all horizons.

It is also worth reporting the �nal choices of p, r, and q for the best models studied here as the

estimation sample goes from 1994:09-2001:02 all the way to 1994:9-2008:7. While the VECM(HQ-

PIC) chose p = 17, r = 1 or 2, and q = 08, most of the time, the VECM(AIC+J) chose p = 19 and

q = 110, most of the time. Hence, the superior performance of the VECM(HQ-PIC) vis-a-vis the

VECM(AIC+J) may be due to either imposing a reduced-rank structure or to ignoring potential

cointegration relationships. This is especially true for the shorter horizons.

7.2 Forecasting U.S. Macroeconomic Aggregates

The data being analyzed here is well known. It consists of (log) real U.S. per-capita private output �

y, personal consumption per-capita �c, and �xed investment per-capita �i, extracted from FRED�s

database on a quarterly frequency11 from 1947:01 through 2009:03.

Again, we compare the forecasting performance of (i) the VAR in (log) levels, with lag length

chosen by the standard Schwarz criterion; (ii) the VECM, using standard AIC for choosing the lag

length and Johansen�s test for choosing the cointegrating rank; and (iii) the reduced rank model,

with rank and lag length chosen simultaneously using the Hannan-Quinn criterion and cointegrating

rank chosen using PIC, estimated by the iterative process of Section 3. All forecast comparisons are

made using the �rst di¤erence of the (log) levels of the data, i.e., using � log (yt), � log (ct), and

� log (it). For all three models, the estimation sample starts from 1947:01 through 1983:02, with

146 observations. As before, we keep rolling the estimation sample until it reaches 1947:01 through

2005:03, with 235 observations, with a total of 90 out-of-sample forecasts for each horizon used for

forecast evaluation. Since the estimation sample varies from 146 to 235 observations it mimics closely

7On ocasion it chose p = 3.
8On ocasion it chose q = 1.
9On ocasion it chose p = 5.
10On ocasion it chose q = 3.
11Using FRED�s mnemonics (2010) for the series, the precise de�nitions are: PCECC96 - consumption, FPIC96 -

investment, and (GNP96 - FGCEC96) - output. Population series mnemonics is POP, which is only available from
1952 on in FRED. To get a complete series starting in 1947:01 it was chained with the same series available in DRI
database, whose mnemonics is GPOP.
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the simulations labelled T = 200 in the Monte-Carlo exercise.

Results of the exercise described above are presented in Table 6. For any horizon, there are

considerable forecasting gains for the VECM(HQ-PIC) over the VAR in levels: at 8 quarters ahead,

GFESM , TMSFE and jMSFEj show gains of 169:2%, 25:3% and 8:4% respectively. The fore-

casting gains of the VECM(AIC+J) over the VAR in levels are not as large for all horizons. The

comparison between VECM(HQ-PIC) and VECM(AIC+J) shows gains for the former everywhere,

with higher improvement in shorter horizons. For example, at 4 quarters ahead, GFESM , TMSFE

and jMSFEj show gains of 44:8%, 33:3% and 21:4% respectively. Despite that, the Diebold-Mariano
statistics for equal variances for the forecast errors predicting � log (yt), � log (ct), and � log (it) are

insigni�cant everywhere, when VECM(HQ-PIC) and VECM(AIC+J) are confronted.

Finally, we investigate the �nal choices of p, r, and q as the estimation sample progresses from

1947:01-1983:02 to 1947:01-2005:03. For the VECM(HQ-PIC) they are: p = 1, r = 2, and q = 0,

everywhere, while the VECM(AIC+J) chose p = 1 and q = 112, most of the time. Hence, the

superior performance of the VECM(HQ-PIC) vis-a-vis the VECM(AIC+J) may be due to either

imposing a reduced-rank structure or to ignoring potential cointegration relationships.

8 Conclusion

Motivated by the results of Vahid and Issler (2002) on the success of the Hannan-Quinn criterion

in selecting the lag length and rank in stationary VARs, and the results of Ploberger and Phillips

(2003) and Chao and Phillips (1999) on the generalisation of Rissanen�s theorem to trending time

series and the success of PIC in selecting the cointegrating rank in VARs, we propose a combined

HQ-PIC procedure for the simultaneous choice of the lag-length and the ranks of the short-run and

long-run parameter matrices in a VECM and we prove its consistency. Our simulations show that

this procedure is capable of selecting the correct model more often than other alternatives such as

pure PIC or SC.

In this paper we also present forecasting results that show that models selected using this hybrid

procedure produce better forecasts than unrestricted VARs selected by SC and cointegrated VAR

models whose lag length is chosen by the AIC and whose cointegrating rank is determined by

the Johansen procedure. We have chosen these two alternatives for forecast comparisons because

we believe that these are the model selection strategies that are most often used in the empirical

literature. However, we have considered several other alternative model selection strategies and the

results are qualitatively the same: the hybrid HQ-PIC procedure leads to models that generally

forecast better than VAR models selected using other procedures.

A conclusion we would like to highlight is the importance of short-run restrictions for forecasting.

12On ocasion it chose q = 0.
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We believe that there has been much emphasis in the literature on the e¤ect of long-run cointegrating

restrictions on forecasting. Given that long-run restrictions involve the rank of only one of the

parameter matrices of a VECM, and that inference on this matrix is di¢ cult because it involves

inference about stochastic trends in variables, it is puzzling that the forecasting literature has paid

so much attention to cointegrating restrictions and relatively little attention to lag-order and short-

run restrictions in a VECM. The present paper �lls this gap and highlights the fact that the lag-order

and the rank of short-run parameter matrices are also important for forecasting. Our hybrid model

selection procedure and the accompanying simple iterative procedure for the estimation of a VECM

with long-run and short-run restrictions provide a reliable methodology for developing multivariate

autoregressive models that are useful for forecasting.

How often restrictions of the type considered in this paper are present in VAR approximations

to real life data generating processes is an empirical question. Macroeconomic models in which

trends and cycles in all variables are generated by a small number of dynamic factors �t in this

category. Also, empirical papers that study either regions of the same country or similar countries

in the same region often �nd these kinds of long-run and short-run restrictions. We illustrate the

usefulness of the model-selection strategy discussed above in two empirical applications: forecasting

Brazilian in�ation and U.S. macroeconomic aggregates growth rates. We �nd gains of imposing

short- and long-run restrictions in VAR models, since the VECM(HQ-PIC) and the VECM(AIC+J)

outperform the VAR in levels everywhere. Tests of equal variance con�rm that these gains are

signi�cant. Moreover, ignoring short-run restrictions usually produce inferior forecasts with these

data, since the VECM(HQ-PIC) outperforms the VECM(AIC+J) almost everywhere, but these

gains are not always signi�cant in tests of equal variance.

It is true that discovering the �true� model is a di¤erent objective from model selection for

forecasting. However, in the context of partially non-stationary variables, there are no theoretical

results that lead us to a de�nite model selection strategy for forecasting. Using a two variable

example, Elliott (2006) shows that, ignoring estimation uncertainty, whether or not considering

cointegration will improve short-run or long-run forecasting depends on all parameters of the DGP,

even the parameters of the covariance matrix of the errors. In addition there is no theory that tells

us whether �nite sample biases of parameter estimates will help or hinder forecasting in partially

non-stationary VARs. Given this state of knowledge, when one is given the task of selecting a

single model for forecasting it is reasonable to use a model selection criterion that is more likely

to pick the �true� model and in this paper we verify that VARs selected by our hybrid model

selection strategy are likely to produce better forecasts than unrestricted VARs and VARs that only

incorporate cointegration restrictions.
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A The Fisher information matrix of the reduced rank VECM

Assuming that the �rst observation in the sample is labelled observation �p+1 and that the sample
contains T + p observations, we write the K-variable reduced rank VECM

�yt = 
0 � Iq �0

�
yt�1 +

�
Ir
C 0

�
[D1�yt�1 +D2�yt�2 + � � �+Dp�yt�p] + �+ et;

or in stacked form

�Y = Y�1

�
Iq
�

�
 +WD

�
Ir C

�
+ �T�

0 + E;

where

�Y
T�K

=

264 �y01
...

�y0T

375 ; Y�1
T�K

=

264 y00
...

y0T�1

375 ; E
T�K

=

264 e01
...
e0T

375
W

T�Kp
=

�
�Y�1 � � � �Y�p

�
=

264 �y00 � � � �y0�p+1
...

...
...

�y0T�1 � � � �y0T�p

375
D

Kp�r
=

0B@ D01
...
D0p

1CA ;
and �T is a T � 1 vector of ones. When et are N (0;
) and serially uncorrelated, the log-likelihood
function, conditional on the �rst p observations being known, is:

ln l (�; !) = �KT
2
ln (2�)� T

2
ln j
j � 1

2

TX
t=1

e0t

�1et

= �KT
2
ln (2�)� T

2
ln j
j � 1

2
tr
�
E
�1E0

�
;

where

� =

0BBBB@
vec (�)
vec ()
vec (D)
vec (C)
�

1CCCCA
is a (K � q) q + Kq + Kpr + r (K � r) + K matrix of mean parameters, and ! = vech (
) is a

K (K + 1) =2 vector of unique elements of the variance matrix. The di¤erential of the log-likelihood

is (see Magnus and Neudecker 1988)

d ln l (�; !) = �T
2
tr
�1d
+

1

2
tr
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�1d

�1E0E

�
� 1
2
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�1E0dE

�
� 1
2
tr
�

�1dE0E

�
=

1

2
tr
�

�1

�
E0E � T


�

�1d


�
� tr

�

�1E0dE
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and the second di¤erential is:
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�
:
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Since we eventually want to evaluate the Fisher information matrix at the maximum likelihood

estimator, and at the maximum likelihood estimator Ê0Ê�T 
̂ = 0; and also 
̂�1Ê0dE=d� = 0 (these
are apparent from the �rst di¤erentials), we can delete these terms from the second di¤erential, and

use tr (AB) = vec (A0)0 vec (B) to obtain

d2 ln l (�; !) = �T
2
tr
�

�1d

�1d


�
� tr

�

�1dE0dE

�
= �T

2
(d!)0D0

K

�

�1 
 
�1

�
DKd! � (vec (dE))0

�

�1 
 IT

�
vec (dE) ;

where DK is the �duplication matrix�. From the model, we can see that

dE = �Y�1
�

0
d�
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 � Y�1
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�
d �WdD
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Ir C
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�WD
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0 dC
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� �Td�0;

and therefore
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�
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Hence, the elements of the Fisher information matrix are:
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B Proof of Theorem 2

The �rst three assumptions ensure that � yt is covariance stationary and yt are cointegrated with

cointegrating rank q0: These together with assumption (vi) ensure that all sample means and co-

variances of �yt consistently estimate their population counterparts and the least squares estimator

of parameters is consistent. Assumptions (iv) and (v) state that the true rank is r0 and the true

lag-length is p0 (or the lag order of the implied VAR in levels is p0 + 1). For any (p; r) pair, the

second step of the analysis produces the least squares estimates of �1; : : : ;�p with rank r when no
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restrictions are imposed on � Anderson (1951). Reinsel (1997) contains many of the results that we

use in this proof). Under the assumption of normality, these are the ML estimates of �1; : : : ;�p with

rank r with � unrestricted and the resulting 
̂p;r used in the HQ procedure is the corresponding

ML estimate of 
. Note that normality of the true errors is not needed for the proof. We use

the results of Sims et al. (1990) who show that in the above model the least squares estimates of

�1; : : : ;�p have the standard asymptotic properties as in stationary VARs, in particular that they

consistently estimate their population counterparts and that their rate of convergence is the same as

T�
1
2 : Let zt; zt�1; : : : ; zt�p denote �yt;�yt�1; :::;�yt�p after the in�uence of the constant and yt�1

is removed from them and let Z;Z�1; : : : ; Z�p denote T �K matrices with z0t; z
0
t�1; : : : ; z

0
t�p in their

row t = 1; : : : ; T (we assume that the sample starts from t = �pmax+1), and letWp = [Z�1
... � � �

...Z�p]

and Bp = [�1
... � � �

...�p]0. The estimated model in the second step can be written as:

Z =WpB̂p + Ûp

where Ûp is the T �K matrix of residuals when the lag length is p. In an unrestricted regression

ln j 1T Û
0
pÛpj = ln j 1T (Z

0Z�Z 0Wp(W
0
pWp)

�1W 0
pZ)j = ln j 1T Z

0Zj+ln jIK�(Z 0Z)�1Z 0Wp(W
0
pWp)

�1W 0
pZj

= ln j 1T Z
0Zj+

PK
i=1 ln(1� �̂

2

i (p)); where �̂
2

1(p) � �̂
2

2(p) � : : : � �̂
2

K(p); the eigenvalues of

(Z 0Z)�1Z 0Wp(W
0
pWp)

�1W 0
pZ are the ordered sample partial canonical correlations between �yt

and �yt�1; :::;�yt�p after the in�uence of a constant and yt�1 has been removed. Under the

restriction that the rank of B is r; the log-determinant of the squared residuals matrix becomes

ln j 1T Û
0
p;rÛp;rj = ln j 1T Z

0Zj+
PK
i=K�r+1 ln(1� �̂

2

i (p)): Further, note that Wp = [Wp�1
...Z�p] and from

the geometry of least squares we know

Z 0Wp(W
0
pWp)

�1W 0
pZ = Z

0Wp�1(W 0
p�1Wp�1)�1W 0

p�1Z+Z
0Qp�1Z�p(Z 0�pQp�1Z�p)

�1Z 0�pQp�1Z where

Qp�1 = IT �Wp�1(W 0
p�1Wp�1)�1W 0

p�1:

(i) Consider p = p0 and r = r0�1 : ln j 1T Û
0
p0;r0�1Ûp0;r0�1j�ln j

1
T Û

0
p0;r0Ûp0;r0 j = � ln(1��̂

2

K�r0+1(p0)):

�̂
2

K�r0+1(p0) converges in probability to its population counterpart, the r0-th largest eigenvalue of

��1z B
0
p0�wBp0 ; where �x denotes the population second moment of the vector x. This population

canonical correlation is strictly greater than zero because Bp0 has rank r0: Therefore

p lim (ln j 1T Û
0
p0;r0�1Ûp0;r0�1j � ln j

1
T Û

0
p0;r0Ûp0;r0 j) = � ln(1� �

2
K�r0+1(p0)) > 0:

(ii) Consider p = p0 � 1 and r = r0 :

(Z 0Z)�1Z 0Wp0(W
0
p0Wp0)

�1W 0
p0Z = (Z 0Z)�1Z 0Wp0�1(W

0
p0�1Wp0�1)

�1W 0
p0�1Z

+(Z 0Z)�1Z 0Qp0�1Z�p0(Z
0
�p0Qp0�1Z�p0)

�1Z 0�p0Qp0�1Z:

Since the second matrix on the right side is positive semi-de�nite, it follows that �̂
2

i (p0�1) � �̂
2

i (p0)

for all i = 1; : : : ;K:13 We know that the probability limits of the smallest K � r0 eigenvalues �̂
2

i (p0)

13Some textbooks de�ne positive de�niteness and associated inequalities concerning ordered eigenvalues for sym-
metric matrices only. Note that since the eigenvalues of any square matrix A is the same as the eigenvalues of GAG�1
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are zero. Therefore, the probability limits of the smallest K � r0 eigenvalues �̂
2

i (p0 � 1) must also
be zero. Moreover, the trace of the matrix on the left is equal to the sum of the traces of the two

matrices on the right of the equal sign. The probability limit of the last matrix on the right side is

��1z �
0
p0�z:w�p0 where �z:w = p lim(

1
T Z

0
�p0Qp0�1Z�p0); and since rank(�p0) > 0 by assumption, the

probability limit of the trace of the second matrix on the right hand side will be strictly positive

(note that even when �p0 is nilpotent (i.e. has all zero eigenvalues even though its rank is not zero),

��1z �
0
p0�z:w�p0 will not be nil-potent). Therefore it must be that p lim �̂

2

i (p0 � 1) < p lim �̂
2

i (p0) for

at least one i = r0 + 1; : : : ;K: This implies that p lim (ln j 1T Û
0
p0�1;r0Ûp0�1;r0 j � ln j

1
T Û

0
p0;r0Ûp0;r0 j) =PK

i=K�r0+1(ln(1� �
2
i (p0 � 1))� ln(1� �2i (p0))) > 0:

(i) and (ii), together with the fact that jÛ 0p1;r1Ûp1;r1 j � jÛ
0
p2;r2Ûp2;r2 j whenever p1 � p2 and r1 � r2

(i.e., for all nested models the less restrictive cannot �t worse) imply that the probability limit of

ln j 1T Û
0
p0;r0Ûp0;r0 j is strictly smaller than the probability limit of ln j

1
T Û

0
p;rÛp;rj for all (p � p0 and

r < r0) or (p < p0 and r � r0): Although the penalty favours the smaller models, the reward for

parsimony increases at rate ln lnT while the reward for better �t increases at rate T and therefore

dominates. Hence, the probability of choosing a model with (p � p0 and r < r0) or (p < p0 and

r � r0) goes to zero asymptotically.
(i�) In (i), replace p = p0 with p = ~p � p0: The model now includes redundant lags whose true

coe¢ cients are zero and these coe¢ cients are consistently estimated. Moreover, adding these zero

parameters does not change the rank. Therefore all arguments in (i) apply to this case also, and

we can therefore deduce that the probability of under-estimating r with this procedure goes to zero

asymptotically.

(ii�) In (ii), replace r = r0 with r = ~r � r0: The model now does not impose all rank restrictions that
the true data generating process includes, but the extra eigenvalues will converge to their true value

of zero asymptotically and all arguments in (ii) apply to this case also. Therefore, we can conclude

that the probability of under-estimating p with this procedure goes to zero asymptotically.

(iii) Consider p = ~p � p0 and r = ~r � r0 with at least one of the inequalities strict. These are

all models that are larger than the true model and nest the true model. The probability limit of

ln j 1T Û
0
~p;~rÛ~p;~rj for these models is the same as the probability limit of ln j 1T Û

0
p0;r0Ûp0;r0 j: However,

we know that T (ln j 1T Û
0
p0;r0Ûp0;r0 j � ln j

1
T Û

0
~p;~rÛ~p;~rj) is the likelihood ratio statistic of testing general

linear restrictions that reduce the ~p; ~r model to the p0; r0 model. Since these restrictions are true,

T (ln j 1T Û
0
p0;r0Ûp0;r0 j � ln j

1
T Û

0
~p;~rÛ~p;~rj) = Op (1) : While the reward for better �t from larger models is

bounded in probability, the penalty terms for extra parameters increases without bound. Hence, the

probability of choosing a larger model that nests the true model goes to zero asymptotically. This

for any invertible matrix G with the same dimensions as A (see Magnus and Neudecker 1988, Chapter 1) one can
choose G = (Z0Z)

1
2 and make all matrices on both sides of the inequality symmetric without changing any of their

eigenvalues. Indeed this is a useful transformation for calculating canonical correlations because computer procedures
for computation of eigenvalues of symmetric matrices are more accurate than those for general matrices.
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completes the proof that the �rst step of the procedure consistently estimates p0 and r0:

For the consistency of the second step estimator of q0; we note that Chao and Phillips (1999) show

that the PIC can be written as the sum (Chao and Phillips 1999, express PIC as product of the

likelihood and penalty term, here we refer to the logarithmic transformation of the PIC expressed

in their paper) of two parts, one that comprises the log-likelihood of q given p and its associated

penalty, and the other that comprises the log-likelihood of p without any restrictions on q and a

penalty term involving the lag-length. With similar steps one can write the PIC in our case as the

sum of one part related to q given p and r and another that involves p and r: Hence, plugging in

p and r that are estimated via another consistent procedure does not alter the consistency of the

estimator of q. The main reason that the choice of p and r does not a¤ect the consistency of q is that

the smallest K � q0 sample squared canonical correlations between �yt and yt�1 converge to zero
in probability and the remaining q0 converge to positive limits, regardless of any �nite stationary

elements that are partialed out. Therefore, for a given (p; r) when q < q0; T times the di¤erence

in log-likelihood values dominates the penalty term, and hence the probability of underpredicting q

goes to zero and T !1: Also, when q > q0, T times the di¤erence in log-likelihood values remains
bounded in probability, but the magnitude of the penalty for lack of parsimony grows without bound

as T !1, therefore the probability of overestimating q goes to zero asymptotically also. Note that
the fact that the asymptotic distribution of the likelihood ratio statistic is not �2 or that it may

depend on nuisance parameters does not matter. What is important is that it is Op(1): Hence the

second step produces a consistent estimator of q0; and this completes the proof.

Remark 3 The above proof is not exclusive to HQ and applies to any model selection criterion in

which cT ! 1 and cT
T ! 0 as T ! 1; where cT is the penalty for each additional parameter in

the �rst stage of the procedure. The consistency of model selection criteria with this property for

determining p in vector autoregressions has been established in Quinn (1980), and in autoregressions

with unit roots in Paulsen (1984) and Tsay (1984). Consistency of such criteria for selection of

cointegrating rank q and the lag order p has been established in Gonzalo and Pitarakis (1995) and

Aznar and Salvador (2002). Consistency of PIC for selection of cointegrating rank q and the lag

order p has been established in Chao and Phillips (1999). The contribution here is proving the

consistency when r is added to the set of parameters to be estimated, and showing that this can be

achieved with a two-step procedure.

Remark 4 As with all models selected with any consistent model selection criterion, the warning

of Leeb and Potscher (2005) applies to models selected with our procedure as well in the sense

that there is no guarantee that any inference made based on asymptotic distributions conditional on

p; q; r selected by this procedure will necessarily be more accurate than that based on an unrestricted

autoregression of order pmax:
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Remark 5 Let ~�1 be a full rank K � (K � r0) matrix such that ~�01[ �1 �2 ::: �p0 ] = 0: Such a

matrix exists because rank [ �1 �2 ::: �p0 ] = r0 but it is not unique. We can augment ~�1 with

r0 additional linearly independent vectors arranged as columns of matrix ~�2 to form a basis for Rn;

and to achieve uniqueness we can choose these matrices such that (~�1
...~�2)0
(~�1

...~�2) = IK : The DGP

can be alternatively written as

~�01�yt = c1 +�(1)yt�1 + �(1);t

~�02�yt = c2 +�(2)yt�1 + �(2);1�yt�1 + �(2);2�yt�2 + � � �+ �(2);p0�yt�p0 + �(2);t

where for any vector or matrix X; X(i) = ~�0iX, i = 1; 2: While we have presented the model selection

criteria as penalised log-likelihoods and have referred to maximum likelihood estimators and likelihood

ratio tests in our proof to conform with the previous literature, all arguments could be phrased in the

context of GMM estimation of the above structural model and test statistics for testing overidentifying

restrictions in the �rst block of this structure Anderson and Vahid (1998). Therefore, there is no

need for any assumption of normality at any stage.
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Table 3: Percentage improvement in forecast accuracy measures for possibly reduced rank models
over unrestricted VARs in a (1,1,2) setting.

Horizon T=100 T=200 T=400
(h) TMSFE jMSFEj GFESM TMSFE jMSFEj GFESM TMSFE jMSFEj GFESM

VECM(HQ-PIC) for all DGPs

1 1:4
(44;46;10)a

3.8 3.8 1:4
(49;49;2)

4.0 4.0 0:9
(53;47;0)

2.7 2.7

4 0:7
(23;77;0)

1.6 3.7 0:7
(46;54;0)

2.4 10.2 0:3
(27;73;0)

1.1 6.3

8 0:7
(19;80;1)

1.8 -7.2 0:1
(5;91;4)

0.1 8.0 0:1
(4;96;0)

0.5 6.8

12 0:2
(3;93;4)

0.5 -19.4 0:4
(14;86;0)

0.9 7.8 0:1
(4;96;0)

0.2 6.6

16 0:2
(5;94;1)

0.6 -31.3 0:4
(18;82;0)

1.0 3.7 0:1
(4;95;1)

0.2 7.2

VECM(AIC+J) for all DGPs

1 0:9
(28;63;9)

2.3 2.3 0:8
(30;67;3)

2.3 2.3 0:4
(27;71;2)

1.0 1.0

4 0:4
(14;86;0)

0.6 2.0 0:2
(13;86;1)

0.8 5.5 0:1
(8;92;0)

0.4 2.2

8 0:5
(21;78;1)

1.4 -5.5 0:0
(2;91;7)

-0.2 4.2 0:1
(2;98;0)

0.2 1.9

12 0:1
(5;92;3)

0.4 -12.5 0:2
(12;88;0)

0.5 4.1 0:0
(0;98;2)

-0.1 1.4

16 0:1
(5;92;3)

0.4 -20.4 0:3
(18;82;0)

0.7 1.5 0:0
(3;97;0)

0.0 1.8

VECM(HQ-PIC) are models selected by the model selection process proposed in Section 4.1 and estimated
by the algorithm proposed in Section 3. VECM(AIC+J) are estimated by the usual Johansen procedure with
AIC as the model selection criterion for the lag length.
a We perform Diebold and Mariano (1995) tests at the 5% level of signi�cance for equal predictive accuracy
between the reduced rank models and unrestricted VARs. For cell (x,y,z), y denotes the percentage of DGPs
for which the Null of equal forecast accuracy is not rejected and entries x and z denote the percentage of
DGPs for which the Null is rejected with a positive statistic (i.e., the reduced rank model is signi�cantly more
accurate than the unrestricted VAR) and a negative statistic (i.e., the reduced rank model is signi�cantly
less accurate than the unrestricted VAR) respectively.
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Table 4: Percentage improvement in forecast accuracy measures for possibly reduced rank models
over unrestricted VARs in a (2,1,1) setting.

Horizon T=100 T=200 T=400
(h) TMSFE jMSFEj GFESM TMSFE jMSFEj GFESM TMSFE jMSFEj GFESM

VECM(HQ-PIC) for all DGPs

1 7:8
(87;13;0)a

21.8 21.8 4:5
(90;10;0)

12.9 12.9 2:5
(95;5;0)

7.5 7.5

4 2:2
(69;31;0)

8.1 37.8 2:0
(78;22;0)

5.2 30.6 0:9
(47;53;0)

2.3 17.5

8 1:0
(24;76;0)

2.7 38.5 0:6
(22;78;0)

2.3 34.1 0:6
(32;68;0)

2.2 25.7

12 0:4
(12;87;1)

0.8 29.8 0:8
(27;73;0)

2.4 36.8 0:9
(82;18;0)

2.9 29.5

16 0:8
(16;84;0)

1.8 25.5 0:3
(16;59;25)

0.3 32.8 0:7
(39;61;0)

2.4 32.7

VECM(AIC+J) for all DGPs

1 5:4
(81;19;0)

14.1 14.1 3:2
(81;19;0)

8.7 8.7 1:4
(72;28;0)

4.1 4.1

4 1:3
(29;71;0)

4.8 21.6 1:2
(61;39;0)

3.0 21.3 0:6
(35;65;0)

1.8 10.7

8 0:7
(15;85;0)

1.9 21.5 0:6
(23;77;0)

2.3 26.1 0:4
(14;86;0)

1.7 16.8

12 0:5
(11;89;0)

0.9 14.5 0:6
(19;81;0)

1.9 29.6 0:7
(65;35;0)

2.4 19.2

16 0:6
(13;87;0)

1.4 11.0 0:2
(16;84;0)

0.3 27.4 0:6
(38;62;0)

2.2 22.0

VECM(HQ-PIC) are models selected by the model selection process proposed in Section 4.1 and
estimated by the algorithm proposed in Section 3. VECM(AIC+J) are estimated by the usual
Johansen procedure with AIC as the model selection criterion for the lag length.
a Refer to note in Table 3.
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Table 5: Percentage improvement in forecast accuracy measures for reduced ranked models and
unrestricted VARs for Brazilian in�ation.

Horizon VECM(HQ-PIC) VECM(AIC+J) VECM(HQ-PIC)
versus versus versus

(h) VAR in levels VAR in levels VECM(AIC+J)
GFESM jMFSEj TMFSE GFESM jMFSEj TMFSE GFESM jMFSEj TMFSE

1 69.6 69.6 36.9 3.4 3.4 2.0 66.2 66.2 34.9
(*, *,-) (-,-,-) (-,**,-)

4 91.0 45.2 32.4 11.1 11.1 10.0 79.9 34.1 22.4
(**,**,**) (**,-,-) (**,**,**)

8 107.9 32.9 24.6 45.7 26.5 15.9 62.1 6.4 8.8
(**,**,-) (**,**,-) (-,*,-)

12 120.3 38.4 33.6 52.3 41.9 32.8 68.0 -3.6 0.8
(**,*,-) (**,**,**) (-,-,-)

16 142.7 40.2 36.4 81.9 42.9 39.8 60.8 -2.7 -3.4
(*,*,-) (**,**,**) (-,-,-)

VECM(HQ-PIC) is the model selected by the model selection process proposed in Section 4.1 and
estimated by the algorithm proposed in Section 3. VECM(AIC+J) is the model estimated by the
usual Johansen procedure with AIC as the model selection criterion for the lag length. See Section
7 for further details. The triplet (�; �; �) presents tests of equal variance for forecast errors predicting
� ln (CPI � IBGEt), � ln (CPI � FGVt), and � ln (CPI � FIPEt) respectively. The symbols **,
* and - denote, respectively, signi�cance at the 5% level, at the 10% level, and not signi�cant at the
10% level.

Table 6: Percentage improvement in forecast accuracy measures for reduced ranked models and
unrestricted VARs for U.S. macroeconomic aggregates.

Horizon VECM(HQ-PIC) VECM(AIC+J) VECM(HQ-PIC)
versus versus versus

(h) VAR in levels VAR in levels VECM(AIC+J)
GFESM jMFSEj TMFSE GFESM jMFSEj TMFSE GFESM jMFSEj TMFSE

1 60.4 60.4 35.1 39.5 39.5 16.7 20.9 20.9 18.4
(**,**,**) (**,**,**) (-,-,-)

4 134.7 83.5 56.3 90.0 50.2 35.1 44.7 33.2 21.1
(**,**,**) (**,**,**) (-,-,-)

8 169.2 25.3 8.4 121.0 17.7 7.3 48.2 7.6 1.1
(**,**,-) (**,**,-) (-,**,-)

12 176.3 20.0 1.5 119.0 9.1 0.2 57.3 11.0 1.3
(*,**,-) (**,**,-) (-,-,-)

16 147.3 26.0 3.6 79.7 16.0 3.2 67.7 10.0 0.3
(**,**,-) (**,**,-) (-,-,-)

VECM(HQ-PIC) is the model selected by the model selection process proposed in Section 4.1 and
estimated by the algorithm proposed in Section 3. VECM(AIC+J) is the model estimated by
the usual Johansen procedure with AIC as the model selection criterion for the lag length. See
Section 7 for further details. The triplet (�; �; �) presents tests of equal variance for forecast errors
predicting � ln (yt), � ln (ct), and � ln (it) respectively. The symbols **, * and - denote, respectively,
signi�cance at the 5% level, at the 10% level, and not signi�cant at the 10% level.
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