A note on rationalizability and restrictions on belief

by Giuseppe Cappelletti
A note on rationalizability and restrictions on belief

by Giuseppe Cappelletti
The purpose of the Temi di discussione series is to promote the circulation of working papers prepared within the Bank of Italy or presented in Bank seminars by outside economists with the aim of stimulating comments and suggestions.

The views expressed in the articles are those of the authors and do not involve the responsibility of the Bank.

Editorial Assistants: Roberto Marano, Nicoletta Olivanti.
A NOTE ON RATIONALIZABILITY AND RESTRICTIONS ON BELIEF

by Giuseppe Cappelletti*

Abstract

Rationalizability is a widely accepted solution concept in the study of strategic form game with complete information and is fully characterized in terms of assumptions on the rationality of the players and common certainty of rationality. Battigalli and Siniscalchi extend rationalizability and derive the solution concept called Δ-rationalizability. Their analysis is based on the following assumptions: (a) players are rational; (b) their first-order beliefs satisfy some restrictions; and (c) there is common belief of (a) and (b). In this note I focus on games with complete information and I characterize Δ-rationalizability with a new notion of iterative dominance which is able to capture the additional hypothesis on players' beliefs.

JEL Classification: C72.
Keywords: rationalizability, strategic form game, complete information.

Contents

1. Introduction 5
2. Strategic form games of complete information ... 5
 2.1 Δ-rationalizability and dominance ... 7
 2.2 Main result .. 8
3 Conclusion ... 11
References .. 13

* Bank of Italy, Economics, Research and International Relations.
1 Introduction

The solution concept called rationalizability, which was introduced by Bernheim (1984) and Pearce (1984), is widely accepted in the study of strategic form game with complete information and is fully characterized in term of rationality and common belief in rationality. There are settings where it is plausible to assume that players’ beliefs satisfy some restrictions that are not implied by assumptions concerning rationality or belief in rationality, or beliefs about such beliefs. Such restrictions may be related to some structural properties of the situation analyzed. For example, in a bargaining situation players can believe that their opponents have some preference for fair division, in an auction bidders can expect positive bids to win with positive probability (Battigalli and Siniscalchi, 2003b) or in a communication game players can believe that their opponents trust their messages (Crawford, 2003). Based on this observation, Battigalli and Siniscalchi (1999) investigate the implications of the following assumptions: (a) players are rational; (b) their first-order beliefs satisfy an exogenous restriction; and (c) there is common belief of (a) and (b). Their analysis extends rationalizability taking as given some exogenous restrictions on players’ belief and derives the solution concept called $\Delta - rationalizability$, which does not hinge on any assumption on equilibrium or correctness of beliefs. They apply this new solution concept to games with incomplete information (Battigalli, 2003; Battigalli and Siniscalchi, 2003a; Battigalli et al., 2008) and dynamic games (Battigalli, 1997, 2003; Battigalli and Siniscalchi, 2002, 2007).

Despite its great potential $\Delta - rationalizability$ has not received as many applications as has its unconstrained counterpart. One reason for this lack of attention is that many practitioners find $\Delta - rationalizability$ difficult to operationalize. In fact, it requires the iterative deletion of strategies that cannot be justified by beliefs consistent with progressively higher degrees of strategic sophistication. This procedure could be analytically cumbersome and numerically intractable.

A connection between $\Delta - rationalizability$ and dominance would be valuable on both practical and conceptual levels. I introduce a new dominance concept, called $\Delta - dominance$, and prove that, under appropriate conditions, rationalizability with exogenous restrictions on players’ belief and iterated $\Delta - dominance$ are equivalent in strategic form games with complete information. This extends the classical iterated dominance characterization of rationalizability and simplifies computation of the $\Delta - rationalizable$ in this type of games.

2 Rationalizability and restrictions on belief in strategic form games of complete information

To simplify the analysis I focus on strategic form game of complete information, a model of interactive decision-making in which each agent chooses his strategies once and for all, and these choices are made simultaneously. The model is a structure:

$$G = \langle N, \{S_i, u_i\}_{i \in N} \rangle$$

(1)

where for each player i, belonging to the set $N = \{1, 2, ..., n\}$, S_i is a finite set of possible strategies. The payoff function u_i is defined on the Cartesian product of players’ possible
strategies, $\prod_{i \in N} S_i$, and it assumes real values. The set of mixed strategies of player i is denoted as Σ_i, and it coincides with the set of all probability measures defined on S_i, a generic element of Σ_i is denoted as σ_i. In order to shorten the notation I denote the opponents of player i with $-i$.

Player i’s first-order beliefs are represented by a probability measure on the set of his opponents’ strategies, i.e. a generic first-order belief, μ_i, belongs to the set of probability measures with support contained in $S_{-i} := \prod_{j \neq i} S_j$, the set of first-order beliefs is denoted as $\Delta(S_{-i})$. Players’ belief may be assumed to satisfy some restrictions which are justified or related to some structural properties of the game. Let me denote with Δ_i any subset of $\Delta(S_{-i})$ and with Δ the Cartesian product of all the players’ restrictions, $\Delta := \Delta_1 \times \Delta_2 \times \ldots \times \Delta_n$.

Given a belief μ_i and an action s_i let

$$u_i(s_i, \mu_i) := \sum_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i}) \mu_i(s_{-i})$$

be the expected utility for player i from playing s_i based on his belief μ_i.

Definition 1 A strategy s_i is rational for player i with respect to μ_i if and only if for every $s'_i \in S_i$ the following inequality is satisfied:

$$u_i(s_i, \mu_i) \geq u_i(s'_i, \mu_i)$$

A strategy s_i is rational for player i if the strategy s_i maximizes his expected utility, that is, s_i is a best response to the belief μ_i. I denote with $\rho_i(\mu_i)$ the set of best responses to μ_i. In other words, a strategy s is rational for a player with first-order beliefs μ, when it is justifiable based on belief μ.

If the set of admissible beliefs is exogenously constrained the set of rational strategies is smaller and this leads to the definition of Δ — rationalizability. A strategy profile (s_i, s_{-i}) is Δ — rationalizable if and only if for each player i the strategy s_i belongs to $S_i(k, \Delta)$ for any natural number k, where $S_i(k, \Delta)$ is defined as follow: for k equal to 0 the set $S_i(0, \Delta)$ is equal to S_i and for every natural number k strictly greater than 0

$$S_i(k, \Delta) := \{ s_i \in S_i(k-1, \Delta) : \exists \mu_i \in \Delta_i \text{ such that } s_i \in \rho_i(\mu_i) \text{ and } \mu_i(S_{-i}(k-1, \Delta)) = 1 \}$$

where $S_{-i}(k-1, \Delta)$ is defined as $\prod_{j \neq i} S_j(k-1, \Delta)$.

Definition 2 Given a strategic form game $G = \langle N, \{S_i, u_i\}_{i \in N} \rangle$ and a set of restrictions on players’ beliefs Δ, the strategy s_i is (k, Δ) — rationalizable if and only if s_i belongs to $S_i(k, \Delta)$. The strategy s_i is Δ — rationalizable if and only if s_i belongs to $S_i(\infty, \Delta)$ where $S_i(\infty, \Delta) := \bigcap_{k \geq 1} S_i(k, \Delta)$.

Let me denote the set of strategy profiles that are (k, Δ) — rationalizable as $S(k, \Delta)$ where $S(k, \Delta)$ is equal to the Cartesian product of $S_i(k, \Delta)$, that is $S(k, \Delta) := \prod_{i \in N} S_i(k, \Delta)$.

6
2.1 Δ-rationalizability and dominance

A strategy s_i is strictly dominated for player i by a mixed strategy σ_i on a subset of his opponents' strategies $B_{-i} \subseteq S_{-i}$ if and only if for every strategy profile of his opponents s_{-i}

$$u_i(s_i, s_{-i}) < \sum_{s'_i \in S_i} \sigma_i(s'_i) u_i(s'_i, s_{-i})$$

where $\sigma_i(s'_i)$ is the probability assigned to strategy s'_i by mixed strategy σ_i. For a given rectangular subset B of S, let $S(B)$ be the set of strategy profiles (s_i, s_{-i}) such that, for each player s_i is not strictly dominated on B_{-i} by any mixed strategy σ_i which assigns positive probability only to strategies belonging to B_i.

According to the first Pearce's lemma (Pearce, 1984), a strategy is strictly dominated if and only if it is not a best response to any conceivable belief. Therefore if $\Delta_i = \Delta(S_{-i})$ for every $i \in N$ the set of $\Delta - rationalizable$ strategies coincides with the set of iteratively undominated strategies. If Δ_i is a strict subset of $\Delta(S_{-i})$ the set of $\Delta - rationalizable$ and iteratively undominated strategies do not coincide. Hence, if I want to characterize the set of $\Delta - rationalizable$ strategies in terms of being iteratively undominated I need to generalize the concept of dominance in order to take into account the exogenous restrictions on players’ beliefs. Let $p(s_i, s_{-i}; \sigma_i)$ be the set of beliefs that justifies choosing s_i instead of σ_i given that i’s opponents choice s_{-i} has a positive probability of being played:

$$p(s_i, s_{-i}; \sigma_i) = \{\mu \in \Delta(S_{-i}) : \mu(s_{-i}) > 0 \text{ and } u_i(s_i, \mu_i) \geq u_i(\sigma_i, \mu_i)\}$$

Now, I can state a definition of dominance that includes restrictions on players’ beliefs.

Definition 3 A strategy s_i is strictly $\Delta - dominated$ by σ_i on $B_{-i} \subseteq S_{-i}$ if and only if for every s_{-i} belonging to B_{-i} either $u_i(s_i, s_{-i}) < u_i(\sigma_i, s_{-i})$, or $u_i(s_i, s_{-i}) \geq u_i(\sigma_i, s_{-i})$ implies $p(s_i, s_{-i}; \sigma_i) \cap \{\mu_i \in \Delta_i : \mu_i(B_{-i}) = 1\} = \emptyset$.

This definition differs from the definition of dominance because a strategy s_i could be justified by some belief μ_i but this belief is not admitted given the restrictions on players’ beliefs. As a result the set of strictly $\Delta - dominated$ strategies is larger than the set of strictly dominated strategies. Suppose that for some s_{-i} it holds that $u_i(s_i, s_{-i}) > u_i(\sigma_i, s_{-i})$ then it may be the case that $p(s_i, s_{-i}; \sigma_i) \cap \{\mu_i \in \Delta_i : \mu_i(B_{-i}) = 1\} = \emptyset$.

Take a strategic form game G with two players labelled 1 and 2. Player 1 has two possible strategies $\{u, d\}$ and player 2 has two possible strategies $\{L, R\}$. The payoffs of player 1 are summarized in the following table.

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

If player 1 is certain that player 2 will choose action R then $u_1(u, L) > u_1(d, L)$ but $p(u, L; d) \cap \{\mu_1 \in \Delta_1 : \mu_1(\{L, R\}) = 1\} = \emptyset$.

Lemma 1 Given a pure strategy s_i, a mixed strategy σ_i and a subset B_{-i} of S_{-i} the following conditions are equivalent:

$\text{In fact } p(u, L; d) = \{\mu_1 \in \Delta(\{L, R\}) : \mu_1(L) > \frac{1}{2}\}$ and $\{\mu_1 \in \Delta_1 : \mu_1(\{L, R\}) = 1\} = \{\mu_1 : \mu_1(R) = 1\}$.

1. s_i is strictly Δ–dominated by σ_i on B_{-i};

2. for every $\mu_i \in \{\mu_i \in \Delta_i : \mu_i (B_{-i}) = 1\}$ the expected utility associated to strategy s_i is strictly less then the one associated to σ_i (that is $u_i (s_i, \mu_i) < u_i (\sigma_i, \mu_i)$).

Proof. The proof is by contradiction.

(1) \Rightarrow (2) Suppose that s_i is strictly Δ–dominated by σ_i on B_{-i} and assume that there exists μ_i belonging to $\{\mu_i \in \Delta_i : \mu_i (B_{-i}) = 1\}$ such that $u_i (s_i, \mu_i) \geq u_i (\sigma_i, \mu_i)$, then there must be a strategy profile s_{-i} belonging to B_{-i} such that $u_i (s_i, s_{-i}) \geq u_i (\sigma_i, s_{-i})$ and $\mu (s_{-i}) > 0$. This contradicts the initial assumption that s_i is Δ–dominated by σ_i.

(2) \Rightarrow (1) Assume that $u_i (s_i, \mu_i) < u_i (\sigma_i, \mu_i)$ for every $\mu_i \in \{\mu_i \in \Delta_i : \mu_i (B_{-i}) = 1\}$ and that there exists a strategy profile s_{-i} such that $u_i (s_i, s_{-i}) \geq u_i (\sigma_i, s_{-i})$ and $p (s_i, s_{-i}; \sigma_i) \cap \{\mu_i \in \Delta_i : \mu_i (B_{-i}) = 1\} \neq \emptyset$. Then there exists μ_i belonging to $\{\mu_i \in \Delta_i : \mu_i (B_{-i}) = 1\}$ such that $u_i (s_i, \mu_i) \geq u_i (\sigma_i, \mu_i)$, this contradicts assumption (2). ■

Definition 4 A strategy s_i is not strictly Δ–dominated on B if and only if for every mixed strategy σ_i with support included in B_i there exists $s_{-i} \in B_{-i}$ such that $u_i (s_i, s_{-i}) \geq u_i (\sigma_i, s_{-i})$ and $p (s_i, s_{-i}; \sigma_i) \cap \Delta_i \neq \emptyset$.

This definition differs from the traditional one because it requires the existence of an acceptable belief that justifies s_i with respect to the any candidate alternative strategy σ_i. That is, a strategy $s_i \in S_i$ is not strictly Δ–dominated by any mixed strategy for player i if and only if for every σ_i there exists $\mu_i \in \Delta_i$ such that $u_i (s_i, \mu_i) \geq u_i (\sigma_i, \mu_i)$. For a given rectangular subset $B \subseteq S$, let $S (B, \Delta)$ denote the set of strategy profiles $(s_i, s_{-i}) \in S$ such that, for each i, s_i is Δ–undominated on B.

2.2 Main result

It is possible to generalize the first Pearce’s lemma characterizing Δ–rationalizability in terms of iterative elimination of strictly Δ–dominated strategies. First, I need a preliminary result which relates strict Δ–dominance and best responses with respect a set of admissible beliefs. Let the set of all the players’ restrictions, Δ, be closed and convex if all its components, Δ_i, are closed and convex subsets of $\Delta (S_{-i})$.

Lemma 2 Let $G = \langle N, \{B_i, u_i\}_{i \in N} \rangle$ be a strategic form game and Δ is a closed and convex set of restrictions on belief, a strategy s_i is not strictly Δ–dominated on B if and only if there exists μ_i belonging to to the set of admissible beliefs $\{\mu \in \Delta_i : \mu (B_{-i}) = 1\}$ and such that $s_i \in \rho_i (\mu_i)$.

Proof. First I prove by contradiction that being Δ–undominated implies being justifiable by some admissible belief. Assume that s_i is not strictly Δ–dominated and there is no belief $\mu_i \in \Delta_i$ such that $s_i \in \rho_i (\mu_i)$. Then, the following system of inequalities has no solution in $\{\mu \in \Delta_i : \mu (B_{-i}) = 1\}$:

$$\sum_{s_{-i} \in S_{-i}} \mu_i (s_{-i}) [u_i (s_i', s_{-i}) - u_i (s_i, s_{-i})] \leq 0 \text{ for every } s_i' \neq s_i \in S_i$$

(7)

Note that $\Delta_i \cap \{\mu \in \Delta (S_{-i}) : \mu (B_{-i}) = 1\} = \{\mu \in \Delta_i : \mu (B_{-i}) = 1\}$. This implies that if $\{\mu \in \Delta_i : \mu (B_{-i}) = 1\}$ is the intersection of two convex sets then it is convex.
We have a collection of closed proper convex (linear) functions on \(\mathbb{R}^{S_i} \) indexed by \(s'_i \), that is for each \(s'_i \) in \(S_i \) we have a linear function \(\mu_i \rightarrow \sum_{s_{-i} \in S_{-i}} \mu_i (s_{-i}) [u_i (s'_i, s_{-i}) - u_i (s_i, s_{-i})] \).

\(\Delta_i \) is a non-empty closed, convex set in \(\mathbb{R}^{S_i} \) and since \(\Delta_i \) is bounded it has no direction of recession\(^4\) (see Rockafellar, 1996). Hence, the linear functions \(\mu_i \rightarrow \sum_{s_{-i} \in S_{-i}} \mu_i (s_{-i}) [u_i (s'_i, s_{-i}) - u_i (s_i, s_{-i})] \) have no common direction of recession which is also direction of recession of \(\Delta_i \). Based on these consideration, I can apply Theorem 21.3 in Rockafellar (1996) which states that if system (7) has no solution then there exists a non-negative real vector \(\lambda \), belonging to \(\mathbb{R}^{|S_i|-1} \), and \(\varepsilon > 0 \) such that

\[
\sum_{s'_i \in S_i \setminus \{s_i \}} \sum_{s_{-i} \in S_{-i}} \lambda (s'_i) [u_i (s'_i, s_{-i}) - u_i (s_i, s_{-i})] \mu_i (s_{-i}) \geq \varepsilon \tag{8}
\]

for every \(\mu_i \in \Delta_i \). Therefore,

\[
\sum_{s'_i \in S_i \setminus \{s_i \}} \sum_{s_{-i} \in S_{-i}} \frac{\lambda (s'_i)}{\lambda (s_i)} [u_i (s'_i, s_{-i}) - u_i (s_i, s_{-i})] \mu_i (s_{-i}) \geq \frac{\varepsilon}{\sum_{s'_i \in S_i \setminus \{s_i \}} \lambda (s'_i)} \tag{9}
\]

or equivalently,

\[
\sum_{s_{-i} \in S_{-i}} [u_i (\sigma_i, s_{-i}) - u_i (s_i, s_{-i})] \mu_i (s_{-i}) \geq \varepsilon'
\]

where \(\varepsilon' := \frac{\varepsilon}{\sum_{s'_i \in S_i \setminus \{s_i \}} \lambda (s'_i)} > 0 \) and \(\sigma_i \) is a mixed strategy assigning to each strategy \(s'_i \in S_i \setminus \{s_i \} \) probability equal to \(\frac{\lambda (s'_i)}{\sum_{s'_i \in S_i \setminus \{s_i \}} \lambda (s'_i)} \). Inequality (9) states that \(\sigma_i \) is strictly better than \(s_i \) for every conjecture \(\mu_i \) in \(\Delta_i \), contradicting the initial assumption that \(s_i \) is not strictly \(\Delta - dominated \) (see Lemma 1).

In order to prove the opposite it is sufficient to notice that if a \(\mu_i \in \Delta_i \) exists such that \(s_i \in \rho (\mu_i) \) then \(s_i \) is not strictly \(\Delta - dominated \) by definition. \(\blacksquare \)

In order to relate \(\Delta - rationalizability \) and \(\Delta - dominance \) I have to consider that the set of feasible strategy and the set of admissible beliefs changes along the iterative procedure that define \(\Delta - rationalizability \). For an arbitrary natural number \(k \) the set of admissible strategy is \(S (k-1, \Delta) \) and the set of relevant restrictions on beliefs is the projection of \(\Delta \) on \(S (k-1, \Delta) \), therefore the set of not strictly \(\Delta - dominated \) strategies has to be computed on \(S (k-1, \Delta) \) taking as relevant restrictions \(\Delta_k \) defined as the Cartesian product of \(\Delta_k := \{ \mu \in \Delta_i : \mu (S_{-i} (k-1, \Delta)) = 1 \} \).

Lemma 3 Let \(G = \langle N, \{S_i, u_i \}_{i \in N} \rangle \) be a strategic form game and \(\Delta \) is a closed and convex set of restrictions on belief, for every natural number \(k \geq 1 \), the set of \((k, \Delta) - rationalizable \) strategy profiles coincides with the set of not strictly \(\Delta - dominated \) strategies on \(B^k \), \(S (k, \Delta) = S (B^k, \Delta^k) \), where \(B^k := S (k-1, \Delta) \) and the set of restrictions is \(\Delta^k = \prod_{i \in N} \Delta_i^k \) with \(\Delta_i^k := \{ \mu \in \Delta_i : \mu (S_{-i} (k-1, \Delta)) = 1 \} \).

\(^4\text{Let } \Delta \text{ be a non-empty convex set in } \mathbb{R}^n. \Delta \text{ recedes in the direction } d \text{ if and only if } \Delta \text{ includes all the half-lines in the direction } d \text{ which start at points of } \Delta. \text{ In other words, } \Delta \text{ recedes in the direction } d, \text{ where } d \neq 0, \text{ if and only if } x + \lambda d \in \Delta \text{ for every } \lambda \geq 0 \text{ and } x \in \Delta. \)
Proof. Lemma (2) implies that the set of \((1, \Delta)\)-rationalizable strategy profiles is equal to the set of not strictly \(\Delta - \text{dominated} \) strategy profiles, namely \(S(1, \Delta) = S(S, \Delta) \). For every natural number \(k\) let me consider the strategic form game \(G^k := \langle N, \{B_i^k, u_i\}_{i \in N} \rangle \) where the set of strategy for player \(i\) is defined as \(B_i^k := S_i(B_{k-1}, \Delta)\). The set of restrictions on beliefs for each player is the projection of the initial restriction on the set of \((k-1, \Delta)\)-rationalizable strategy profiles, formally it is the set \(\Delta_i^k \) defined as \(\Delta_i^k := \{\mu \in \Delta_i : \mu(S_{k-1}(k-1, \Delta)) = 1\} \). Since \(\Delta_i^k \) is the intersection of two closed and convex sets, it is a closed and convex set. Given this observation, I can apply Lemma (2) and conclude that a strategy \(s_i\) is not strictly \(\Delta - \text{dominated} \) on \(B_i^k\) with respect to \(B_i^k\) if and only if there exists \(\mu_i\) belonging to \(\{\mu \in \Delta_i^k : \mu(B_{k-1}) = 1\} \) and such that \(s_i \in \rho_i(\mu_i)\). This means that \(S(k, \Delta) = S(B^k, \Delta^k)\).

The previous lemma states that a strategy \(s_i\) is \((k, \Delta)\)-rationalizable if and only if it survives \(k\) step of iterative elimination of strictly \(\Delta - \text{dominated} \) strategies. As a result I have a full characterization of \(\Delta - \text{rationalizability} \).

The following example shows that the requirement for \(\Delta\) to be convex is necessary in order for Lemma 2 to hold. Take a strategic form game \(G\) with two players labelled 1 and 2. Player 1 has three possible strategies \(\{u, m, d\}\) and player 2 has two possible strategies \(\{L, R\}\). The payoffs of Player 1 are summarized by the following table.

<table>
<thead>
<tr>
<th></th>
<th>(L)</th>
<th>(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(m)</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>(d)</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Suppose that player 1 has just two admissible beliefs about his opponent’s choice, labelled \(\mu_1'\) and \(\mu_1''\). In particular, he believes that player 2 chooses \(L\) either with probability \(\frac{4}{5}\) (\(\mu_1'\)) or with probability \(\frac{1}{5}\) (\(\mu_1''\)). Let me consider the set of \((1, \Delta)\)-rationalizable strategy for player 1, that is the set of all strategies that are the best response to one of the two acceptable beliefs that is the set of \((1, \Delta)\)-rationalizable strategies for player 1 is

\[
S_1(1, \Delta) = \bigcup_{\mu_1 \in \{\mu_1', \mu_1''\}} \rho(\mu_1) = \{u, d\}
\]

Now, let me focus on the set of strategies that are not \(\Delta - \text{dominated} \) for player 1. If \(u\) is the best response to \(\mu_1'\) and \(d\) is the best response to \(\mu_1''\) then \(u\) and \(d\) are not \(\Delta - \text{dominated} \). A mixed strategy \(\sigma_1\) \(\Delta - \text{dominates} \) strategy \(m\) if and only if it satisfies the following inequalities:

\[
\begin{align*}
\mu_1' (L) \left[2\sigma + (1 - \sigma - \lambda) \frac{3}{2}\right] + \mu_1' (R) \left[2\lambda + (1 - \sigma - \lambda) \frac{3}{2}\right] &> \frac{3}{2} \\
\mu_1'' (L) \left[2\sigma + (1 - \sigma - \lambda) \frac{3}{2}\right] + \mu_1'' (R) \left[2\lambda + (1 - \sigma - \lambda) \frac{3}{2}\right] &> \frac{3}{2}
\end{align*}
\]

where \(\sigma\) is the probability that the mixed strategy \(\sigma_1\) assigns to strategy \(u\) and \(\lambda\) is the probability that the mixed strategy \(\sigma_1\) assigns to strategy \(d\). Substituting the probability

\(^5\)Formally, I assume that the set of feasible beliefs has just two elements \(\mu_1'\) and \(\mu_1''\) which are such that \(\mu_1' (L) = \frac{4}{5}\) and \(\mu_1'' (L) = \frac{1}{5}\).
assigned by the two acceptable beliefs:

\[
\begin{align*}
\sigma &> 11\lambda \\
\lambda &> 11\sigma
\end{align*}
\]

which are mutually incompatible. Then, there is no mixed strategy that \(\Delta - \text{dominates} \ m \) and the set of \(\Delta - \text{undominated} \) strategies for Player 1, denoted as \(S_1(S, \Delta) \), is equal to \(\{u, m, d\} \) and is different from \(S_1(1, \Delta) \).

Figure 1: An example of the necessity of the convexity assumption

3 Conclusion

There are situations where it is plausible to assume that players’ beliefs satisfy some restrictions that are not implied by assumptions concerning rationality or belief in rationality, or beliefs about such beliefs. Based on this observation, Battigalli and Siniscalchi (2003a) introduce a new solution concept, called \(\Delta - \text{rationalizability} \), based on the assumptions that agents are rational, players’ beliefs satisfy some exogenous restrictions and there is common belief of the previous two hypothesis.

I characterize \(\Delta - \text{rationalizability} \) in term of iterated \(\Delta - \text{dominance} \), which generalizes the well-known relationship between rationalizability and iterated dominance in standard settings. \(\Delta - \text{dominance} \) differs from the traditional definition of dominance, because a strategy could be justified by some beliefs but this belief is not admissible given the assumed restrictions on players beliefs. This characterization simplifies the application of \(\Delta - \text{rationalizability} \) and broadens my understanding of this solution concept.

As a result, this research can facilitate the use of this kind of non-equilibrium analysis
that could shed new light on economic behavior. This characterization can offer some clarification of the concept of rationalizability for those interested in the foundation of game theory (Harsanyi, 1967; Mertens and Zamir, 1985; Brandenburger and Dekel, 1987; Bergemann and Morris, 2005, 2007; Ely and Peski, 2006). It would then be possible to generalize Lemma 2 to games with incomplete information (Battigalli and Siniscalchi, 2003; Dekel, Fudenberg, and Morris, 2005) and dynamic games (Shimoji and Watson, 1998; Battigalli, 2003).
References

RECENTLY PUBLISHED “TEMI” (*)

N. 734 – Networks with decreasing returns to linking, by Filippo Vergara Caffarelli (November 2009).
N. 735 – Mutual guarantee institutions and small business finance, by Francesco Columba, Leonardo Gambacorta and Paolo Emilio Mistrulli (November 2009).
N. 736 – Sacrifice ratio or welfare gain ratio? Disinflation in a DSGE monetary model, by Guido Ascani and Tiziano Ropele (January 2010).
N. 738 – External trade and monetary policy in a currency area, by Martina Cecioni (January 2010).
N. 739 – The use of survey weights in regression analysis, by Ivan Faiella (January 2010).
N. 740 – Credit and banking in a DSGE model of the euro area, by Andrea Gerali, Stefano Neri, Luca Sessa and Federico Maria Signoretti (January 2010).
N. 741 – Why do (or did?) banks securitize their loans? Evidence from Italy, by Massimiliano Affinito and Edoardo Tagliaferri (January 2010).
N. 742 – Outsourcing versus integration at home or abroad, by Stefano Federico (February 2010).
N. 743 – The effect of the Uruguay round on the intensive and extensive margins of trade, by Ines Buono and Guy Lalanne (February 2010).
N. 744 – Trade, technical progress and the environment: the role of a unilateral green tax on consumption, by Daniela Marconi (February 2010).
N. 745 – Too many lawyers? Litigation in Italian civil courts, by Amanda Carmignani and Silvia Giacomelli (February 2010).
N. 746 – On vector autoregressive modeling in space and time, by Valter Di Giacinto (February 2010).
N. 747 – The macroeconomics of fiscal consolidations in a monetary union: the case of Italy, by Lorenzo Forni, Andrea Gerali and Massimiliano Pisani (March 2010).
N. 748 – How does immigration affect native internal mobility? New evidence from Italy, by Sauro Mocetti and Carmine Porello (March 2010).
N. 749 – An analysis of the determinants of credit default swap spread changes before and during the subprime financial turmoil, by Antonio Di Cesare and Giovanni Guazzarotti (March 2010).
N. 751 – Down the non-linear road from oil to consumer energy prices: no much asymmetry along the way, by Fabrizio Venditti (March 2010).
N. 752 – Information technology and banking organization, by Sauro Mocetti, Marcello Pagnini and Enrico Sette (March 2010).
N. 754 – Misure di valore aggiunto per le scuole superiori italiane: i problemi esistenti e alcune prime evidenze, by Piero Cipollone, Pasqualino Montanaro and Paolo Sestito (March 2010).
N. 755 – Asset-based measurement of poverty, by Andrea Brandolini, Silvia Magri and Timothy M. Smeeding (March 2010).

(*) Requests for copies should be sent to:

S. Magri, Italian households’ debt: The participation to the debt market and the size of the loan, Empirical Economics, v. 33, 3, pp. 401-426, TD No. 454 (October 2002).

L. Monteforte, Aggregation bias in macro models: Does it matter for the euro area?, Economic Modelling, 24, pp. 236-261, TD No. 534 (December 2004).

2009

M. BUGAMELLI and F. PATERNÒ, Do workers’ remittances reduce the probability of current account reversals?, World Development, v. 37, 12, pp. 1821-1838, TD No. 573 (January 2006).

P. PAGANO and M. PISANI, Risk-adjusted forecasts of oil prices, The B.E. Journal of Macroeconomics, v. 9, 1, Article 24, TD No. 585 (March 2006).

A. CALZA and A. ZAGHINI, Nonlinearities in the dynamics of the euro area demand for M1, Macroeconomic Dynamics, v. 13, 1, pp. 1-19, TD No. 690 (September 2008).

2010

FORTHCOMING

M. BUGAMELLI and A. ROSOLIA, Produttività e concorrenza estera, Rivista di politica economica, TD No. 578 (February 2006).

E. IOSSA and G. PALUMBO, Over-optimism and lender liability in the consumer credit market, Oxford Economic Papers, TD No. 598 (September 2006).

S. NERI and A. NOBILI, The transmission of US monetary policy to the euro area, International Finance, TD No. 606 (December 2006).

F. BALASSONE, F. MAURA and S. ZOTTERI, *Cyclical asymmetry in fiscal variables in the EU*, Empirica, **TD No. 671** (June 2008).

M. BUGAMELLI and F. PATERNÒ, *Output growth volatility and remittances*, Economica, **TD No. 673** (June 2008).

L. FORNI, A. GERALI and M. PISANI, *Macroeconomic effects of greater competition in the service sector: the case of Italy*, Macroeconomic Dynamics, **TD No. 706** (March 2009).

V. DI GIACINTO, G. MICUCCI and P. MONTANARO, *Dynamic macroeconomic effects of public capital: evidence from regional Italian data*, Giornale degli economisti e annali di economia, **TD No. 733** (November 2009).

L. FORNI, A. GERALI and M. PISANI, *The macroeconomics of fiscal consolidations in euro area countries*, Journal of Economic Dynamics and Control, **TD No. 747** (March 2010).