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Abstract:   
 

In a standard English auction in which bidders’ valuations are independently drawn 

from a common distribution, a standard regularity condition is that the survivor function of 

the distribution be log concave. In an auction where the seller sets a fixed price, the equivalent 

condition requires log concavity of a survivor function derived from the primitive 

distribution. In this note we show that log concavity of the primitive survivor function implies 

log concavity in the derived functions. This result is of interest when studying on-line 

auctions that combined aspects of fixed-price and English auctions.  
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WORKING PAPER No. 17/2010  
 

A Note on Log-Concave Survivor Functions in Auctions 

1. Introduction: 

Consider a simple English or second-price private-value auction in which a seller with 

valuation wishes to sell a single unit of a good in an auction with n bidders, each of whom has 

a valuation drawn from the commonly known distribution, F, with support drawn from some 

interval on the positive real line. The seller’s choice problem is to set the reservation price, R, 

to maximise his expected revenue from the auction.  

A sufficient condition for the revenue function in this problem to be strictly quasi-

concave (and hence for the first-order condition to yield a unique maximum), is that the 

survivor function, 1-F(x), be log concave, independent of the number of bidders.  

Now consider instead the same environment in which the seller will sell using a simple 

fixed-price auction, again with n bidders, in which the seller posts a set price, ,fp  and the 

good is sold if at least one of the n bidders has a valuation in excess of .fp As we will show 

below, a sufficient condition for the revenue function of this problem to be strictly quasi-

concave is that  1 ( )
n

fF p  be log concave. Clearly this condition does depend on the 

number of bidders.  

Many on-line auctions combine features of both a standard English auction, and a 

fixed-price auction. For instance, E-Bay and many other on-line auctions allow sellers to offer 

a “buy now” option, in which bidders have the option of purchasing the good at a fixed price 

announced at the start of the auction as long as the reserve price has not yet been met. In the 

New Zealand on-line auction, Trade Me, in addition to allowing buy-now prices, sellers can, 

in the event that the auction fails to attract a bid that meets reserve, make a fixed-price offer to 

all buyers who registered as “watchers” during the unsuccessful English-auction phase.  
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Given this combination of auction styles, it would be useful to have a general set of 

conditions for there to be a unique revenue-maximising value for the decision variable for the 

seller in either type of auction, for any number of bidders.  

It turns out that the sufficient condition for characterising the profit maximum in the 

English auction—that the survivor function be log concave—is also sufficient for the fixed-

price auction to have a unique maximum for any number of bidders. The purpose of this paper 

is to prove this result.  

Note that   1 ( )
n

F x  is a concave transformation of 1-F(x)) for 2n   and 

( ) (0,1),F x   so it is intuitive that log concavity of the latter would imply log concavity of the 

former. It is not true in general, however, that for some log concave function, f, and concave 

function, g, the composite function g(f) is log concave, and so the result still needs to be 

established formally.  

In the following section, we briefly summarise the literature to establish why the two 

log concavity assumptions generate unique maxima for the two types of auction, respectively. 

Section 3 then proves the main result. 

2. The Role of Log Concavity: 

Let f be the associated probability density function of F, and let 
0x  be the valuation of 

the seller for the good if it does not sell. The objective functions and the resulting first-order 

and second-order conditions  

In the case of an English auction, it is well-known (see, for instance, Krishna, 2002, 

Chapter 2.5), that the first-order condition for the profit-maximising reserve price is  

 
01 ( ) ( ) 0,R x R    (1) 

where ( )x  is the hazard rate, 

 
( )

( ) .
1 ( )

f x
x

F x
 


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A sufficient condition for Equation (1) to describe a unique maximum is that ( )x be 

increasing in x. As shown in Bagnoli and Bergstrom (2005), this condition is equivalent to the 

requirement that the survivor function, 1-F(x), be log concave.  

Now consider the fixed-price auction. The revenue for the seller as a function of the 

fixed price is  

    0( ) 1 ( ) ( ).
n

f f fp F p p x   
  

A sufficient condition for this function to be strictly quasi-concave is that the quantity 

function,  1 ( )
n

fF p , be log concave (see the “applications to monopoly theory” in 

Bergstrom and Bagnoli (2005)).  

These two sufficient conditions are well known, but the derivations are dispersed 

throughout the literature. For completeness, therefore, we derive both in the Appendix to this 

note.  

3. The Main Result: 

Let F be a distribution defined over some variable x. Let there be n independent draws 

from this distribution. The distribution function for the maximum of the n draws is then 

 ( )
n

F x . The survivor function for a single draw is (1-F(x)) and the survivor function for the 

n-draw maximum is   1 ( ) .
n

F x  

Theorem:  

If the survivor function (1-F(x)) is log concave, then the survivor function for the n-

draw maximum,   1 ( ) ,
n

F x  will also be log concave for all 2.n   

Proof: 

If  1 ( )F x  is log concave, then by definition,  

 

  

 

 

2

2

2

ln 1 ( ) 0

( )
( ) .

1 ( )

d
F x

dx

f x
f x

F x

 


 


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Define  

 
 

 

2
( )

( ) 0
1 ( )

f x
z f x

F x
  


 

so that 

 
 

 

2
( )

( ) .
1 ( )

f x
f x z

F x


  


 (2) 

We want to show that  

    
2

2
ln 1 ( ) 0.

nd
F x

dx
   

Differentiating twice gives  

   
          

  

2 22
2

22

( ) 1 ( ) ( 1) ( ) ( ) ( ) ( ) ( )
ln 1 ( )

1 ( )

n nn

n

n

nF x F x n f x F x f x n F x f xd
F x

dx F x

     
 



 

Substituting in Equation (2) gives 

 

   
        

  

  
 

     

22
2

22

1

22 1

2

( ) ( ) 1 ( ) ( 1)(1 ( )) ( ) ( ) (1 ( ))
ln 1 ( )

1 ( ) (1 ( ))

( )

1 ( )

( ) ( ) ( )
( ) ,

1 ( )1 ( ) (1 ( ))

n nn

n

n

n

n

n n

nn

nF x f x F x n F x F x n F x F xd
F x

dx F x F x

nF x
z

F x

nF x f x nF x
H x z

F xF x F x





 

      
 

 




 
 

where  

    ( ) 1 ( ) (1 ( ) .
n

H x F x n F x     

Since 0,z   we only need to show that   0 2.H x n    Note that  

 
  1

lim ( ) 0,  and

( ) ( ) 1 ( ) 0,

x

n

H x

H x nf x F x







   
 

which establishes the proposition.  

 
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4. Discussion: 

This result in this note provides a simple sufficient condition to guarantee a unique 

solution for both English (and hence 2
nd

-price) auctions and fixed-price auctions for any 

number of bidders. Interestingly, in the case of 1
st
-price or Dutch auctions, a sufficient 

condition for there to be a unique equilibrium is that the distribution function, F, be log 

concave. (See Lebrun, 2006). As shown in Bagnoli and Bergstrom (2005), a sufficient 

condition for both the distribution function, F, and the associated survivor function, 1-F, to be 

log concave is that the underlying density function, f, be log concave. We are not aware of 

any actual auction that combines aspects of 2
nd

-price and fixed-price auctions, but should such 

a combination become empirically interesting, the result in this note can be easily applied in 

that case. 

5. References: 

Bagnoli, M., Bergstrom, T., 2005. Log Concavity and its Applications. Econ. Theory 26, 445-

469. 

Krishna, V., 2002. Auction Theory. Academic Press, London, San Diego. 

Lebrun, B., 2006. Uniqueness of the Equilibrium in First-Price Auctions. Games and Econ. 

Behav. 55, 131-151. 
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Appendix 

Sufficient Conditions for an English Auction: 

Let ( )nF   be the distribution function for the maximum of n draws from a common 

distribution F, and let 
1( )nF x

 be the distribution function for the maximum of n-1 draws 

from the same distribution, conditional on the information that all draws are no greater than 

.  
1( )nF x

then is the distribution for the second-highest of n draws, conditional on the 

information that the maximum draw is .  We then have  

  ( ) ( ) ,
n

nF x F x  (A1) 

 
 

1

1 1

( )
( ) .

( )

n

n n

F x
F x

F






 
   (A2) 

Let [ | ]E p   be the expected price paid to the seller in an English auction, conditional 

on the highest valuation being ,R  where R is the seller-set reservation price. Let the 

support of F be [a,b]. We then have  

  1 1[ | ] ( ) ( ).

R

n n

a R

E p R dF x xdF x



       

Integrating by parts, this becomes 

 1[ | ] ( ) .n

R

E p F x d


       (A3) 

In an English auction, the unconditional expected price is the integral of the 

conditional expected price weighted over the relevant range of :  

 [ ] [ | ] ( ).

b

n

R

E p E p dF    (A4) 

Putting (A2) and (A3) into (A4) yields  

 

 

 

 

 

1

1

1

1

( )
[ ] ( )

( )

( )
( ) ( ).

( )

nb

nn

R R

nb b

n nn

R R R

F x
E p dx dF

F

F x
dF dx dF

F





 


  











  

 
 


  

 
 

 

  
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Note from (A1) that  

  
1( )

( ) ( ),
nndF

n F f
d


 




  

so we can write  

 1[ ] ( ) ( ) ( ) .

b b

n

n

R R R

E p dF n F x dx f d



   


  
 

  

 Integrating by parts produces  

 

       

     

1

1

[ ] ( ) ( ) ( ) ( )

( ) ( 1) ( ) ( ) .

b b b
n n n n

R R R

b b
n n n

R R

E p b R F R F d n F d n F d

b R F R n F d n F d

     

   





    

    

  

 
 

Total surplus to the seller, , consists of the price received from the sale added to the 

value received from the good if it does not sell, 
0.x The probability that the good does not sell 

is the probability that all buyers have a valuation less than R, ( ( )) ,nF R so that expected 

surplus is  

      
1

0[ ] ( ) ( 1) ( ) ( ) ( ( )) .

b b
n n n n

R R

E b R F R n F d n F d x F R    


        

The seller sets R to maximize E[]. We have 

 

       
1 1 1

0

[ ]
( ) ( ) ( ) ( 1) ( ) ( ) ( ( )) ( )

n n n n ndE p
F R nR F R f R n F R n F R x n F R f R

dR

          

 
 

1
( ) ( ).

n
n F R H R




 

where  

 
0( ) ( ) ( ) (1 ( )).H R x R f R F R      

The first-order condition for profit maximisation is then,  

 ( ) 0,H R   

giving, 

 0

(1 ( *))
* ,

( *)

F R
R x

f R


   (A5) 
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and the sufficient condition for this condition to describe a unique maximum is that E[p] be 

strictly quasi-concave, for which it is sufficient that H(R) be decreasing in R at the optimum. 

That is, we need  

 0

( )
2 ( ) ( ) '( ) 0,

dH R
f R x R f R

dR
      

at R=R*. Substituting in the solution for R* from the first-order condition, (A5), we get 

 

( *) (1 ( )) '( )
2 ( ) 0,

( )

dH R F R f R
f R

dR f R


   

 

for which it is sufficient that (1-F(R)) be log concave.   

Sufficient Conditions for a Fixed-Price Auction: 

Consider a general monopoly profit-maximisation problem of the form  

 ( ) ( ) ,
p

Max p c q p     (A6) 

where ( ) 0q p  and there is no sign restriction on the lump-sum effect, .  

The first-order condition for this problem is  

 ( ) ( ) ( ) 0
d

q p p c q p
dp


      

  
( *)

* .
( *)

q p
p c

q p
  


 (A7) 

For solutions to (A7) to uniquely characterise a global maximum, we need 

2 2/ 0d dp  at p=p*. We have 

 
2

2
2 ( ) ( ) ( ).

d
q p p c q p

dp


     

Substituting in the optimal value of p-c from (A6), we get  

 
2

2

( *) ( *)
2 ( *) .

( )

d q p q p
q p

dp q p

 
 


 

If ( ) 0,q p  then the required condition for a maximum is that 

 2( *) ( *) 2( ( *)) 0.q p q p q p    
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Log concavity of ( )q p  is equivalent to the condition that  

 2( ) ( ) ( ( )) 0, ,q p q p q p p     

and so log concavity is a sufficient condition for quasi-concavity of the profit function.  

Now consider the fixed-price auction. In this case, the expected surplus for the seller is  

 
    

  
0

0 0

( ) 1 ( ) ( )

( ) 1 ( ) .

n n

f f f f

n

f f

p p F p x F p

p x F p x

   

   

 

This has the same functional form as (A6) where the quantity function is  

   1 ( )
n

fF p . 

As we have just shown, a sufficient condition for strict quasi-convexity of the expected 

surplus function is that this quantity function be log concave.  


