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1 Introduction

Statisticians find it useful to categorize life distributions according to different aging prop-
erties. These categories of distributions are useful for modeling situations where items dete-
riorate with age.

A common approach is to stipulate the decreasingness of the mean residual life function
(or of the harmonic mean residual life function) as a model of aging. This approach, however,
sometimes has some weaknesses that may prevent its use. For example, the mean residual
life function may not exist. Even when it exists it may have some practical shortcomings,
especially in situations where the data are censored, or when the underlying distribution is
skewed or heavy-tailed. In such cases, either the empirical mean residual life function cannot
be calculated, or a single long-term survivor can have a marked effect upon it which will tend
to be unstable due to its strong dependence on very long durations. Also, in an experiment
it is often impossible or impractical to wait until all items have failed.

An alternative to the mean residual life function is the α-percentile residual life function
qX,α, where α is some number between 0 and 1. This function is defined as the α-percentile
of the residual life at time t. A formal definition of qX,α(t) will be given in Section 2, but
here we note that such a function describes, for example, the value that will be survived,
by (1 − α)% of items (in reliability theory) or of individuals (in biology), among those that
survived up to time t. Questions such as “what proportion of 3-month old cubs will reach
the age of two years?” or “what percentage of individuals who have been tumor-free for 3
years will stay tumor-free for 2 more years?” can be answered in terms of the α-percentile
residual life function. The α-percentile residual life functions were studied in some detail by
Schmittlein and Morrison (1981), Arnold and Brockett (1983), Gupta and Langford (1984),
and Joe (1985), and more recently in Lin (2009). Barabás, Csörgö, Horváth, and Yandell
(1986), Csörgö and Csörgö (1987), Chung (1989), Feng and Kulasekera (1991), and Csörgö
and Viharos (1992) discussed various estimation procedures of the α-percentile residual life
function. Raja Rao, Alhumoud, and Damaraju (2006) identified families of distributions for
which simple expressions, for the α-percentile residual life functions, can be obtained.

Haines and Singpurwalla (1974) and Joe and Proschan (1984a) studied some aspects of
the classes of distribution functions with decreasing α-percentile residual life (DPRL(α)),
0 < α < 1; the formal definition of these classes will be given in Section 2. The purpose
of this paper is to note some further properties of these classes, and to initiate a theory of
nonparametric statistical estimation of decreasing α-percentile residual life functions. The
close relationship between the DPRL(α) and the IFR (increasing failure rate) aging notions
is studied in Section 3, and it is also touched upon in Section 4. Other close relationships,
between the DPRL(α) aging notions and the percentile residual life stochastic orders, are
described in Section 4. Further properties of the above classes of distributions are derived
in Section 5. Finally, in Section 6, we introduce an estimator of the percentile residual life
function, under the condition that it decreases, and we prove its strongly uniform consistency.
We derive the new properties of these classes by employing recent results involving the α-
percentile residual life orders that were obtained in Franco-Pereira, Lillo, Romo, and Shaked
(2010).

The following conventions are used in this paper. By “increasing” and “decreasing” we
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mean “nondecreasing” and “nonincreasing”, respectively. For any distribution function F
we let the function F−1 be the left continuous version of the inverse of F , that is,

F−1(p) = inf{x : F (x) ≥ p}, p ∈ (0, 1).

For the corresponding survival function F ≡ 1 − F we let the function F
−1

be defined as

F
−1

(p) = F−1(1−p), p ∈ (0, 1); this, in fact, gives the right continuous version of the inverse
of F .

2 Definitions and basic properties

Let X be a random variable, and let uX be the right endpoint of its support. For any t < uX ,
the residual life at time t, that is associated with X, is any random variable that has the
conditional distribution of X − t given that X > t. We denote it by

Xt = [X − t
∣

∣X > t], t < uX . (2.1)

If FX denotes the distribution function of X, and FX = 1 − FX denotes the corresponding
survival function, then the survival function of Xt is given by

FXt
(x) =

FX(t + x)

FX(t)
, x ≥ 0. (2.2)

The residual life is of interest in many areas of applied probability and statistics such as
actuarial studies, biometry, survivorship analysis, and reliability — see, for example, Lillo
(2005) for a list of references.

The α-percentile residual life function qX,α, where α is some number between 0 and 1, is
defined by

qX,α(t) =

{

F−1
Xt

(α), t < uX ;

0, t ≥ uX .

It is useful to note that qX,α satisfies

FX(t + qX,α(t)) = αFX(t) for all t, (2.3)

where α = 1 − α. Also,

qX,α(t) = F
−1

X (αFX(t)) − t, t < uX . (2.4)

or, alternatively,
qX,α(t) = F−1

X (α + (1 − α)FX(t)) − t, t < uX . (2.5)

Let 0 < α < 1. A random variable X is said to have (or to be) DPRL(α) if qX,α(t) is
decreasing in t. It is also possible to similarly define the notion of increasing α-percentile
residual life (IPRL(α)). However, note that with our definition of qX,α, in order for a random
variable to be IPRL(α) it is necessary that uX = ∞.

Some useful equivalent conditions for the DPRL(α) notion are given in the following
proposition for absolutely continuous random variables with interval support (which may be
finite or infinite). For such random variable X we denote by fX its density function, and by
rX ≡ fX/FX its hazard rate function.
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Proposition 2.1. Let X be an absolutely continuous random variable with interval support

(lX , uX). The following conditions are equivalent:

(i) X is DPRL(α);

(ii) αfX(t) ≤ fX(F
−1

X (αFX(t))) for all t ∈ (lX , uX);

(iii) αfX(F
−1

X (p)) ≤ fX(F
−1

X (αp)) for all p ∈ (0, 1);

(iv) rX(t) ≤ rX(t + qX,α(t)) for all t ∈ (lX , uX).

Proof. Assume (i). Then qX,α(t) is decreasing in t ∈ (lX , uX). Therefore, by differentiating
(2.4) we see that

0 ≥
d

dt
qX,α(t) =

αfX(t)

fX(F
−1

X (αFX(t)))
− 1,

and (ii) follows. In fact, the proof shows that (i)⇐⇒(ii).

Next assume (ii). Putting there t = F
−1

X (p) we obtain (iii). In fact, the proof shows that
(ii)⇐⇒(iii).

Finally, assume (ii) again. For t ∈ (lX , uX) divide the left hand side of the inequality in
(ii) by αFX(t), and divide the right hand side of the inequality in (ii) by FX(t + qX,α(t)),
which are equal by (2.3). We obtain

rX(t) ≤
fX(F

−1

X (αFX(t)))

FX(t + qX,α(t))
=

fX(t + qX,α(t))

FX(t + qX,α(t))
,

where the last equality follows from (2.4). This gives (iv). In fact, the proof shows that
(ii)⇐⇒(iv).

The equivalence (i)⇐⇒(iv) can be found already in Haines and Singpurwalla (1974) and
in Joe and Proschan (1984a).

3 Relations between the DPRL and IFR aging notions

From Proposition 2.1(iv) it is seen that if rX is increasing (that is, if X has an increasing
failure rate (IFR)) then X is DPRL(α) for any α ∈ (0, 1). On the other hand, if X is
DPRL(α) for some α ∈ (0, 1) then it is not necessary that X be IFR. In fact, the following
example shows that, given any ε > 0, then, even if X is DPRL(α) for every α ≥ ε, it is not
necessary that X is IFR. A related result, with a more positive flavor, will be given later in
Proposition 4.2.

Example 3.1. Fix an ε ∈ (0, 1) and denote

a = (− log ε)1/2.
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Figure 1: The hazard rate function rX in Example 3.1

Consider a random variable X with the hazard rate function (see Figure 1)

rX(t) =

{

a − t, 0 ≤ t ≤ a;

t − a, t > a.

A straightforward computation yields the survival function of X:

FX(t) =











1, t ≤ 0;

exp{−at + t2

2
}, 0 < t ≤ a;

exp{−a2

2
− (t−a)2

2
}, t > a.

Note that
FX(2a) = exp{−a2} = ε.

From a Remark in page 672 of Joe and Proschan (1984a) it follows that X is DPRL(α) for
every α ≥ ε. However, obviously, X is not IFR. ◭

From Example 3.1 it is seen that, given any α ∈ (0, 1), it is possible to find a random
variable that is DPRL(α), but that is not DPRL(β) for β < α. Thus, a natural question to
ask now is whether X being DPRL(α) implies that X is also DPRL(β) for β > α. In the
next example we show that the answer to this question is negative. That is, the following
example shows that, given α ∈ (0, 1), it is possible to find a random variable X, and a
β ∈ (α, 1), such that X is DPRL(α) but it is not DPRL(β).

Example 3.2. Fix an α ∈ (0, 1) and let θ be such that

θ >
3 log(1 − α)

2 log
(

− log(1−α)
4π−log(1−α)

)
; (3.1)

it is not hard to verify that the right hand side of (3.1) is positive. Furthermore, let ε be
such that

− log(1 − α)(1 − (1 − α)
3
2θ )

2π(1 + (1 − α)
3
2θ )

< ε ≤
− log(1 − α)

− log(1 − α) + 2π
; (3.2)

it is not hard to verify that, when (3.1) holds, then the left hand side of (3.2) is smaller than
the right hand side of (3.2).
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Now define

k(x) = 1 + ε sin
( 2πx

log(1 − α)

)

, x ∈ R;

and
H(t) = (1 − t)θ · k

(

log
[

(1 − t)θ
])

, 0 ≤ t ≤ 1.

Below, first we show that H is a survival function. Second, we show that a random variable
X that has the survival function H is DPRL(α). Finally, we show that there exists a β > α
such that X is not DPRL(β).

Obviously, H(0) = 1 and H(1) = 0. If we can find an ε > 0 such that H(t) is decreasing
in 0 ≤ t ≤ 1, then it would follow that H is a survival function. In order to identify such an
ε, we note that the derivative of k is given by

k′(x) = ε cos
( 2πx

log(1 − α)

)

·
2π

log(1 − α)
, x ∈ R,

and thus the derivative of H is given by

H ′(t) = −θ(1 − t)θ−1
[

1 + ε sin
(2πθ log(1 − t)

log(1 − α)

)

−
2πε

− log(1 − α)
cos

(2πθ log(1 − t)

log(1 − α)

)]

,

0 ≤ t ≤ 1.

Therefore H is decreasing if, and only if,

ε
[

log(1 − α) sin
(2πθ log(1 − t)

log(1 − α)

)

+ 2π cos
(2πθ log(1 − t)

log(1 − α)

)]

≤ − log(1 − α), 0 ≤ t ≤ 1.

(3.3)
Since

ε
[

log(1−α) sin
(2πθ log(1 − t)

log(1 − α)

)

+2π cos
(2πθ log(1 − t)

log(1 − α)

)]

≤ ε(− log(1−α)+2π), 0 ≤ t ≤ 1,

we see that if

ε ≤
− log(1 − α)

− log(1 − α) + 2π
(3.4)

then (3.3) holds. But (3.4) is the right hand side of (3.2), and therefore H is a survival
function.

Now, let X have the survival function H, and let Y be a random variable with survival
function F Y given by

F Y (t) = (1 − t)θ, 0 ≤ t ≤ 1.

From Gupta and Langford (1984) we know that qX,α(t) = qY,α(t) for all t. Computing qY,α,
and using the equality qX,α = qY,α, we obtain

qX,α(t) =











1 − α1/θ − t, t < 0,

(1 − α1/θ)(1 − t), 0 ≤ t < 1,

0, otherwise.
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Thus, X is DPRL(α).

For the reminder of this example let H and −H ′ be denoted by FX and fX , respectively.
We will now show that there exists a β ∈ (α, 1) such that X is not DPRL(β). Specifically,

let β = 1 − (1 − α)
3
2 (> α). We will show that for t0 = 1 − (1 − α)

3
2θ we have

βfX(t0) > fX(F
−1

X (β FX(t0))), (3.5)

and then use Proposition 2.1(ii).

We compute

FX(t0) = FX(1 − (1 − α)
3
2θ ) = (1 − α)

3
2 k(θ log

[

(1 − α)
3
2θ

]

)

= (1 − α)
3
2 k

(

3
2
log(1 − α)

)

= (1 − α)
3
2 (1 + ε sin(3π)) = (1 − α)

3
2 .

So
β FX(t0) = (1 − α)3 = (1 − α)3[1 + ε sin(6π)] = FX(1 − (1 − α)

3
θ ).

Hence
F

−1

X (β FX(t0)) = 1 − (1 − α)
3
θ .

So (3.5) is equivalent to

βfX(1 − (1 − α)
3
2θ ) > fX(1 − (1 − α)

3
θ ),

which is equivalent to

(1 − α)
3
2 θ(1 − α)

3(θ−1)
2θ

[

1 + ε sin(3π) + 2πε
log(1−α)

cos(3π)
]

> θ(1 − α)
3(θ−1)

θ

[

1 + ε sin(6π) + 2πε
log(1−α)

cos(6π)
]

,

which is equivalent to

(1 − α)
3
2θ

[

1 + 2πε
− log(1−α)

]

>
[

1 − 2πε
− log(1−α)

]

,

which is equivalent to

ε >
− log(1 − α)(1 − (1 − α)

3
2θ )

2π(1 + (1 − α)
3
2θ )

.

The last inequality is the left hand side of (3.2). So (3.5) holds, and therefore X is not
DPRL(β). ◭

The previous example shows that if X is DPRL(α) it does not necessarily follow that X
is DPRL(β) for β > α. In the next proposition we notice that if the density function of X
is decreasing on a specific region of its support, then, if X is DPRL(α), it does follow that
X is DPRL(β) for β > α.

Proposition 3.3. Let X be an absolutely continuous random variable with interval support

(lX , uX), such that uX < ∞, and with density and survival functions fX and FX , respectively.

Let α ∈ (0, 1). If X is DPRL(α) and if fX is increasing on [F
−1

X (α), uX ], then X is DPRL(β)
for all β > α.
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Proof. Let β > α. Then, for all p ∈ (0, 1) we have

βfX(F
−1

X (p)) ≤ αfX(F
−1

X (p))

≤ fX(F
−1

X (αp))

≤ fX(F
−1

X (βp)),

where the second inequality follows from Proposition 2.1(iii), and the last inequality follows
from the increasingness of fX . The stated result now follows from Proposition 2.1(iii).

Note that if fX is increasing on its support, then the monotonicity condition on fX in
Proposition 3.3 obviously holds. However, this observation does not tell us anything new be-
cause if fX is increasing on its support then X is IFR, and, as we noted after Proposition 2.1,
this implies that X is DPRL(α) for all α ∈ (0, 1).

It is worthwhile to mention that Launer (1993) has shown that a nonnegative random
variable X, with a bathtub-shaped hazard rate function rX , is DPRL(α) for all α ∈ (α0, 1)
for some α0 > 0, provided there exists a t0 ≥ 0 such that rX(t0) ≥ rX(0).

4 Relationships with the PRL stochastic orders

We recall the following family of stochastic orders that was recently studied in Franco-Pereira,
Lillo, Romo, and Shaked (2010). Let 0 < α < 1. Let X and Y be two random variables
with percentile residual life functions qX,α and qY,α, respectively. If

qX,α(t) ≤ qY,α(t) for all t

then X is said to be smaller than Y in the α-percentile residual life order (denoted as
X ≤α-rl Y ).

In the following result we provide some characterizations of the DPRL(α) aging notion
in terms of the α-percentile residual life order. Recall the definition of Xt from (2.1).

Theorem 4.1. Let X be an absolutely continuous random variable with interval support.

Then X is DPRL(α) if, and only if, any of the following equivalent conditions holds:

(i) Xt ≥α-rl Xt′ whenever t ≤ t′ < uX ;

(ii) X ≥α-rl Xt whenever 0 ≤ t < uX (when X is a nonnegative random variable);

(iii) X + t ≤α-rl X + t′ whenever t ≤ t′.

Proof. From (2.2) it is easy to verify that

qXt,α(x) = F
−1

X (αFX(t + x)) − (t + x) for all 0 < x < uX − t.

Now, let t ≤ t′ < uX . Then Xt ≥α-rl Xt′ if, and only if,

F
−1

X (αFX(t + x)) − (t + x) ≥ F
−1

X (αFX(t′ + x)) − (t′ + x) for all x < uX − t′;
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that is (by (2.4)), qX,α(t + x) ≥ qX,α(t′ + x) whenever t + x ≤ t′ + x < uX ; that is, qX,α is
decreasing. This proves the equivalence of DPRL(α) and (i).

Next, let 0 ≤ t < uX . Then X ≥α-rl Xt if, and only if,

F
−1

X (αFX(x)) − x ≥ F
−1

X (αFX(t + x)) − (t + x) for all x < uX − t;

that is (by (2.4)), qX,α(x) ≥ qX,α(t + x) whenever t + x ≤ uX ; that is, qX,α is decreasing.
This proves the equivalence of DPRL(α) and (ii).

In order to prove the equivalence of DPRL(α) and (iii), let t ≤ t′, and denote a = t′ − t.
Then condition (iii) is equivalent to

X ≤α-rl X + a for all a > 0. (4.1)

Now, from (2.4) we have

qX,α(t) = F
−1

X (αFX(t)) − t for all t < uX ,

and, for a > 0 we have

qX+a,α(t) = F
−1

X+a(αFX+a(t)) − t = F
−1

X (αFX(t − a)) − t + a = qX,α(t − a)

for all t < uX + a.

That is, condition (4.1) is equivalent to the decreasingness of qX,α.

In the literature there are results that are similar to Theorem 4.1, but which involve
aging notions other than DPRL(α). For example, Theorems 1.A.30, 1.B.38, 3.B.24, 3.B.25,
and 4.A.53 in Shaked and Shanthikumar (2007) give similar characterizations for the IFR
aging notion. Theorems 2.A.23, 2.B.17, 3.A.56, 3.C.13, and 4.A.51 in Shaked and Shan-
thikumar (2007), as well as a result in Belzunce, Gao, Hu, and Pellerey (2004), give similar
characterizations for the decreasing mean residual life (DMRL) aging notion.

A classical result (Joe and Proschan, 1984b) states that

X ≤α-rl Y for all α ∈ (0, 1)

if, and only if,
X ≤hr Y, (4.2)

where ≤hr denotes the hazard rate stochastic order (see Shaked and Shanthikumar, 2007).
This result was strengthened in Franco-Pereira, Lillo, Romo, and Shaked (2010) who showed
that if X is a continuous random variable, and if for some fixed ε ∈ (0, 1) we have that

X ≤α-rl Y for all α ∈ (0, ε) (4.3)

then (4.2) still holds. Now, suppose that some continuous random variable X is DPRL(α)
for all α ∈ (0, ε). From Theorem 4.1(iii) we see that (4.3) holds if we replace X and Y there
by X + t and X + t′, for any t and t′ such that t ≤ t′. Thus, from (4.2) we get

X + t ≤hr X + t′ whenever t ≤ t′,

which means, by Shaked and Shanthikumar (2007, Theorem 1.B.38(iii)), that X is IFR.
We have thus proven the following positive result that may be contrasted with the negative
result shown in Example 3.1.
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Proposition 4.2. Let X be a random variable with a continuous distribution function, and

let ε ∈ (0, 1). If X is DPRL(α) for all α ∈ (0, ε) then X is IFR.

5 Further properties

Intuitively speaking, the order ≤α-rl is an order of magnitude in the sense that a “larger”
random variable may be expected to be larger with respect to this order. However, from
Theorem 4.1 (iii) it follows that that is not always the case. A natural condition under which
indeed X+t′ is larger than X+t with respect to this order, when t ≤ t′, is that X is DPRL(α).
The next result highlights the usefulness of the DPRL(α) notion in a similar situation. The
following result is an analog of Theorem 1.B.21 in Shaked and Shanthikumar (2007) which
involves the IFR aging notion, and of Theorem 2.A.17 in Shaked and Shanthikumar (2007)
which involves the DMRL aging notion.

Theorem 5.1. Let X be a positive, absolutely continuous, DPRL(α) random variable with

interval support. Then

X ≤α-rl aX for all a > 1. (5.1)

Proof. By (2.4),

qX,α(t) = F
−1

X (αFX(t)) − t for all t > 0,

and

qaX,α(t) = F
−1

aX(αF aX(t)) − t = aF
−1

X

(

αFX

( t

a

))

− t = aqX,α

( t

a

)

for all t > 0 and all a > 1.

If X is DPRL(α) then

qX,α(t) ≤ qX,α

( t

a

)

≤ aqX,α

( t

a

)

= qaX,α(t) for all t > 0 and all a > 1,

which yields (5.1).

If X is not DPRL(α) then (5.1) may not hold. More explicitly, for any α ∈ (0, 1), if X is
not DPRL(α) then (5.1) need not hold for any a > 1; this is shown in the following example.

Example 5.2. For a fixed α ∈ (0, 1) and a fixed a > 1, let X be a random variable with the
following distribution function:

FX(t) =











0, t < 0,

(1 + α)at, 0 ≤ t < 1
2a

,

1 − a(1−α)(1−t)
(2a−1)

, 1
2a

≤ t < 1.

A lengthy straightforward computation yields

qX,α(t) =































α
a(1+α)

− t, t < 0,

α( 1
a(1+α)

− t), 0 ≤ t < 1
2a(1+α)

,
[

(1 + α)(2a − 1) − 1
]

t − a−1
a

, 1
2a(1+α)

≤ t < 1
2a

,

α(1 − t), 1
2a

≤ t < 1,

0, t ≥ 1.
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The graph of qX,α(t) is shown in Figure 2. Obviously X is not DPRL(α)
[

qX,α(t) is increasing
in the interval

(

1
2a(1+α)

, 1
2a

)]

. We want to show (see the proof of Theorem 5.1) that

aqX,α

(

t̃

a

)

< qX,α(t̃) (5.2)

for some t̃ ∈ (0, 1). In order to do that take t̃ = 1
2(1+α)

; again, see Figure 2. Then

aqX,α

(

t̃

a

)

= aqX,α

( 1

2a(1 + α)

)

=
α

2(1 + α)
,

and

qX,α(t̃) =

{

α
(

1 − 1
2(1+α)

)

= α(1+2α)
2(1+α)

; if a ≥ 1 + α,
2(a2+1)(1+α)−3aα−4a

2a(1+α)
; if a < 1 + α.

- t

6

0 1
2a(1+α)

1
2a t̃ = 1

2(1+α)
1

α
2a(1+α)

α
a(1+α)

α(2a−1)
2a

Figure 2: The graph of qX,α(t) in Example 5.2

If a ≥ 1 + α then

aqX,α

(

t̃

a

)

=
α

2(1 + α)
<

α(1 + 2α)

2(1 + α)
= qX,α(t̃),

where the inequality follows from 1 + 2α > 1. So inequality (5.2) holds in this case.

On the other hand, if a < 1+α then a straightforward computation shows that inequality
(5.2) is equivalent to (a − 1)2 > 0, which is always true. Therefore X �α-rl aX. ◭

Another situation in which the DPRL(α) aging notion arises as a natural condition will
be described next. The result below (Theorem 5.4), again, indicates a useful property of the
order ≤α-rl when one of the compared random variables is “larger in magnitude” than the
other one. The following result from Franco-Pereira, Lillo, Romo, and Shaked (2010) will be
used in the proofs of Theorems 5.4 and 5.5.
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Proposition 5.3. Let {Xθ, θ ∈ Θ} and {Yθ, θ ∈ Θ} be two families of random variables

with continuous distribution functions. Let V and W be random variables with distribution

functions given by

FV (t) =

∫

Θ

FXθ
(t)dH(θ) and FW (t) =

∫

Θ

FYθ
(t)dH(θ), t ∈ R,

where H is some distribution function on Θ. If

Xθ ≤α-rl Yθ′ for all θ, θ′ ∈ Θ, (5.3)

then V ≤α-rl W .

The following result is a generalization of the sufficiency part of Theorem 4.1(iii).

Theorem 5.4. Let X be a continuous DPRL(α) random variable. Let Z be a nonnegative

continuous random variable that is independent of X. Then

X ≤α-rl X + Z. (5.4)

Proof. We write

FX(x) =

∫ ∞

z=0

FX(x) dFZ(θ)

and

FX+Z(x) =

∫ ∞

z=0

FX+θ(x) dFZ(θ).

Denote Xθ = X and Yθ = X + θ. Now, in Proposition 5.3, take Θ = [0,∞) and H = FZ .
Then V = X and W = X + Z. By Theorem 4.1(iii) we see that (5.3) holds. Therefore the
stated result follows from Proposition 5.3.

It is worthwhile to point out that if X in Theorem 5.4 is not DPRL(α) then the conclusion
of that theorem need not hold. In order to see this, note that Theorem 4.1(iii) actually says
that X is DPRL(α) if, and only if, X ≤α-rl X +a for every a ≥ 0. Thus, if X in Theorem 5.4
is not DPRL(α) then there exists a degenerate Z such that (5.4) does not hold.

The DPRL(α) aging notion is also useful as a condition under which the order ≤α-rl is
preserved under certain random additions. This is shown next.

Theorem 5.5. Let X and Y be two DPRL(α) random variables. Let Z be a random variable,

independent of X and Y , with support in [l, u], where −∞ < l < u < ∞. If X+u ≤α-rl Y +l,
then

X + Z ≤α-rl Y + Z.

Proof. Write

FX+Z(x) =

∫ ∞

θ=0

FX+θ(x) dFZ(θ)

and

FY +Z(x) =

∫ ∞

θ=0

FY +θ(x) dFZ(θ).

11



Denote Xθ = X + θ and Yθ = Y + θ. Take any θ, θ′ ∈ [l, u]. Then

Xθ = X + θ ≤α-rl X + u (by Theorem 4.1(iii) and θ ≤ u)

≤α-rl Y + l (by assumption)

≤α-rl Y + θ′ = Yθ′ (by Theorem 4.1(iii) and l ≤ θ′);

that is, (5.3) holds for Θ = [l, u]. So, taking H = FZ in Proposition 5.3, we obtain the stated
result.

6 Estimation of a decreasing PRL function

In many applications it is reasonable to assume that the system life is monotonically degen-
erating or improving with age. Kochar, Mukerjee, and Samaniego (2000) have studied the
estimation of the mean residual life function under decreasing or increasing restrictions. To
the best of our knowledge, estimation of a percentile residual life function under monotone
restrictions does not appear to have been considered in the literature. In this section we
initiate a study of such estimation procedures following an approach that is similar to the
approach of Kochar, Mukerjee, and Samaniego (2000). We propose an estimator of the per-
centile residual life function under the condition that it decreases, we look at its computation,
and then we prove its consistency.

Let X1, X2, . . . , Xn be independent random variables with a common distribution function
FX , and let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the corresponding order statistics. The resulting
empirical distribution function is

FX,n(t) =
#{k : Xk ≤ t, 1 ≤ k ≤ n}

n
, t ∈ R,

and the corresponding left continuous inverse (that is, the quantile function) is

F−1
X,n(p) = Xk:n if

k − 1

n
< p ≤

k

n
, k = 1, 2, . . . , n.

Following (2.5), a natural empirical counterpart of qX,α is the sample α-percentile residual
life function, which is given by

q̂X,n,α(t) = F−1
X,n(α + (1 − α)FX,n(t)) − t, t < Xn:n.

Note that q̂X,n,α is a piecewise linear function with jump discontinuities. It consists of line
segments with slope equal to −1 with jump discontinuities (which gives rise to a rather
ragged estimator). The estimator q̂X,n,α was introduced and studied in Csörgö and Csörgö
(1987). Further properties of it were obtained in Barabás, Csörgö, Horváth, and Yandell
(1986), Csörgö and Mason (1989), Aly (1992), and Csörgö and Viharos (1992).

The estimator that we suggest is based on the fact that

qX,α is DPRL(α) ⇐⇒ qX,α(t) = inf
y≤t

qX,α(y). (6.1)
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Thus, the estimator q̂∗X,n,α that we propose is given by

q̂∗X,n,α(t) = I(t,∞)(Xn:n) inf
y≤t

q̂X,n,α(y), t ∈ R, (6.2)

where I(t,∞) denotes the indicator function of the indicated interval. Note that q̂∗X,n,α is the
largest decreasing function that lies below the empirical q̂X,n,α.

The computation of the estimator is quite simple. Let X1, X2, . . . , Xn be the random
variables that make up the sample, and let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the corresponding
order statistics. First we find the number of different observational values in the sample, k,
say. Next, let Y1 < Y2 < · · · < Yk be the resulting ordered values with no ties; that is,

X1:n = Y1 < Y2 < · · · < Yk = Xn:n.

Then we explicitly have

q̂∗X,n,α(t) =



















q̂X,n,α(Y1−) + Y1 − t, if t < Y1,

min{q̂X,n,α(Y1−), q̂X,n,α(Y2−), . . . ,

q̂X,n,α(Yj−), q̂X,n,α(Yj+1−) + Yj+1 − t}, if Yj ≤ t < Yj+1, j = 1, 2, . . . , k − 1,

0 if t ≥ Yk.

To illustrate how the estimator looks like, consider a sample of size n = 11 with the
ordered observed values X1:11 = −5, X2:11 = X3:11 = −2, X4:11 = 1, X5:11 = X6:11 = 7,
X7:11 = 11, X8:11 = 15, X9:11 = 16, X10:11 = 18, and X11:11 = 21. Then there are k = 9
resulting ordered values with no ties:

Y1 = −5, Y2 = −2, Y3 = 1, Y4 = 7, Y5 = 11, Y6 = 15, Y7 = 16, Y8 = 18, and Y9 = 21.

In Figures 3, 4, and 5 the estimators q̂X,n,1/3 and q̂∗X,n,1/3, q̂X,n,0.5 and q̂∗X,n,0.5, and q̂X,n,0.8 and
q̂∗X,n,0.8, respectively, are shown. For the purpose of comparisons, the three DPRL estimators
q̂∗X,n,1/3, q̂∗X,n,0.5, and q̂∗X,n,0.8 are put together in Figure 6; note that, obviously, q̂∗X,n,0.8 is the
highest among these three estimators, and q̂∗X,n,1/3 is the lowest.

In Theorem 6.2 below we show that q̂∗X,n,α is a strongly uniform consistent estimator of
qX,α. In order to do that, we need to recall some definitions and a technical result. First we
recall the definition of several types of consistency.

An estimator q̂n(·) of a function q(·) is said to be consistent if

|q̂n(t) − q(t)|
p

−→ 0 for all t,

where
p

−→ denotes convergence in probability. The estimator q̂n(·) of the function q(·) is
said to be strongly consistent if

|q̂n(t) − q(t)|
a.s.
−→ 0 for all t,

where
a.s.
−→ denotes almost sure convergence. Finally, the estimator q̂n(·) of the function q(·)

is said to be strongly uniform consistent if

sup
t

|q̂n(t) − q(t)|
a.s.
−→ 0.

We will also need the following variation of Lemma 1 of Rojo and Samaniego (1993).
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Figure 3: Illustration of the estimators q̂X,n,1/3 and q̂∗X,n,1/3.
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Figure 4: Illustration of the estimators q̂X,n,0.5 and q̂∗X,n,0.5.

Lemma 6.1. Let g and h be two bounded functions on R. Then

∣

∣ inf
y

g(y) − inf
y

h(y)
∣

∣ ≤ sup
y

|g(y) − h(y)|.

We are now ready to state and prove the strongly uniform consistency of q̂∗X,n,α.

Theorem 6.2. Let X be a DPRL(α) random variable. If FX has a continuous positive den-

sity function fX such that inf
0≤p≤1

fX(F−1
X (p)) > 0, then q̂∗X,n,α is a strongly uniform consistent

estimator of qX,α.
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Figure 5: Illustration of the estimators q̂X,n,0.8 and q̂∗X,n,0.8.

Proof. First we note, from Corollary 1.4.1 of Csörgö (1983) and the paragraph that follows
it (in page 6 of Csörgö (1983)), that if FX has a continuous positive density function fX such
that inf

0≤p≤1
fX(F−1

X (p)) > 0, then

sup
0≤p≤1

∣

∣F−1
X,n(p) − F−1

X (p)
∣

∣

a.s.
−→ 0,

that is, F−1
X,n is a strongly uniform consistent estimator of F−1

X . Furthermore, by the Glivenko-
Cantelli theorem, FX,n is a strongly uniform consistent estimator of FX . Combining these
two results it follows that

sup
t

|F−1
X,n(α + (1 − α)FX,n(t)) − F−1

X (α + (1 − α)FX(t))|
a.s.
−→ 0

or, equivalently, that
sup

t
|q̂X,n,α(t) − qX,α(t)|

a.s.
−→ 0. (6.3)

In other words, we see that q̂X,n,α is a strongly uniform consistent estimator of qX,α.

Next, note from Lemma 6.1 that
∣

∣ inf
y≤t

q̂X,n,α(y) − inf
y≤t

qX,α(y)
∣

∣ ≤ sup
y≤t

|q̂X,n,α(y) − qX,α(y)| for all t < Xn:n. (6.4)
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Figure 6: Illustration of the estimators q̂∗X,n,1/3, q̂∗X,n,0.5, and q̂∗X,n,0.8.

Combining this with (6.3) it is seen that
∣

∣ inf
y≤t

q̂X,n,α(y) − inf
y≤t

qX,α(y)
∣

∣

a.s.
−→ 0 for all t < uX .

So, from (6.1) and (6.2) we see that q̂∗X,n,α is a strongly consistent estimator of qX,α.

Finally we still need to prove the strongly uniform consistency of q̂∗X,n,α. For this, note
that (6.4) yields

sup
t

∣

∣ inf
y≤t

q̂X,n,α(y) − inf
y≤t

qX,α(y)
∣

∣ ≤ sup
y≤t

|q̂X,n,α(y) − qX,α(y)| for all t < Xn:n.

Letting n → ∞ above, and making use of the strong uniform consistency of q̂X,n,α, we get

sup
t

∣

∣ inf
y≤t

q̂X,n,α(y) − inf
y≤t

qX,α(y)
∣

∣

a.s.
−→ 0 for all t < uX ,

which proves the strongly uniform consistency of q̂∗X,n,α.

We note that in order to estimate the percentile residual life function under the condition
that it increases, an estimator that is a straightforward modification of the estimator in (6.2)
can be introduced. Its computation is similar to the computation of q̂∗X,n,α, and it is also
strongly uniform consistent. We do not give here the straightforward details.
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