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more credible assumptions that bound various average and quantile effects. For these 
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its participants. 
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1 Introduction* 

For decades, many countries around the world have used active labor market policies to im-

prove the labor market outcomes of the unemployed. Training programs are considered as 

most important components of this policy. They should increase the employability of the un-

employed by adjusting their human capital to the demand in the labor market. 

The evaluation of these rather costly programs has been the focus of a large literature in eco-

nomics (e.g., see Friedlander, Greenberg, and Robins, 1997, Heckman, LaLonde, and Smith, 

1999, Kluve, 2006, and Martin and Grubb, 2001, for overviews). This literature has studied 

the effects of the various programs on employment and realized earnings usually by setting 

earnings of the non-employed to zero. On the other hand, this literature was not able to 

measure the treatment effects on human capital because realized earnings are the product of 

the individual earnings potential times the probability of employment. Therefore, labor 

demand and labor supply influence them and we cannot distinguish how much of the effects 

is due to human capital changes. 

However, the aim of many countries when running these programs is not to bring the program 

participants into (potentially bad) jobs quickly but to increase long-term employability. 

Training programs should increase the human capital of the participants substantially and 

therefore help unemployed finding stable and qualified jobs.1 For this reason, the effect of the 

                                                           
* The first author has further affiliations with ZEW, Mannheim, CEPR, London, IZA, Bonn, PSI, London, IAB, 

Nuremberg, and Ifo, Munich. Financial support from the Institut für Arbeitsmarkt- und Berufsforschung 

(IAB), Nuremberg, (project 6-531a) is gratefully acknowledged. The data originated from a joint effort with 

Stefan Bender, Annette Bergemann, Bernd Fitzenberger, Ruth Miquel, Stefan Speckesser, and Conny Wunsch 

to make the administrative data accessible for research. We thank Josh Angrist, Alan Manning, seminar 

participants at Boston University and MIT and two anonymous referees for helpful comments on a previous 

version of the paper. 
1 In the case of Germany, § 1 of the Work Promotion Act (Arbeitsförderungsgesetz) explicitly states that the 

programs should improve the human capital stock of the individuals and counter low-quality employment. 
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programs on potential wages is a highly policy relevant parameter and measures the success 

of these programs. Furthermore, in the absence of long-term employment outcomes over 10 to 

15 post-program years, changes in human capital are probably the best predictor for long-term 

employability in these countries. 

Evaluating the effect of a training program on the potential wage is, however, a complicated 

econometric problem because of the selective observability of wages. Participants in training 

programs are typically low skilled unemployed with 'bad' employment histories and low re-

employment rates. Therefore, if we are interested in the wage effects of such programs we 

have to deal with the fact that many participants as well as comparable non-participants will 

not receive any wage since they did not take-up employment in the first place. To complicate 

the issue further, we expect that those individuals who take-up jobs are not randomly selected. 

A convenient, but generally incorrect, approach to estimate the potential wage effects is to 

compare the earnings for employed participants and employed non-participants. An alterna-

tive popular strategy is to use classical sample selection models (Heckman, 1979). Unfortu-

nately, the identification of such models either requires a distributional assumption or relies 

on a continuous instrument that determines the employment status but does not affect wages. 

Finding such a variable, however, is usually very difficult. It is impossible in our application. 

Therefore, we follow another strategy: we bound average and quantile program effects on 

potential wages. After having derived the so-called worst-case bounds that are usually very 

wide, we consider how these bounds can be tightened by making further economically 

motivated, but rather weak behavioural assumptions that will be plausible in many 

applications. The suggested bounds do not depend on the way the selection problem related to 

program participation is controlled for: by a randomized experiment, by matching, or by 

instrumental variables. In our particular application, we use a matching strategy that is 

reasonable given the informative administrative database available. 
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We also propose consistent, nonparametric estimators for all bounds and apply them to the 

evaluation of retraining programs in West Germany.2 Such programs are an important (and 

expensive) tool of the German labor market policy. Recent German administrative databases 

are very informative and allow us to credibly control for selective participation into programs, 

to capture important aspects of the effect heterogeneity, and to follow the effects of training 

over a longer period. 

The methodological part of this paper builds on the existing literature on partial identification. 

Manski (1989, 1990, 1994, and 2003) and Robins (1989) contribute prominently to this ap-

proach consisting in bounding the effects of interest using only weak assumptions. Horowitz 

and Manski (2000) bound treatment effects with missing covariate and outcome data. Blun-

dell, Ichimura, Gosling, and Meghir (2007) introduce a restriction imposing positive selection 

into work, while Lee (2009) uses an assumption restricting the heterogeneity of the program 

effects on employment. We consider variants of these assumptions and show that they allow 

tightening the bounds on the treatment effects. Zhang and Rubin (2003) and Zhang, Rubin, 

and Mealli (2007) combine these two types of assumptions. Angrist, Bettinger, and Kremer 

(2006) use a similar combination of assumptions to bound the effects of school vouchers on 

test scores.3 

This paper contributes to the existing literature in four ways. First, we bound not only average 

but also quantile treatment effects. The effects of a treatment on the distribution of the 

outcome are of interest in many areas of empirical research. Policy-makers might be 

interested in the effects of the program on the dispersion of the outcome, or its effect on the 

lower tail of the outcome distribution. Interestingly, the distribution is easier to bound than the 

                                                           
2  We concentrate on West Germany only, because East Germany faces unique transition problems. 
3  They assume directly that the effects of the treatment on the potential test-taking status and on the potential 

score are positive. 
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mean. For instance, bounds on the support of the outcome variable are required to bound the 

mean but not the quantiles of a random variable in presence of missing observations. 

The second contribution of this paper is to allow for a more general first step selection 

process. The existing papers bounding the treatment effects have assumed that the treatment 

status was randomly determined. While this simplifies the derivation of the results, it does not 

correspond to the majority of the potential applications and therefore reduces the interest in 

these methods. Our theoretical results only require that the first step selection problem is 

solved for some subpopulation. They do not depend on the specific method used to solve this 

problem. In our application, we assume unconfoundedness, i.e., we assume that the treatment 

status is independent of the outcome variables conditionally on a set of covariates. 

Third, in our application we bound the treatment effects for the observable population 

consisting of the employed participants.4 Most of the existing literature bounds the effects for 

the unobserved population of individuals working irrespectively of their program participation 

status. However, results for an unobserved population are less intuitive and more difficult to 

communicate. For example, simple descriptive statistics cannot characterize such a 

population. Furthermore, from an economic point of view, the population of working 

participants is clearly the most interesting population because only they have realized 

potential wage effects that actually affect their consumption possibilities. 

Finally, we apply our results to a policy relevant question. Using our preferred combination of 

assumptions, we find substantial increases in the earnings capacity for the training program 

we consider. In fact, both average treatment effects and most quantile treatment effects 

significantly exclude a zero potential wage effect. This shows that our bounding strategy is 

                                                           
4  More generally, our theoretical results apply to the employed part of the population for which the first step 

selection is solved. This population may (e.g. for selection on observables) or may not (e.g. for instrumental 

variables) be observed but its size is known and it can always be described by summary statistics. 
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not only credible because it makes weak assumptions, but that it can be informative for policy 

makers as well. 

The rest of the paper is organized as follows. The next section gives some institutional details 

about training programs in Germany and discusses data issues. In Section 3, we define the 

notation and the treatment effects of interest. We also present a unifying framework for ana-

lyzing average and quantile treatment effects. Section 4 contains the identification results. 

Section 5 proposes nonparametric estimators for the bounds derived in Section 4. Section 6 

presents the empirical results and Section 7 concludes. An appendix contains the main proofs 

of the theorems. Further proofs are relegated to an appendix that can be downloaded from the 

web pages of the authors at www.sew.unisg.ch/lechner/earnings. 

2 Training programs in Germany 

2.1 Active and passive labor market policy 

Germany belongs to the OECD countries with the highest expenditure on labor market train-

ing measured as a percentage of GDP after Denmark and the Netherlands, and it makes up the 

largest fraction of total expenditure on active labor market policies.5 Table 1 displays the ex-

penditures for active and passive labor market policies and especially for training programs 

for the unemployed in West Germany for the years 1991-2003. As usual, training has the ob-

jective of updating and increasing the human capital. It is the most utilized instrument and 

represents almost 50% of the total expenditure devoted to the active labor market policy. 

In Germany, labor market training consists of heterogeneous instruments that differ in the 

form and in the intensity of the human capital investment, as well as in their duration.6 In our 

                                                           
5  See Wunsch (2005) for a detailed account of the German labor market policy. 
6  For a recent (classical) evaluation study of the German training policy, see Lechner, Miquel, and Wunsch 

(2005). This paper contains also more extensive description of the institutional environment and many details 

on the data. 
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empirical application, we concentrate on so-called Re-training courses. They are substantive 

investments supposed to enable unemployed of working in a different profession than the one 

currently held by awarding new vocational degrees. Their mean full-time duration is about 20 

months. 

2.2 Data and definition of the sample 

We use a database obtained by merging administrative data from three different sources: the 

IAB employment subsample, the benefit payment register, and the training participant data. 

This is the most comprehensive database in Germany with respect to training conducted prior 

to 1998. We reconstruct the individual employment histories from 1975 to 1997. It also con-

tains detailed personal, regional, employer, and earnings information. Thus, it allows control-

ling for many, if not all, important factors that determine selection into programs and labor 

market outcomes. Moreover, precise measurements of the interesting outcome variables are 

available up to 2002. 

We consider program participation between 1993 and 1994. A person is included in our pop-

ulation of interest if he starts an unemployment spell between 1993 and 1994. The group of 

participants consists of all persons entering a re-training program between the beginning of 

this unemployment spell and the end of 1994. We require that all individuals were employed 

at least once and that they received unemployment benefits or assistance before the start of the 

program. Finally, we impose an age restriction (25-55 years) and exclude trainees, home 

workers, apprentices and part-time workers. The resulting sample comprises about 9000 non-

participants and 4000 participants in re-training courses.7 

                                                           
7  We use the same data as Lechner, Miquel, and Wunsch (2005). We also follow their definitions of 

populations, programs, participation, non-participation and their potential start dates, outcomes, and selection 

variables. See this paper for much more detailed information on all these topics. 
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Our outcome variables are annual employment and earnings during the seventh year after 

program start. It is a weakness of this database that there is no information on hours available. 

Therefore, we cannot construct wages but have to stick to annual (or monthly) earnings. 

Looking at the effects seven years after program start allows us to concentrate on the long-run 

effects, which are more interesting policy parameters than the short-term effects, because the 

former are closer to the permanent effects of the program. Particularly for this rather long 

program, the short-run effects are much influenced by the so-called lock-in effects (Van Ours, 

2004), meaning that unemployed reduce their job search activities while being in the program. 

2.3 Descriptive statistics 

Table 2 shows descriptive statistics for selected socio-economic variables in the sub-samples 

defined by training participation and employment (employed / non-employed) status. This 

illustrates the 'double selection problem' for the estimation of program effects on wages. 

Concerning selection into the programs (compare the two columns total), the results can be 

summarized as follows: Participants in re-training are younger compared to non-participants, 

which is line with the idea that human capital investments are more beneficial if the produc-

tive period of the new human capital is longer. Interestingly the share of foreigners in re-

training is only about half the share of foreigners in the group of non-participants. Participants 

in re-training are less educated and less skilled. Nevertheless, past earnings are somewhat 

higher for participants in re-training than for non-participants. 

As expected, we observe a positive selection into employment: Employed individuals are 

better educated, younger, and received higher salaries during their last occupation than non-

employed individuals. Interestingly, they reside less frequently in a big city (reflecting the 

higher unemployment rates in German cities). Thus, there is a clear non-random selection into 

programs as well as into employment. Understanding and correcting for these two selection 

processes is the key to recover the 'pure' human capital effects of these training programs. 
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3 Notation, definitions, and effects 

3.1 The standard model of potential outcomes 

We observe N random draws, indexed by i, from a large population. The binary variable  

indicates participation of individual i in the training program. Individual characteristics are 

captured by 

iD

iX  which is defined over the support χ . We follow the standard approach in the 

microeconometric literature to use potential outcomes to define causal effects of interest. 

Rubin (1974), among others, popularized this approach. Let  be the earnings individual i 

would earn after program participation and let  be the earnings individual i would obtain 

otherwise. Similarly, we define the potential employment statuses  and , where 

 for employed individuals and 0 otherwise. 

( )1iY

( )0iY

( )1iS ( )0iS

1S =

We assume that the four potential outcomes are well-defined even if we do not observe all of 

them in practice. Assuming the validity of the stable-unit-treatment-value assumption (see 

Rubin, 1980) allows us to relate the different potential outcomes to the observable outcomes: 

( )(1) 1 (0)S DS D S= + − , 

( )(1) 1 (0) if 1 and  is missing if 0Y DY D Y S Y S= + − = = . 

While the definition of S is standard in the treatment effect literature, the double selection 

problem appears in the definition of Y. For instance, we observe  only if  and 

. This explains why most of the literature has considered only effects on gross or 

total earnings, , that are always observed.

( )1iY 1iD =

( )1 1iS =

( ) ( )Y d S d⋅ 8 

                                                           
8  Here earnings are simply set to zero for non-working individuals. Alternatively, they could also contain some 

non-wage income like unemployment or retirement benefits. In the former case, the causal effect would 

measure some productivity gain due to the program, whereas in the latter case we would estimate the impact 
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Following the literature, we base our analysis on causal parameters that can be deduced from 

the differences of the marginal distributions of potential outcomes.9 First, consider average 

and quantile treatment effects on Y  caused by D. To define the quantile effects, let S⋅

( ;V WF v w)

1

be the distribution function of the random variable V conditional on W evaluated at 

v and w. W may be a vector of random variables. The corresponding th ( 0 ) quantile 

of 

θ θ≤ ≤

( ;V WF v w)  is denoted by ( );w1
V WF θ− . Using this definition, we obtain the following earn-

ings effects of participating in a program: 

 ( ) ( ) ( )( ) ( ) ( )( )1 1 0 0YSATE T t E Y S T t E Y S T t= = = − = ; 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1
1 1 0 0; (YS

Y S T Y S TQTE T t F t F tθ θ θ− −= = − ; )

                                                                                                                                                                                    

. 

The random variable T defines the target population for which we define the effect. For 

instance, if T is the treatment variable D and  we obtain the so-called treatment effect on 

the treated, whereas for  we obtain the treatment effect on the non-treated. If we identify 

the treatment effects using an instrumental variable strategy, T can be an indicator for being a 

complier as defined in Imbens and Angrist (1994) and we obtain the local average or local 

quantile treatment effect parameter. In the framework of Heckman and Vytlacil (2005, 2007), 

T can be the error term in the treatment selection equation and we obtain a family of marginal 

treatment effects. 

1t =

0t =

These parameters, which are defined for various outcome variables, are the usual objects of 

investigation in empirical evaluation studies. They are interesting in their own right and are 

 
of the program on a measure of disposable income. In some applications, setting the unobserved outcome to 

any value may not make sense, for instance when the outcome is a test score or a measure of health. 
9  We do not investigate issues related to the joint distribution of potential outcomes, e.g. (1) (0) ( )Y YF y− , since the 

latter is very hard to pin down with reasonable assumptions. For a thorough discussion of these issues, see 

Heckman, Smith, and Clemens (1997). Of course, this distinction does not matter for linear operators like the 

expectation, for example, since the expectation of the difference equals the difference of the expectations. 
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frequently estimated in empirical studies (e.g. Lechner, Miquel, and Wunsch, 2005). How-

ever, they fail to answer the important question whether the program lead to productivity 

increases. The failure of answering this important policy question comes from the fact that 

these earnings outcomes mix employment and pure earnings effects. Therefore, to answer 

questions about the potential earnings effects, we compare potential outcomes for different 

participation states in a (potential) world in which all individuals had found a job, which is 

not observable for non-working individuals. In particular, we investigate the potential 

earnings effects for those individuals who would find a job under the treatment: 

 ( ) ( ) ( ) ( ) ( )1 , 1 1 0 | , 1YATE T t E Y T t S E Y T t S⎡ ⎤= = = = − = = 1⎡ ⎤⎣ ⎦⎣ ⎦ ; 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
1 , 1 0 , 1; ,1 ; ,1Y

Y T S Y T SQTE T t F t F tθ θ θ− −= = − . 

Note that the problem is symmetric with respect to the definition of the treatment. The tech-

nical arguments would be almost identical if we were interested in the same effects for those 

individuals who would find job when non-treated. 

Note also that we consider treatment effects for subpopulations defined by the potential em-

ployment status , not by the observed S. The causal interpretation of effects conditional 

on S is unclear, because part of the effect of D on Y is already 'taken away' by the conditioning 

variable S (see Lechner, 2008). Therefore, we will not consider the effect of D on those par-

ticipants and nonparticipants who actually found a job. 

( )1S

In section 4, we derive the bounds for a generic population defined by T  and . In 

our application, we are more specific and consider the effects for the “doubly treated” popu-

lation with  and . We could also consider the treatment effects for the whole 

population (irrespectively of whether individuals have found a job or not). However, such 

t= ( )1S =1

1D = ( )1 1S =

Lechner and Melly, revised 2010 10 



effects may be of less policy interest than the effects for the effectively treated population, 

particularly in the context of a narrowly targeted program.  

The effects for other populations have been considered in the literature as well. Card, Micha-

lopoulos, and Robins (2001) considered earnings effects for those workers who were induced 

to work by program participation. Similarly, Zhang and Rubin (2003) and Lee (2009) con-

sider wage effects for individuals who would work irrespective whether they participate in a 

program or not. Of course, both such populations are unobserved and, thus, difficult to de-

scribe. They cannot be characterized, for example, by simple descriptive statistics. Further-

more, Card, Michalopoulos, and Robins (2001) and Lee (2009) severely restrict the hetero-

geneity of the treatment effect. While Card, Michalopoulos, and Robins (2001) assume that 

the treatment effect on employment is positive for all observations, Lee (2009) assumes that 

this treatment effect is either positive for everybody or negative for everybody. However, he-

terogeneous effects are a typical finding in program evaluation studies, as confirmed by our 

application.  

3.2 Unified notation for average and quantile effects 

In this paper, we consider explicitly the identification and estimation of average and quantile 

treatment effects. To do so, we introduce a notation that encompasses both types of effects to 

avoid redundancies in our formal arguments. 

Let  be a function mapping Y into the real line. We will show below that we only need to 

consider (partial) identification of 

( )g ⋅

( )( ) ( ), , 1 1E g Y d X x T t S⎡ ⎤= = =⎣ ⎦  for { }0,1d ∈  and 

T tx χ =

( ) =

∈

g Y

 to examine the identification of the average and quantile treatment effects. Letting 

, we obtain the ATEs defined above. Letting , we identify the Y ( ) ( )1g Y Y y= ≤
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distribution function of Y evaluated at .y 10 The distribution function can then be inverted to 

get the quantiles of interest and to obtain all QTEs defined above. 

Define ( )infg y
b g≡ y  as lower bound of  and ( )g ⋅ ( )supg

y
b g≡ y  as its upper bound. These 

bounds may or may not be finite depending on  and the support of Y. If we estimate the 

distribution function,  is an indicator function, which is naturally bounded between 0 and 

1. If we estimate the expected value of Y,  is the identity function and 

( )g ⋅

( )g ⋅

( )g ⋅ Yb  and Yb  are the 

bounds of the support of Y. If we estimate the variance of Y, . In this case, 

and in the absence of further information on , the lower bound on  is 0 and the up-

per bound is 

( ) ( )( 2
g Y Y E Y= −

( )g ⋅

)

( )E Y

( )2
0.25 . Y Yb b−

Lemma 1 shows that we obtain sharp unconditional bounds by integrating sharp conditional 

bounds. 11 The proofs of all lemmas can be found in the Internet Appendix. 

Lemma 1 (bounds on the unconditional expected value of ) ( )g ⋅

Let ( )gb x  and ( )gb x  be sharp lower and upper bounds on ( )E g Y X x⎡ = ⎤⎣ ⎦ . Then 

( )gE b X⎡ ⎤⎣ ⎦  and ( )gE b X⎡⎣ ⎤⎦  are sharp lower and upper bounds on ( )E g Y⎡⎣ ⎤⎦ . This result 

holds in the population and all subpopulations defined by values of T and S.  

Naturally, if ( ) ( )g gb x b x=  for x χ∀ ∈ , then  is identified. For instance, in the As-

sumption 1 defined below, we assume that 

( )(E g Y

( )

)

( )1 , , 1E Y X x T t S 1⎡ ⎤= = =⎣ ⎦

( )Y

 is point identified. 

Therefore, we obtain the following bounds on ATE T t= : 

                                                           
10  The indicator function  equals one if its argument is true. ( )1 ⋅

11  We define sharp (or tight) bounds as bounds that cannot be improved upon without further information. 
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( )
( ) ( ) ( ) ( )( )

( )
( )

( ) ( ) ( ) ( )( )
0| , 1 1

0| , 1 1

1 , , 1 1

1 , ,

YX T t S

Y
YX T t S

E E Y b X X x T t S

ATE T t E E Y b X X x T t S

= =

= =

⎡ ⎤− = = =⎣ ⎦

⎡ ⎤≤ = ≤ − = = =⎣ ⎦1 1 .
 

Similarly, by letting  and using the same principles, we obtain bounds on the 

unconditional distribution function. Lemma 2 shows how the bounds on the unconditional 

distribution function can be inverted to get bounds on the unconditional quantile function. 

( ) ( )1g Y Y y= ≤

Lemma 2 (bounds on the quantile function) 

Let (1 Y yb ≤ )  and (1 Y yb ≤ )

1

 be sharp lower and upper bounds on the distribution function of Y eva-

luated at . Let  and define y 0 θ< < ( )QYb θ  and ( )QYb θ  as follows: 

( ) ( ){ }1infQY Y yy
b bθ θ≤≡ ≥   if ( )1lim Y yy

b θ≤→−∞
> , 

 Yb≡                      otherwise; 

( ){ }1( ) supQY Y y
y

b bθ θ≤≡ ≤   if ( )1lim Y yy
b θ≤→∞

< , 

 Yb≡     otherwise. 

The sharp lower and upper bounds for the th quantile of Y are θ ( )QYb θ  and ( )QY θb

)

. 

The implication of Lemmas 1 and 2 is that we only need to determine tight bounds of the 

conditional expected value of  for the population of interest to bound sharply the 

ATEs and QTEs. This is what we do in the next section. 

( )( 0g Y

4 Identification 

4.1 First step assumptions 

To concentrate on the special issues related to the 'double selection problem' into programs 

and employment, we assume that the treatment effects would be point identified if there was 
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no sample selection. We state Assumption 1 in general terms because the bounding strategy 

that we propose does not depend on the way this first selection problem is solved. Below, we 

discuss two examples that satisfy this assumption: selection on observables and instrumental 

variables. 

Assumption 1 (Identification of conditional employment and wages given employment) 

( ) ( )| , ,S d X Tp x t ,  and  are identified for ( ) ( ) ( )| , , ; , ,1Y d X T S dF y x t )(| ;X TF x t { }0,1d∀ ∈ , for T tx χ =∀ ∈  

and .( ),∞ ∞y∀ ∈ − 12 

Lemma 3 illustrates the empirical content of Assumption 1. It states that these conditions are 

sufficient to identify the causal effects of D on earnings and employment outcomes. 

Lemma 3 (Assumption 1 identifies effects of D on employment and earnings) 

If Assumption 1 holds, then ( ) ( )1 0E S S T t⎡ − = ⎤⎣ ⎦ (YS, )ATE T t= , and  for 

 are identified. 

(YSQTE T tθ = )

)

                                                          

(0,1θ∀ ∈

Example 1: effects on the treated, selection on observables This example corresponds 

to our application in section 6. Here, we assume independence of treatment, D, and potential 

outcomes, , , conditional on confounders, X, as in the standard matching literature 

(see Section 6 for a brief justification in the specific context of that application). T is equal to 

the treated (we could as well consider the effect on the non-treated, the whole population, 

etc.). Furthermore, to be able to recover the necessary information from the data, common 

support assumptions are added in part b) of Assumption 1’. As we are interested in the effects 

on the double treated, combinations of characteristics that lead to a zero treatment probability 

( )Y d ( )S d

 
12  When the elements of V are binary, the probability of all elements of V jointly being equal to one conditional 

on W  is denoted by w= ( )|V Wp w . 
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do not matter. Lemma 4 verifies that this traditional matching assumption satisfies the 

conditions of Assumption 1. 

Assumption 1’ (conditional independence assumption for first stage) 

a) Conditional independences: ( ) ( ) ( ){ }0 0 , 0Y S S D X x⊥ =  for 1Dx χ =∀ ∈ ;13 

b) Common support: ( )1 1P D X x= = <  for x χ∀ ∈ . 

Lemma 4: Assumption 1’ implies Assumption 1 for the treated population. 

Imbens (2004) provides an excellent survey of estimators for ATEs consistent under As-

sumption 1’. Efficient estimation of such average treatment effects is discussed for example in 

Hahn (1998), Heckman, Ichimura, and Todd (1998), Hirano, Imbens, and Ridder (2003), and 

Imbens, Newey, and Ridder (2005). Firpo (2007) and Melly (2006) discuss efficient estima-

tion of quantile treatment effects. Note that by restricting X to be a constant we obtain the 

special case of a random experiment, which is analyzed by Lee (2009). 

Example 2: binary instrumental variable, effects for the compliers  In this ex-

ample, we show that the assumptions of Imbens and Angrist (1994) made for both outcomes 

(employment and earnings) satisfy the conditions stated in Assumption 1 for the population of 

compliers. Let Z be a binary variable and define the potential treatment variables indexed 

against Z,  and . We follow the original article and call compliers the individuals 

who react to a change in the value of Z: . 

( )0iD ( )1iD

( ) ( )( )1 1 0C D D= >

Assumption 1’’ states standard conditions as found in Abadie, Angrist, and Imbens (2002), 

for instance. Lemma 5 shows that these assumptions satisfy the requirements of Assumption 1 

for the population of compliers (T is C, and ) 1t =

                                                           
13  This notation means that the joint distribution of  and  is independent of D conditional on X. ( ) ( )0 0Y S ( )0S
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Assumption 1’’ (conditional instrumental variable assumption for first stage) 

a) Conditional independences: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 0 , 1 1 , 0 , 1 , 0 , 1Y S Y S S S D D Z X⊥ = x  for 

x χ∀ ∈ ; 

b) Monotonicity and first-stage:  and ( ) ( )( )Pr 1 0 1i iD D≥ = ( ) ( )1 0E D E D>⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ; 

c) Common support:  0 ( 1 )P Z X x< = = <1 for x χ∀ ∈ ;  

Lemma 5: Assumption 1’’ implies Assumption 1 for the compliers. 

Therefore, the bounds derived in this paper are also useful in cases where the earnings effects 

are identified using an instrumental variable strategy. A recent example of such a case occurs 

in Engberg, Epple, Imbrogno, Sieg, and Zimmer (2009). They are interested in the effects of 

magnet schools on education outcomes, where a lottery determines magnet school 

assignment. The problem is that some households move to another school district if they lose 

the lottery and the outcomes are no longer observed in this case. We could bound the causal 

effect of magnet schools on the schooling outcomes using the strategy suggested in this paper. 

These two examples do not exhaust all cases where Assumption 1 is satisfied. For instance, in 

the presence of a continuous instrument, Heckman and Vytlacil (2005, 2007) discuss the 

identification and estimation of the marginal treatment effects. Our results can be applied to 

bound these effects when the outcome is not observed only for a selected population. 

4.2 Worst case bounds 

Assumption 1 is not sufficient to identify the effects of D on the potential earnings, . Of 

course, we point identify these effects if we assume that selection into employment is inde-

pendent from potential earnings. Another alternative to identify the treatment effects on po-

tential earnings is the presence of a continuous instrument for the participation decision S. The 

nonparametric identification of the resulting sample selection models is discussed in Das, 

( )Y d
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Newey, and Vella (2003). However, since assuming independent sample selection is not 

plausible in our application (and probably the majority of applications), and no continuous 

instrument is available for the second stage selection process, we give up on trying to achieve 

point identification. Instead, we bound the treatment effects using weaker assumptions that 

appear to be more reasonable in our empirical study (and many other applications). 

Theorem 1 shows that knowing the effects of D on employment and realized earnings reduces 

the uncertainty. The bounds given in Theorem 1 – as well as all other bounds derived in this 

paper – are sharp (see Internet Appendix for proofs). To state this theorem concisely, we 

denote the expected value of Y in the p fraction of the population with the smallest value of Y 

by ( )
min p
E Y . If Y is a continuous random variable, ( ) ( )( )1

min

YF p
Y

p

f y
E Y y

p

−

−∞

= ⋅ ⋅∫ dy . If Y is an 

indicator variable, ( )
min

0
p

E Y =  if  and ( )Pr 1 1Y p= < − ( ) ( )( )
min

Pr 1 1 /
p

E Y Y p= = − + p  

otherwise. Similarly, ( )
max p
E Y  denotes the expected value of Y in the p fraction of the 

population with the largest value of Y.14 

Theorem 1 (worst-case bounds) 

Assumption 1 holds. If ( ) ( )0 , 1 ,( , ) ( , ) 1S X T S X Tp x t p x t+ > , then the lower and upper bounds on 

( )( ) ( )0 , , 1E g Y X x T t S⎡ ⎤= = =⎣ ⎦1  are given respectively by 

( ) ( ) ( ) ( )
( ) ( )

( )( ) ( )( ) ( ) ( )

( )0 , 1 ,

0 ,

0 , 1 ,

, , 1
1 ,min

,

( , ) ( , ) 1
0 , , 0 1

( , )S X T S X T

S X T

S X T S X T

p x t p x t
S X T

p x t

p x t p x t
E g Y X x T t S

p x t+ −

+ −
= = =

( )

( )

0 ,

1 ,

1 ( , )
,

( , )
S X T

g
S X T

p x t
b

p x t

−
+  and 

                                                           
14  We use the notation introduced by Zhang and Rubin (2003), who bounded the effects for the unobserved 

population of individuals working irrespectively of their program participation status. 
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( ) ( ) ( ) ( )
( ) ( )

( )( ) ( )( ) ( ) ( )

( )

( )

( )

0 , 1 ,

0 ,

0 , 1 ,

, , 1
1 ,max

,

0 ,

1 ,

( , ) ( , ) 1
0 , , 0 1

( , )

1 ( ,
                    .

( , )

S X T S X T

S X T

S X T S X T

p x t p x t
S X T

p x t

S X T
g

S X T

p x t p x t
E g Y X x T t S

p x t

p x t
b

p x t

+ −

+ −
= = =

−
+

)
 

If ( ) ( )0 , 1 ,( , ) ( , ) 1S X T S X Tp x t p x t+ ≤ , then the bounds are gb  and gb . 

Note that the bounds are identified by Assumption 1. Theorem 1 shows that we can learn part 

of the nonparticipation-employment outcome of employed participants from the employment 

outcomes of non-participants. However, there remains uncertainty because the employed 

participants could be unemployed when non-treated. In addition, Assumption 1 is silent about 

which wage the always-employed participants would receive when non-treated. The 

importance of these two sources of uncertainty decreases as the employment probabilities 

increase. 

Obviously, these bounds will be very wide if the employment probabilities are low. In our 

application, the employment probabilities are small because we consider a sample of persons 

who are unemployed when treatment starts. The employment probability at the end of our 

sample period is below 60%. Therefore, we cannot obtain informative bounds without further 

restricting the selection process into employment. Such restrictions will be imposed below.15 

4.3 Positive selection into employment 

In the standard labor supply model individuals accept a job offer if the offered wage is higher 

than the reservation wage, denoted by , i.e. . If  is independent 

from  this model trivially implies that employed individuals are positively selected from 

the population. This is more generally true as long as the difference between  and  is 

RY ( ) ( )(0 1 0 RS Y Y= ≥ ) RY

Y

( )0Y

( )0 RY
                                                           
15  The presence of a discrete instrument for employment is an example of such a restriction. We do not present 

the implied bounds because we do not have any plausible exclusion restriction in our application. Moreover, 

the bounds are straightforward to derive as the intersections of the bounds conditionally on the instrument. 
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positively associated with .( )0Y 16 This relation motivates the assumption, suggested by Blun-

dell, Gosling, Ichimura, and Meghir (2007), that ( ) ( )( )Pr 0 1 , 0S X x Y y= = ≤ ≤  

( ) ( )(Pr 0 1 , 0S X x Y )= =

t

y>

( )0 | , , (Y X T SF

. Such a condition is equivalent to assuming that the wage 

distribution of the employed first-order stochastically dominates the wage distribution of non-

employed:17 

Assumption 2 (positive selection into employment) 

( ) ( ) ( )0 | , , (0) 0); , ,0 ; , ,1Y X T SF y x t y x≥  for T tx χ =∀ ∈  and . y∀

Blundell, Gosling, Ichimura, and Meghir (2007) are interested in the conditional distribution 

of wages for the whole population. We are more specifically interested in the (unconditional) 

treatment effects for the employed treated population. In our application, their bounds are 

uninformative while we obtain tighter bounds because we consider a population with a higher 

employment probability and we use the treatment effect structure. We obtain especially in-

formative bounds by combining positive selection with an assumption about the treatment 

choice defined below that cannot be used to bound outcomes for the whole population. 

Assumption 2 tightens one of the bounds derived in Theorem 1: 

Theorem 2 (positive selection into employment) 

a) If Assumptions 1 and 2 hold, and  is a monotone increasing function, then: ( )g ⋅

( )( ) ( )( ) ( )( )
( ) ( )1 ,max ,

0 , 1 0 , , 0 1
S X Tp x t

E g Y X x T t S E g Y X x T t S⎡, 1 ⎤= = = ≤ = = =⎡ ⎤⎣ ⎦ . ⎣ ⎦

b) If Assumptions 1 and 2 hold and  is a monotone decreasing function, then: ( )g ⋅

( )( ) ( )( ) ( )( )
( ) ( )1 ,min ,

0 , 1 0 , , 0 1
S X Tp x t

E g Y X x T E g Y X x T t S⎡, 1t S ⎤⎡ ⎤= = = ≥ = = =⎣ ⎦ . ⎣ ⎦

                                                           
16  RY  is of course allowed to be positively correlated with . ( )0Y
17  See Blundell, Gosling, Ichimura, and Meghir (2007) for a proof. 
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Thus, assuming positive selection allows tightening the upper bound on the expected value 

and the lower bound on the distribution function of the potential outcome. There is no contra-

diction because the distribution function must be inverted to obtain the quantile function, 

which means that adding positive selection has a similar effect on the quantiles and the mean. 

4.4 Conditional monotonicity of the treatment effect on employment 

Lee (2009) restricts the individual treatment effect on the employment probability to have the 

same sign for all of the population.18 Lee's assumption is similar to the monotonicity assump-

tion of Imbens and Angrist (1994), but they restrict the effect of the instrument on the treat-

ment status, while Lee restricts the effect of the treatment on sample selection.19 

Lee's (2009) assumption appears to be overly restrictive for the type of application we con-

sider. For instance, it excludes the possibility that a training program has positive effects on 

long-term unemployed but negative effects on short-term unemployed. However, this type of 

heterogeneity is typically found in the literature. Thus, we impose the weaker assumption that 

the direction of the effect on employment is the same for all individuals with the same char-

acteristics X. This assumption is satisfied if the vector of characteristics is rich enough to 

capture the program effect heterogeneity on employment. 

A second difference with Lee (2009) is that we consider a broader range of identifying as-

sumptions for the first step of the selection process, thus making the approach applicable out-

side the setting of random experiments. 

A third difference with Lee (2009) is that we bound the effect for an observable population as 

long as assumption 1 is satisfied for an observable population. In our application, we bound 

                                                           
18  The same assumption is also made by Zhang and Rubin (2003). 
19  These assumptions are fundamentally different from the monotone-treatment-response assumption of Manski 

(1997) and from the monotone instrumental variables assumption of Manski and Pepper (2000), because those 

authors assume certain functions to be monotone. 
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the effects for the employed treated while Lee bounds the effects for the population who 

would work with or without the program. Therefore, if the program has a positive effect on 

employment, then he bounds the effects for the non-treated population, while if the program 

has a negative effect on employment, he bounds the effects on the treated. When the 

employment effect is heterogeneous with respect to X, he estimates the effects for a 

population that is a mixture of treated and non-treated, which is difficult to interpret. 

The formal definition of monotonicity is given in Assumption 3: 

Assumption 3 (conditional monotonicity of the treatment effect on employment) 

For each T tx χ =∈ ,  either a) , ( )(1) (0) | , 1P S S X x T t≥ = = =

=   or b) . ( )(1) (0) | , 1P S S X x T t≤ = =

Theorem 3 shows that Assumption 3 allows tightening the bounds considerably: 

Theorem 3 (conditional monotonicity of the treatment effect on employment) 

a) Assumptions 1 and 3-a) hold. The bounds are given by the following expressions: 

( )( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( )( ) ( )

( )( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

0 , 1 , 0 ,

1 , 1 ,

0 , 1 , 0 ,

1 , 1 ,

, ,
0 , , 0 1

, ,

0 , , 1 1

, ,
0 , , 0 1

, ,

S X T S X T S X T
g

S X T S X T

S X T S X T S X T
g

S X T S X T

p x t p x t p x
E g Y X x T t S b

p x t p x t

E g Y X x T t S

p x t p x t p x t
E g Y X x T t S b

p x t p x t

−
⎡ ⎤= = = +⎣ ⎦

⎡ ⎤≤ = = = ≤⎣ ⎦
−

⎡ ⎤= = = +⎣ ⎦

,

,
.

t

 

b) Assumptions 1 and 3-b) hold. The bounds are given by the following expressions: 

( ) ( )
( ) ( )

( )( ) ( ) ( )( ) ( )

( ) ( )
( ) ( )

( )( ) ( )

1 ,

0 ,

1 ,

0 ,

,
min

,

,
max

,

0 , , 0 1 0 , , 1 1

0 , , 0 1 .

S X T

S X T

S X T

S X T

p x t

p x t

p x t

p x t

E g Y X x T t S E g Y X x T t S

E g Y X x T t S

⎡ ⎤ ⎡= = = ≤ = = =⎣ ⎦ ⎣

⎡ ⎤≤ = = =⎣ ⎦

⎤ ≤⎦
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Interestingly, we obtain point identification if ( ) ( )1 | , 0 | ,( , ) ( , )S X T S X Tp x t p x t= . The reason is that 

under the monotonicity assumption, both treatment and control groups are comprised of 

individuals whose sample selection was unaffected by the assignment to treatment, and 

therefore the two groups are comparable. Sample selection correction procedures are similar 

in this respect because they condition on the participation probability, as discussed by Angrist 

(1997). However, they require continuous exclusion restrictions to achieve nonparametric 

identification. In the absence of such exclusion restrictions, there is only identification if the 

employment probabilities are, by chance, the same. 

Theorem 4-b) comprises the result of Proposition 1 in Lee (2009) as a special case. This result 

has the appealing feature that the bounds do not depend on the support of . Thus, the 

bounds are finite even when the support of Y is infinite. Obviously, this is irrelevant for the 

distribution function or if the support of Y is naturally bounded. 

( )g ⋅

4.5 Combination of assumptions 

Adding positive selection as defined in Assumption 2 to conditional monotonicity as defined 

in Assumption 3 tightens one of the bounds on ( )( ) ( )0 , , 1E g Y X x T t S 1⎡ ⎤= = =⎣ ⎦ : 

Theorem 4 (positive selection into employment and conditional monotonicity) 

a) Assumptions 1, 2, and 3-a) hold. If  is an monotone increasing function, then, the up-

per bound given in Theorem 3-a) tightens to: 

( )g ⋅

( )( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( )( ) ( ) ( ) ( )

( )1 , 0 ,

1 0 ,

0 ,

1 ,

1 , 0 ,

, ,
1 ,max

,

,
0 , , 0 1

,

( , ) ( , )
0 , , 0 1

( , )S X T S X T

S X T

S X T

S X T

S X T S X T

p x t p x t
S X T

p x t

p x t
E g Y X x T t S

p x t

.
p x t p x t

E g Y X x T t S
p x t

−

−

⎡ ⎤= = =⎣ ⎦

−
⎡ ⎤+ = = =⎣ ⎦

 

b) Assumptions 1, 2, and 3-a) hold. If  is a monotone decreasing function, then the lower 

bound given in Theorem 3-a) tightens to: 

( )g ⋅
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( )( ) ( )( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( )( ) ( )( ) ( ) ( )

( )1 , 0 ,

1 0 ,

0 ,

1 ,

1 , 0 ,

, ,
1 ,min

,

,
0 , , 0 1

,

( , ) ( , )
0 , , 0 1

( , )S X T S X T

S X T

S X T

S X T

S X T S X T

p x t p x t
S X T

p x t

p x t
E g Y X x T t S

p x t

.
p x t p x t

E g Y X x T t S
p x t

−

−

= = =

−
+ = = =

. 

The bounds obtained in Theorem 4 are only slightly more informative than those of Theorem 

3. The reason is that the positive selection assumption compares – suppressing the 

dependence on T  -  and , but not  

and . Therefore, it is possible that  dominates 

, although at the same time  dominates 

. We rule out this implausible scenario in Assumption 4: 

t=

, (1) ( ;S

; ,1,1)y

,0)y x

( )0 | , (0) ( ; ,0)Y X SF y

,1,1)y x

x x

S

( )0 | , (0) ( ; ,1)Y X SF y ( )0 | , (0), (1) ( ; ,0,1)Y X S SF y x

1) ( ; ,0,1)S y x

(0) ( ; ,1)S y x

( )0 | , (0)Y X SF

| , (0), (1) (Y X S SF x

, (0) ( ;Y X SF

( )0 | , (0), (Y X SF

( )0 | ,Y XF( )0

( )0 |

Assumption 4 (positive selection into employment conditionally on ) ( )1 1S =

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 | , , 0 , 1 0 | , , 0 , 1; , ,0,1 ; , ,1,1Y X T S S Y X T S SF y x t F y x t≥ . 

Combining Assumption 4 with the conditional monotonicity assumption leads to simple and 

intuitive bounds that are given in Theorem 5:  

Theorem 5 (positive selection into employment conditionally on  and monotonicity) (1) 1=

a) Assumptions 1, 3-a), and 4 hold. If  is a monotone increasing function, then: ( )g ⋅

( )( ) ( ) ( )( ) ( )0 , , 0 1 0 , , 1 1E g Y X x T t S E Y X x T t S⎡ ⎤ ⎡ ⎤= = = ≥ = = =⎣ ⎦ ⎣ ⎦g . 

b) Assumptions 1, 3-a), and 4 hold. If  is a monotone decreasing function, then: ( )g ⋅

( )( ) ( ) ( )( ) ( )0 , , 0 1 0 , , 1 1E g Y X x T t S E Y X x T t S⎡ ⎤ ⎡ ⎤= = = ≤ = = =⎣ ⎦ ⎣ ⎦g . 

The intuition for this result is simple. Suppose that a program has a positive effect on em-

ployment. This means that the potential wage of the employed participants is lower than that 
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of the employed non-participants by the positive selection assumption. If, despite this positive 

effect on employment, the program has also a positive effect on the observed wages, this im-

plies that the program has a positive effect on potential wages. Formally, 

( ) ( ) ( )
( ) ( ) ( ) ( )

1 0 , , 1 1

1 , , 1 1 0 , , 0

E Y Y X x T t S

E Y X x T t S E Y X x T t S

⎡ ⎤− = = =⎣ ⎦
⎡ ⎤ ⎡≥ = = = − = =⎣ ⎦ ⎣ 1 .⎤= ⎦

 

5 Estimation 

This paper focuses on the identification issues as well as on the empirical study that motivated 

the methodological innovation. Naturally, we bridge the gap between the identification results 

and the empirical study by proposing some estimators as well but keep this part of the paper 

brief. We consider only selection on observables as defined by Assumption 1’ and the effects 

on the treated because we use this strategy in our application. We start by proposing 

consistent, nonparametric estimators. However, the combination of the dimension of the 

control variables and the sample sizes in this application are such that a fully nonparametric 

estimation strategy would lead to very imprecise estimators. Therefore, in Section 5.2 we 

suggest to use a (parametric) propensity score to reduce the dimension of the estimation 

problem and so to gain precision. 

5.1 Nonparametric estimators 

Here, we provide consistent, nonparametric estimators for all elements appearing in the dif-

ferent bounds of Theorems 1 to 5. Since we are interested in average as well as quantile ef-

fects, we consider two special cases of the g-function, namely  and 

. 

( )g Y Y= ( ) ( )1g Y Y y= ≤

The conditional employment probabilities , ( , )S X Dp x d  for  could be estimated 

nonparametrically using Nadaraya-Watson or local linear regression. However, a local nonli-

{0,1}d ∈
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near estimator (Fan, Heckman, and Wand, 1995), like a local probit for instance, should be 

more suited for binary dependent variables.20 

( )1 , 0,E Y y X x D S⎡ ≤ = = = ⎤⎣ 1⎦  could be estimated by a local probit as well. However, for 

the QTEs we need to estimate the conditional distribution function evaluated at a large num-

ber of , which is computationally very intensive. Moreover, since we need to estimate the 

complete conditional distribution anyway, it is natural and faster to estimate the whole distri-

bution by using locally weighted quantile regressions (Chaudhuri, 1991). By exploiting the 

linear programming representation of the quantile regression problem, it is possible to esti-

mate all quantile regression coefficients efficiently (see Koenker, 2005, Section 6.3). The es-

timated conditional quantiles, though not necessarily monotonous in finite samples, may be 

inverted using the strategy proposed by Chernozhukov, Fernández-Val and Galichon (2009). 

y

The conditional expectations of earnings, ( , 0, 1E Y X x D S= = = ) , is estimated by local 

linear least squares regression. 

The majority of the bounds for the mean contain conditional, asymmetrically trimmed means 

like ( )
max

, 0, 1
p

E Y X x D S= = =  and (
min

, 0, 1
p

E Y X x D S= = = )

d

.21 Lee (2009) proposes an 

estimator for the case with discrete X. We propose a new estimator allowing for discrete and 

continuous X. Koenker and Portnoy (1987) suggest an estimator based on linear quantile re-

gression that allows estimating conditional trimmed means. They consider estimators of the 

form 
1

0

ˆ( ) ( )J θ β θ θ∫ , where ˆ( )β θ  is the th quantile regression coefficient vector. We apply a 

nonparametric version of their estimator with a particular weight function, , that selects 

θ

( )J θ

                                                           
20  Moreover, in Frölich (2006) the local parametric estimator appears to have better small sample properties. 
21 For the distribution function, ( )( )

max
1 1

p
E Y y≤ =  if  and (( )1p E Y y< ≤ ) ( )( ) ( )( )

max
1 1

p
E Y y E Y y≤ = ≤ p  

otherwise, such that we do not need to estimate a trimmed mean. A similar result holds for the lower bound. 
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quantiles only above or below p. We estimate 
max

( , 0,
p

E Y X x D S= = = 1)  by 
1

1

ˆ( , )
p

x x dβ θ θ
−
∫  

and 
min

( , 0, 1
p

E Y X x D S= = = )
0

ˆ( , )
p

 by x x dβ θ θ∫  where ˆ( , )xβ θ  is the th local linear quantile 

regression evaluated at 

θ

x  in the subpopulation D=0, S=1. 

Lemma 1 shows that the bounds of the unconditional expected values equal the expected val-

ues of the conditional bounds. Thus, we estimate the bounds on the ATE by the mean of the 

conditional bounds evaluated at the treated observations. Similarly, for the QTE, we estimate 

the unconditional distribution by integrating the bounds on the conditional distribution. These 

bounds, which are monotone, are inverted to obtain the bounds of the QTE as shown in 

Lemma 2. 

5.2 Using the propensity score to reduce the dimensionality of the problem 

In our application, the number of control variables X necessary to make Assumption 1’ plausi-

ble is too high to attempt a fully nonparametric estimation strategy, even with large samples. 

Rosenbaum and Rubin (1983) show that the propensity score represents a useful dimension 

reduction device, because conditional independence of assignment and treatment (Assumption 

1’a) holds conditional on the (one-dimensional) propensity score as well: 

( ) ( ) ( ){ } ( ) ( ){ ( )}0 0 , 0 , 0 (D XY S S D X x S D p x⊥ = ⇒ ⊥  0 0Y S ) . 

Similarly, if Assumption 2 and 4 (positive selection into employment) are valid conditionally 

on X, they are also valid conditionally on the propensity score. In fact, these two assumptions 

are less restrictive conditional on the propensity score, as the score is less fine than X. 

In contrast, conditioning only on the propensity score instead of X would considerably 

strengthen Assumption 3. The monotonicity assumption states that the sign of the program 

effect on employment is the same for all observations with the same value of X. Therefore, the 
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conditioning set must capture the heterogeneity of the employment effects. Since the condi-

tioning set must also satisfy Assumption 1, we condition on the propensity score as well as on 

variables suspected to be related to employment effect heterogeneity. 

We estimate the propensity scores (for each program compared to nonparticipation) with pa-

rametric binary probits. In a second step, we estimate nonparametrically the response func-

tions and bounds conditional on the propensity score and, when necessary, on the variables 

suspected to be related to employment effect heterogeneity. A potential drawback is that the 

bounds may be asymptotically less informative when we do not condition on all covariates. 

6 Wage effects of training programs in West Germany 

6.1 Validity of the identifying assumptions 

As explained in Section 2, we use similar data and variables as Lechner, Miquel, and Wunsch 

(2005). They discuss extensively why Assumption 1’ is plausible in this setting. Briefly, their 

argument is that the data, which was specifically compiled to evaluate these programs, con-

tains the major variables that jointly influence (marginal) outcomes and participation in the 

different training programs. For example, we control for education, age, family status, de-

tailed regional differences, as well as previous employment histories including earnings, po-

sition in previous job, specific occupation, and industry. Some potentially important factors 

are still missing such as ability, motivation, jail and detailed health histories, but we are con-

fident to capture these factors indirectly with almost 20 years of employment histories and the 

other covariates. 

Assumptions 2 and 4 (positive selection into employment) could be violated by a strong 

enough positive relationship between actual wages and reservation wages. This could partic-

ularly be the case for older unemployed with high productivity, if they have saved enough to 
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retire. We should not be affected by this problem because our population of interest is young 

(90% below 40 years old).  

The monotonicity assumption will be satisfied if we capture the heterogeneity of the treatment 

effects on employment. Lechner, Miquel, and Wunsch (2005) find four variables related sig-

nificantly to the heterogeneity of the employment effects for at least one of the four programs: 

the regional unemployment rate, residence in big towns, sex, and long-term unemployment 

before the program. Therefore, we control for these four variables in addition to the propen-

sity score. 

6.2 Implementation of the estimation and inference procedures 

We use the estimators presented in Section 5.2 with the propensity scores based on binary 

linear probits.22 All bandwidths necessary to implement the nonparametric regressions are 

chosen by cross-validation. The bandwidths depend on the program, the dependent variable 

(employment or earnings) and the regressors included. The same bandwidths are used for 

mean and quantile regressions. 

For most cases average treatment effects are unbounded if the support of earnings is un-

bounded. Here the support is bounded by construction: Due to the regulations of the social 

security system, from which the database results, earnings are top-coded. This ceiling is 

however high, particularly for the low-earnings population we consider. It is attained by less 

than 1% of the observations. Thus, it is used as an upper bound together with zero as the 

lower bound. 

While estimation of the bounds is a relatively standard problem, inference on partially identi-

fied parameters raises a number of issues that are the subject of a currently active literature. 

                                                           
22  Lechner, Miquel, and Wunsch (2005) use a multinomial probit. We use the binomial probit because we are 

only interested in one particular program. Furthermore, the correlations between the estimated probabilities 

resulting from both estimators are higher than 98%. 
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Since it is outside the scope of this paper to derive the asymptotic distribution of our 

estimators, we will motivate the inference procedure only heuristically. 

The identified sets are intervals whose boundaries have closed form expressions. Therefore, 

we follow an approach suggested by Horowitz and Manski (2000) and Imbens and Manski 

(2004) and refined by Stoye (2009). We estimate these boundaries by averages of conditional 

bounds, which are themselves estimated by local parametric estimators. This is very similar to 

the matching estimators suggested by Heckman, Ichimura, and Todd (1998) that are 

asymptotically normally distributed and have asymptotically linear score functions.23 In 

addition, by construction, the estimated upper bound is always larger than the estimated lower 

bound. By Lemma 3 in Stoye (2009), this justifies using the procedure suggested by Imbens 

and Manski (2004). We implement their method to obtain confidence intervals that cover the 

true value of the parameters with a fixed probability. 

We use the standard nonparametric bootstrap to estimate the joint distribution of the bounds. 

It is well-known that the bootstrap fails when the asymptotic distribution of the estimators is 

discontinuous as a function of the parameters. This is the case for our estimators only if 

( ) ( ) ( ) (1 | , 0 | ,, ,S X T S X T )p x t p x t=  for all T tx χ =∈ . In our application, we exclude this possibility 

based on a conservative pre-test.24 This implies that the parameters are not point identified 

and that the asymptotic distributions of our estimators are continuous as a function of the 

parameters of interest.25 

The procedure is evaluated in a Monte Carlo study, whose data generating process is 

calibrated to match many characteristics of the data in our application. The bootstrap performs 

                                                           

t

23 The estimator implementing the result of theorem 5 is exactly the estimator of Heckman, Ichimura, and Todd 

(1998). The other bounds are small variations of their estimator. 
24 The p-value of this test is 0.000003. Note that we don’t have a discontinuity if  

for some x because we bootstrap the unconditional and not the conditional bounds. 
( ) ( ) ( ) ( )1 | , 0 | ,, ,S X T S X Tp x t p x=

25  See assumption 3 in Hoderlein and Stoye (2009) for a similar assumption. 
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reasonably well and the confidence intervals are either slightly conservative or accurate. The 

detailed results are available in the Internet Appendix. 

6.3 Standard earnings and employment effects 

We investigate the long-run effects of the re-training program on earnings (and employment) 

by estimating the effects on annual earnings in the seventh year after program start.26 Before 

presenting the results for the potential earnings, we show standard employment and realized 

earnings effects as benchmark. The upper panel of Table 3 presents the means of the outcome 

variables for the non-participants and the participants in the re-training program. Of course, 

the differences between these means have no causal interpretation because they are computed 

for different population. Therefore, Table 3 presents also the estimated ATET. They are 

similar to the results of Lechner, Miquel, and Wunsch (2005) but are not exactly identical, 

because we use local linear regression estimators and they used a modified radius matching 

estimator, and because they consider monthly instead of yearly outcome variables. 

The results for employment show that the program has a strongly significant positive effect on 

employment. This allows us to exclude point identification when we consider making 

inference about the bounds. The effect on total earnings is also positive, but it is impossible to 

know whether it is only driven by the effect on employment or whether it reflects an 

improved productivity. The estimated effect on earnings for the sub-samples of employed 

individuals is only valid if employment and earnings are independent. This assumption is 

probably not satisfied and this result is, therefore, difficult to interpret. 

                                                           
26  The reason why we define long run as corresponding to 7 years (and not more) is driven by data availability. 

However, being able to observe individual outcomes for up to 7 years after program start is unusual for 

evaluation studies. Moreover, Lechner, Miquel, and Wunsch (2005) show that the effects were quite stable 

starting from the 5th year after the program start. 
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Figure 1 presents the quantile treatment effects on earnings, which are new.27 They are even 

more difficult to interpret than the ATET. A substantial proportion of individuals are still 

unemployed whether they participated in a re-training program or not. Therefore, quantile 

treatment effects are zero for the lower part of the distribution. After that, participants are em-

ployed and the non-participants are unemployed. Consequently, the quantile treatment effects 

increase strongly but this is a pure employment effect. Finally, the quantile treatment effects 

stabilize when both participants and non-participants are employed in the upper part of the 

distribution. Furthermore, Figure 1 also shows the effects conditionally on being employed, 

but they are probably biased estimates of the wage effects because of the sample selection 

issue that is the key topic of this paper. 

To conclude, it is obvious that such results usually estimated and reported in evaluation stud-

ies are unable to reveal the effects of the training programs on the productivity of the treated 

individuals. Next, we present the results that are informative on that issue. 

6.4 Bounds on the potential wage effects 

Table 4 shows the bounds for the ATET and three QTETs. It also reports confidence intervals 

obtained by the procedure described in section 6.2. They cover the true treatment effects with 

95% probability. Confidence intervals for the bounds, not reported, are slightly more 

conservative, but lead to similar conclusions regarding the significance of the reported effects. 

It is clear from the results, that the worst-case bounds are extremely wide. Imposing positive 

selection increases significantly the lower bounds but, with the exception of one quantile ef-

fect, is not sufficient to exclude zero effects. The monotonicity assumption allows tightening 

upper and lower bounds compared to the worst-case bounds, but it is not powerful enough to 
                                                           
27  Since the sample objective function defining quantiles is non-differentiable, some estimates may slightly jump 

from one quantile to the other. Therefore, we use bagging (bootstrap aggregating) to smooth the results by 

defining the estimator to be the mean of the estimates obtained in 200 bootstrap samples. Lee and Yang 

(2006) and Knight and Bassett (2002) provide justification for bagging quantile regressions. 
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reject the absence of a human capital effect. However, the combination of positive selection 

with monotonicity leads to informative bounds. We present the results for the two different 

definitions of positive selection as discussed in Section 4.5. Interestingly, the bounds implied 

by Theorem 5 are more informative without making stronger behavioral restrictions: For them 

we find significant positive effects at the mean and most of the quantiles. The magnitudes of 

the effects are not small compared to the median observed earnings of about 19’000 Euros: 

the lower bound on the median effect is about 3’700 Euros, which is almost 20% of the 

median observed earnings. The average effect is somewhat smaller but still sizeable. These 

results indicate that participating in the re-training programs significantly increases the 

potential earnings of the participants.  

While Table 4 shows the results for three selected quantiles only, Figure 2 gives a more com-

plete picture of the quantile treatment effects by considering 99 percentiles. It presents the 

bounds for our preferred combination of assumptions (Theorem 5) along with confidence in-

tervals covering the true parameters with 95% probability. 

Figure 2 shows that the re-training program has positive effects at most percentiles of the 

potential earnings distribution. This effect is significant at 54 percentiles. It also seems that 

we cannot reject the null hypothesis that the effects are the same for all quantiles. Note 

however that these are effects in absolute value (in Euros) and the same absolute effect 

represents a much higher relative effect for low quantiles than for high quantiles. A 

statistically valid test of this hypothesis requires developing new test procedures based on the 

entire partially identified quantile process. This is outside the scope of this paper. 

One of the initial motivations for considering potential earnings effects was that total earnings 

effects mix the employment effects and the human capital effects. We bound now the respec-

Lechner and Melly, revised 2010 32 



tive importance of each component. Abstracting from the conditioning set X and T, by the 

monotonicity assumption and assuming that , we obtain, ( )( ) ( )( )Pr 1 Pr 0S S>

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

1 0 1 0 1 1 Pr 1 1

                            0 0 1 Pr 0 1 .

E Y Y E Y Y S S

E Y S S S S

⎡ ⎤− = − = =⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤+ < <⎣ ⎦
 

The first term is the human capital effect and the second term is the employment effect. 

,  and  are identified by Assumption 1. Theorems 

3, 4, and 5, provide us with the bounds for 

( ) ( )1 0E Y Y−⎡ ⎤⎣ ⎦ ( )( )Pr 0 1S = ( )(Pr 1 1S = )

( ) ( ) ( )1 0 1E Y Y S 1⎡ ⎤− =⎣ ⎦ . Therefore, we can 

bound the relative importance of the employment effect. A similar decomposition can be de-

rived for the case where the program has a negative effect on employment. Applying these 

results to our data, at least 46% of the total earnings effects are pure human capital effects. 

7 Conclusion 

Using our preferred combination of assumptions, we find substantial increases in the earnings 

capacity due to participation in the German re-training program. Although the assumptions 

used to obtain these results are rather weak and do not allow point identification of the effect, 

the effects are large enough and the assumptions powerful enough to reject the hypotheses 

that the average program effects and most quantile program effects on potential earnings are 

zero. This adds further evidence to previous findings suggesting that the West German train-

ing programs as run in the years after unification are indeed helpful for their participants (e.g., 

Fitzenberger, Osikominu, and Völter, 2007, and Lechner, Miquel, and Wunsch, 2005) in 

sharp contrast to the programs run a decade later (see Wunsch and Lechner, 2008). From a 

methodological point of view, these results indicate that our bounding strategy is not only 

credible because it makes weak assumptions, but the strategy can be very informative for 

policy makers as well. 
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The methods suggested in this paper are specific neither to problems of selection into em-

ployment nor to training program evaluation. Non-random sample selection often limits our 

ability to analyze the effect of a treatment. This is the case with sample attrition in panel 

econometrics. Evaluating the effects of a drug on an outcome observed only if the patient 

survives, as in Zhang and Rubin (2003), represents a second example. The evaluation of the 

effects of an educational program on exam grades is a third example. Some of the students 

will probably not write the exam and these are probably less good than the students taking the 

exam. Finally, Engberg, Epple, Imbrogno, Sieg, and Zimmer (2009) are interested in the 

effects of magnet schools on education outcomes, where a lottery determines magnet school 

assignment. The problem is that we do not observe the outcome if the household moves to 

another school district. 
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Tables 

Table 1: Passive and active labor market policies in West Germany 1991-2003 

 1991 1993 1995 1997 1999 2001 2003 
Total expenditure in billion EUR 25 35 39 43 42 41 48 

Shares of total expenditure in % of        
 Passive labor market policy 72 76 80 83 80 77 82 
 Active labor market policy 28 24 20 17 20 23 18 

 Training programs 13 10 10 8 10 11 7 
Unemployment rate in % 6.2 8.0 9.1 10.8 9.6 8.0 9.3 

Source: Lechner, Miquel, and Wunsch (2005). 

 

Table 2: Descriptive statistics of selected variables by treatment and employment status 

 Nonparticipation  Re-training 
 E NE Total  E NE Total 

Number of observations 3211 5717 8982  254 153 407 

Monthly earnings (EUR) 1561 1462 1497  1637 1519 1592 

Age           (years) 34 39 37  30 31 30 

Women         (share in %) 38 44 42  38 37 38 

Nationality: German 83 81 82  90 88 91 

Urbanization: Big city 25 27 26  19 22 20 

Education: no degree 21 27 25  22 27 25 

University degree  6 5 5  3 3 3 

Salaried worker 30 28 29  25 20 23 

Unskilled worker 37 41 40  51 54 53 

Note:  Means for the earnings variable computed 84 months after program start. E denotes employed and NE denotes 
non-employed (unemployed or out of labor force) in month 84. "Monthly earnings" are the monthly earnings in the 
last job prior to the current unemployment spell. 
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Table 3: Average employment and earnings effects (Y(1)-Y(0), S(1)-S(0)) for re-training 

 Sample averages Program effects for participants 

Outcome Employment Earnings Earnings if 
employed Employment Earnings 

Earnings 
if 

employed

Population Non-
part. Part. Non-

part. Part. Non-
part. Part.    

Mean / 
effect 
(std.) 

0.45 0.73 8619 15920 19272 21743 0.14  
(0.03) 

4816 
(849) 

2972 
(763) 

Note:  The employment indicator is one if an individual worked at least one month in year 7. Earnings are defined as gross 
yearly earnings in year 7. Earnings for non-employed are coded as zero. Effects for "earnings given employment" are 
estimated on the subsamples of individuals with non-zero earnings. Bold numbers indicate significance at the 5% level. 

 

Table 4: Bounds on the ATETs and QTETs of the re-training 

 ATET QTET(0.25) QTET(0.5) QTET(0.75) 
 Lower       Upper 

bound 
Lower       Upper 

bound 
Lower       Upper 

bound 
Lower       Upper 

bound 

Worst case -18861 16473 -14430 11730 -30505 22895 -23210 19870 
[-21201 18000] [-17593 13659] [-34154 24385] [-24351 22661] 

Positive  
selection 

-1650 16473 -5070 11730 335 22895 1390 19870 
[-3169 18000] [-7542 13659] [-1432 24385] [43 22661] 

Monotonicity -4770 7039 -1350 9570 -265 8735 -9290 6310 
[-6792 8508] [-3833 12266] [-2278 11100] [-20402 7921] 

P.S. and 
monotonicity 
(Theorem 4) 

785 7039 -990 9570 1655 8735 1750 6310 
[-647 8508] [-3304 12266] [-107 11100] [287 7920] 

P.S. and 
monotonicity 
(Theorem 5) 

2695 7039 1410 9570 3695 8735 3430 6310 
[1289 8508] [-863 12266] [1898 11100] [1875 7920] 

Note:  The second line in each cell gives a 95%-confidence interval for the treatment effects obtained by the 
method of Imbens and Manski (2004) bootstrapping the results 200 times. P.S. means positive selection into 
employment. Intervals in bold significantly exclude a zero effect at the 5% level. 
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Figures 

Figure 1: Quantile earnings effects (Y(1)-Y(0)) 
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Note:  See note below Table 3. The standard errors, not plotted to avoid overloading the figure, amount to about 1200 such 

that most of the QTEs on total earnings and the majority of the QTEs conditional on employment are significant. 
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Figure 2: Bounds on the QTETs resulting from Theorem 6 
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Note:  "Bagged" results obtained by taking the mean of the estimates over 200 bootstrap replications. Solid lines give the 
estimated bounds, dashed lines give the 95% confidence intervals, grey lines give the 0 line. The 95% confidence 
intervals are obtained by implementing Imbens and Manski (2004) results with a bootstrap based on 200 replications. 
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Appendix: Proof of the Theorems 

To simplify the notation in this appendix, we suppress the dependence on  in 

all expression. The proof of the sharpness of the bounds is quite repetitive and therefore 

relegated to the Internet Appendix. 

 and X x T t= =

Proof of Theorem 1 

By the law of total probability, we obtain the following expression: 
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( )( ) ( ) ( )0 | 1 1, 0 0E g Y S S⎡ = =⎣ ⎤⎦  is unobserved and bounded only by gK  and gK  without 

further assumptions. Therefore, the worst case bounds are attained if  attains the smal-

lest value compatible with the observed employment probabilities. The following set of equa-

tions restricts this probability: 
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We have three restrictions and four unknowns. Solving for the element of interest, we get 

. ( ) ( ) ( ) ( ) ( ) ( )1 , 0 0 1 1 1 ,1 01S S S S S Sp p p p − −= + − +

We cannot exclude that  if . In this case, the observed values do 

not allow us to tighten the bounds on the support 

( ) ( )1 , 0 0S Sp = ( ) ( )0 1 1S Sp p+ ≤

gK  and gK . If , the smallest 

acceptable value for  is given by  and is strictly positive. In this case, 

we need to bound .  

( ) ( )0 1 1S Sp p+ >

( ) ( )1 , 0S S

( )( ) ( )0 | 1Y S

p

E g

( )0 1 1S S −

( )0S⎡ ⎤= =⎣ ⎦

( )p p+

11,
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The distribution of  is identified by Assumption 1. The population defined 

by  is a 

( )( ) ( )0 | 0g Y S =

( ) ( )

( )

1

1( )0S = 1 , 0

0

S S

S

p

p
 and ( ) ( ) ( )

( )

0 1 ,

0

S S S

S

p p

p

− 0 ,

0=

 mixture of the population with  

 and . Since in the worst case , the upper 

bound will be attained when the population with  represents the 

( )0 1S =

( )1 1=

( ) ( )

( )

S ( ) ( )0 1, 1S S= ( ) ( ) ( ) ( )1 , 0 0 1 1S S S Sp p p= + −

( ) ( )0 1, 1 1S S= =

0

0

S S

S

p p

p

+ −

( )

1 1

( )

( )

 fraction of the population with  with the largest value of . 

Similarly, the lower bound will be attained when population with S  represents 

the 

( )0S =1

( ) ( )0 1, 1S=

( )( )0g Y

1=

0

0

S

S

p p

p

( )( )0

1S+ −1
 fraction of the population with  with the smallest value of 

. This is the result of Theorem 1. 

( )0 1=S

g Y

Proof of Theorem 2 

a) If  is a monotonic increasing function of Y, then Assumption 2 implies that the 

distribution of  given  stochastically dominates the distribution of  

given . The upper bound is attained when this assumption is just satisfied, that is 

when these two distributions are the same. 

( )g Y

( )0S

( )( 0g Y

0

) 1

0

)

( )0S = ( )( )0g Y

=

The populations defined by  and  are mixtures of the two sub-populations 

defined by . Since, in the worst case,  given  has the same 

( )0 1S = ( )0S =

( )1 {0,1}S ∈ ( )( 0g Y ( )0 0S =
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distribution as  given , the upper bound is attained when the mixture 

proportions are the same for  and : 

( )( 0g Y ) ( )0 1S =

0 0=( )S ( )0 1S = ( ) ( )

( )

( ) ( )

( )
( )

1 , 0 1 ,1 0
1

0 1 0

S S S S
S

S S

p p
p

p p
−

−

= = .28 

Thus, the upper bound will be attained when the population with  represents 

the 

( ) ( )0 1, 1S S= 1=

( )1Sp  fraction of the population with  with the largest value of . Simulta-

neously, the population with  represents the 

( )( 0g Y

( )1S

( )0 1=

)1 1S =

S

( ) (0 0,S =

)

p  fraction of the population 

 with the largest value of . The distribution of  is not observed for 

this last population but, by the positive selection assumption, it is bounded by the distribution 

of  for the population with . Therefore, 

( )0 =

(g Y

( )( 0g Y

( )0S =

)

1

0

)

S

0

( )( )0g Y

( )

( )( )
( )

( )( ) ( )( ) ( )

( )( ) ( ) ( )
( )

( )( ) ( )
1

1

max

max

0 1 0 1 0 0 1

0 1 0 0 0 0 1 .

S

S

p

p

E g Y S E g Y S

E g Y S E g Y S

⎡ ⎤ ⎡ ⎤≤ =⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤≤ =⎣ ⎦ ⎣ ⎦

) 1

0

1

                                                          

1,

1,

S

S

= =

= =

( )( 0g Y

( )0S =

 

Inserting these two bounds in (1) gives the result of Theorem 2-a). 

b) If  is a monotonic decreasing function of Y, then Assumption 2 implies that the 

distribution of  given  is stochastically dominated by the distribution of 

 given . This implies that the positive selection assumption allows tighten-

ing the lower bound instead of the upper bound. The rest of the proof is along the lines of part 

a). 

( )g Y

( )( )0

( )0S =

g Y

Proof of Theorem 3 

Part a)  ( ) ( )( )1 0P S S≥ =

 
28  If these mixture proportions were not the same, then it would be possible to get a higher upper bound by 

increasing slightly the smallest mixing proportion and decreasing slightly the highest mixing proportion. 
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Assumption 3a) excludes the existence of observations with  and . There-

fore, , 

( )0 1S = ( )1 0S =

( ) ( )0 ,1 1 0S Sp − = ( ) ( ) ( )0 , 1 0S S Sp p= ,  = ( ) ( )1 0 , 1S Sp − ( ) ( )1S S 0p p−  and ( )1 0 ,1S S ( )1 ( )11 Sp p= −− − .  

By the law of total probability, Bayes’ rule, and the implications of Assumption 3a) derived 

above: 

( )( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( )
( )( ) ( ) ( ) ( ) ( )

( )

0 1 1 0 1

0 , 1 1 0 , 1

1 1

0 1 1

0 1 1, 0 1 1 0 1 1, 0 0

0 1 1, 0 1 0 1 1, 0 0

TP

S S S S

BR S S S S

S S

E g Y S

E g Y S S p E g Y S S p

p p
E g Y S S E g Y S S

p p

−

−

⎡ ⎤=⎣ ⎦

⎡ ⎤ ⎡ ⎤= = = + = =⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= = = + = =⎣ ⎦ ⎣ ⎦

1  

( )( ) ( ) ( )

( )
( )( ) ( ) ( ) ( ) ( )

( )

3 0 1

1 1

0 0 1 0 1 1, 0 0
A a S S

S S

p p
E g Y S E g Y S S

p p

−
⎡ ⎤ ⎡ ⎤= = + = =⎣ ⎦ ⎣ ⎦

0 .Sp
     (2) 

The only unidentified element in (2) is ( )( ) ( ) ( )0 1 1, 0E g Y S S 0⎡ ⎤= =⎣ ⎦  that is bounded by gb  

and gb . Using those bounds, we obtain the result of Theorem 3a). 

Part b) . ( ) ( )( )1 0P S S≤ =1

0 1Assumption 3b) excludes the existence of observations with  and . Thus, we 

get , 

( )0S = ( )1S =

( ) ( )1 0 , 1 0S Sp − = ( ) ( ) ( )0 , 1 1S S Sp p= , ( ) ( ) ( ) ( )0 ,1 1 0 1S S S Sp p p− = − , and ( ) ( ),1 0S S S( )1 11 0p p= −

( )( )

− −

( )

. These 

simplifications lead to the following equality: 0 1E g Y S 1⎡ ⎤= =⎣ ⎦  

( )( ) ( ) ( )0 1 1, 0 1S⎡ ⎤= =⎣ ⎦E g Y S . 

The distribution of  is identified by Assumption 1. The population defined 

by  is a mixture of the population  with probability 

( )( ) ( )0 | 0g Y S =1

1 1=( )0S = ( ) ( )0 1, 1S S= ( )

( )

1

0

S

S

p

p
 and of 

 with probability ( ) (0 1,S = )1S 0= ( )

( )

( )0 1S

0

S

S

p p

p

−
. The upper bound will be attained when the 
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population  represents the ( ) ( )0 1, 1 1S S= = ( )

( )

1

0

S

S

p

p
 fraction of the population with  

with the largest value of . Similarly, the lower bound will be attained when the 

population  represents the 

( )0 1S =

( )( 0

=

)g Y

( ) ( )0 1, 1 1S S= ( )

( )

1

0

S

S

p

p
 fraction of the population with  

with the smallest value of . 

( )0 1S =

( )( )0g Y

( ) ( )

Proof of Theorem 4 

Part a): The only unknown element in equation (2) implied by Assumptions 1 and 3-a) is 

( ) ( )0 1 1, 0 0=

( ))

) S

E g Y S S⎡ =⎣

( 0g Y

( )( 0g Y

( )1 0S =

⎤⎦

0

) 0

. By Assumption 2 and because  is monotone increasing, 

the distribution of  given  is stochastically dominated by the (identified) 

distribution of  given . The upper bound is attained when these two 

distributions are identical. The distribution of  given  is mixture of the sub-

population  with probability 

( )g ⋅

( )0S =

( )0S =

( )0 1=

( )

( )

( )( 0g Y

1 1

1 0

S

S

p

p
−

−

 and of the subpopulation  with probabil-

ity 

( )1 =1S

( ) ( )

( )

1 0S

1 0

p pS

Sp −

−
. Therefore, the upper bound on ( )( ) ( ) ( )1, 0S0 1S 0YE g⎡ ⎤==⎣ ⎦  is given by 

( ) ( )

( )

( )( ) ( )
1 0

1 0

S S

S

p p

p −

−
max

0 0S 1⎡ ⎤⎣ ⎦ . E g Y =

Part b) The proof is similar to part a), but with the stochastic dominance inverted. 

Proof of Theorem 5 

a) The only unknown element in equation (2) implied by Assumptions 1 and 3-a) is 

( )( ) ( ) ( )0 1 1, 0 0=E g Y S S⎡ ⎤=⎣ ⎦ . By Assumptions 3 and 4 and because  is monotonic 

increasing, 

( )g ⋅
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( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
4 3

0 1 1, 0 0 0 1 1, 0 1 0 0 1
A A a

E g Y S S E g Y S S E g Y S⎡ ⎤ ⎡ ⎤ ⎡= = ≤ = = = =⎣ ⎦ ⎣ ⎦ ⎣ .⎤⎦ (3) 

Inserting (3) in (2) we get the result of Theorem 5-a). 

b) Similar to part a). 
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