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Abstract

Implementation in iteratively undominated strategies relies on permis-
sive conditions. However, for the sufficiency results available, authors have
relied on assumptions that amount to quasilinear preferences on a numeraire.
We uncover a new necessary condition that implies that such assumptions
cannot be dispensed with. We term the condition “restricted deception-
proofness.” It requires that, in environments with identical preferences, the
social choice function be immune to all deceptions, making it then stronger
than incentive compatibility. In some environments the conditions for (ex-
act or approximate) implementation are more restrictive than previously
thought.
JEL Classification: C72, D78, D82.
Keywords: mechanism design, exact and approximate implementation, it-
eratively undominated strategies, restricted deception-proofness, incentive
compatibility, measurability.

1 Introduction

The conditions for implementation in iteratively undominated strategies are
typically viewed as very permissive.1 For example, in a standard Bayesian
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1Here, “iteratively undominated strategies” refers to the iterative removal of strictly domi-
nated strategies.
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environment with incomplete information in which type spaces are common
knowledge, Abreu and Matsushima (1992) [AM, henceforth] show that both
incentive compatibility and their measurability condition (which we shall
refer to as AM measurability from now on) are necessary for (exact or ap-
proximate) implementation in iteratively undominated strategies. Incentive
compatibility is the central restriction in the economic theory of information,
and it can sometimes be quite demanding. However, as argued for instance
in AM or in Serrano and Vohra (2005), AM measurability is usually very
weak: interim preferences of the different types are almost always distinct
from each other, and then, AM measurability amounts to no restriction at
all. These necessity results are generalized to robust environments, in which
weaker common knowledge requirements are made, in Bergemann and Mor-
ris (2009a) [BM from now on] and in Artemov, Kunimoto and Serrano (2009)
[AKS in the sequel].2

In the three papers afore mentioned (AM, BM and AKS), additional
conditions are used to prove the corresponding sufficiency results. AM’s
Assumption 2 states that, for each agent i and each state, there exist two
ex-post lotteries that i ranks strictly, and for which all other agents have the
(weakly) opposite preferences. BM make use of an economic assumption,
which is essentially a robust analogue of AM’s Assumption 2. Due to their
robustness considerations, BM need the assumption that for each agent i,
there exists a constant lottery zi that i strictly prefers to the uniform lottery
ȳ, and for which all other agents have the (weakly) opposite preferences,
“regardless of the underlying payoff types.” Finally, AKS assume directly
the existence of quasilinear preferences over a numeraire. In all three cases,
the use of these assumptions in the sufficiency proofs is seemingly minor,
in order to allow infinitesimal punishments out of equilibrium. Thus, one
might have thought that such conditions could be dispensed with and that
new proofs of the authors’ sufficiency results could be engineered without
the aid of such assumptions. In this paper, we show that such a hope is
misplaced. Indeed, such assumptions cannot be dropped because a new
necessary condition that the literature had overlooked must be added.

We identify such a condition, and we term it restricted deception-proofness.
It says that in environments in which preferences are identical across agents,
the social choice function (SCF) must be immune to all manipulations via
deceptions. As such, the condition is then stronger than incentive compat-
ibility and sometimes strictly so, leading to a new restriction on the SCFs
that can be (exactly or approximately) implementable in iteratively undom-
inated strategies. Considered by itself, restricted deception-proofness can

2As noted, the BM and AKS papers study the robust implementation problem, but their
conclusions can be applied to a fixed Bayesian type space setting as a particular case. Going the
other way, the new necessary condition in the current paper can be readily extended to make it
applicable in the robust setting.
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be substantially more restrictive than AM measurability or the conditions
of virtual monotonicity and its mixed counterpart (the latter two found in
Serrano and Vohra (2005, 2009)). We shall provide an example, which has
appeared previously in the literature, to illustrate our points. We close by
noting that we study incomplete information environments; two papers con-
taining some related results for the complete information domain are Börgers
(1995) and Bergemann and Morris (2009b). Bergemann and Morris (2009b)
show a similar result for virtual implementation under complete information.
Börgers (1995) obtains some impossibility result under complete information
when only deterministic mechanisms are allowed and all possible identical
preferences are included as part of the domain.

2 Preliminaries

Let N = {1, . . . , n} denote the set of agents and Θi be the set of finite types
of agent i. Denote Θ ≡ Θ1 × · · · ×Θn, and Θ−i ≡ Θ1 × · · · ×Θi−1 ×Θi+1 ×
· · · ×Θn.3 Let qi(θ−i|θi) denote agent i’s belief that other agents receive the
profile of types θ−i when his type is θi.

Let A denote the set of pure outcomes, which are assumed to be inde-
pendent of the information state. For simplicity, suppose A = {a1, . . . , aK}
is finite. Let Δ(A) denote the set of probability distributions on A.

Agent i’s state dependent von Neumann-Morgenstern utility function is
denoted ui : Δ(A) × Θ → R.

We can now define an environment as E = (A, {ui,Θi, qi}i∈N ), which is
implicitly understood to be common knowledge among the agents.

A social choice function (SCF) is a function f : Θ → Δ(A). The in-
terim expected utility of agent i of type θi that pretends to be of type θ′i
corresponding to an SCF f is defined as:

Ui(f ; θ′i|θi) ≡
∑

θ−i∈Θ−i

qi(θ−i|θi)ui(f(θ′i, θ−i)); (θi, θ−i)).

Denote Ui(f |θi) = Ui(f ; θi|θi).
A mechanism Γ = ((Mi)i∈N , g) describes a message space Mi for agent

i and an outcome function g : M → Δ(A), where M = ×i∈NMi. Let
σi : Θi → Mi denote a (pure) strategy for agent i and Σi his set of pure
strategies. Let

Ui(g ◦ σ|θi) ≡
∑

θ−i∈Θ−i

qi(θ−i|θi)ui(g(σ(θ−i, θi)); (θ−i, θi)).

Given a mechanism Γ = (M,g), let Hi be a subset of Σi.

3Similar notation will be used for products of other sets.
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Definition 1 (Strict Dominance) A strategy σi ∈ Hi is strictly domi-
nated for player i with respect to H = ×j∈NHj if there exist τi ∈ Ti and
σ

′
i ∈ Hi such that for every σ−i ∈ ×j �=iHj,

Ui(g ◦ (σ
′
i, σ−i)|θi) > Ui(g ◦ (σi, σ−i)|θi).

Let Ki(H) denote the set of all undominated strategies for agent i with
respect to H = ×i∈NHi. Let K(H) = ×i∈NKi(H). Let K0

i (Σ) = Σi and
for each k ≥ 1, Kk(Σ) = ×i∈NKk

i (Σ), where Σ = ×i∈NΣi and Kk
i (Σ) =

Ki(Kk−1(Σ)). Let

K∗ ≡
∞⋂

k=0

Kk(Σ)

Definition 2 (Iterative Dominance) A strategy profile σ ∈ Σ is itera-
tively undominated if σ ∈ K∗.

Definition 3 (Exact Implementability) An SCF f is said to be exactly
implementable in iteratively undominated strategies if there exists a mecha-
nism Γ = (M,g) such that for any σ ∈ K∗, g(σ(θ)) = f(θ) for all θ ∈ Θ.

Consider the following metric on SCFs:

d(f, h) = sup
{
|f(θ|a) − h(θ|a)|

∣∣ θ ∈ Θ, a ∈ A
}

The notation f(θ|a) refers to the probability with which f implements a ∈ A
in the state θ.

Definition 4 (Approximate Implementability) An SCF f is said to be
virtually or approximately implementable in iteratively undominated strate-
gies if, there exists ε̄ > 0 such that for any ε ∈ (0, ε̄], there exists an SCF
f ε for which d(f, f ε) < ε and f ε is exactly implementable in iteratively un-
dominated strategies.

The next standard definition is very important in the entire economic
theory of information:

Definition 5 (Incentive Compatibility) An SCF f : Θ → Δ(A) is said
to satisfy incentive compatibility if for every i ∈ N, θi, θ

′
i ∈ Θi,

Ui(f |θi) ≥ Ui(f ; θ′i|θi)

As is well-known (e.g., see AM (1992)), the next proposition identifies
incentive compatibility as a necessary condition for implementability:
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Proposition 1 (AM (1992)) If an SCF f is either exactly or approximately
implementable in iteratively undominated strategies, then it satisfies incen-
tive compatibility.

For the next definition we require some more notation. Let Ψ−i be a
partition of Θ−i. Say that θi is equivalent to θ′i with respect to Ψ−i when
agent i’s interim expected utility under type θi is exactly the same as under
type θ′i when evaluating any SCF that is measurable with respect to Θi×Ψ−i.

Let ρi(θi,Ψ−i) be the set of all elements of Θi that are equivalent to θi

with respect to Ψ−i, and let

Ri(Ψ−i) = {ρi(θi,Ψ−i) ⊂ Θi| θi ∈ Θi} .

Note that Ri(Ψ−i) forms an equivalence class on Θi, that is, it constitutes
a partition of Θi. We define an infinite sequence of n-tuples of partitions,
{Ψh}∞h=0, where Ψh = ×i∈NΨh

i in the following way. For every i ∈ N ,

Ψ0
i = {Θi},

and recursively, for every i ∈ N and every h ≥ 1,

Ψh
i = Ri(Ψh−1

−i ).

Note that for every h ≥ 0, Ψh+1
i is the same as, or finer than, Ψh

i . Define
Ψ∗ as follows:

Ψ∗ ≡
∞⋃

h=0

Ψh.

Definition 6 (AM Measurability) An SCF f is said to satisfy AM-measurability
if it is measurable with respect to Ψ∗.

The following result is also shown in AM (1992):

Proposition 2 (AM (1992)) If an SCF f is either exactly or approximately
implementable in iteratively undominated strategies, then it satisfies AM-
measurability.

To easily check AM-measurability, it is often possible to finish the al-
gorithm in the first iteration. When this happens, we say that the envi-
ronment satisfies type diversity. To define this condition, recall that A =
{a1, . . . , aK}. Henceforth, we will find it convenient to identify a lottery
x ∈ Δ(A) as a point in the (K − 1) dimensional unit simplex ΔK−1 =
{(x1, . . . , xK) ∈ R

K−1
+ |

∑K
k=1 xk = 1}. Define Uk

i (θi) to be the interim
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expected utility of agent i of type θi for the constant SCF that assigns ak in
each state in Θ, i.e.,

Uk
i (θi) =

∑
θ−i∈Θ−i

qi(θ−i|θi)ui(ak; θi, θ−i).

Let Ui(θi) = (U1
i (θi), . . . , UK

i (θi)).
Here is the condition of type diversity of Serrano and Vohra (2005):

Definition 7 (Type Diversity) An environment E satisfies type diversity
(TD) if there do not exist i ∈ N, θi, θ

′
i ∈ Θi with θi 	= θ

′
i, β ∈ R++ and

γ ∈ R such that

Ui(θi) = βUi(θ
′
i) + γe,

where e is the unit vector in ΔK−1.

Clearly, under type diversity, the measurability algorithm stops after the
first iteration, leading to the finest partion possible – all types are separated.
As a result, all SCFs satisfy AM-measurability.

In this paper, we restrict our attention to well behaved mechanisms where
best responses are always well defined. The next definitions are borrowed
from AM (1992):

For every i ∈ N and every partition Ψi, let Σi(Ψi) denote the set of
mixed strategies of player i that are measurable with respect to Ψi.

Definition 8 The profile σ ∈ Σ1(Ψ1)×· · ·×Σn(Ψn) is a pseudo-Bayesian
equilibrium with respect to Ψ if for all i ∈ N and all ψi ∈ Ψi, there exists
some θi with θi ∈ ψi such that

Ui(g ◦ σ|θi) ≥ Ui(g ◦ (σ
′
i, σ−i)|θi) ∀σ′

i ∈ Σi

Definition 9 (Regular Mechanisms) A mechanism Γ is said to be reg-
ular if, for each Ψ, there exists a pseudo-Bayesian equilibrium with respect
to Ψ.

In particular, finite mechanisms - like the ones constructed in AKS, AM,
and BM - are regular. Mechanisms that rely on the use of integer games are
not regular. More importantly, Bergemann, Morris, and Tercieux (2010) do
employ such non-regular mechanisms for their sufficiency result.

3 Restricted Deception-Proofness

This section introduces a new property of SCFs and contains our main result.
Let F be the set of all SCFs.
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Definition 10 (Strategically Identical Preferences) An environment E
satisfies strategically identical preferences at the set of types Θ0 and the
admissible class of mechanisms Γ̃ if the following four properties are satisfied:

• (1) Θ0 ⊆ Θi for each i ∈ N ;

• (2) qi(θ−i|θi) = 0 for each θi ∈ Θ0 whenever (θi, θ−i) /∈ Θn
0 , where

Θn
0 ≡ Θ0 × · · · × Θ0;

• (3) there exists V : F × Θ0 → R such that for each i ∈ N and for
each θ0 ∈ Θ0, there exist βi > 0 and γi ∈ R such that Ui(·|θ0) =
βiV (·|θ0) + γi; and

• (4) for each mechanism Γ = ((Mi)i∈N , g) ∈ Γ̃, there exists a strategy
profile σ̂ such that V (g ◦ σ̂|θ0) ≥ V (g ◦ σ|θ0) for every σ and every
θ0 ∈ Θ0.

This definition says that, for each agent there exists a set of types Θ0

that is exactly the same across agents. Moreover, the event consisting of
the n-fold Cartesian product of Θ0 is common knowledge among all agents.
In particular, for each type θ0 ∈ Θ0, interim preferences are identical across
agents. Finally, interim preferences may differ across different types in Θ0,
but, as in a pure coordination game, for any mechanism these agents could
play within a certain class, there always exists a strategy profile that yields
an outcome that is placed at the top of every type’s interim preferences, a
“common top property” for all types θ0 within Θ0. This last property can
be automatically satisfied if we consider regular mechanisms.

A deception is a profile of functions, α = (αi)i∈N , where αi : Θi �→ Θi,
αi(θi) 	= θi for some θi ∈ Θi for some i ∈ N . (Note that the identity function
I on Θ is not a deception.) For an SCF f and a deception α, f ◦ α denotes
the SCF such that for each θ ∈ Θ, [f ◦ α](θ) = f(α(θ)). Let A be the set of
all deceptions union with the identity function on Θ.

The following is the main definition of this paper:

Definition 11 (Restricted Deception-Proofness) An SCF f satisfies
the restricted deception-proofness property if, whenever an environment E
satisfies strategically identical preferences at Θ0 and the direct mechanism
for f , it follows that

Ui(f |θi) = max
α∈A

Ui(f ◦ α|θi)

for each i ∈ N and θi ∈ Θ0.

Restricted deception-proofness means that, whenever the environment
contains an informational event with strategically identical preferences over
the strategic situation described by the SCF’s direct mechanism, the SCF
has a “common top” property for all types of all agents. Indeed, among all
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possible manipulations of the SCF, embodied by all deceptions, no type of
any agent would like to use that coordinated effort to depart from truth-
telling. We shall illustrate the definition in the next section.

We next present our main result:

Proposition 3 If an SCF f is exactly implementable by a regular mecha-
nism in iteratively undominated strategies, it satisfies restricted deception-
proofness.

Proof : Let Γ = (M,g) be an implementing mechanism that is regular.
Let FΓ be the set of SCFs associated with Γ. That is,

FΓ =
{
f̃ ∈ F

∣∣∣ f̃ = g ◦ σ for some σ ∈ Σ
}
.

Since the implementing mechanism Γ is regular, property (4) of the defi-
nition of strategically identical preferences is satisfied for Γ. By our hypoth-
esis of restricted deception-proofness, we consider an environment satisfying
strategically identical preferences at Θ0 and the mechanism Γ. In what
follows, we need the following notation:

HΓ,Θ0 =

{
f̃ ∈ FΓ

∣∣∣∣∣ arg max
f̃∈FΓ

V (f̃ |θ0) ∀ θ0 ∈ Θ0

}
	= ∅;

and

Σ̂Γ,Θ0
i =

{
σi ∈ Σi| g ◦ σ ∈ HΓ,Θ0 for some σ−i ∈ Σ−i

}
	= ∅.

Note that the non-emptyness of HΓ,Θ0 and Σ̂Γ,Θ0

i are guaranteed because
the mechanism Γ is regular. Define [Kk

Θ0
(Σ)]i to be the set of agent i’s

strategies that are k-times iteratively undominated when every agent’s type
space is restricted to Θ0. Let [K∗

Θ0
(Σ)]i be the corresponding strategies that

are iteratively undominated. Let Kk
Θ0

(Σ) = ×i∈N [Kk
Θ0

(Σ)]i and K∗
Θ0

(Σ) =
×i∈N [K∗

Θ0
(Σ)]i.

We claim that Σ̂Γ,Θ0 ⊂ K∗
Θ0

(Σ). First, observe that σ̂Γ,Θ0

i ⊂ [K0
Θ0

(Σ)]i =
Σi for each i ∈ N . We proceed by induction. According to the induc-
tion hypothesis, suppose that Σ̂Γ,Θ0 ⊂ Kk

Θ0
(Σ). Fix agent i arbitrarily.

Our induction hypothesis guarantees that Σ̂Γ,Θ0

−i ⊆ [Kk
Θ0

(Σ)]−i. Fix also
σ̂i ∈ Σ̂Γ,Θ0

i arbitrarily. By the induction hypothesis, σ̂i is undominated with
respect to [Kk

Θ0
(Σ)]−i. And combining the strategically identical preferences

assumption and the induction hypothesis, for any θ0 ∈ Θ0, there exists
σ̂−i ∈ Σ̂Γ,Θ0

−i ⊂ [Kk
Θ0

(Σ)]−i such that

V (g ◦ (σ̂i, σ̂−i)|θ0) ≥ V (g ◦ (σ
′
i, σ̂−i)|θ0),
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for any σ
′
i ∈ [Kk

Θ0
(Σ)]i. This implies that Σ̂Γ,Θ0

i ⊂ [Kk+1
Θ0

(Σ)]i. Since i was
chosen arbitrarily, this shows that Σ̂Γ,Θ0 ⊂ Kk+1

Θ0
(Σ). This establishes that

Σ̂Γ,Θ0 ⊆ K∗
Θ0

(Σ).

Since f is implementable in iteratively undominated strategies, we have
that

g ◦ Σ̂Γ,Θ0 ⊆ g ◦ K∗
Θ0

(Σ) = (f(θ))θ∈Θn
0
.

Therefore, we can choose σ̂ ∈ K∗ such that g ◦ σ̂ = f and σ̂i ∈ Σ̂Γ,Θ0
i for all

i ∈ N .

In particular, this implies that f ∈ HΓ,Θ0, and hence

V (f |θ0) = V (g ◦ σ̂|θ0) = max
σ∈Σ

V (g ◦ σ|θ0) ≥ max
α∈A

V (f ◦ α|θ0) for each θ0 ∈ Θ0.

Here, the last inequality follows because the set FΓ contains the set of SCFs
associated with the direct mechanism for f (i.e., f itself union with the set of
f ◦ α for all deceptions α). Thus, f satisfies restricted deception-proofness.
This completes the proof. �.

The next result is a simple, but important extension of the previous one:

Proposition 4 If an SCF f is approximately implementable by a regu-
lar mechanism in iteratively undominated strategies, it satisfies restricted
deception-proofness.

Proof: Let Γε = ((Mi)i∈N , gε) denote the implementing regular mechanism
when the approximation is ε > 0. Fix ε̄ to be small enough and consider the
class of mechanisms Γ̃ =

⋃
0≤ε≤ε̄ Γε.

Define

FΓ
ε =

{
f̃ ∈ F

∣∣ f̃ = gε ◦ σ for some σ ∈ Σ
}

and

FΓ = lim sup
ε→0

FΓ
ε .

By our hypothesis of restricted deception-proofness, we consider an envi-
ronment satisfying strategically identical preferences at Θ0 and at the class
of mechanisms Γ̃.

For each ε ≤ ε̄, let

HΓε,Θ0 =

{
f̃ ∈ Fε

Γ
∣∣∣ arg max

f̃
V (f̃ |θ0) ∀ θ0 ∈ Θ0

}
	= ∅;
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and

Σ̂Γε,Θ0
i =

{
σi ∈ Σi| gε ◦ σ ∈ HΓε,Θ0 for some σ−i ∈ Σ−i

}
	= ∅.

Once again, the non-emptyness of HΓε,Θ0 and Σ̂Γε,Θ0

i are guaranteed because
the mechanism Γε is regular. Define HΓ,Θ0 and Σ̂Γ,Θ0

i as the limits of HΓε,Θ0

and Σ̂Γε,Θ0

i , respectively.
With the definitions so adapted, the rest of the proof proceeds as the

proof of the previous proposition. �

4 Discussion

At this point it will be useful to consider an example that first appeared in
Palfrey and Srivastava (1989, Example 3) and that was extensively analyzed
in Serrano and Vohra (2005, Section 5).

There are two alternatives, A = {a, b} and three agents. Each agent has
two possible types, Θi = {θa, θb} and each type is drawn independently with
qi(θb) = q for all i and q2 > 0.5. Agents have identical preferences, given by

ui(a, θ) =
{

1 if at least two agents are of type θa

0 otherwise

ui(b, θ) =
{

1 if at least two agents are of type θb

0 otherwise

For each agent, the corresponding interim utilities for the constant SCFs
assigning alternatives a and b are:

Ua
i (θa) = 1 − q2, U b

i (θa) = q2,
Ua

i (θb) = (1 − q)2, U b
i (θb) = 1 − (1 − q)2.

Since q2 > 0.5, this implies that U b
i (θi) > Ua

i (θi) for all i and θi ∈ Θi.
Using this, it can be checked that in this environment, only constant

SCFs satisfy AM-measurability. On the other hand, as argued in Serrano
and Vohra (2005), all SCFs satisfy virtual monotonicity, a necessary condi-
tion for approximate implementation in Bayesian equilibrium. Furthermore,
appealing to the results in Serrano and Vohra (2009), all SCFs in this en-
vironment also satisfy mixed virtual monotonicity. It follows that all SCFs
that are incentive compatible are approximately implementable in (mixed)
Bayesian equilibrium. However, since AM-measurability is necessary for im-
plementation in regular mechanisms, we know that the implementing mecha-
nism in Bayesian equilibrium must involve the use of integer games or devices
alike.

For us, what is more interesting now is the modification of the exam-
ple by adding a third alternative c, which for instance gives a zero payoff
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to all agents in all states.4 As argued in Serrano and Vohra (2005), the
modified example satisfies type diversity, and hence, all SCFs now satisfy
AM-measurability (AM (1992)). However, AM’s sufficiency result cannot
be applied to any non-constant SCF even then. AM use an assumption
(their assumption 2) which requires that in each state the ex-post preferences
(over lotteries) of the agents are different, which is clearly not the case in
the present example. Similarly, the sufficiency results in BM –based on their
economic assumption– or AKS –based on quasilinear preferences– cannot be
applied either, as this example violates both of them. AM’s Assumption
2, BM’s economic assumption and AKS’s quasilinearity feature as sufficient
conditions, and until now, it was not known whether such assumptions were
necessary.

We have identified a new necessary condition for exact or approximate
implementation in iteratively undominated strategies, and we show next that
this extra condition has some bite. Indeed, in the three-alternative example
there are SCFs that are incentive compatible and AM-measurable, but that
violate the restricted deception-proofness property. Thus, it is not possible
to show a sufficiency result for approximate implementation in iteratively
undominated strategies that relies only on incentive compatibility and AM-
measurability. Extra conditions (either on the environment, like the AM,
BM and AKS papers used; or on the SCF itself) must be imposed.

For many allowable values of parameter q, restricted deception-proofness
boils down to incentive compatibility, and hence it does not represent a re-
duction in the set of implementable SCFs – although as a necessary condition
by itself, it is substantially more restrictive than AM-measurability, which
is trivially satisfied by all SCFs in this case.

However, there are values of q for which restricted deception-proofness
has additional bite. For instance, let q = 99/100 and consider the following
SCF f :

f(θa, θa, θa) = b,

f(θa, θb, θa) = 0.9a+ 0.1b,

f(θa, θa, θb) = 0.9a+ 0.1b,

f(θb, θa, θa) = 0.9a+ 0.1b,

f(θa, θb, θb) = 0.1a+ 0.9b,

f(θb, θa, θb) = 0.1a+ 0.9b,

f(θb, θb, θa) = 0.1a+ 0.9b,

f(θb, θb, θb) = 0.1a+ 0.9b.

4All that is needed is a third alternative to ensure type diversity. No assumption regarding a
universally bad outcome or anything of that sort is needed here.
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We first check that f satisfies incentive compatibility:

U(f |θa) = (99/100)20.9 + 2(99/10000)0.9 = 0.89991,

which is strictly greater than

U(f, θb|θa) = (1/10000)0.9 + 2(99/10000)0.1 + (99/100)20.9 = 0.88416.

And
U(f |θb) = 0.9,

which is strictly greater than

U(f, θa|θb) = 2(99/10000)0.1 + (99/100)20.9 = 0.88407.

As it can be checked, the environment satisfies strategically identical
preferences at Θ (the entire payoff type space) and at the direct mechanism
for f , but f violates restricted deception-proofness. Indeed, consider the
deception α such that αi(θa) = αi(θb) = θa for i = 1, 2, 3. Note that f ◦
α(θ) = b for every θ ∈ Θ. We next compute the interim expected utilities of
each of the two types for this manipulated version of the SCF:

U(f ◦ α|θa) = (99/100)2 = 0.9801 > 0.89991 = U(f |θa),

and
U(f ◦ α|θb) = 1 − (1/100)2 = 0.9999 > 0.9 = U(f |θb).

So, both types of each agent have an incentive to manipulate the SCF by
using the proposed deception, instead of truth-telling.
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