
MPRA
Munich Personal RePEc Archive

Market Proxies, Correlation, and
Relative Mean-Variance Efficiency: Still
Living with the Roll Critique

Todd, Prono

Commodity Futures Trading Commission

September 2009

Online at http://mpra.ub.uni-muenchen.de/20031/

MPRA Paper No. 20031, posted 15. January 2010 / 06:27

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6482323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/20031/


Market Proxies, Correlation, and Relative
Mean-Variance Efficiency:

Still Living with the Roll Critique1

Todd Prono2

Commodity Futures Trading Commission

Revised September 2009

Abstract

A test of the CAPM is developed conditional on a prior belief about the correlation between

the true market return and the proxy return used in the test. Consideration is given to the effect

of the proxy’s mismeasurement of the market return on the estimation of the market model.

Failure to grant this consideration biases tests towards rejection by overstating the inefficiency

of the proxy. An extension of the proposed test to a CAPM with conditioning information links

mismeasurement of the market return to time-variation in beta.
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1. Introduction

A common feature among many asset pricing models in financial economics is the relation

of expected returns on risky securities to the covariance between those securities’ returns and an

economic aggregate like (the marginal utility of) aggregate wealth or consumption. In empirical

work, this economic aggregate (central to the pricing model under consideration) is generally un-

observable and requires a proxy. Tests of the given model which, by necessity, are based on the

proxy are confronted with a joint hypothesis that complicates the interpretation of a rejection of the

model’s prediction. In particular, does this rejection signal a violation of the model’s result or the

poor quality of the proxy chosen to render the model "testable"? In specific regard to the capital

asset pricing model (CAPM), the existence of this dual hypothesis led Roll (1977) to conclude that

the "theory is not testable unless the exact composition of the true market portfolio is known and

used in the tests" (p. 130).

Roll’s critique was met by two possible ways forward. First, since validity of the CAPM and

mean-variance efficiency of the market return are equivalent, if the proxy is not mean-variance

efficient, then any "test" based on this proxy seems besides the point. This stance led to the devel-

opment of tests for mean-variance efficiency of a proxy, with Gibbons, Ross, and Shanken (1989)

serving as the prominent example and MacKinlay and Richardson (1991) providing a useful gen-

eralization. Second, if the proxy is invalid (i.e., not mean-variance efficient), then the CAPM pre-

diction based upon this proxy should not be expected to hold exactly, only approximately. From

this stance, bounds on the deviations from exact CAPM pricing were developed based upon the

relative efficiency of the proxy (i.e., its distance inside the mean-variance frontier). Examples of

this approach include Shanken (1987) as well as Kandel and Stambaugh (1987, 1995).

This paper extends the literature on relative efficiency testing by developing a pricing restriction

that reflects the way in which (1) a proxy return relates to the market return and (2) individual

security returns relate to the proxy. The first relation is addressed in the works of Shanken (1987)

and Kandel and Stambaugh (1987). The second is the principal contribution of this paper. A

general outline of the approach is as follows. The measure of relative efficiency is the correlation

between the proxy return and the market return denoted by ρ. A prior belief on the true value of

ρ is denoted by ρ0. A value for ρ is computed as the upper bound to a multivariate statistic of
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CAPM pricing errors measured against the proxy. If this value is less than ρ0, such is interpreted

as evidence against the CAPM. This approach is a conditional test of the CAPM based upon a prior

belief about the relative efficiency of the proxy. If the proxy is determined to be too far inside the

mean-variance frontier, the market return is concluded to be inefficient as well.

Any test of relative efficiency assumes, to some extent, that the proxy return mismeasures

the market return. A common starting point for most of these tests is the assumption that the

relationship between security returns and the proxy return can be explained by a projection of the

former onto the latter. Suppose that mismeasurement of the market return by the proxy return is

taken to mean that certain components relevant to the market return are excluded from the proxy.

Then, the extent to which these excluded components are correlated with the proxy return will

determine the extent to which innovations to the familiar market model will tend to covary with

that proxy return, since those innovations will contain the aforementioned omitted components.

In other words, mismeasurement renders the proxy return endogenous to the market model. The

resulting structural equation will, therefore, differ from a projection equation. This paper shows

that relative efficiency tests based upon projections are biased towards rejecting the CAPM because

these tests overstate a proxy’s distance away from the mean-variance frontier. Mismeasurement of

the market return is the source of this bias.

A relative efficiency test based upon the aforementioned structural equation as opposed to the

commonly used OLS projection requires a consistent estimator for the former in order to render the

test feasible empirically. Towards that end, an estimator for linear equations with an endogenous

regressor proposed by Prono (2008) is utilized. This estimator bases identification on exclusionary

restrictions within the functional form describing heteroskedasticity in security returns and is a

higher-moment analog to common instrumental variables techniques. MacKinlay and Richardson

(1991) demonstrate that heteroskedasticity in market model residuals can meaningfully impact

the results of mean variance efficiency tests for a given proxy return. This paper extends these

authors’ findings to tests of relative efficiency, noting that a particular form of heteroskedasticity

can be used to describe not only the second moment patterns of market model residuals but also

the co-movement of these residuals with the proxy return caused by the latter’s mismeasurement

of the market return (MacKinlay and Richardson (1991), among others, assume this co-movement

to be zero).
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The remainder of this paper is organized as follows. Starting from a rather general pricing

model, Section 2 develops a pricing restriction that can be used to test the CAPM conditional on

a prior belief about the correlation between the market return and the proxy used in the test. This

restriction fully encompasses the difference between the market return and an imperfect proxy.

Section 3 reviews a conventional test of relative mean-variance efficiency. Section 4 presents an

overview of the econometrics used to identify and estimate a structural market model. Section 5

details a method for conducting a test of relative mean-variance efficiency that is based upon the

econometric techniques developed in section 4. Section 6 summarizes the results from employing

this test, comparing them to the results of the conventional method reviewed in section 3. Section

7 presents the results of a Monte Carlo study of the test proposed in section 5 against conventional

alternatives. Section 8 proposes a generalization of the pricing restriction in section 2 that provides

a direct link between mismeasurement of the market return and time-variation in beta. Section 9

concludes.

2. Pricing Restriction

Assume there exists an observable risk-free rate. Let rt be an N -vector of observable excess

security returns. Define mt as a scalar unobservable economic aggregate and rm,t as the excess

return on an unobservable portfolio of securities that is efficient with respect to excess security

returns inclusive of rt (i.e., the market return). Let rp,t be a scalar proxy for rm,t, and assume that

theN+1 components of rt and rp,t are linearly independent. Consider the following pricing model

E [rt] = Cov [mt, rt] (1)

that relates expected excess returns to the covariance between excess returns and the economic

aggregate. Further suppose

mt =

(
E
[
rm,t
]

σ2
[
rm,t
]) rm,t (2)

so that the economic aggregate is proportional to the market return. Then (1) and (2) imply

E [rt] = βE
[
rm,t
]

4



where

β =
Cov

[
rm,t, rt

]
σ2
[
rm,t
] ,

which is the familiar CAPM of Sharpe (1964) and Lintner (1965).

The model of (1) and (2) is equivalent to the linear multivariate regression

rt = α + βrm,t + et, (3)

where E
[
etrm,t

]
= 0 by construction, and α = 0. If the market return were observable, the zero

constraint on alpha would be the single testable restriction of the CAPM. Under the current set-up,

however, alpha is immeasurable, and, as a consequence, the theory is untestable. What is lacking

is a link between the market return and the observable proxy. In order to provide that link, assume

rm,t = rp,t + φt, (4)

which casts the relationship between the market return and proxy return as a form of measurement

error.3 (4) is a generalization of (17) in Jagannathan and Wang (1996) if φvw = 1. (4) is also a

close counterpart to the decomposition of a proxy return used to develop the CAPM for inefficient

portfolios (CAPMI) in Diacogiannis and Feldman (2006), with the differences being (i) φt is not

assumed to be uncorrelated with rm,t and (ii) the expected value of φt is not, necessarily, zero.

The variable φt reflects components to the market return that are excluded from the proxy return.

Examples of these components include returns to nontraded assets and/or the returns to human

capital.4 Substitution of (4) into (3) produces

rt = γ + δrp,t + ẽt (5)

3φt is measurement error in a general sense not in a classical sense, since the assumption that φt⊥ rm,t, rt is not

made. There is good reason for this omission, since given what the measurement error is intended to reflect, φt is

related to both rm,t and rt.
4Studies by Campbell (1996), Jagannathan and Wang (1996), and Dittmar (2002) note the importance of the returns

to human capital in pricing expected returns.
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where

γ = α + βE [φt] , δ = β (6)

ẽt = βφ̃t + et, φ̃t = φt − E [φt]

(5) is the measurable analog to (3). Notice that γ 6= 0 even if the CAPM holds, thus complicating

a test of the theory if the proxy is not the market. In addition, note that according to Diacogiannis

and Feldman (2006), rp,t and φt must be correlated. From (5),

Cov
[
ẽt, rp,t

]
= βCov

[
φt, rp,t

]
= β

(
Cov

[
φt, rm,t

]
− σ2 [φt]

)
.

In general, this expression is not zero, which is to say that rp,t is an endogenous regressor in (5).

As a result, (5) is a structural equation that unlike (3) cannot, necessarily, be treated as a linear

projection without loss of generality. The fact that the market return is unobservable and any

proxy return, by definition, is incomplete affords this distinction. The effects of this distinction

on measuring the efficiency of a proxy return relative to the market return is made explicit in the

proposition and corollaries to follow.

In the context of (1), empirically-based asset pricing models attempt to tie the unobservable

economic aggregate mt to observable variables. Towards that end, consider a linear projection of

mt onto rp,t:

mt = a+ brp,t + em,t. (7)

According to Lemma 1 of Shanken (1987),

Cov
[
ẽt, em,t

]′
Σ−1
ẽ Cov

[
ẽt, em,t

]
≤ σ2 (mt)

(
1− ρ2

)
(8)

where Σẽ is the covariance matrix of residuals from (5), and ρ is the correlation between mt and

rp,t. A proof of (8) along with proofs to all propositions and corollaries is stated in the Appendix.

The right-hand-side of (8) is the variance of em,t. Equality holds if and only if em,t is an exact

linear combination of ẽt. Therefore, (8) simply states that the r-squared value from a regression of

em,t on ẽt can be at most one. From Shanken (1987), Cov
[
ẽt, em,t

]
"may be interpreted as a vector
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of deviations from an exact [single] beta expected return relation" (p. 93). The inequality places

an upper bound on these deviations and is useful in determining a similar bound for deviations

from CAPM pricing measured with respect to a proxy return. Proposition 1 formalizes this result

in light of the nonzero covariance between ẽt and rp,t in (5).

Proposition 1 Let the pricing model of (1) hold for all security returns including the proxy return.

Consider (i) proportionality between the economic aggregate and the market return in (2)

and (ii) the measurable analog to the market model in (3) that is given by (5). Define

θp =
E
[
rp,t
]

σ
[
rp,t
] (9)

as the Sharpe performance measure for the proxy return, and

η =
Cov

[
ẽt, rp,t

]
σ2
[
rp,t
] (10)

as a measure of the degree to which unobservable components to the market return covary

with the proxy return. Then,

d′Σ−1
ẽ d ≤ θ2

p(ρ
−2 − 1) (11)

where

d = E [rt]− (δ + η)E
[
rp,t
]
.

The pricing model of (1) and (2) is not directly testable because rm,t is unobserved. With the

exception of ρ, (11) is stated entirely in terms of quantities that are measurable from observed data,

provided, of course, that (5) can be identified. Proposition 1, therefore, derives a testable restriction

from (1) and (2) conditional on a prior belief about ρ.

The proof of Proposition 1 in Appendix A demonstrates that

ρ =
θp

σ [mt]
.

Let θm =
E[rm,t]
σ[rm,t]

, the Sharpe performance measure for the market return. Given (2), σ [mt] = θm,

and ρ is a ratio of Sharpe performance measures. As a consequence, ρ is afforded a geometric
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interpretation in mean-standard deviation space as the ratio of the slope of the security market

line passing through the excess proxy return to the slope of the security market line tangent to the

mean-variance frontier. This ratio links Proposition 1 to a test of relative efficiency for the proxy

return.

Let βp =
Cov[rp,t, rt]
σ2[rp,t]

, the measurable analog to β. Given (5),

βp = β + η. (12)

Proposition 1 provides a decomposition of these beta proxies into the true betas and the relation

between innovations to the measurable market model and the proxy return caused by measurement

error. Affording this decomposition is the structural interpretation of the measurable market model.

Given (12), d is the vector of constants from a linear multivariate regression of rt on rp,t or the

alphas measured with respect to the proxy return.5 Term these constants alpha proxies. Proposition

1 places an upper bound on these alpha proxies that is a function of the relative efficiency of the

proxy. The left-hand-side of (11) describes observable deviations from CAPM pricing. These

deviations need not be zero for the theory to hold because the proxy return not the market return

is being used in the restriction. However, these deviations are bounded by the proxy’s location in

mean-variance space. As ρ approaches one (i.e., the proxy approaches the mean-variance frontier),

these deviations approach zero. Let ρ0 be a prior belief on the true value of ρ (i.e., the true position

of the proxy relative to the mean-variance frontier). For a given d, Σẽt
, and θp, let ρ be the value

of ρ ∈ (0, 1] that, if it exists, satisfies (11). If ρ < ρ0, such is evidence against the pricing model

of (1) and (2). The strength of this evidence increases as ρ− ρ0 becomes more negative and is, of

course, conditional on the correctness of ρ0.

Corollary 1 In (4), suppose that φt is constant such that φt = φc. Then (11) holds as an equality

to zero where d = α if and only if φc = 0.

If φt is constant, the market return is a mean-shift of the proxy return, and (5) is equivalent

to an OLS projection. Corollary 1 then relates the pricing restriction of (11) to a statement of

mean-variance efficiency similar to either Gibbons, Ross, and Shanken (1989) or MacKinlay and

5For a proof of this statement, see (46) and (47) in the Appendix.
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Richardson (1991) since each begins with the assertion that Cov
[
ẽt, rp,t

]
= 0. From (44), ρ = 1

if and only if the mean-shift is identically zero. In this case

d′Σ−1
ẽ d = 0,

which is equivalent to the null hypothesis

H0 : α = 0; φc = 0, (13)

since

d = E [rt]− δE
[
rp,t
]

= α + βφc (14)

given (5), (6) and the fact that η = 0.6 Failure to reject this null is a failure to reject equivalence

between the market and proxy return as well as mean-variance efficiency of the market return.

Rejection of this null, on the other hand, is only a rejection of mean-variance efficiency of the

proxy return, since either φc 6= 0, in which case the proxy return is inefficient because ρ < 1, or

α 6= 0, in which case the proxy and the market return are inefficient, or both. The inability to

distinguish between these alternatives illustrates the Roll (1977) critique.

If the market return is a mean-shift of the proxy return, the manner in which Proposition 1 al-

lows for an indirect assessment of the CAPM is parallel to that of Proposition 2 in Shanken (1987).

If, on the other hand, φt 6= φc, the structural equation in (5) no longer coincides with a projection

of rt onto rp,t. Diacogiannis and Feldman (2006) postulate that correlation between rp,t and φt

"might be material when considering the misspecification caused by ignoring, in implementations

and tests, the addendum related to [φt]" (p. 20). The following corollary confirms this hypothesis.

Corollary 2 Let ep,t be the errors from a linear multivariate projection of rt on rp,t, and define

Σep
as the variance-covariance matrix of these errors. Given (4), Σẽ −Σep

is positive semi-

definite.

From Corollary 2, Σẽ ≥ Σep
. By extension, Σ−1

ep
≥ Σ−1

ẽ . Compare d′Σ−1
ep
d to d′Σ−1

ẽ d, noting

6From (14), d = 0 if α = −βφc. This latter equality is only satisfied under (13). To see why, note that β cannot

be a zero vector. Therefore, if α is nonzero, then φc needs to be nonzero for the equality to hold. But, given (44) a

nonzero φc means ρ < 1, which, in turn, means that d 6= 0 given (11).
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in both instances that d is a vector of alpha proxies. According to Corollary 2,

d′Σ−1
ep
d ≥ d′Σ−1

ẽ d.

From (49), a case where these two quadratic forms equate is when φt = φc. In general, however,

the degree to which expected returns deviate from the CAPM prediction measured conditional

on a proxy return will tend to be overstated if Σ−1
ep

is used as the weighting matrix as opposed

to Σ−1
ẽ . As a consequence, ρ will tend to be understated in (11). The end result is that treating

the relationship between security returns and the proxy return as a projection equation instead of

a structural equation will bias test results of the inequality restriction in Proposition 1 towards

rejecting the CAPM theory.

Hansen and Jagannathan (1997) criticize model misspecification tests that depend on the variance-

covariance matrix of the pricing errors because these tests grant a "reward for sampling error asso-

ciated with the sampling mean." In reference to the CAPM, this paper argues that higher sampling

error should be accounted for to the extent that it relates to misspecification of the market return.

Ignoring this misspecification will bias the test results towards rejecting the theory because of the

proxy being used in the test not because of any failing in the theory itself.

Let αp denote the vector of alpha proxies. If φt = φc, then from (14),

αp = α + βφc. (15)

In this case, differences between the alpha proxies and the true alphas are directly proportional to

the mean-shift in the market return relative to the proxy return. These differences are expected to

be positive (negative) if β is positive (negative), since a negative mean-shift implies that ρ > 1

given (44). If φt 6= φc, then

αp = α + βE [φt]− ηE
[
rp,t
]

(16)

given (6) and (47). In this case, differences between the alpha proxies and the true alphas are

ambiguous. Affecting these differences are both the mean of the omitted components as well as

the covariance between those components and the proxy return. Provided that the CAPM holds,

(15) explains the empirical discovery of "significant" alpha measured with respect to a proxy return
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to be the result of the mismeasured portion to the market return. (16) adds to this explanation

covariation between this mismeasured portion and the proxy return.

3. Conventional Test

Suppose φt = φc in (4), and assume that et ∼ N (0, Σe). Let d̂ and Σ̂e = 1
T

T∑
êtê
′
t

t=1

denote

estimates of αp in (15) and Σe, respectively, from N separate OLS regressions of rit on rp,t, where

rit is the ith element of rt and t = 1, . . . , T . θ̂p is an estimate of the proxy performance measure

computed from the sample mean and variance of rp,t. Consider the following definitions:

Q ≡ T d̂
′
Σ̂−1
e d̂

1 + θ̂
2

p

; λ ≡ Td′Σ−1
e d

1 + θ̂
2

p

.

Gibbons, Ross, and Shanken (1989) show that [N−1 (T −N − 1) /T − 2]Q, conditional on rp,t,

is distributed as a noncentral F with degrees of freedom N and T − N − 1 and non-centrality

parameter λ. Multiply both sides of (11) by T/
(

1 + θ̂
2

p

)
. Then Proposition 1 is equivalent to

H0 : λ ≤
Tθ2

p(ρ
−2 − 1)

1 + θ̂
2

p

, (17)

which establishes an upper-bound on the non-centrality parameter.

If ρ = 1, then λ = 0, meaning that under Corollary 1, Q follows a central F distribution. In

this case, a test of (13) follows immediately because Q is stated entirely in terms of observable

quantities. Suppose, instead, that ρ < 1. Then, consider conducting a test of ρ > ρ conditional

on a value for θp by evaluating (17) given ρ and θp to obtain a value for λ which, in turn, can be

used in the aforementioned noncentral F test. Shanken (1987) follows this approach. In addition,

for a given significance level α, consider finding ρ such that the p-value from the non-central F test

equals α. Then, ρ is the maximum correlation that satisfies Proposition 1 at a significance level of

α (for the empirical tests in section 6, α = 0.05). Following the discussion in section 2, whether

ρ0 is greater than (less than) ρ then determines whether the CAPM is rejected (not rejected).

Violations of the normality assumption for et are well documented in the literature.7 Numer-

ous studies support Engle’s (1982) Autoregressive Conditional Heteroskedasticity (ARCH) and

7See Mandelbrot (1963) and Fama (1965) as early examples.
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Bollerslev’s (1986) Generalized ARCH (GARCH) in security returns. Common specifications of

these models assume et to be conditionally normal, which (as demonstrated by Milhoj (1985) or

Bollerslev (1986)) results in the unconditional distribution of et being leptokurtic; although, the

standardized residuals of et are still shown to be non-normal empirically. In light of these find-

ings, the potential for mean-variance efficiency tests like those just described to be sensitive to the

normality assumption motivated the search for more robust testing methods. From the results of

section 2, it is apparent that normality is not necessary for deriving data-dependent restrictions im-

plied by mean-variance efficiency (or relative efficiency). Rather, such a condition is statistically

convenient for determining the distributional properties of the resulting test statistics. With this

observation in mind, MacKinlay and Richardson (1991) proposed a GMM-based test that, by con-

struction, is distribution free and able to accommodate general forms of heteroskedasticity. These

authors uncovered material differences between their approach and that of Gibbons et al. (1989)

at conventional levels of significance.

A unifying restriction of both Gibbons et al. (1989) and MacKinlay and Richardson (1991)

is that φt = φc. Corollary 2 illustrates how a violation of this assumption could impact a test

of relative mean-variance efficiency. The testing methodology developed in the next section is

robust to φt and is built upon the premise that ẽt follows a GARCH process but one that is not ,

necessarily, conditionally normal.8

4. Econometric Methodology

An empirical investigation into Proposition 1 requires estimation of all quantities, with the

exception of ρ, in (11). From the proof of Corollary 2, d is the vector of constant terms from

a multivariate projection of rt onto rp,t. As such, the individual elements of d can be estimated

following the same approach outlined in section 3. If φt = φc, then Σẽ = Σe and can also be

estimated in the manner described under section 3. If, on the other hand, φt is stochastic, then

rp,t is endogenous to (5). Any method for estimating (5) and, hence, Σẽ needs to be robust to this

endogeneity.

8Diebold, Im, and Lee (1989) provide evidence that market model residuals are heteroskedastic.
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From (5), the relationship between any given security return and the proxy return can be ex-

pressed as

r1,t = γ1,0 + δ0rp,t + ε1,t (18)

rp,t = γ2,0 + ε2,t, (19)

which is a triangular system without instruments, where r1t is a given security return and ε1,t

and ε2,t are unobserved errors or shocks. Let εt =
[
ε1,t ε2,t

]′
. The term γ1,0 refers to the true

value of γ1, with the same interpretation holding for all other parameter values. The sketch of an

identification result together for (18) and (19) with an associated estimator follows. Prono (2008)

provides a detailed discussion of both.

Note that (18) makes no explicit use of the error decomposition in (6), meaning that the effect

of φt is considered only at the level of ε1,t. No attempt is made to isolate or identify properties

unique to φt. The functional form describing the relationship between ε1,t and ε2,t is sufficiently

general to place only minimal constraints on the process governing φt.

Define St−1 as the σ-field generated by {εt−1, εt−2, . . .}, and assume

E
[
εt | St−1

]
= 0, E

[
εtε
′

t | St−1

]
= Ht,

which is the definition of semi-strong GARCH from Drost and Nijman (1993). An advantage of

this definition is that no particular conditional distribution for εt needs to be assigned. Let

vech (Ht) = ht, vech
(
εtε
′

t

)
= et,

and parameterize ht as

ht = C0 + A0et−1 +B0ht−1, (20)

where C0 is a 3×1 column vector andA0 andB0 are both 3×3 diagonal matrices. Throughout this

section, vech (·) denotes the matrix operator that stacks the lower triangle, including the diagonal,

of a symmetric matrix into a column vector, while vec (·) is the matrix operator that stacks the

columns of a matrix into a column vector. In addition, A =
[
ajk
]

denotes any matrix A.

(20) is a bivariate version of the familiar GARCH(p, q) model introduced by Bollerslev (1986).
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The special case of p = q = 1 is popular because of its parsimony and forecasting power. Exam-

ples of its use in the modeling of multivariate financial time series include Bollerslev, Engle, and

Wooldridge (1988) and Bollerslev (1990), where the former investigates a conditional CAPM. For

the purposes of identifying the triangular system, the GARCH model of (20) is the key identifying

assumption; in particular, the diagonal specification of the parameter matrices A0 and B0.

Ht needs to be positive definite almost surely. This requirement translates into restrictions on

the parameters cj1,0, ajk,0, and bjk,0 in (20). One way to satisfy this requirement (and the one relied

on in the empirical work of this paper) is to specify ht according to a bivariate diagonal BEKK(1,1)

model. The BEKK model is for general multivariate GARCH processes and is developed by Engle

and Kroner (1995).

Consider only the conditional covariance between ε1,t and ε2,t as well as the conditional vari-

ance of ε2,t. In doing so, let et =
[
ε1,tε2,t ε22,t

]′
, and define Zt−2 =

[
e
′
t−2 · · · e′t−L

]′
for a finite

L ≥ 2. If et is covariance stationary (which requires ε2,t to be fourth moment stationary), then the

conditional moment restrictions from (20) imply for the unconditional autocovariances of et that

Cov
[
et, Zt−2

]
=
(
A0 +B0

)
Cov

[
et, Zt−1

]
, (21)

where A0 is a 2 × 2 diagonal matrix formed from the elements a22,0 and a33,0 in A0 (a parallel

definition holds for B0), and Cov
[
et, Zt−i

]
≡ E

[
(et − E [et])

(
Zt−i − E [Zt]

)′]
for i ≥ 1 (the

Lemma in Prono (2008) demonstrates this result).

For ARCH models (i.e., where B0 = 0), Rich, Raymond, and Butler (1991) realized that since

(20) implies

et = ht + ωt,

where E
[
ωt | St−1

]
= 0, then E

[
ωte

′
t−1

]
= 0, thus enabling A0 to be identified by unconditional

moment restrictions familiar to the OLS and IV estimators. (21) is an extension of this result to the

GARCH(1,1) model.

Let Rt =
[
R1,t R2,t

]′
be the vector of reduced form errors from (18) and (19). The struc-

tural errors εt are related to Rt by

εt = ∆−1
0 Rt, (22)
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where ∆0 =

 1 δ0

0 1

. Given (22), substituting the reduced form expressions for ε1,tε2,t and ε22,t

into (21) produces

Cov
[
rt, Zr,t−2

]
=
(
A0,r +B0,r

)
Cov

[
rt, Zr,t−1

]
,

where rt and Zr,t−i (for i = 1, 2) are the reduced forms of et and Zt−i, respectively, and A0,r and

B0,r are reduced form parameter matrices. While A0 and B0 are diagonal, A0,r and B0,r are upper

triangular. Furthermore, since dg
(
A0,r +B0,r

)
= A0 + B0, where dg (·) is the matrix operator

that forms a diagonal matrix from the principal diagonal of any matrix, the off-diagonal element of

A0,r +B0,r is a function of the diagonal elements and of δ0. Therefore, if A0,r +B0,r is identified

(which it is if Cov
[
rt, Zr,t−1

]
or, equivalently, Cov

[
et, Zt−1

]
has a row rank of two), then this

parameter matrix defines a system of 3 reduced form equations in 3 structural unknowns (those

unknowns being a22,0, a33,0, and δ0) with a unique solution for δ0.

Iglesias and Phillips (2004) demonstrate that if the structural errors from a triangular sys-

tem follow a diagonal GARCH process, the reduced form errors, while still GARCH, are no

longer diagonal GARCH. The reduced form parameter matrices A0,r and B0,r both illustrate this

point and evidence how departures from diagonality permit identification. In particular, since

dg
(
A0,r +B0,r

)
= A0 + B0, the element in the upper triangle of A0,r + B0,r is restricted by the

diagonal terms. It is from this restriction that identification follows. In discussing how the rela-

tionship between structural and reduced form GARCH models can identify simultaneous systems,

Rigobon (2002) states "the model of heteroskedasticity of the structural residuals impose[s] im-

portant constraints on how the reduced form heteroskedasticity can evolve" (p.433). The relevant

constraint here is the exclusion of all off-diagonal terms in the formulation of ht in (20).

The traditional method for identifying the triangular system is to impose exclusion restrictions

on some of the exogenous variables affecting the conditional mean, which is equivalent to assuming

the existence of outside instruments. For the triangular system of (18) and (19), no such exclusions

are available. However, diagonality of the parameter matrices A0 and B0 in (20) is the extension of

exclusion restrictions onto the second moments. Without these restrictions, the triangular system

would remain unidentified, which is to say that the existence of conditional heteroskedasticity

alone is not sufficient for identification. For instance, suppose ht follows a fully general GARCH
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model, which requires A0 and B0 to be composed entirely of nonzero terms. Then the structural

form GARCH model imposes no constraints on how the reduced form can evolve. In this case, the

reduced form parameter matrix A0,r +B0,r defines a system of 4 equations in 5 unknowns.9

In the sketch of the identification result above, the conditional variance of ε1,t plays no role.

Therefore, the parameterization of h11,t in (20) need not imply a finite fourth moment for ε1,t as is

the requirement for h22,t in regards to ε2,t.

Given the identification result, an estimator for (18) and (19) can be constructed from (21) and

the fact that E [εt] = 0. Towards that end, let εt =
[
ε1,t ε2,t

]′
, and et =

[
ε1,tε2,t ε22,t

]′
, where

ε1,t = r1,t − γ1 − δrp,t

ε2,t = rp,t − γ2

Define ψ = {γ1, γ2, δ, C, A + B}, where C =
[
c21 c31

]′
and Ψ as the set of all pos-

sible values for ψ. Let σ =
[
I −

(
A+B

)]−1
C, where I is the identity matrix, and zt−2 =[(

et−2 − σ
)′
· · ·
(
et−L − σ

)′]′
. Construct the sample moments

g1 = Ê [εt] , g2 = Ê [et]− σ,

g3 = Ĉov
(
et, zt−2

)
−
(
A+B

)
Ĉov

(
et, zt−1

)
,

where Ê and Ĉov are estimates of the expectation and covariance operators, respectively, and stack

these moments into a single vector g =
[
g1 g2 vec (g3)

]′
. Given certain regulatory conditions,

the standard Hansen (1982) GMM estimator

ψ̂ = arg min
ψ∈Ψ

g′WTg (23)

is weakly consistent for some sequence of positive definite WT . The choice of WT follows Prono

(2008) and is constructed such that the autocovariances in g3 are transformed into autocorrelations.

This transformation requires preliminary estimates of the variance to both ε1,tε2,t and ε22,t.

Application of (23) to the N separate structural equations in the form of (18) that are implied

9Rigobon (2002) formalizes this result in an appendix.
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by (5) produces consistent estimates of the N elements in ẽt, which can then be used to estimate

Σẽ. To close this section, θ̂p =
Ê[rp,t]
σ̂22

.

5. Test Methodology

The inequality restriction in (11) is equivalent to

H0 : ρ ≤
√

1

1 + θ2
pd
′Σ−1

ẽ d
(24)

which identifies an upper bound for ρ, since ρ is strictly positive. Define ξ ≡
√

1
1+θ2pd

′Σ−1
ẽ
d
. Sec-

tion 4 outlines a methodology for obtaining ξ̂. An analogous approach to Shanken (1987) would

be to determine the distribution (either asymptotic or exact) of ξ so that a test of ξ > ξ could be

conducted. For a given significance level α, the value of ξ that produces a p-value from that distri-

bution equal to α is then the maximum correlation supporting Proposition 1. A comparison of ξ to

ρ0 determines whether the CAPM is rejected (not rejected) depending on whether the inequality is

< (>). Determining a distribution for ξ, however, would be difficult, owing, in no small part, to

the heteroskedastic properties assumed for ẽt that permit its identification. An alternative approach

would be to bootstrap a standard error for ξ̂ and use this standard error to determine ξ. This paper

adopts the alternative methodology.

Bootstrapping a standard error for ξ̂ requires resampling from the N excess security returns

and the excess proxy return used to form the quantities θ̂p, d̂, and Σ̂ẽ. Such is a nontrivial exercise

since these returns are not iid and, in fact, their departure from independence (both within and

across return series) is a key assumption underlying the estimator that generates Σ̂ẽ. Define

ε
(i)
t =

[
εi,t ε

2̃,t

]′
, i = 1, . . . , N,

where εi,t = ri,t − γi,0 − δi,0rp,t, the errors from the structural equation for the ith security return,

and ε
2̃,t

is the demeaned proxy return. Suppose

ε
(i)
t =

(
H

(i)
t

)1/2

V
(i)
t , (25)
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where H
(i)
t is the conditional variance-covariance matrix for the ith security return and the proxy

return parameterized according to (20), and V
(i)
t =

[
Vi,t V

2̃,t

]′
. The vector V

(i)
t is assumed to be

iid with mean zero and identity variance-covariance matrix. (25) defines a strong GARCH process.

Unlike most applications of strong GARCH, however, no particular distribution is assumed for

V
(i)
t . The estimator in (23) supplies ε̂

(i)
t . Conditional on this estimate, one can obtain Ĥ

(i)
t . As a

result, V̂
(i)
t =

(
Ĥ

(i)
t

)−1/2

ε̂
(i)
t . Bootstrap samples are drawn from V̂

(i)
t . Let V̂

(i)∗
t be a bootstrap

sample. Then ε̂
(i)∗
t =

(
Ĥ

(i)∗
t

)1/2

V̂
(i)∗
t ,where Ĥ

(i)∗
t is based upon parameter estimates from the

original sample, and

r̂∗p,t = γ̂ 2̃ + ε̂∗2̃,t, (26)

r̂∗i,t = γ̂i + δ̂ir̂
∗
p,t + ε̂∗i,t, i = 1, . . . , N, (27)

where γ̂ 2̃, γ̂i, and δ̂i are also obtained from the original sample. The resulting bootstrap series is

then used to estimate ξ̂
∗

given the estimation method described in section 4.

Define E∗ as the expectation operator relative to the distribution of the bootstrap sample con-

ditional on the original sample, and let

g =
1

T

T∑
t=1

gt.

Following Hall and Horowitz (1996), the bootstrap version of gt is

g∗t = gt − E∗ĝt, (28)

where ĝt is gt evaluated at ψ̂, the parameter estimates from the original data sample. (28) recenters

the bootstrap moment conditions such that E∗g∗t = 0. In general, E∗gt 6= 0 when the number of

moment conditions exceeds the number of parameters in ψ. If gt is used instead of g∗t , then ψ̂
∗

will

have different asymptotic properties than ψ̂. In order to avoid this discrepancy,

ψ̂
∗

= arg min
ψ∈Ψ

g∗′W ∗
Tg
∗. (29)

The bootstrap standard error of ξ̂ is based on ψ̂
∗
.
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Given a standard error for ξ̂, the asymptotic t statistic

τ̂ =
ξ̂ − ξ
ŝe
(
ξ̂
) (30)

can be constructed to test ξ̂ > ξ. This statistic is asymptotically pivotal with an asymptotic dis-

tribution assumed to be well approximated by a standard normal.10 As a result, for α = 0.05, the

value of ξ can be determined such that Φ (τ̂) = α.

According to MacKinnon (2007), bootstrapping (30) will generally lead to an asymptotic re-

finement. Such a practice is referred to as the double or iterated bootstrap. Implementing the

double bootstrap, however, is very computationally expensive. For example, define B1 as the num-

ber of bootstrap iterations used to generate ŝe
(
ξ̂
)

and B2 as the number of iterations used to

generate the bootstrap distribution of (30). If B1 = B2 = 1000, then the total number of iterations

required for the double bootstrap is approximately 1 million. Given the size of the data samples

used to construct ξ̂ (see section 6), the standard normal will likely provide a descent approximation

to the asymptotic distribution of (30). A Monte Carlo study (see section 7) verifies this claim. As

a result, this approximation is used as opposed to the double bootstrap alternative.

6. Test Results

All tests are conducted using size, B/M, and momentum portfolios. These portfolios are studied

because they reflect the size, value, and momentum "premiums" that empirical applications of the

CAPM struggle to explain. The returns are measured weekly (in percentage terms) from 10/6/67

through 9/28/07. Test results consider 20- and 10-year subperiods of this overall date range. The

daily 25 size-B/M and 25 size-momentum return files (each 5×5 sorts with breakpoints determined

by NYSE quintiles) formed from all securities traded on the NYSE, AMEX, and NASDAQ ex-

changes are used to construct the weekly return series.11 Monte Carlo studies of (23) reveal sizable

benefits in terms of reduced finite sample bias and increased efficiency from using large sample

sizes due to the fact that higher moments are being estimated. In light of this finding, weekly

10From MacKinnon (2007), "a test statistic is asymptotically pivotal if its asymptotic distribution does not depend

on anything that is unknown" (p.5).
11These return files are available on Kenneth French’s website.
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returns are utilized. Further supporting this frequency choice is the fact that weekly returns reduce

day-of-the-week and weekend effects as well as the effects of nonsynchronus trading and bid-ask

bounce. The size portfolios considered are "Small," "Mid," and "Large." "Small" is the average

of the five low-market-cap portfolios, "Mid" the average of the five medium-market-cap portfo-

lios, and "Big" the average of the five large-market-cap portfolios. The B/M portfolios considered

are "Value," Neutral," and "Growth." Value" is the average of the five high-B/M portfolios, "Neu-

tral" the average of the five middle-B/M portfolios, and "Growth" the average of the five low-B/M

portfolios.12 Finally, the momentum portfolios considered are "Losers," "Draws," and "Winners."

"Losers" is the average of the five low-return-sorted portfolios, "Neutral" the average of the five

middle-return sorted portfolios, and "Winners" the average of the five high-return-sorted portfo-

lios. The proxy return is the CRSP value-weighted index return formed from all securities traded

on the NYSE, AMEX, and NASDAQ exchanges. The risk-free rate is the one-month Treasury bill

rate from Ibbotson Associates.

The tests focus on (17) and (24). The former is conducted following the approach developed in

Gibbons, Ross, and Shanken (1989), referred to hereafter as GRS, that is implemented in Shanken

(1987) described in section 3. The latter is conducted following the approach of section 5 under

two cases: (1) φt = φc, (2) φt is stochastic. Case 1 will be referred to as Bootstrap Proposition

1 constant (BPC), while case 2 will be referred to as Bootstrap Proposition 1 stochastic (BPS).

The only difference in implementation between BPC and BPS is that under the former, OLS re-

gressions estimate the measurable market model while, under the latter, this model is estimated

using (23) and its bootstrap analog in (29). A comparison of BPC to GRS evidences the effects of

conditional heteroskedasticity on a test of relative mean-variance efficiency. A comparison of BPC

to BPS evidences the effects of treating the market model as a projection as opposed to a structural

equation. When implementing BPS, the number of lags used in (23) is set to L = 4. The choice of

this lag length is motivated by the frequency of returns as well as the finding in Prono (2008) that

higher lag lengths, while successful at reducing the variability of ψ̂ also increases the finite sample

bias. Finally, all bootstrap routines are conducted over 1000 trials.

Table 1 (A and B) and 2 (A and B) summarizes results from two 20-year subperiods: (1) 10/6/67

- 9/25/87, (2) 11/6/87 - 9/28/07. Tables 1A and 2A provide summary statistics of the returns used

12Definitions for the "Small," "Large," "Value," and "Growth" portfolios are taken from Lewellen and Nagel (2006).
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in the tests as well as the alpha proxies (accompanied with heteroskedasticity-corrected standard

errors) from individual OLS regressions of those returns on the proxy. Tables 1B and 2B describe

the maximum correlation between the proxy return and the market return that still supports the

CAPM result at a 5% significance level according to the GRS, BPC, and BPS tests. Recall that all

three tests are based on the inequality restriction in (11). If ρ < 1, then a test of this restriction

requires a prior belief on the true value of the correlation ρ0. From Roll (1977), ρ0 = 0.90 or

above. This value will be used throughout the discussions of the test results.

For the GRS test, if ρ < 1, then a test of (17) also requires the true value of θp. Possible

values for θp are taken from Shanken (1987). θp = 0.52 is the most likely (or expected) value.

θp = 0.22 and θp = 0.86 are - 1 standard deviations and + 2 standard deviations away from this

expected value, respectively. All values of θp are annualized for presentation but expressed in

weekly terms when used in the tests. Assuming an annual standard deviation of 20% for the proxy

return, θp = 0.22 corresponds to a "market" premium of 4.4%, θp = 0.52 a "market" premium

of 10.4%, and θp = 0.86 a "market" premium of 17.2%.13 This range for θp is sufficiently wide

to encompass the point estimates for θp implied by the different subperiods considered. Finally,

θp = 1.00 is also reported as a value for the proxy Sharpe ratio that is greater than any conceivable

true value.

Since (17) requires θp to be known, for comparative purposes θp is treated as known in (24)

for the BPC and BPS tests. In addition, however, θp is also treated as unknown in the latter two

tests, meaning that its value is bootstrapped along with every other random quantity in ξ̂. In the

tables, the heading "unknown" under Panel F: BPC and Panel G: BPS details the results of this

more general treatment.

Under Tables 1B and 2B, note that (1) the projection errors appear to be non-normal, char-

acterized by (at times) significant skewness and (often times) excess kurtosis, and (2) there exist

apparent differences between the projection and structural errors. These two findings foreshadow

differences between the GRS, BPC, and BPS tests. Also under Tables 1B and 2B, a comparison

of the maximum correlations for known values of θp between the GRS and BPC tests reveals the

general tendency of higher correlations implied by the former. Such a tendency implies that the

former test will tend to under-reject the CAPM relative to the latter. MacKinlay and Richardson

13By "market" premium, what is meant is the market premium implied by the proxy.
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(1991) document a similar finding in their empirical work. As an example, for the period 10/6/67

- 9/25/87 at θp = 0.52, ρ = 0.86 according to GRS but ρ = 0.74 according to BPC for the size

portfolios. For the period 11/6/87 - 9/28/07, the same comparison yields ρ = 1.00 according to

GRS as opposed to ρ = 0.93 according to BPC. This latter comparison possesses economic sig-

nificance since the former cannot reject mean-variance efficiency of the proxy (see Corollary 1),

while the latter can. When comparing GRS and BPC across the two 20-year time periods, the

largest differences in relative efficiency occur for the size portfolios. The B/M portfolios show a

similar directional difference, though on a more muted scale. For both 20-year time periods, the

maximum correlations measured relative to the momentum portfolios are higher for BPC than for

GRS. The difference between these correlations, however, is small.

A comparison of the maximum correlations for constant values of θp between the BPC and

BPS tests supports the results of Corollary 2. These correlations are generally higher under the

latter. The largest correlation difference between BPC and BPS occurs for the size portfolios in

the second 20-year time period for θp = 0.22. In this case, ρ = 0.64 under BPC, while ρ = 0.86

under BPS. Also in the second 20-year period, positive correlation differences between the BPS

and BPC tests are apparent across all values of θp for the B/M and momentum portfolios.

Treating θp as unknown under BPS offers the most general test considered and is the principal

contribution of this paper to relative efficiency testing. In contrast, the GRS method requires θp

to be known. The most natural means of comparison between GRS and BPS with an unknown

θp is to assume that θp = θ̂p (the sample-specific estimate of θp) for the former, since θ̂p is the

point estimate around which bootstrap samples are generated. For the first 20-year time period,

θ̂p = 0.22 while for the second, θ̂p ≈ 0.52. In the second 20-year time period, therefore, ρ =

0.54 under GRS as compared to ρ = 0.75 under BPS for the momentum portfolios. The former

result implies that the proxy return explains less than 30% of the variation in the market return

(0.542 = 0.29), while the latter implies that the proxy return accounts for over 55% of the variation

in the market return. In this case, GRS rather significantly understates the relative efficiency of the

proxy return when compared to BPS. An inference from this result is that the GRS test will tend

to over-reject the CAPM prediction. Understatement of the relative efficiency of the proxy return

by GRS when compared to BPS (with an unknown θp) is consistent across both time periods and

for all portfolios considered. The difference in the implied mean-variance location of the proxy
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portfolio can be striking. For instance, ρ is 59% and 64% higher according to BPS when compared

to GRS for the B/M and momentum portfolios, respectively, in the first 20-year time period.

The BPS test with an unknown θp cannot reject the null hypothesis that the proxy return is

mean-variance efficient for size portfolios in the most-recent 20-year period. Otherwise, the test

results do not speak favorably for the CAPM. If ρ0 = 0.90, then the result of Proposition 1 is re-

jected for all remaining time periods and portfolios. The CAPM fares decidedly worse on B/M and

momentum portfolios relative to size portfolios and performs the poorest on momentum portfolios.

A potential bright-spot emerges when comparing results between the two time periods. The size

of the CAPM errors for all the portfolios considered is greatly reduced in the most-recent period,

since the implied correlations very nearly double. This paper, therefore, documents a significant

increase in the ability of the CAPM to explain the size, value, and momentum "premiums" post the

1987 market crash.

As a robustness check, the GRS, BPC, and BPS tests are also applied to three 10-year subpe-

riods: (1) 10/7/77 - 9/25/87, (2) 11/6/87 - 9/26/97, (3) 10/3/97 - 9/28/07.14 Tables 3 (A and B)

through 5 (A and B) summarize the results. These results are largely consistent with those for the

two 20-year subperiods discussed above. Namely, for constant values of θp, GRS tends to imply

higher correlations than BPC, and BPC tends to imply lower correlations than BPS. In addition,

GRS when evaluated at θp = θ̂p tends to imply lower correlations than BPS evaluated with an

unknown θp. Moreover, significant differences between the tests continue to be evidenced. For

example, during the period 11/6/87 - 9/26/97, the GRS test rejects the CAPM prediction at all

levels of θp for the B/M portfolios. The BPS test with an unknown θp, on the other hand, does not.

During the period 10/3/97 - 9/28/07, also for the B/M portfolios, the GRS test fails to reject the

CAPM at all levels of θp, while the BPS test with an unknown θp offers a sound rejection.

7. Monte Carlo

The previous section establishes that inferences on the relative efficiency of a given proxy

return can be sensitive to the test considered. This section investigates the source of these differ-

ences. For instance, do these differences signal the inappropriateness of a normality assumption

14The period 10/6/67 - 9/30/77 is not considered because the mean of the proxy return is negative.
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for innovations to the market model? Do they signal the inappropriateness of treating the market

model as a projection? Alternatively, do they reflect poor finite sample performance of the GMM

estimator in (23) or the fact that the asymptotic distribution of the test statistic in (30) is not well

approximated by a standard normal?

In order to assess these possibilities, consider a Monte Carlo study of the following design.

From (25), with N = 3 let the individual components of V
(i)
t be distributed as standardized

Gamma(2,1) random variables, and parameterize H
(i)
t using the estimates obtained for the B/M

portfolios over the period 11/6/87 - 9/28/07 that do not assume h
i2̃,t

= 0.15 Further, let γ̂ 2̃ and

δ̂i from (26) and (27), respectively, be obtained from (23) applied to the same data set mentioned

above. Consider the pricing restriction of (11) stated in terms of estimated quantities. Conditional

on Ĥ
(i)
t , γ̂ 2̃, and δ̂i, γ̂i in (27) is set so that the individual components of d̂ are equal and support

ρ = 0.90.16 Therefore, the data generating process (DGP) considered in this study supports the

CAPM.

Given the DGP described above, this study examines the rejection rates of the GRS, BPC, and

BPS tests at 10%, 5%, and 1% significance levels when either ρ or ξ is set equal to 0.90. For the

GRS test, θp is assumed to be known and is set equal to the estimate from the original sample.

For the BPC and BPS tests, θp is treated as unknown. For all three test statistics, simulations are

conducted across 500 trials generating excess return series of 1000 observations each. When con-

structing the individual excess return series for each trial, the first 200 observations are dropped to

avoid initialization effects. For the BPC and BPS statistics, within each simulation trial a bootstrap

of ξ̂ is conducted over 250 repetitions.17 Parameter estimates for implementing these routines do

not vary by simulation trial. These parameter estimates are generated from the original data sample

15The Gamma(2,1) distribution is chosen because, when combined with Ĥ
(i)
t , this distribution produces errors with

unconditional skewness and kurtosis measures comparable to those described under Panel D for the B/M portfolios of

Table 2B.
16From (47),

γ̂i = d̂i + η̂iÊ
[
rp,t
]
.

Let d̂i = d̂j ∀ i, j = 1, 2, 3. From the B/M portfolios and proxy return measured over the period 11/6/87 - 9/28/07, d̂i
is calibrated such that ρ = 0.90 if (11) is treated as an equality. η̂i is the slope parameter from an OLS regression of

ε̂i,t on rp,t.
17The test results bootstrap ξ̂ for 1000 repetitions. Only 250 repetitions are considered here in order to keep the

simulation time feasible. This truncated number of repetitions should still produce a decent estimate of the standard

error.
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in the manner described above, although in the case of the BPC statistic, the additional constraint

of h
i2̃,t

= 0 is imposed.

Table 6 reports the simulation results. Both the GRS and BPC statistics over-reject the null

hypothesis that ρ is at least 0.90 or, equivalently, that the CAPM holds. Across the size levels

considered, the GRS statistic over-rejects more than does the BPC statistic. Simulation studies of

Zhou (1993) and Chou (1996) show that the GRS statistic tends to over-reject the null hypothesis

of an efficient proxy return (i.e., that ρ = 1) when the distribution of the errors to the market model

is non-elliptical.18 The results presented here compliment those of Zhou (1993) and Chou (1996)

by showing that the tendency for GRS to over-reject extends to tests of relative efficiency where

temporal dependence is a factor governing the non-elliptical nature of the error distributions.

In general, the BPS statistic is appropriately sized. A tendency for under-rejecting the null

hypothesis is evident at the 10% significance level, but this tendency is modest and is no larger

in absolute value than the size distortions evidenced by the other two tests.19 No such tendency

(in either direction) is meaningfully evidenced at either the 5% or 1% significance levels. As a

result, it does not appear that poor finite sample performance of the GMM estimator and/or poor

approximation of the asymptotic distribution of the test statistic by a standard normal meaningfully

distorts the size of the BPS test. In addition, results from the BPC and BPS tests support the finding

of Corollary 2 that treating the market model as a linear projection leads to an over-rejection of

the CAPM in cases where φt 6= φc. Finally, from Table 2B, note that the maximum correlations

determined by the GRS, BPC, and BPS statistics are 0.73, 0.824, and 0.841, respectively.20 The

rank order of these maximum correlations is supported by the simulation results.

8. Extension

This section generalizes Proposition 1 in terms of conditional moment restrictions and, in doing

so, links mismeasurement of the market return to time-variation in "beta." In order to develop this

generalization, define It−1 as the information set containing past histories of rt, rp,t, and xt, a vector

18The method proposed by Zhou (1993) requires the error distributions to be specified, while Chou (1996) utilizes

a bootstrap approach, but one where temporal independence is assumed.
19Chou (1996) reports similar size distortions at a 10% level for bootstrap tests of mean-variance efficiency.
20For the GRS test, θp = θ̂p = 0.52. For both the BPC and BPS tests, θp is unknown.
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of forecasting instruments. Moments for period t conditional on It−1 are labeled with a t subscript

as are parameters conditional on It−1. Consider a conditional version of the pricing model in (1)

Et [rt] = Covt [mt, rt] , (31)

where

mt =

(
Et
[
rm,t
]

σ2
t

[
rm,t
]) rm,t. (32)

(31) and (32) imply a conditional CAPM.21 In addition, assume

β =
Covt

[
rm,t, rt

]
σ2
t

[
rm,t
] (33)

so that the true betas are constant parameters and time variation in expected security returns is

driven by changes in the market risk premium. Ferson (1990) asserts that the specification of

constant betas "is an important assumption in the context of models with conditional expectations"

(p.399).22

Consider the following generalization of the measurable market model in (5)

rt = γt + δrp,t + ẽt, (34)

where

γt = α + βEt [φt] , φ̃t = φt − Et [φt] .

and δ as well as ẽt retain their definitions from (6). A case for Cov
[
ẽt, rp,t

]
6= 0 follows the

same logic outlined in section 2. (34) affords a general specification for the time-varying mean of

security returns.23 This time variation is linked to time variation in the expected proxy return as

21Harvey (1989), Bodurtha and Mark (1991), Jagannathan and Wang (1996), Lettau and Ludvigson (2001), Adrian

and Franzoni (2004), and Ang and Chen (2007) all consider versions of the CAPM in this form.
22In nearly all cases, a conditionally mean-variance efficient portfolio will exist, implying that so too will a single

beta model for expected returns. In general, the beta from this model will be time-varying.
23There is a consensus in the literature that expected returns are time-varying conditional on a set of forecasting

instruments. Potential instruments include (i) lagged values of the proxy return to capture reversion as evidenced in

Keim and Stambaugh (1986) and Fama and French (1989) among others, (ii) the term spread as measured by the

difference between the 10-year and 3-month yields and advocated by Fama and French (1989), (iii) Moody’s BAA -

AAA credit spread (see, e.g, Campbell (1996), and (iv) the value spread as measured by the return difference between
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well as the expected value of the components omitted from that proxy return. In the special case

where the market return is a mean-shift of the proxy return, the single source of time variation in

expected returns is time variation in the expected proxy return.

In order to relate the economic aggregate to observable variables, consider the linear projection

of mt onto rp,t conditional on It−1

mt = a+ btrp,t + em,t, (35)

where

bt =
Covt

[
rp,t, mt

]
σ2
t

[
rp,t
] .

A straightforward adaptation of the Lemma in the Appendix to conditional moments grants

Covt
[
ẽt, em,t

]′
Σ−1
ẽt
Covt

[
ẽt, em,t

]
≤ σ2

t [mt]
(
1− ρ2

t

)
, (36)

where Σ−1
ẽt

is the variance-covariance matrix of residuals from (34) conditional on It−1, and ρt is

the conditional correlation between mt and rp,t. Given (36), a conditional analog to Proposition 1

may be stated as

Proposition 2 Let the pricing model of (31) hold for all security returns including the proxy return.

Consider (i) proportionality between the economic aggregate and the market return in (32)

and (ii) the generalization of the measurable market model given by (34). Define

θp,t =
Et
[
rp,t
]

σt
[
rp,t
]

as the conditional Sharpe performance measure for the proxy return, and

ηt =
Covt

[
ẽt, rp,t

]
σ2
t

[
rp,t
] .

as a conditional measure of the degree to which unobservable components to the market

return covary with the proxy return. Assume that the relative efficiency of the proxy return is

value and growth stocks (see Campbell and Vuolteenaho (2004)).
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constant. Then,

d′Σ−1
ẽt
d ≤ θ2

p,t(ρ
−2 − 1) (37)

where

d = Et [rt]− (δ + ηt)Et
[
rp,t
]
.

Proof. See the proof of Proposition 1 in the Appendix, and condition the moments contained

therein on It−1. Let θm,t =
Et[rm,t]
σt[rm,t]

. Given (32) and the fact that (31) also holds for rp,t,

ρt =
Covt

[
mt, rp,t

]
σt [mt]σt

[
rp,t
] =

θp,t
θm,t

,

which is constant by assumption.

The deviation vector d from Proposition 2 is a N -vector of constant terms from the following

model for rt:

rt = d+ (δ + ηt)Et
[
rp,t
]

+ ut (38)

where Et [ut] = 0.24 Let βp,t =
Covt[rt, rp,t]
σ2t [rp,t]

. Given (34),

βp,t = β + ηt. (39)

As a result, d is a vector of deviations from conditional CAPM pricing measured with respect to the

proxy return, where both the beta proxies and the expected "market" premium are time-varying.

From (39), time-variation in the beta proxies results from mismeasuring the market return, since

in the true model, betas are constant. Proposition 2 establishes an upper bound for these pricing

errors based on the location of the proxy return relative to the conditional mean-variance frontier.

Like its unconditional counterpart, a principal strength of Proposition 2 is that except for ρ, it is

stated entirely in terms of quantities that can be directly estimated from observable data. This

proposition, therefore, sets up a test of the conditional CAPM based upon a prior belief of the

proxy’s relative efficiency.

Suppose the market return is a mean-shift of the proxy return. Then (34) is a projection of rt

24(38) is a vector statement of (4) in Bodurtha and Mark (1991).
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onto rp,t, and the beta proxies are not time varying since ηt = 0. In this case, time variation in

expected security returns is the result of a time-varying "market" premium.

Works by Harvey (1989), Bodurtha and Mark (1991), and more recently Adrian and Franzoni

(2004) and Ang and Chen (2007) consider time-varying betas for the CAPM. Adrian and Fran-

zoni (2004) and Ang and Chen (2007) stress time-varying betas as meaningful contributors to the

improved performance of conditional specifications of the CAPM relative to their unconditional

counterparts. All of these works measure time-variation in beta proxies. The findings of these au-

thors, therefore, may be interpreted as evidence supporting the significance of measurement error

on the outcomes of proxy-based investigations into the CAPM prediction.

Given (37), the conditional analog to (24) is

H0 : ρ ≤ ξt,

where ξt ≡
√

1
1+θ2p,td

′Σ−1
ẽt
d
. Taking expectations of both sides produces a null hypothesis testable

following the same methodology outlined in section 5, with an asymptotic t statistic

τ̂ c =
Ê [ξt]− ξ
ŝe
(
Ê [ξt]

) .
To render this test feasible, the vector of forecasting instruments xt needs to be specified as does

the manner in which It−1 conditions security returns and the "market" premium. In addition, the

estimator employed for (34) needs to separately treat the conditional covariance and conditional

variance operators that define ηt, so that the time series of this measure can be recovered.

9. Conclusion

This paper develops a new test of the CAPM that accounts for a proxy’s mismeasurement of the

market return both in terms of the former’s relation to the latter as well as the former’s relation to

the assets it is assumed to price. For a given collection of test assets, conventional investigations of

the CAPM prediction based upon the relative mean-variance efficiency of a given proxy estimate

the market model by a linear projection. This paper demonstrates that estimating this projection
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is not without loss of generality. The returns to nontraded assets and the returns to human capital

are omitted from common "market"-based proxies. The extent to which these returns correlate

with a given proxy will determine the extent to which innovations to the measurable market model

covary with the proxy return. The resulting structural equation will necessarily differ from the

projection equation. A novel estimator for this structural equation is reviewed that does not require

outside instruments. This estimator is then used to show that the proposed test of relative mean-

variance efficiency built upon the structural equation differs in economically significant ways from

competing tests based upon the projection equation. In particular, the competing tests over-reject

the CAPM prediction because these tests ignore the effects of omitted components from the market

return on the measurable market model.

An extension of the pricing restriction implied by a mismeasured market return to conditional

moments separates the beta measured with respect to a proxy return into a constant and a time-

varying component. Time-variation in the second component is sourced to mismeasurement of

the market return. Estimating this time-variation is central to evaluating the performance of a

conditional CAPM where movements in beta significant to the pricing of expected returns are

caused by measurement error. The estimator described in section 4 treats the parameters governing

the conditional covariance matrix as nuisance parameters and only estimates composite functions

of these parameters. Given the specification of ηt in Proposition 2, a complete treatment of the

conditional covariance between the market model residuals and the proxy return as well as the

conditional variance of the proxy return is necessary to render the result of Proposition 2 testable.

Future research could develop such an estimator. The performance of the conditional pricing

restriction in Proposition 2 could then be compared against the unconditional pricing restriction

of Proposition 1 and alternative pricing models like the three-factor model of Fama and French

(1993).
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Appendix

Lemma Consider the structural model in (5) and the linear projection in (7). Then

Cov
[
ẽt, em,t

]′
Σ−1
ẽ Cov

[
ẽt, em,t

]
≤ σ2 [mt]

(
1− ρ2

)
where Σẽ is the N × N covariance matrix of ẽt, and ρ is the correlation between mt and

rp,t.

Proof. Since (7) describes a linear projection of mt onto rp,t, b =
Cov[rp,t, mt]
σ2[rp,t]

and σ2
[
em,t
]

=

σ2 [mt] (1− ρ2). Consider regressing em,t on ẽt. The explained variance from that regression is

Cov
[
ẽt, em,t

]′
Σ−1
ẽ Cov

[
ẽt, em,t

]
, which cannot be greater than σ2 [mt] (1− ρ2), the total variance

of em,t.

Proof of Proposition 1 Substitution of (5) into the right-hand-side of (1) produces

Cov [rt, mt] = δCov
[
rp,t, mt

]
+ Cov [ẽt,mt] . (40)

Given (7),

Cov [ẽt, mt] =

(
Cov

[
ẽt, rp,t

]
σ2
[
rp,t
] )

Cov
[
rp,t, mt

]
+ Cov

[
ẽt, em,t

]
. (41)

Combining (40) and (41) produces

Cov [rt, mt] = (δ + η)Cov
[
rp,t, mt

]
+ Cov

[
ẽt, em,t

]
,

where η is defined in (10). Given (1) and (8), it follows that

d′Σ−1
ẽ d ≤ σ2 [mt]

(
1− ρ2

)
(42)

where

d = E [rt]− (δ + η)E
[
rp,t
]
,
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since (1) holds for both rt and rp,t. Also since (1) holds for rp,t,

ρ =
Cov

[
mt, rp,t

]
σ [mt]σ

[
rp,t
] =

θp
σ [mt]

, (43)

which equates (11) with (42).�

Proof of Corollary 1 Given (2) and (43), ρ =
θp
θm

. Substituting (4) into this result with the con-

straint that φt = φc produces

ρ =
E
[
rp,t
]

φc + E
[
rp,t
] , (44)

from which follows the statement that ρ = 1 if and only if φc = 0. If ρ = 1, then d′Σ−1
ẽt
d = 0

in (11). Since φc = 0, η = 0 in (10), and d = Et [rt]− δEt
[
rp,t
]
. From (5) then follows that

d = α.�

Proof of Corollary 2 Let

rt = αp + βprp,t + ep,t (45)

be a multivariate linear projection of rt onto rp,t, where αp is a vector of alpha proxies, βp is

a vector of beta proxies, and ep,t is a vector of projection errors. Then

αp = E [rt]− βpE
[
rp,t
]

(46)

βp =
Cov

[
rt, rp,t

]
σ2
[
rp,t
]

Substitution of (5) into the expression for βp yields the following relationships between the

parameters in (45) and the structural parameters in (5):

αp = γ − ηE
[
rp,t
]

(47)

βp = δ + η
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where η is defined by (10). Given these relationships,

ep,t = rt − αp − βprp,t = ẽt − ηr̃p,t

where r̃p,t = rp,t − E
[
rp,t
]
. It then follows that

Σep
= Σẽ −

Cov
[
ẽt, r̃p,t

]
Cov

[
ẽt, r̃p,t

]′
σ2
[
r̃p,t
] , (48)

since given the definition of r̃p,t, Cov
[
ẽt, rp,t

]
= Cov

[
ẽt, r̃p,t

]
and σ2

[
rp,t
]

= σ2
[
r̃p,t
]
.

Substitution of the expression for ẽt in (6) into (48) produces

Σẽ − Σep
=

Cov
[
φ̃t, r̃p,t

]
σ
[
r̃p,t
]

2

ββ′. (49)

In general, there exists an x such that β′x = 0. Let y = β′x. Then y′y ≥ 0.�
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Table 1A

Summary statistics for size, B/M, and momentum portfolios, 10/6/67 - 9/25/87. The portfolio return series are measured

weekly (in percentage terms) so that relatively high frequency data is utilized (to estimate higher moments) that reduces day-

of-the-week and weekend effects as well as the effects of nonsynchronus trading and bid-ask bounce. The proxy return is

the CRSP market-value-weighted index of all securities on the NYSE, AMEX, and NASDAQ exchanges. Security returns are

constructed from the 25 size-B/M portfolios and the 25 size-momentum portfolios (each 5×5 sorts with breakpoints determined

by NYSE quintiles). "Small" is the average of the five low-market-cap portfolios, "Mid" the average of the five medium-market-

cap portfolios, and "Big" the average of the five large-market-cap portfolios. "Value" is the average of the five high-B/M portfolios,

"Neutral" the average of the five middle-B/M portfolios, and "Growth" the average of the five low-B/M portfolios. Finally,

"Losers" is the average of the five low-return-sorted portfolios, "Neutral" the average of the five middle-return-sorted portfolios,

and "Winners" the average of the five high-return-sorted portfolios.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Growth

Panel A: Excess returns

mean 0.103 0.120 0.075 0.169 0.108 0.023 -0.034 0.101 0.198

stdev 2.31 2.14 2.03 2.08 1.96 2.64 2.72 1.99 2.44

skew -0.33 -0.20 0.11 -0.21 -0.18 -0.19 0.32 -0.10 -0.58

kurt 5.12 4.80 4.83 5.18 4.70 4.71 5.84 5.22 4.95

Panel B: Alpha Proxy

est 0.045 0.060 0.016 0.113 0.053 -0.053 -0.106 0.045 0.132

std error
a

0.039 0.024 0.012 0.028 0.021 0.025 0.038 0.020 0.031

Notes:
aHeteroskedasticity consistent
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Table 1B

Test results for size, B/M, and momentum portfolios, 10/6/67 - 9/25/87. Projection errors are the residuals from OLS

regressions of security returns on the proxy return. Structural errors are the residuals from linear equations relating security returns

to the proxy return, where the residual from each equation and the proxy return is allowed to covary. Gibbons, Ross, and Shanken

(1989), or GRS, Bootstrap Proposition 1 constant covariance (BPC), and Bootstrap Proposition 1 stochastic (BPS), are alternative

ways of determining the maximum correlation between the CRSP value-weighted proxy return and the market return that supports

the CAPM at a 5% significance level. GRS is based on the assumption that the projection errors are normally distributed. BPC is

also based on the projection errors, but assumes those errors to follow strong, univariate GARCH(1,1) processes with unknown

distributions. BPS is based on the assumption that the structural errors follow strong, univariate GARCH (1,1) processes with

unknown distributions.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Winners

Panel C: Projection errors

skew 0.23 0.22 0.09 0.39 0.48 0.11 0.98 0.39 -0.70

kurt 5.08 5.85 4.15 5.76 8.19 4.45 7.95 5.32 6.83

Panel D: Structural errors

skew 0.17 0.23 0.00 0.40 0.47 0.10 0.59 0.30 -0.85

kurt 5.67 5.81 5.68 5.99 8.15 4.41 5.97 4.99 6.89

Panel E: GRS
b, c

Proxy Sharpe ratio:

0.22 0.565 0.277 0.236

0.52 0.855 0.570 0.504

0.86 0.939 0.753 0.694

1.00 0.953 0.800 0.746

Panel F: BPC
b, c

Proxy Sharpe ratio:

0.22 0.410 0.272 0.260

0.52 0.737 0.551 0.530

0.86 0.892 0.737 0.715

1.00 0.924 0.787 0.766

unknown 0.581 0.429 0.398

Panel G: BPS
b, c

Proxy Sharpe ratio:

0.22 0.409 0.271 0.242

0.52 0.741 0.552 0.511

0.86 0.896 0.738 0.706

1.00 0.927 0.787 0.761

unknown 0.590 0.440 0.388

Notes:
bMaximum correlations are reported that support the CAPM prediction.
cValues for the proxy Sharpe ratio are taken from Shanken (1987). These values are annualized. 0.52 is the expected value;

0.22 and 0.86 are - 1 and + 2 standard deviations away from this expected value, respectively. 1.00 is a value for the proxy

Sharpe ratio that is greater than any conceivable true value. Unknown means that the proxy Sharpe ratio is bootstrapped along

with every other estimated quantity in the expression determining an upper bound for the correlation between the proxy and the

market return.
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Table 2A

Summary statistics for size, B/M, and momentum portfolios, 11/6/87 - 9/28/07. The portfolio return series are measured

weekly (in percentage terms) so that relatively high frequency data is utilized (to estimate higher moments) that reduces day-

of-the-week and weekend effects as well as the effects of nonsynchronus trading and bid-ask bounce. The proxy return is

the CRSP market-value-weighted index of all securities on the NYSE, AMEX, and NASDAQ exchanges. Security returns are

constructed from the 25 size-B/M portfolios and the 25 size-momentum portfolios (each 5×5 sorts with breakpoints determined

by NYSE quintiles). "Small" is the average of the five low-market-cap portfolios, "Mid" the average of the five medium-market-

cap portfolios, and "Big" the average of the five large-market-cap portfolios. "Value" is the average of the five high-B/M portfolios,

"Neutral" the average of the five middle-B/M portfolios, and "Growth" the average of the five low-B/M portfolios. Finally,

"Losers" is the average of the five low-return-sorted portfolios, "Neutral" the average of the five middle-return-sorted portfolios,

and "Winners" the average of the five high-return-sorted portfolios.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Growth

Panel A: Excess returns

mean 0.169 0.176 0.157 0.209 0.183 0.103 0.041 0.172 0.315

stdev 2.16 2.09 1.92 1.88 1.83 2.61 2.94 1.74 2.60

skew -1.04 -0.64 -0.29 -0.91 -0.75 -0.75 0.03 -0.60 -0.89

kurt 11.76 6.64 4.97 9.24 6.66 9.05 7.00 6.72 10.96

Panel B: Alpha Proxy

est 0.049 0.040 0.027 0.094 0.063 -0.070 -0.129 0.059 0.148

std error
a

0.044 0.029 0.023 0.032 0.025 0.034 0.056 0.025 0.039

Notes:
aHeteroskedasticity consistent
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Table 2B

Test results for size, B/M, and momentum portfolios, 11/6/87 - 9/28/07. Projection errors are the residuals from OLS

regressions of security returns on the proxy return. Structural errors are the residuals from linear equations relating security returns

to the proxy return, where the residual from each equation and the proxy return is allowed to covary. Gibbons, Ross, and Shanken

(1989), or GRS, Bootstrap Proposition 1 constant covariance (BPC), and Bootstrap Proposition 1 stochastic (BPS), are alternative

ways of determining the maximum correlation between the CRSP value-weighted proxy return and the market return that supports

the CAPM at a 5% significance level. GRS is based on the assumption that the projection errors are normally distributed. BPC is

also based on the projection errors, but assumes those errors to follow strong, univariate GARCH(1,1) processes with unknown

distributions. BPS is based on the assumption that the structural errors follow strong, univariate GARCH (1,1) processes with

unknown distributions.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Winners

Panel C: Projection errors

skew -0.04 0.14 1.41 -0.08 0.17 -0.07 1.13 0.89 -0.25

kurt 7.56 6.06 19.54 6.68 6.70 7.71 9.22 11.49 6.83

Panel D: Structural errors

skew -0.43 -0.33 -0.07 -0.75 -0.63 -0.28 1.07 -0.36 -0.72

kurt 9.72 6.68 5.05 10.20 6.59 8.36 9.24 7.39 10.96

Panel E: GRS
b, c

Proxy Sharpe ratio:

0.22 1.000 0.406 0.258

0.52 1.000 0.730 0.540

0.86 1.000 0.870 0.727

1.00 1.000 0.899 0.776

Panel F: BPC
b, c

Proxy Sharpe ratio:

0.22 0.639 0.397 0.277

0.52 0.926 0.698 0.554

0.86 0.997 0.852 0.745

1.00 1.000 0.888 0.796

unknown 1.000 0.824 0.679

Panel G: BPS
b, c

Proxy Sharpe ratio:

0.22 0.857 0.442 0.319

0.52 1.000 0.739 0.622

0.86 1.000 0.878 0.805

1.00 1.000 0.908 0.851

unknown 1.000 0.841 0.745

Notes:
bMaximum correlations are reported that support the CAPM prediction.
cValues for the proxy Sharpe ratio are taken from Shanken (1987). These values are annualized. 0.52 is the expected value;

0.22 and 0.86 are - 1 and + 2 standard deviations away from this expected value, respectively. 1.00 is a value for the proxy

Sharpe ratio that is greater than any conceivable true value. Unknown means that the proxy Sharpe ratio is bootstrapped along

with every other estimated quantity in the expression determining an upper bound for the correlation between the proxy and the

market return.
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Table 3A

Summary statistics for size, B/M, and momentum portfolios, 10/7/77 - 9/25/87. The portfolio return series are measured

weekly (in percentage terms) so that relatively high frequency data is utilized (to estimate higher moments) that reduces day-

of-the-week and weekend effects as well as the effects of nonsynchronus trading and bid-ask bounce. The proxy return is

the CRSP market-value-weighted index of all securities on the NYSE, AMEX, and NASDAQ exchanges. Security returns are

constructed from the 25 size-B/M portfolios and the 25 size-momentum portfolios (each 5×5 sorts with breakpoints determined

by NYSE quintiles). "Small" is the average of the five low-market-cap portfolios, "Mid" the average of the five medium-market-

cap portfolios, and "Big" the average of the five large-market-cap portfolios. "Value" is the average of the five high-B/M portfolios,

"Neutral" the average of the five middle-B/M portfolios, and "Growth" the average of the five low-B/M portfolios. Finally,

"Losers" is the average of the five low-return-sorted portfolios, "Neutral" the average of the five middle-return-sorted portfolios,

and "Winners" the average of the five high-return-sorted portfolios.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Growth

Panel A: Excess returns

mean 0.221 0.226 0.151 0.257 0.205 0.140 0.077 0.184 0.316

stdev 1.96 1.98 1.99 1.79 1.83 2.49 2.31 1.82 2.43

skew -1.08 -0.52 0.04 -0.91 -0.54 -0.30 0.36 -0.39 -0.87

kurt 7.96 5.99 4.51 7.81 5.59 4.91 5.72 5.61 6.59

Panel B: Alpha Proxy

est 0.091 0.081 -0.002 0.130 0.068 -0.045 -0.081 0.048 0.141

std error
a

0.048 0.031 0.016 0.035 0.024 0.034 0.048 0.025 0.044

Notes:
aHeteroskedasticity consistent
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Table 3B

Test results for size, B/M, and momentum portfolios, 10/7/77 - 9/25/87. Projection errors are the residuals from OLS

regressions of security returns on the proxy return. Structural errors are the residuals from linear equations relating security returns

to the proxy return, where the residual from each equation and the proxy return is allowed to covary. Gibbons, Ross, and Shanken

(1989), or GRS, Bootstrap Proposition 1 constant covariance (BPC), and Bootstrap Proposition 1 stochastic (BPS), are alternative

ways of determining the maximum correlation between the CRSP value-weighted proxy return and the market return that supports

the CAPM at a 5% significance level. GRS is based on the assumption that the projection errors are normally distributed. BPC is

also based on the projection errors, but assumes those errors to follow strong, univariate GARCH(1,1) processes with unknown

distributions. BPS is based on the assumption that the structural errors follow strong, univariate GARCH (1,1) processes with

unknown distributions.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Winners

Panel C: Projection errors

skew -0.71 -0.35 0.20 -0.77 -0.63 -0.13 0.95 -0.15 -0.97

kurt 7.00 4.90 3.72 7.64 5.57 3.88 8.35 5.06 7.10

Panel D: Structural errors

skew -0.77 -0.29 0.20 -1.06 -0.76 -0.15 1.08 -0.11 -0.55

kurt 7.39 4.58 3.69 9.29 6.23 4.03 9.26 4.91 5.50

Panel E: GRS
b, c

Proxy Sharpe ratio:

0.22 0.437 0.244 0.352

0.52 0.759 0.518 0.671

0.86 0.888 0.707 0.831

1.00 0.913 0.758 0.867

Panel F: BPC
b, c

Proxy Sharpe ratio:

0.22 0.291 0.220 0.286

0.52 0.590 0.465 0.577

0.86 0.785 0.660 0.770

1.00 0.835 0.719 0.821

unknown 0.772 0.614 0.733

Panel G: BPS
b, c

Proxy Sharpe ratio:

0.22 0.353 0.231 0.316

0.52 0.645 0.483 0.644

0.86 0.815 0.672 0.849

1.00 0.872 0.728 0.899

unknown 0.810 0.644 0.795

Notes:
bMaximum correlations are reported that support the CAPM prediction.
cValues for the proxy Sharpe ratio are taken from Shanken (1987). These values are annualized. 0.52 is the expected value;

0.22 and 0.86 are - 1 and + 2 standard deviations away from this expected value, respectively. 1.00 is a value for the proxy

Sharpe ratio that is greater than any conceivable true value. Unknown means that the proxy Sharpe ratio is bootstrapped along

with every other estimated quantity in the expression determining an upper bound for the correlation between the proxy and the

market return.
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Table 4A

Summary statistics for size, B/M, and momentum portfolios, 11/6/87 - 9/26/97. The portfolio return series are measured

weekly (in percentage terms) so that relatively high frequency data is utilized (to estimate higher moments) that reduces day-

of-the-week and weekend effects as well as the effects of nonsynchronus trading and bid-ask bounce. The proxy return is

the CRSP market-value-weighted index of all securities on the NYSE, AMEX, and NASDAQ exchanges. Security returns are

constructed from the 25 size-B/M portfolios and the 25 size-momentum portfolios (each 5×5 sorts with breakpoints determined

by NYSE quintiles). "Small" is the average of the five low-market-cap portfolios, "Mid" the average of the five medium-market-

cap portfolios, and "Big" the average of the five large-market-cap portfolios. "Value" is the average of the five high-B/M portfolios,

"Neutral" the average of the five middle-B/M portfolios, and "Growth" the average of the five low-B/M portfolios. Finally,

"Losers" is the average of the five low-return-sorted portfolios, "Neutral" the average of the five middle-return-sorted portfolios,

and "Winners" the average of the five high-return-sorted portfolios.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Growth

Panel A: Excess returns

mean 0.172 0.220 0.221 0.242 0.217 0.149 0.075 0.207 0.336

stdev 1.54 1.58 1.71 1.47 1.43 1.95 2.05 1.37 1.95

skew -0.51 -0.44 -0.10 -0.30 -0.50 -0.35 0.15 -0.48 -0.51

kurt 6.51 5.36 4.14 5.26 5.58 4.91 5.95 5.91 4.39

Panel B: Alpha Proxy

est 0.029 0.039 0.008 0.079 0.047 -0.074 -0.134 0.044 0.112

std error
a

0.048 0.032 0.017 0.033 0.023 0.040 0.054 0.023 0.038

Notes:
aHeteroskedasticity consistent
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Table 4B

Test results for size, B/M, and momentum portfolios, 11/6/87 - 9/26/97. Projection errors are the residuals from OLS

regressions of security returns on the proxy return. Structural errors are the residuals from linear equations relating security returns

to the proxy return, where the residual from each equation and the proxy return is allowed to covary. Gibbons, Ross, and Shanken

(1989), or GRS, Bootstrap Proposition 1 constant covariance (BPC), and Bootstrap Proposition 1 stochastic (BPS), are alternative

ways of determining the maximum correlation between the CRSP value-weighted proxy return and the market return that supports

the CAPM at a 5% significance level. GRS is based on the assumption that the projection errors are normally distributed. BPC is

also based on the projection errors, but assumes those errors to follow strong, univariate GARCH(1,1) processes with unknown

distributions. BPS is based on the assumption that the structural errors follow strong, univariate GARCH (1,1) processes with

unknown distributions.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Winners

Panel C: Projection errors

skew 0.24 0.09 0.14 0.88 -0.02 -0.16 0.74 0.29 -0.15

kurt 5.07 3.95 3.17 5.99 5.32 3.83 5.64 5.29 3.81

Panel D: Structural errors

skew -0.20 -0.08 0.11 0.86 -0.48 -0.16 0.60 -0.27 -0.18

kurt 6.50 4.74 3.25 6.36 6.13 3.69 6.55 7.02 3.95

Panel E: GRS
b, c

Proxy Sharpe ratio:

0.22 1.000 0.388 0.165

0.52 1.000 0.712 0.372

0.86 1.000 0.858 0.553

1.00 1.000 0.889 0.611

Panel F: BPC
b, c

Proxy Sharpe ratio:

0.22 0.554 0.310 0.174

0.52 0.892 0.597 0.385

0.86 1.000 0.780 0.562

1.00 1.000 0.828 0.619

unknown 1.000 0.941 0.714

Panel G: BPS
b, c

Proxy Sharpe ratio:

0.22 0.636 0.366 0.172

0.52 0.971 0.661 0.383

0.86 1.000 0.826 0.562

1.00 1.000 0.866 0.619

unknown 1.000 0.931 0.690

Notes:
bMaximum correlations are reported that support the CAPM prediction.
cValues for the proxy Sharpe ratio are taken from Shanken (1987). These values are annualized. 0.52 is the expected value;

0.22 and 0.86 are - 1 and + 2 standard deviations away from this expected value, respectively. 1.00 is a value for the proxy

Sharpe ratio that is greater than any conceivable true value. Unknown means that the proxy Sharpe ratio is bootstrapped along

with every other estimated quantity in the expression determining an upper bound for the correlation between the proxy and the

market return.
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Table 5A

Summary statistics for size, B/M, and momentum portfolios, 10/3/97 - 9/28/07. The portfolio return series are measured

weekly (in percentage terms) so that relatively high frequency data is utilized (to estimate higher moments) that reduces day-

of-the-week and weekend effects as well as the effects of nonsynchronus trading and bid-ask bounce. The proxy return is

the CRSP market-value-weighted index of all securities on the NYSE, AMEX, and NASDAQ exchanges. Security returns are

constructed from the 25 size-B/M portfolios and the 25 size-momentum portfolios (each 5×5 sorts with breakpoints determined

by NYSE quintiles). "Small" is the average of the five low-market-cap portfolios, "Mid" the average of the five medium-market-

cap portfolios, and "Big" the average of the five large-market-cap portfolios. "Value" is the average of the five high-B/M portfolios,

"Neutral" the average of the five middle-B/M portfolios, and "Growth" the average of the five low-B/M portfolios. Finally,

"Losers" is the average of the five low-return-sorted portfolios, "Neutral" the average of the five middle-return-sorted portfolios,

and "Winners" the average of the five high-return-sorted portfolios.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Growth

Panel A: Excess returns

mean 0.166 0.133 0.094 0.177 0.150 0.057 0.007 0.138 0.293

stdev 2.63 2.49 2.11 2.22 2.16 3.12 3.61 2.04 3.12

skew -1.04 -0.60 -0.36 -1.00 -0.74 -0.76 0.03 -0.57 -0.90

kurt 9.85 5.62 5.00 8.53 5.78 7.96 5.51 5.85 9.91

Panel B: Alpha Proxy

est 0.087 0.048 0.021 0.107 0.077 -0.052 -0.102 0.070 0.190

std error
a

0.072 0.048 0.038 0.054 0.043 0.054 0.096 0.043 0.067

Notes:
aHeteroskedasticity consistent
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Table 5B

Test results for size, B/M, and momentum portfolios, 10/3/97 - 9/28/07. Projection errors are the residuals from OLS

regressions of security returns on the proxy return. Structural errors are the residuals from linear equations relating security returns

to the proxy return, where the residual from each equation and the proxy return is allowed to covary. Gibbons, Ross, and Shanken

(1989), or GRS, Bootstrap Proposition 1 constant covariance (BPC), and Bootstrap Proposition 1 stochastic (BPS), are alternative

ways of determining the maximum correlation between the CRSP value-weighted proxy return and the market return that supports

the CAPM at a 5% significance level. GRS is based on the assumption that the projection errors are normally distributed. BPC is

also based on the projection errors, but assumes those errors to follow strong, univariate GARCH(1,1) processes with unknown

distributions. BPS is based on the assumption that the structural errors follow strong, univariate GARCH (1,1) processes with

unknown distributions.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Winners

Panel C: Projection errors

skew -0.11 0.16 1.15 -0.32 0.15 -0.02 1.09 0.81 -0.29

kurt 6.75 5.51 12.23 5.51 5.16 8.02 7.69 8.72 5.49

Panel D: Structural errors

skew -0.82 -0.44 -0.18 -1.01 -0.70 -0.46 0.89 -0.46 -0.84

kurt 9.33 5.62 5.29 9.22 5.59 8.06 7.13 6.11 10.07

Panel E: GRS
b, c

Proxy Sharpe ratio:

0.22 1.000 1.000 0.469

0.52 1.000 1.000 0.788

0.86 1.000 1.000 0.904

1.00 1.000 1.000 0.926

Panel F: BPC
b, c

Proxy Sharpe ratio:

0.22 0.648 0.427 0.337

0.52 0.955 0.766 0.645

0.86 1.000 0.928 0.836

1.00 1.000 0.960 0.883

unknown 0.910 0.714 0.579

Panel G: BPS
b, c

Proxy Sharpe ratio:

0.22 0.771 0.434 0.391

0.52 1.000 0.798 0.741

0.86 1.000 0.975 0.933

1.00 1.000 1.000 0.974

unknown 0.966 0.655 0.597

Notes:
bMaximum correlations are reported that support the CAPM prediction.
cValues for the proxy Sharpe ratio are taken from Shanken (1987). These values are annualized. 0.52 is the expected value;

0.22 and 0.86 are - 1 and + 2 standard deviations away from this expected value, respectively. 1.00 is a value for the proxy

Sharpe ratio that is greater than any conceivable true value. Unknown means that the proxy Sharpe ratio is bootstrapped along

with every other estimated quantity in the expression determining an upper bound for the correlation between the proxy and the

market return.
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TABLE 6

Simulation evidence for the size of the three relative efficiency tests considered under the null hypothesis that the correlation

of the proxy return with the true market return is at least 90%. Errors to the excess security returns and excess proxy return

follow semi-strong GARCH(1,1) processes with standardized Gamma(2,1) innovations. Parameters for the GARCH processes

are the sample estimates obtained from the B/M portfolios measured over the weekly period 11/6/87 - 9/28/07 that are robust

to endogeneity of the proxy return. These parameter estimates are termed the "true" values. The Gamma(2,1) distribution is

chosen because, when combined with these GARCH parameters, this distribution produces errors with unconditional skewness

and kurtosis measures comparable to those described under Panel D for the B/M portfolios of Table 2B. Betas for the excess

security returns are the sample estimates from the same time period. Alpha proxies for each of the excess security returns are

calibrated from the sample returns so that (1) they are all equal and (2) they imply a 90% correlation between the proxy and the

market return. For the GRS test, the Sharpe Performance Measure for the proxy return is assumed to be known and is set equal

to the estimate from the original sample. For the BPC and BPS tests, the Sharpe Performance Measure is treated as unknown.

For all three test statistics, the simulations are conducted across 500 trials with excess return series of 1000 observations each.

When constructing the individual excess return series for each trial, the first 200 observations are dropped to avoid initialization

effects. For the BPC and BPS statistics, within each simulation trial is a bootstrap of the maximum correlation between the proxy

and market return conducted over 250 repetitions. In each case, the bootstrap routines use parameter estimates from the original

sample along with constant terms implied by the calibrated alpha proxies. Parameter estimates used in the BPC test assume that

innovations to the excess security returns are uncorrelated with the proxy return. Parameter estimates used in the BPS test are the

"true" values described above. The table reports rejection rates for the test statistics at 10%, 5%, and 1% significance levels.

Size =

Statistic 0.10 0.05 0.01

GRS 0.180 0.112 0.038

BPC 0.114 0.082 0.026

BPS 0.084 0.050 0.016
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