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Abstract

D. V. Luu and P. T. Kien propose in Soochow J. Math. 33 (2007), 17–31, higher-
order conditions for strict efficiency of vector optimization problems based on the derivatives
introduced by I. Ginchev in Optimization 51 (2002), 47–72. These derivatives are defined
for scalar functions and in their terms necessary and sufficient conditions can be obtained a
point to be strictly efficient (isolated) minimizer of a given order for quite arbitrary scalar
function. Passing to vector functions, Luu and Kien lose the peculiarity that the optimality
conditions work with arbitrary functions. In the present paper, applying the mentioned
derivatives for the scalarized problem and restoring the original idea, optimality conditions
for strictly efficiency of a given order are proposed, which work with quite arbitrary vector
functions. It is shown that the results of Luu and Kien are corollaries of the given conditions.

Key words: nonsmooth vector optimization, higher-order optimality conditions, strict
efficiency, isolated minimizers.

2000 Math. Subject Classification: 90C46, 90C29.

1 Introduction

In this paper f : Rn → Rm is a given vector function and C ⊂ Rm is a closed convex cone with
non empty interior. We deal with the local solutions of the problem

minCf(x) , (1)

which will be called minimizers for f . The point x0 ∈ Rn is said a w-minimizer (weakly efficient
point) if there exists a neighbourhood U of x0 such that f(x) /∈ f(x0) − intC for all x ∈ U .
The point x0 ∈ Rn is said an i-minimizer (isolated minimizer) of order k if there exists a
neighbourhood U of x0 and a constant a > 0 such that (f(x) + C) ∩ B(f(x0), a‖x− x0‖k) = ∅
for all x ∈ U \ {x0}. Here B(y, r) stands for the open ball with center y and radius r. In
these definitions we assume that both the domain and the image space are supplied with norms.
However, since any two norms in a finite dimensional space are equivalent, the defined concepts
of minimizers are actually norm-independent. Therefore, any particular norm can be used in
the definition. We will use for simplicity Euclidean norms generated by a scalar product 〈·, ·〉.

The isolated minimizers are known also as strictly efficient points. Here we use the notion
of strict efficiency only in the title to underline the relation of the present paper to [13]. When
m = 1 and C = R+ the vector optimization problem (1) is in fact a scalar optimization problem.
Hence, the notions of a w-minimizer and an i-minimizer can be applied also for scalar problems.
∗Communicated at the Workshop on Optimization and Applications, December 17–19, 2008, Institute of

Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria.
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D. V. Luu and P. T. Kien [13] propose higher-order conditions for strict efficiency of vector
optimization problems based on the derivatives introduced by I. Ginchev [6]. The latter are
defined for scalar functions and in their terms necessary and sufficient conditions can be obtained
a point to be an i-minimizer of a given order for quite arbitrary scalar function. Passing to vector
functions, Luu and Kien lose the peculiarity that the optimality conditions work with arbitrary
functions. In the present paper, applying the mentioned derivatives for the scalarized problem
and restoring the original idea, optimality conditions for strictly efficiency of a given order are
proposed, which work with quite arbitrary vector functions. It is shown that the results of Luu
and Kien are corollaries of the given conditions.

To emphasize the main ideas, we confine to functions f with finite dimensional domain
and image spaces not restricted by constraints. In [13] the more general case is considered of
functions with normed spaces as domain and image spaces and restricted by set constraints.

In Section 2 the vector problem is scalarized. Section 3 recalls the derivatives and the
optimality conditions for strict efficiency from [6] for scalar functions. Section 4 deals with the
vector problems and establishes Theorem 4.1 which is the main result. Dealing with polyhedral
cones, it is shown that as corollaries the results from [13] concerning the finite dimensional
case with ordering cone the positive orthant and stated in terms of coordinate functions can be
obtained. The gap between the necessary and sufficient conditions is discussed. In Section 5
for problems with regular functions the coincidence of the necessary and sufficient conditions
in terms of coordinate functions is shown. Section 6 attempts to generalize the conditions in
terms of coordinate functions for arbitrary and not only polyhedral cones. It relates the results
to these of [13] concerning arbitrary cones. The final Section 7 offers some discussion.

2 Scalarization of the vector problem

The positive polar cone of C is C ′ = {ξ ∈ Rm | 〈ξ, y〉 ≥ 0 for all y ∈ C}. Since C has non empty
interior, C ′ obeys a compact base Γ. Recall that ξ ∈ C ′ is said an extreme direction of C ′, if
ξ = ξ1 + ξ2, ξ1, ξ2 ∈ C ′, implies ξi = λiξ, i = 1, 2, for some λ1, λ2 ∈ R+. The set of the extreme
directions of C ′ is denoted by extdC ′. It holds C ′ = cl co extdC ′ and Γ = cl (co Γ ∩ extdC ′).

To the vector problem (1) we put into correspondence the scalar problem

minφ(x) , (2)

where φ : Rn → R is the scalar function defined by

φ(x) = sup
{
〈ξ, f(x)− f(x0)〉 | ξ ∈ Γ ∩ extdC ′

}
(3)

and Γ is a base of C ′. The relation between the solutions of problem (1) and (2) is given by the
following theorem.

Theorem 2.1 ([12]) The point x0 ∈ Rm is a w-minimizer or i-minimizer of order k for prob-
lem (1) if and only if x0 is respectively a w-minimizer or i-minimizer of order k for problem
(2).

3 Optimality conditions for the scalar problem

We put R = R ∪ {−∞} ∪ {+∞}. Let φ : Rn → R be a given scalar function.
Let u ∈ Rm \ {0} be a given direction. We define the zero order lower derivative of φ at x0

in direction u by
φ

(0)
− (x0, u) = lim inf

(t,u′)→(0+,u)
φ(x0 + tu′).
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For a given positive integer k and a given direction u ∈ Rm\{0} we accept that the k-th order
lower derivative φ(k)

− (x0, u) in direction u exists as an element of R if and only if the derivatives
φ

(i)
− (x0, u), i = 0, 1, . . . , k − 1, exist as elements of R. We put then

φ
(k)
− (x0, u) = lim inf

(t,u′)→(0+,u)

k!
tk

(
φ(x0 + tu′)−

k−1∑
i=0

ti

i!
φ

(i)
− (x0, u)

)
. (4)

Since φ(i)
− (x0, u) ∈ R for i = 0, . . . , k− 1, only the term φ(x0 + tu′) in (4) can eventually take

infinite values. Therefore (4) does not contain undefined expressions like ∞−∞.
In the sequel we apply the following conditions:

S0
−(φ, x0, u) : φ

(0)
− (x0, u) > φ(x0),

Sk−(φ, x0, u) : φ(0)
− (x0, u) = φ(x0), φ(i)

− (x0, u) = 0 for i = 1, . . . , k − 1, and φ
(k)
− (x0, u) > 0.

Modifying slightly the results from [6], we obtain the following higher-order optimality con-
ditions.

Theorem 3.1 Let φ : Rn → R be an arbitrary scalar function.
(Necessary Conditions) Let x0 be an i-minimizer of order ν for the function φ. Then for

each u ∈ Rn \ {0} there exists k = k(u) ≤ ν such that all the derivatives φ(i)
− (x0, u), i = 0, . . . , k,

exist and condition Sk−(φ, x0, u) is satisfied.
(Sufficient Conditions) Let for each u ∈ Rn \ {0} there exists k = k(u) ≤ ν such that all the

derivatives φ(i)
− (x0, u), i = 0, . . . , k, exist and condition Sk−(φ, x0, u) is satisfied. Then x0 is an

i-minimizer of order ν for the function φ.

Usually in optimization the class of functions for which at given point x0 the necessary
conditions are satisfied is larger than the class of functions for which at x0 the sufficient conditions
are satisfied. The set difference of these two classes is called the gap between the necessary and
the sufficient conditions at x0. Let us underline that Theorem 3.1 clarifies two remarkable
properties of the defined derivatives. First, the optimality conditions work for arbitrary scalar
functions. Second, due to the coincidence of the necessary and the sufficient conditions, the gap
between them is empty.

4 Optimality conditions for the vector problem

Applying for the vector problem (1) the scalarization from Section 2 and Theorem 3.1 we get
our main result.

Theorem 4.1 Consider the vector optimization problem (1). Let x0 ∈ Rn, and the scalar
function φ : Rn → R be defined by (3) where Γ is a base of C ′.

(Necessary Conditions) Let x0 be an i-minimizer of order ν for the vector function f . Then
for each u ∈ Rn \ {0} there exists k = k(u) ≤ ν such that all the derivatives φ(i)

− (x0, u), i =
0, . . . , k, exist and condition Sk−(φ, x0, u) is satisfied.

(Sufficient Conditions) Let for each u ∈ Rn \ {0} there exists k = k(u) ≤ ν such that all the
derivatives φ(i)

− (x0, u), i = 0, . . . , k, exist and condition Sk−(φ, x0, u) is satisfied. Then x0 is an
i-minimizer of order ν for the function f .

Like in the scalar case, we observe that the formulated in this theorem conditions work with
arbitrary vector functions and the necessary and the sufficient conditions coincide, whence the
gap between them is empty.
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Next as applications of Theorem 4.1 we establish optimality conditions in terms of coordinate
functions. In them some role play also the upper derivatives. Let φ : Rn → R be a given scalar
function. Let x0 ∈ Rn and u ∈ Rm \ {0}. We define the zero order upper derivative of φ at x0

in direction u by
φ

(0)
+ (x0, u) = lim sup

(t,u′)→(0+,u)

φ(x0 + tu′).

Further, for a given positive integer k we accept that the k-th order upper derivative φ(k)
+ (x0, u)

exists as an element of R if and only if the derivatives φ(i)
+ (x0, u), i = 0, 1, . . . , k − 1, exist as

elements of R. We put then

φ
(k)
+ (x0, u) = lim sup

(t,u′)→(0+,u)

k!
tk

(
φ(x0 + tu′)−

k−1∑
i=0

ti

i!
φ

(i)
+ (x0, u)

)
. (5)

We apply also the following conditions:

S0
+(φ, x0, u) : φ

(0)
+ (x0, u) > φ(x0),

Sk+(φ, x0, u) : φ(0)
+ (x0, u) = φ(x0), φ(i)

+ (x0, u) = 0 for i = 1, . . . , k − 1, and φ
(k)
+ (x0, u) > 0.

Recall that C is said polyhedral if C is an intersection of finite number of half-spaces. The
cone C having non empty interior is polyhedral if and only if the set Γ∩ extdC ′ is finite, where
Γ is a base of C ′. Theorem 4.1 gives the following result for polyhedral cones.

Theorem 4.2 Consider the vector optimization problem (1) with polyhedral cone C. Let x0 ∈
Rn. Suppose that Γ is a base of C ′.

(Necessary Conditions) Let x0 be an i-minimizer of order ν for the vector function f . Then
for each u ∈ Rn \ {0} there exists ξ ∈ Γ ∩ extdC ′ and a positive integer k = k(u) ≤ ν such that
for the function ϕ(x) = 〈ξ, x〉 all the derivatives ϕ(i)

+ (x0, u), i = 0, . . . , k, exist and condition
Sk+(ϕ, x0, u) is satisfied.

(Sufficient Conditions) Let for each u ∈ Rn \ {0} there exists ξ ∈ Γ ∩ extdC ′ and a positive
integer k = k(u) ≤ ν such that for the function ϕ(x) = 〈ξ, x〉 all the derivatives ϕ(i)

− (x0, u),
i = 0, . . . , k, exist and condition Sk−(ϕ, x0, u) is satisfied. Then x0 is an i-minimizer of order ν
for the function f .

Proof. Let Γ ∩ extdC ′ = {ξ1, . . . , ξµ} and write φj = 〈ξj , x〉. Put J = {1, . . . , µ} and φ(x) =
maxj∈J{〈ξj , f(x)− f(x0)〉}. In the proof of the necessary conditions we make use also of the
set Jk(x0, u) defined for k = 0 by

J0(x0, u) = {j ∈ J | (φj)(i)
+ (x0, u) = φj(x0)} ,

and for k > 0 by

Jk(x0, u) = {j ∈ J0(x0, u) | (φj)(i)
+ (x0, u) = 0, i = 1, . . . , k} .

Necessity. Let x0 be an i-minimizer of order ν. Assume on the contrary, that for some
u ∈ Rn \ {0} neither of the conditions Sk+(φj , x0, u), k = 1, . . . , ν, j ∈ J , is satisfied.

Let ε > 0. Fix j ∈ J . By assumption we have φj(0)
+ (x0, u) ≤ φj(x0), which gives that there

exists δj > 0 and a neighbourhood Uj of u such that

〈ξj , f(x0 + tu′)〉 = φj(x0 + tu′) < φj(x0) + ε = 〈ξj , f(x0)〉+ ε for 0 < t < δj , u
′ ∈ Uj ,

or equivalently
〈ξj , f(x0 + tu′)− f(x0)〉 < ε for 0 < t < δj , u

′ ∈ Uj . (6)
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Put δ = min{δ1, . . . , δµ} and U = U1 ∩ . . . ∩ Uµ. Then

φ(x0 + tu′) = max
j∈J
〈ξj , f(x0 + tu′)− f(x0)〉 < ε for 0 < t < δ, u′ ∈ U ,

whence φ
(0)
− (x0, u) ≤ ε. Since ε > 0 is arbitrary, we get φ(0)

− (x0, u) ≤ 0 = φ(0). Therefore
condition S0

−(φ, x0, u) is not satisfied, and from the sufficient conditions of Theorem 4.1 it should
be ν > 0 and φ

(0)
− (x0, u) = φ(0) = 0. It holds also (φj)(0)

+ (x0, u) < φj(x0) for j ∈ J \ J0(x0, u).
This is consequence from the assumption that condition S0

+(φj , x0, u) does not hold and from
the definition of the set J0(x0, u). Moreover, we have J0(x0, u) 6= ∅. If this were not the case,
we conclude easily that there should be ε > 0, δ > 0, and a neighbourhood U of u such that

〈ξj , f(x0 + tu′)− f(x0)〉 ≤ −ε for all j ∈ J, 0 < t < δ, u′ ∈ U ,

whence φ(0)
− (x0, u) ≤ −ε, a contradiction.

We prove by induction that for any k = 0, . . . , ν − 1 we have φ(k)
− (x0, u) = 0 and condition

Sk−(φ, x0, u) is not satisfied. Moreover, the set Jk(x0, u) is not empty, Jk(x0, u) ⊂ Jk−1(x0, u)
(for k ≥ 1), and (φj)(k)

+ (x0, u) < 0 (for k ≥ 1) when j ∈ Jk−1(x0, u) \ Jk(x0, u).
For k = 0 this assertion has been proved above.
Suppose that the assertion is true for 0, . . . , k − 1. We prove that it is true for k.
Let ε > 0. Fix j ∈ Jk−1(x0, u). By assumption we have φj(k)

+ (x0, u) ≤ 0, which gives that
there exists δj > 0 and a neighbourhood Uj of u such that

∆k
+φ

j(x0, u′, t) > ε for 0 < t < δj , u
′ ∈ Uj ,

which is equivalent to (6). For brevity here and further for a function ϕ(x), x ∈ Rn, we put

∆k
±ϕ(x0, u′, t) =

k!
tk

(
ϕ(x0 + tu′)−

k−1∑
i=0

ti

i!
ϕ

(i)
± (x0, u)

)
.

Put δ = min{δ1, . . . , δµ} and U = U1 ∩ . . . ∩ Uµ. Then

∆k
−φ(x0, u′, t) =

k!
tk
(
φ(x0 + tu′)− φ(x0)

)
< ε for j ∈ Jk−1(x0, u), 0 < t < δ, u′ ∈ U .

Because of the inductive assumption, we see that diminishing eventually δ and U , we can guar-
antee the above inequality for all j ∈ J . This gives

φ
(k)
− (x0, u) = lim inf

(t,u′)→(0+,u)
max
j∈J

k!
tk
(
φ(x0 + tu′)− φ(x0)

)
≤ ε .

Since ε > 0 is arbitrary, we get φ(k)
− (x0, u) ≤ 0. Therefore condition Sk−(φ, x0, u) is not satisfied.

We have Jk(x0, u) ⊂ Jk−1(x0, u) by definition.
It holds (φj)(k)

+ (x0, u) < 0 for j ∈ Jk−1(x0, u) \Jk(x0, u), a consequence from the assumption
that condition Sk+(φj , x0, u) does not hold and from the definition of the set Jk(x0, u). Moreover,
we have Jk(x0, u) 6= ∅. Otherwise, like in the case k = 0 we would derive easily a contradiction
with the condition Sk̄−(φj , x0, u) which on the base of Theorem 4.1 should be true for some
k < k̄ ≤ ν.

Thus, from the proved assertion and Theorem 4.1 we get that condition Sν−(x0, u) should be
satisfied (Sk−(x0, u) should hold for at least one k ≤ ν, but the inductive assertion says that this
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is not true for k = 0, . . . , ν − 1). However, repeating again the reasoning from the inductive
step, we see that at the same time condition Sν−(x0, u) cannot be satisfied, a contradiction.

Sufficiency. Suppose that condition Sk−(φj , x0, u) is true. We prove that then Sk̄−(φ, x0, u) is
true with some k̄ ≤ k.

Let k = 0. Condition S0
−(φj , x0, u) gives (φj)(0)

− (x0, u) > φ(x0). Then

φ
(0)
− (x0, u) = lim inf

(t,u′)→(0+,u)
max
∈J
〈ξ, f(x0 + tu′)− f(x0)〉

≥ lim inf
(t,u′)→(0+,u)

〈ξj , f(x0 + tu′)− f(x0)〉 = lim inf
(t,u′)→(0+,u)

φj(x0 + tu′)− φj(x0)

= (φj)(0)
− (x0, u)− φ(x0) > 0 = φ(x0) .

Therefore condition Sk̄−(φ, x0, u) is true with k̄ = 0 = k.
Let k > 0. Now (φj)(0)

− (x0, u) = φ(x0) and slightly modifying the above reasoning we

get φ(0)
− (x0, u) ≥ 0 = φ(x0). If φ(0)

− (x0, u) > 0 then Sk̄(φ, x0, u) is true with k̄ = 0 < k. If
φ

(0)
− (x0, u) = 0 then the following two cases could have place.

10. φ(i)
− (x0, u) = 0 for i < k̄ ≤ k and φ

(k̄)
− (x0, u) 6= 0. Then

φ
(k̄)
− (x0, u) = lim inf

(t,u′)→(0+,u)

k̄!
tk̄

max
∈J
〈ξ, f(x0 + tu′)− f(x0)〉

≥ lim inf
(t,u′)→(0+,u)

k̄!
tk̄
〈ξj , f(x0 + tu′)− f(x0)〉

= lim inf
(t,u′)→(0+,u)

k̄!
tk̄

(
φj(x0 + tu′)− φj(x0)

)
= (φj)(k̄)

− (x0, u) ≥ 0 .

Hence φ(k̄)
− (x0, u) > 0 and condition Sk̄−(φ, x0, u) holds.

20. φ(i)
− (x0, u) = 0 for i ≤ k. Then repeating the above reasonings, we get

φ
(k)
− (x0, u) ≥ (φj)(k)

− (x0, u) > 0 .

The contradiction shows that this case is impossible.
Resuming, we have shown, that for each u ∈ Rn \ {0} there exists k̄ = k̄(u) ≤ ν such that

condition Sk̄−(φ, x0, u) is true. The sufficient conditions of Theorem 4.1 are satisfied, whence x0

is an i-minimizer of order ν. 2

In the particular case when C = Rm
+ we get the following result, in which the necessary

condition is similar to Theorem 5.1 in [13], and the sufficient conditions coincide with Theorem
5.2 in [13].

Theorem 4.3 Consider the vector optimization problem (1) where f = (f1, . . . , fm), and with
ordering cone C = Rm

+ . Let x0 ∈ Rn.
(Necessary Conditions) Let x0 be an i-minimizer of order ν for the vector function f . Then

for each u ∈ Rn \ {0} there exists an index j = j(u) and a positive integer k = k(u) ≤ ν such
that for the coordinate function fj(x) all the derivatives (fj)

(i)
+ (x0, u), i = 0, . . . , k, exist and

condition Sk+(fj , x0, u) is satisfied.
(Sufficient Conditions) Let for each u ∈ Rn\{0} there exists an index j = j(u) and a positive

integer k = k(u) ≤ ν such that all the derivatives fj
(i)
− (x0, u), i = 0, . . . , k, exist and condition

Sk−(fj , x0, u) is satisfied. Then x0 is an i-minimizer of order ν for the function f .
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Proof. This result follows immediately from Theorem 4.2 with the account that now C ′ = Rm
+ ,

and choosing Γ = co {e1, . . . , em}. Here ej = (0, . . . 1, . . . , 0) (the only unit is on j-th place). 2

In Theorem 4.3 (and in some sense similarly in Theorem 4.2) the optimality conditions
concern the coordinates of the vector function f . From this point of view they might look more
convenient than those of Theorem 4.1. But in fact they are essentially weaker. Below Example
4.1 shows this fact for the sufficient conditions and Example 4.2 for the necessary conditions.

Example 4.1 Let n = 1, m = 2, C = R2
+ and f : R→ R2 be given by

f(x) =
{

(−|x|, |x|) , x ∈ Q ,
(|x|, −|x|) , x ∈ R \Q ,

where Q stands for the set of rational numbers. Then x0 = 0 is an i-minimizer of order 1, which
can be established by the sufficient conditions of Theorem 4.1, but cannot be established by the
sufficient conditions of Theorem 4.3.

In this example the coordinate functions are

f1(x) =
{
−|x| , x ∈ Q ,
|x| , x ∈ R \Q ,

f2(x) =
{
|x| , x ∈ Q ,
−|x| , x ∈ R \Q .

We have f(x0) = (0, 0). Put ξ1 = (1, 0), ξ2 = (0, 1), and Γ = co {ξ1, ξ2}. Then the function
(3) is φ(x) = |x|. For each u ∈ R \ {0} we have

φ
(0)
− (x0, u) = 0 , φ

(1)
− (x0, u) = |u| > 0 ,

whence condition S1
−(φ, x0, u) is satisfied. However for the coordinate functions we have

(f1)(0)
− (x0, u) = (f2)(0)

− (x0, u) = 0 , (f1)(1)
− (x0, u) = (f2)(1)

− (x0, u) = −|u| < 0 ,

whence neither S1
−(f1, x

0, u) nor S1
−(f2, x

0, u) is true.
Observe that we have also

(f1)(0)
+ (x0, u) = (f2)(0)

+ (x0, u) = 0 , (f1)(1)
+ (x0, u) = (f2)(1)

+ (x0, u) = |u| > 0 ,

that is both S1
+(f1, x

0, u) and S1
+(f2, x

0, u) are true. Hence for the point x0 the function f
from this example is in the gap between the necessary and the sufficient conditions of Theorem
4.3, that is neither the sufficient conditions assert nor the necessary conditions reject x0 as an
i-minimizer of order 1. With regard to this observation we find strange the discussion in [13]
affirming that “the gap (between Theorems 5.1 and 5.2 in [13]) is the vertex of the cone −Rm

+ ”.

Example 4.2 Let n = 1, m = 2, C = R2
+ and f : R→ R2 be given by

f(x) =
{

(−|x|, −|x|) , x ∈ Q ,
(|x|, |x|) , x ∈ R \Q .

Then x0 = 0 is not an i-minimizer of order 1 (it is not even a w-minimizer), which can be
established by the necessary conditions of Theorem 4.1, but cannot be established by the necessary
conditions of Theorem 4.3.
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In this example f(x0) = (0, 0). The coordinate functions and the function φ in (3) (with
Γ = co {( 1, 0), (0, 1)}) are

f1(x) = f2(x) = φ(x) =
{
−|x| , x ∈ Q ,
|x| , x ∈ R \Q .

For u ∈ R \ {0} this gives

φ
(0)
− (x0, u) = 0 , φ

(1)
− (x0, u) = −|u| < 0 .

Thus, condition S1
−(φ, x0, u) fails, whence from the necessary conditions of Theorem 4.1 (for

ν = 1) we can reject x0 as an i-minimizer of order 1. This cannot be done on the base of
Theorem 4.3. Indeed,

(f1)(0)
+ (x0, u) = (f2)(0)

+ (x0, u) = 0 , (f1)(1)
+ (x0, u) = (f2)(1)

+ (x0, u) = |u| > 0 ,

whence both conditions S1
+(f1, x

0, u) and S1
+(f2, x

0, u) are satisfied.
Observe that for the point x0 also the function f from this example belongs to the gap

between the necessary and the sufficient conditions of Theorem 4.3 (and in the gap between
Theorems 5.1 and 5.2 in [13]).

5 Optimality conditions for regular functions

Let φ : Rn → R be a given scalar function. For u ∈ Rn \ {0} we define the zero order directional
derivative of φ at x0 in direction u by

φ(0)(x0, u) = lim
(t,u′)→(0+,u)

φ(x0 + tu′)

provided the limit exists as an element of R. By induction, for a given positive integer k we
define the k-th order directional derivative as an element of R by

φ(k)(x0, u) = lim
(t,u′)→(0+,u)

k!
tk

(
φ(x0 + tu′)−

k−1∑
i=0

ti

i!
φ(i)(x0, u)

)
,

provided the derivatives φ(i)(x0, u), i < k, exist as elements of R and the limit exists as an
element of R. It is clear, that φ(k)(x0, u) exists if and only if exist and coincide the derivatives
φ

(i)
− (x0, u) = φ

(i)
+ (x0, u), i ≤ k, and then it coincides with the common value of the of the lower

and upper derivative of order k.
With the scalar function φ for which φ(k)(x0, u) exists we associate condition Sk(φ, x0, u)

introduced as follows:
S0(φ, x0, u) : φ(0)(x0, u) > φ(x0),
Sk(φ, x0, u) : φ(0)(x0, u) = φ(x0), φ(i)(x0, u) = 0 for i = 1, . . . , k − 1, and φ(k)(x0, u) > 0.
Let ν be a non negative integer. We call the scalar function φ : Rn → R ν-regular at x0 ∈ Rn

if for any u ∈ Rn \ {0} there exist all the derivatives φ(i)(x0, u), i ≤ ν. We call the vector
function f : Rn → Rm ν-regular at x0 ∈ Rn if the scalar functions 〈ξ, f(x)〉 are ν-regular for all
ξ ∈ extdC ′.

For ν-regular functions Theorem 4.2 gives the following result.
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Theorem 5.1 Consider the vector optimization problem (1) with polyhedral cone C. Let x0 ∈
Rn and suppose that f is ν-regular at x0, where ν is a non negative integer. Suppose also that
Γ is a base of C ′. Then x0 be an i-minimizer of order ν for the vector function f if and only if
for each u ∈ Rn \ {0} there exists ξ ∈ Γ ∩ extdC ′ and a positive integer k = k(u) ≤ ν such that
for the function ϕ(x) = 〈ξ, x〉 condition Sk(ϕ, x0, u) is satisfied.

Proof. If the vector function f(x) is ν-regular, so are the scalar functions ϕ(x) = 〈ξ, x〉, ξ ∈
Γ ∩ extdC ′. Therefore conditions Sk−(ϕ, x0, u) and Sk+(ϕ, x0, u) coincide with Sk(ϕ, x0, u), and
the thesis is an immediate reformulation of Theorem 4.2. 2

Also Theorem 4.3 for ν-regular functions admits a reformulation.

Theorem 5.2 Consider the vector optimization problem (1) with ν-regular vector function f =
(f1, . . . , fm), and with ordering cone C = Rm

+ .
Then x0 ∈ Rn is an i-minimizer of order ν for the vector function f if and only if for each

u ∈ Rn \ {0} there exists an index j = j(u) and a positive integer k = k(u) ≤ ν such that for the
coordinate function fj(x) condition Sk(fj , x0, u) is satisfied.

Since the necessary and sufficient conditions in Theorems 5.1 and 5.2 coincide, the gap at
x0 between them (in the class of ν-regular functions) is empty.

6 Problems with non polyhedral cones

In this section we discuss whether Theorems 4.2 is true for arbitrary and not only for polyhedral
cones (saying arbitrary cone we mean within the general assumptions a closed convex cone with
nonempty interior).

The sufficient conditions of Theorem 4.2 are generalized for arbitrary cones immediately.

Theorem 6.1 Consider the vector optimization problem (1) with arbitrary cone C. Let x0 ∈ Rn

and Γ be a base of C ′. Suppose that for each u ∈ Rn \ {0} there exists ξ ∈ Γ ∩ extdC ′ and
a positive integer k = k(u) ≤ ν such that for the function ϕ(x) = 〈ξ, x〉 all the derivatives
ϕ

(i)
− (x0, u), i = 0, . . . , k, exist and condition Sk−(ϕ, x0, u) is satisfied. Then x0 is an i-minimizer

of order ν for the function f .

Proof. Actually the proof of the sufficient conditions of Theorem 4.2 applies for arbitrary and
not only for polyhedral cone. 2

The necessary conditions of Theorem 4.2 are generalized for arbitrary cones only in special
cases.

Theorem 6.2 Consider the vector optimization problem (1) with arbitrary cone C. Suppose
that Γ is a base of C ′. Let x0 ∈ Rn be an i-minimizer of order ν for f , and let there exist
constants m and ρ such that

‖f(x)− f(x0)‖ ≤ m‖x− x0‖ν for 0 ≤ ‖x− x0‖ ≤ ρ . (7)

Then for each u ∈ Rn \ {0} there exists ξ ∈ Γ ∩ extdC ′ and a positive integer k = k(u) ≤ ν

such that for the function ϕ(x) = 〈ξ, x〉 all the derivatives ϕ(i)
+ (x0, u), i = 0, . . . , k, exist and

condition Sk+(ϕ, x0, u) is satisfied.
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Proof. Let 0 < α < 1. Consider the cone C(α) = {y ∈ Rm | d(y, C) ≤ α ‖y‖} where d(y, C) =
{‖y − c‖ | c ∈ C} is the distance from y to C. We make the following observations.

10. There exists a finite set Ξ ∈ Γ0 := Γ ∩ extdC ′ such that CΞ ⊂ C(α).
Define the sets S = {y ∈ Rn | ‖y‖ = 1}, F = C ∩ S, and G = {y ∈ Rm | d(y, F ) < α}.

For ξ ∈ C ′ define also the half-space Hξ = {y ∈ Rm | 〈ξ, y〉 ≥ 0}. Since C =
⋂
{Hξ | ξ ∈ Γ0},

for the complements we have Cc =
⋃
{Hc

ξ | ξ ∈ Γ0}. Therefore S ⊂ G ∪
⋃
{Hc

ξ | ξ ∈ Γ0}.
Since the unit sphere S is compact and the sets on the right hand side of this inclusion are
open, there exists a finite set Ξ ⊂ Γ0 such that S ⊂ G ∪

⋃
{Hc

ξ | ξ ∈ Ξ}, or in compliments
(S \G) ∩

⋂
{Hξ ∩ S | ξ ∈ Ξ} = ∅. Therefore

⋂
{Hξ ∩ S | ξ ∈ Ξ} ⊂ G. Taking the conic hull we

get CΞ =
⋂
{Hξ | ξ ∈ Ξ} ⊂ coneG ⊂ C(α).

20. For some α, 0 < α < 1, the point x0 is an i-minimizer of order ν for the function f
minimizer with the cone C(α).

Since x0 is an i-minimizer of order ν, diminishing eventually ρ, we can find a > 0 for which

d(f(x0)− f(x), C) > a ‖x− x0‖ν for 0 < ‖x− x0‖ ≤ ρ .

Now we see that

inf
{
d(f(x0)− f(x), C)
‖f(x0)− f(x)‖

| 0 < ‖x− x0‖ ≤ ρ
}
≥ a

m
.

This inequality shows that f(x0)− f(x) /∈ C(a/m). Let α, β > 0 and α + β = a/m. From the
inclusion C(α)(β) ⊂ C(α+ β) (see e. g. [4], Lemma1, p. 93) it follows that

f(x0)− f(x) /∈ C(α)(β) ,

or equivalently

d(f(x0)− f(x), C(α)) ≥ β ‖f(x0)− f(x)‖ > βa ‖x− x0‖ν for 0 < ‖x− x0‖ ≤ ρ .

This shows that x0 is an i-minimizer of order ν for f minimized with the cone C(α).

30. The thesis is true.
According to 20 there exists α > 0 such that the point x0 is an i-minimizer of order ν for f

minimized with the cone C(α). According to 10 there exists a finite set Ξ ⊂ Γ ∩ extdC ′ such
that CΞ ⊂ C(α). This inclusion implies that x0 is also an i-minimizer of order ν for f minimized
with CΞ. The cone CΞ is however polyhedral. Applying now necessary conditions of Theorem
4.2 we get the thesis. 2

The following example shows that without condition (7) Theorem 6.2 is not true.

Example 6.1 Let n = 1, m = 3,

C = {y = (y1, y2, y3) ∈ R3 | y2
3 ≥ y2

1 + y2
2, y3 ≤ 0} ,

and let f : R→ R3 be given by f(x) = (x cosx, x sinx, x−γx3) where 0 < γ < 1/2 is a constant.
Then x0 = 0 is an i-minimizer of order 3. But neither of the conditions Si+(x0, 1), i = 0, 1, 2, 3
has place.

Here we have f(x0) = (0, 0, 0) and d(f(x0) − f(x), C) ≥ γ |x|3/
√

2 (for x ≥ 0 we have an
equality), whence x0 is an i-minimizer of order 3.

We have C ′ = C. The cone C ′ has a base Γ = {y ∈ R3 | y2
1 + y2

2 ≤ 1, y3 = −1} for which

Γ ∩ extdC ′ = {y ∈ R3 | y2
1 + y2

2 = 1, y3 = −1} = {(cosα, sinα, −1) | −π < α ≤ π} .
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For the function ϕ(x) = 〈ξ, f(x)〉, where ξ = (cosα, sinα, −1) ∈ Γ ∩ extdC ′ we get

ϕ(x) = x cos(x− α)− x+ γx3 .

We have
ϕ

(0)
+ (x0, 1) = ϕ(0)(x0, 1) = 0 = ϕ(x0) ,

ϕ
(1)
+ (x0, 1) = ϕ(1)(x0, 1) = ϕ′(0) = cosα− 1 ≤ 0 .

These equalities show that neither condition S0
+(x0, 1) nor S1

+(x0, 1) is satisfied. The second
equality shows that for α 6= 0 the inequality is strict, hence also neither conditions S2

+(x0, 1) nor
S3

+(x0, 1) can have place. For α = 0 we have

ϕ
(2)
+ (x0, 1) = ϕ(2)(x0, 1) = ϕ′′(0) = 0 ,

ϕ
(3)
+ (x0, 1) = ϕ(3)(x0, 1) = ϕ′′′(0) = 6

(
γ − 1

2

)
< 0 .

These equalities show that neither condition S2
+(x0, 1) nor S3

+(x0, 1) is satisfied.

For a regular function Theorems 6.1 and 6.2 give immediately the following result.

Theorem 6.3 Consider the vector optimization problem (1) with arbitrary cone C. Let x0 ∈ Rn

and suppose that f is ν-regular at x0, where ν is a non negative integer. Suppose also that Γ
is a base of C ′. Then in order that x0 be an i-minimizer of order ν for the vector function f
it is sufficient, and under condition (7) also necessary, that for each u ∈ Rn \ {0} there exists
ξ ∈ Γ ∩ extdC ′ and a positive integer k = k(u) ≤ ν such that for the function ϕ(x) = 〈ξ, x〉
condition Sk(ϕ, x0, u) is satisfied.

The sufficient conditions of Theorem 6.3 state a bit more general assertion than Theorem
4.1 in [13], the latter concern differentiable of order ν in sense of [13] functions. Actually the
vector function f : Rn → Rm is differentiable of order ν in sense of [13] if it is ν-regular and for
all ξ ∈ Γ∩ extdC ′ the function ϕ(x) = 〈ξ, f(x)〉 has a finite derivative ϕ(ν)(x0, u) (the finiteness
does not occur in Theorem 6.3).

The necessary conditions of Theorem 6.3 are similar to that of Theorem 3.1 in [13] for
differentiable of order ν in sense of [13] functions. Theorem 3.1 in [13] concerns efficiency, that is
w-minimizers. It states that in order that x0 be a w-minimizer for such a function it is necessary
that for all u ∈ Rn \{0} and all ξ ∈ Γ∩ extdC ′ the function ϕ(x) = 〈ξ, f(x)〉 satisfies conditions
Ni(ϕ, x0, u), i = 0, . . . , n. These conditions are defined as follows:

N0(ϕ, x0, u) : ϕ(0)(x0, u) ≥ ϕ(x0),

Nk(φ, x0, u) :
If ϕ(0)(x0, u) = ϕ(x0) and ϕ(i)(x0, u) = 0, for i = 1, . . . , k − 1,

then ϕ(k)(x0, u) ≥ 0 .
Observe, that condition of type (7) does not occur in the necessary conditions for w-

minimizers. Here we gave the conditions Nk(ϕ, x0, u) to introduce some imagination about
the manner in which the proved in this paper necessary conditions should be changed, when
w-minimizers instead of i-minimizers are considered.
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7 Comments

We accept the name of an isolated minimizers after Auslender [1] where scalar problems are
considered. In Ginchev [7] the concept is generalized under the same name for vector problems.
In the literature this concept is known also under other names, for instance strictly efficient
point for vector problems.

Let φ : Rn → R be a scalar function, x0 ∈ Rn, u ∈ Rn \ {0}. In Demyanov, Rubinov [5] the
derivatives

φ′H(x0, u) = lim
(t,u′)→(0+,u)

1
t

(
f(x0 + tu′)− f(x0)

)
, φ′D(x0, u) = lim

t→0+

1
t

(
f(x0 + tu)− f(x0)

)
are called respectively Hadamard and Dini derivatives (obviously the same name is attributed to
the respective lower and upper derivative). The type of passing to a limit is what distinguishes
the two derivatives. We try to keep the name as far as possible also for other type derivatives
defined with the help of the respective convergence.

Passing to higher orders we get more possibilities to generalize a derivative. For instance the
Hadamard second-order derivative can be generalized in the following ways called here Hadamard
derivatives of type I and type II respectively:

φ′′H1
(x0, u) = lim

(t,u′)→(0+,u)

2
t2
(
f(x0 + tu′)− f(x0)− t φ′H1

(x0, u)
)
,

φ′′H2
(x0, u) = lim

(t,u′)→(0+,u)

2
t2
(
f(x0 + tu′)− f(x0)− t φ′H2

(x0, u′)
)
.

The essential difference between the two of them are the directions u and u′ respectively used
by the first-order derivative.

The Hadamard derivatives of type I is used in Ginchev [6] to derive higher-order optimality
conditions. They possess the remarkable property that in their terms optimality conditions for
quite arbitrary functions can be established. An attempt to generalize the results of [6] to vector
functions is undertaken in Ginchev [7], and thereafter in Luu, Kien [13]. The first of these works
deals only with the positive orthant as ordering cone. Both these works demonstrate some
difficulties when a vector optimization problem is attempted to be treated directly. As we see
in [13] the arbitrariness of the optimized functions has been lost. The present paper, treating
the problems through scalarization, restores this feature (see Theorem 4.1 which works for quite
arbitrary vector functions).

The second (and higher) order Hadamard derivatives of type I show some inconsistency with
the classical derivatives, see comments in [6] and [12]. For this reason the author had abandoned
the idea for further development, toward constrained problems for instance. The return to the
subject was caused by the paper [13]. Actually [6] can be considered as a certain scheme to
formulate optimality conditions. In Ginchev, Guerraggio [8] this scheme within second-order
theory has been stated in a generic form, and as concrete applications the optimality conditions
of Ben-Tal, Zowe [2] and Chaney [3] are compared. While the Hadamard derivatives of type I
show inconsistency with the classical derivatives, this is not the case of Hadamard derivatives
of type II. They are introduced in Studniarski [14] but thereafter are not consequently used
there for the stated optimality conditions. So, in the author’s opinion it is an open question to
determine the larger class of scalar functions for which the generic optimality conditions scheme
works with Hadamard derivatives of type II, and to look further for vector generalizations.
As for the Dini derivatives, as several works on vector optimization of Ginchev, Guerraggio,
Rocca show [9], [12], [10], [11], both for unconstrained and for constrained problems, optimality
conditions of order ν should work well with the class of Cν−1,1 functions (and may be also with
more general classes).
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