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Abstract

I study the welfare optimal allocation of a number of identical and
indivisible objects to a set of heterogeneous risk-neutral agents under
the hypothesis that money is not available. Agents have independent
private values, which represent the maximum time that they are will-
ing to wait in line to obtain a good. A priority list, which ranks agents
according to their expected values, is optimal when hazard rates of the
distributions of values are increasing. Queues, which allocates the ob-
ject to those who wait in line the longest, are optimal in a symmetric
setting with decreasing hazard rates.
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1 Introduction

There are things that money cannot buy. Scarce medical resources are as-

signed through priority lists almost everywhere around the world. A fraction

of green cards in the US is allocated by lottery. When demand exceeds sup-

ply, a large number of goods are rationed using queues, rather than by rising

their prices to clear the market. More generally, queues, lotteries and priority

lists are widely adopted mechanisms, as opposed to markets, for the alloca-

tion of public resources (e.g. goods, subsidies or services), in both developed

and developing countries.1

For example, in February 2009 about 1,200 EU farming grants, worth up

to 5,000 pounds each, were allocated on a first-come first-served basis to those

who turned up in person at government buildings in Norther Ireland. Some

farmers queued since Sunday ahead of Tuesday’s morning opening. Another

example is provided by city housing programs in New York, intended to

provide affordable homes to middle and low-income New Yorkers. The city

housing plan calls for 165,000 new housing units between 2003 and 2013.

Lotteries are used to allocate the units that become available (for sale and for

rent) at below market prices. Income requirements are set for participation

in the lotteries.

The two examples highlight the trade-off that arise when the allocation is

non monetary. Waiting in line generates a deadweight loss. However, queues

may serve as screening devices, if the resources at stake are likely to generate

higher value in the hands of those who are willing to wait in line the most for

them. Instead, priority lists and lotteries cause no loss of time, but do not

perform a fine screening. Therefore, a question arises, about how to design

an optimal mechanism in this environment.

To address this issue, I investigate the design of mechanisms for the al-

location of a number of identical indivisible objects to a set of heterogenous

risk-neutral agents. The agents have unitary demand and independent pri-

vate values. The novelty of my approach is that values represent the max-

1There is an extensive literature surveying and discussing institutional details of non-
market allocations. For example, see Calabresi and Bobbit (1978), Elster (1992) and
(1989), Okun (1975) and Walzer (1983).
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imum times that agents are willing to wait to obtain a good. In contrast

to the standard transferable utility case the designer faces a trade-off be-

tween allocative efficiency and cost minimization.2 Increasing the efficiency

of the allocation requires that agents are screened according to their private

valuations. However, eliciting private information is costly. My main contri-

bution is to characterize the set of ex-ante Pareto optimal direct allocation

mechanisms (Proposition 1), and show how optimal mechanisms can be im-

plemented through queuing games, priority lists and lotteries (Proposition 2).

It turns out that if all the hazard rates of the prior distributions of values

are monotonically increasing (e.g. values comes from a normal, uniform, etc.),

then the optimal mechanism does not exploit any private information and

takes the form of a priority list (or a lottery, if agents are ex-ante identical).

That is, goods are allocated to the agents which have, ex-ante, the highest

expected values. The use of lotteries and priority lists (often in the form of

point systems) is widespread. Conventional wisdom attributes their success

to their fairness properties. A different rationale is provided here in terms

of efficiency. These mechanisms prevent agents from engaging in wasteful

rent seeking activities. On the contrary, full screening of private information

is optimal, if, and only if, all hazard rates are monotonically decreasing. In

the symmetric case, a standard queue approximately implements the optimal

mechanism. In general, when hazard rates are not monotonic, the optimal

mechanism may require both screening and pooling of values. In this case,

implementation in the symmetric case is obtained by using a queue where the

set of possible arrival time is restricted in order to induce pooling of values in

equilibrium. It is remarkable that, because when the support of valuations is

bounded the hazard rate must be increasing in a neighborhood of its upper

bound, it is generically optimal to put a cap on queues. That is preventing

people from joining the queue too early by assigning the same priority to all

those who arrive earlier than the appropriately defined time threshold.

The feature that the designer is not able to condition the allocation of

the goods on the willingness to pay of the agents is not explicitly modeled

and will be taken as exogenous. However, there are several reasons why it

2In a setting with monetary values and no budget constraints it is possible to achieve the
first best outcome by using a Vickrey mechanism and redistributing expected payments.
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may not be optimal to allocate scarce resources to those that are able to

pay the most for them, even when the designer only cares for the welfare

of the agents involved.3 First, as in the two examples above, agents may

have a common monetary value for the goods, but still have heterogenous

values in terms, for example, of the time that they are willing to wait in

line. Second, one can argue that markets are not equitable. In fact, agents

may be severely budget constrained relative to the expected price of the

good. Therefore, their willingness to pay may be different from their ability

to pay.4 Third, because allocating the goods on the basis of the ability to

pay may contrast our sense of justice, it can create externalities which are

difficult to internalize.5

A brief review of the existing literature concludes this section. Holt and

Sherman (1982) provided the first game theoretic analysis of queues. They

study equilibria of specific queuing games with incomplete information. The

works of Taylor, Tsui and Zhu (2003) and Koh, Yang and Zhu (2006) com-

pare, computationally, the relative performance of queues and lotteries under

specific value distributions. In contrast to the papers above, I provide, within

the same environment, a closed form solution to the problem of designing an

optimal mechanism. Closely related environments, where agent compete for

a set of homogenous goods by engaging in costly effort or money burning,

are studied in a number of papers in the context of different applications:

McAfee and McMillan (1992), Chakravarty and Kaplan (2006), Yoon (2009),

and Hartline and Roughgarden (2008). My results are significantly more gen-

3If an institution has a direct interest in screening individuals on the basis of specific
characteristics a distribution based on the willingness to pay may not be optimal (e.g.
academic prizes are not awarded to those that promise to pay the most for them). For
more on this see Condorelli (2008).

4A related argument applies when the allocation is made on the basis of the willingness
to wait in line (e.g. old people may find it more difficult to wait in line). However, men
are endowed in principle with the same amount of time and, moreover, there is substantial
evidence that queues are preferred to markets on grounds of fairness (see Kahneman,
Knetsch and Thaler (1986)).

5For example, during the US Civil War one could avoid serving in the Union army by
paying a certain amount of money. This appears to have been the cause for a number of
riots. See Calabresi and Bobbit (1978) for an elaboration of this argument. Note that if
externalities are present, the designer also needs to ban resale.
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eral than those of the first three papers, as I consider an asymmetric setting

and adopt much weaker restrictions on the distributions of values (i.e. non

monotone hazard rates). Hartline and Roughgarden (2008) contains a re-

sult which was obtained independently and is very similar to my Proposition

1. In contrast to my analysis, the authors discuss applications to computer

science and do not deal with the practical implementation of the optimal

mechanism.

The rest of the paper is organized as follows; section 2 presents the model;

section 3 describes the optimal direct mechanism; section 4 describes the

practical implementation of the optimal direct mechanism; section 5 con-

cludes the paper.

2 The Model

Let N = {1, . . . , n} represent the set of agents. There are m < n identical

goods to allocate. Agents are risk neutral and demands one good only. Each

agent has private valuation for the good, vi ∈ Vi ≡ [vi, vi) with v < v ≤ ∞.

Let V = V1 × · · · × Vn, v = (v1, . . . , vn) and v−i = {vj : j ∈ N \ i}. The pri-

vate valuation of someone represents the maximum time (measured in hours,

minutes, etc.) that he is willing to wait in line to obtain the good. Prefer-

ences are quasilinear with respect to time. Furthermore, I assume that all

agents suffer a disutility, normalized to zero, if they do not obtain the good.

Therefore, an agent that obtains a good with probability 0 ≤ pi ≤ 1 and

sustain a time-cost (i.e. waits in line an amount of time) equal to ci ≥ 0 has

utility pivi − ci.
6 Unitary demand is modeled by setting a maximum utility

of vi − ci even if the agents receives more than one object. Each agent pos-

sesses a set of observable characteristics, which are common knowledge. The

agent i’s observable characteristics determine the beliefs that other agents

hold about his private value. Observable characteristics are summarized by

a continuous cumulative distribution function Fi, with support in Vi, and

density fi. Individual values are assumed to be stochastically independent.

6Assuming that pivi − fi(ci) and fi is increasing and commonly known (e.g. when fi

represents a wage schedule) would not provide more generality to the model.
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The task of the designer is to define an allocation mechanism whose equi-

librium outcome maximizes the weighted sum of the agents’ ex-ante expected

utilities. An allocation mechanism can be any game, in which agents play

under incomplete information about their opponents’ valuations, whose out-

come (for each profile of actions) consist of (i) a probability distribution for

the m goods over the n agents and (ii) a vector of non-negative costs (i.e.

the amounts of time that agents wait in line). Participation in the mecha-

nism must be voluntary. Therefore any feasible allocation mechanism must

allow agents to opt out, obtaining a payoff equal to zero. I ask that the de-

signer maximizes the weighted sum of the agents’ ex-ante expected utilities

because, as illustrated in Holmstrom and Myerson’s (1983), a mechanism

whose equilibrium maximizes a weighted sum of agents’ ex-ante expected

utilities is ex-ante incentive efficient. That is, it is Pareto efficient within

the set of incentive compatible mechanisms. Therefore, no other incentive

compatible mechanism can be found that makes everyone better off prior to

the realization of private values.7

3 Optimal Direct Mechanism Design

In this section I appeal to the revelation principle and, without loss of gen-

erality, search for an optimal mechanism within the class of equivalent in-

centive compatible direct allocation mechanisms. A direct allocation mech-

anisms, 〈p, c〉, is a mapping providing an outcome (a distribution of goods

and costs) for each profile of reports from the agents. Therefore, it is a

set of functions
{
pi : V → [0, 1] ; ci : V → IR+

}n

i=1
such that for all v ∈ V

the condition
∑n

i=1 pi(v) ≤ m holds. In playing mechanism 〈p, c〉 the

ex-post utility to player i from announcing si when its true value is vi,

while all other players announce v−i is vipi(si,v−i) − ci(si,v−i). Assum-

ing that opponents are truthful, the expected utility at the interim stage

is: Ui(vi, si) = viEv−i
[pi(si,v−i)] − Ev−i

[ci(si, v−i)]. A direct allocation

mechanism 〈p, c〉 is incentive compatible if, and only if, for all i and vi,

7If a mechanism is ex-ante incentive efficient, there cannot be any other mechanism that
would surely be better for all, even after they receive their private information. This fact
reflects decreasing insurance opportunities for the agents as more information is released.
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Ui(vi, vi) = maxsi∈V Ui(vi, si) ≥ 0. That is, a mechanism is incentive com-

patible if truthful reporting is an equilibrium and everyone obtains a payoff

higher than zero. The next lemma offers a tractable characterization of in-

centive compatible direct mechanisms in terms of p only. To simplify the

notation write: Pi(vi) = Ev−i
[pi(vi,v−i)] and Ci(vi) = Ev−i

[ci(vi,v−i)].

Lemma 1. A direct allocation mechanism 〈p, c〉 is incentive compatible if,

and only if, for all i and vi ∈ Vi:

∀v∗ ∈ Vi : vi ≥ v∗ Pi(vi) ≥ Pi(v
∗) (1a)

Ci(vi) = viPi(vi)−
∫ vi

vi

Pi(x)dx (1b)

The proof is well known and it is omitted (see e.g. Myerson (1981)). Note

that Ci(vi) ≤ 0 is necessary for incentive compatibility. Furthermore, because

agents cannot receive positive transfers we must have that Ci(vi) ≥ 0. This

implies that Ci(vi) = 0 for all i. One special cost rule that satisfies (1b) for

any p is the canonical cost rule:

ci(v) = pi(v)vi −
∫ vi

vi

pi(xi, v−i)dxi (2)

According to this cost rule, only the winners, or those who participate in a

lottery, sustain a cost, equal to the expected minimum value they could have,

and still obtain the good under the allocation rule.8 Observe that with the

canonical cost rule agents have a dominant strategy to report their values

truthfully (see Myerson (1981)).

There is a one to one mapping between the outcome of an incentive

compatible direct mechanism and the mechanism itself. Therefore, a direct

8To understand the meaning of expected minimum value, suppose that there is only
one good available and agent i has the highest value vi, greater than some other value v′′.
Assume that p assigns the goods to agents with the highest values but values in [v′, v′′)
are pooled. Furthermore, assume the remaining n−1 agents all have values in that region.
The payment from i will be equal to 1

nv′+ n−1
n v′′. In fact, the minimum value that i could

have, and still obtain a good is v′ with probability 1/n (the probability that he would
win the lottery against the other players if he played v′) and it is v′′ with the probability
(n− 1)/n (which is when he would lose the lottery).
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allocation mechanism 〈p, c〉 is ex-ante incentive efficient (i.e optimal) if it

is incentive compatible and, for some set of non-negative Pareto weights

w1, . . . , wn, maximizes Ev {
∑n

i=1 wi[vipi(v)− ci(v)]}. It is easy to see that,

if incentive constraints were not an issue, a first best allocation would assign

the goods to the agents with the highest weighted values at no cost. It is

a consequence of Lemma 1 that any first best allocation (i.e. unconstrained

efficient) is not implementable, unless the allocation is dictatorial. That is,

the weights of precisely n−m agents are set equal to zero.

The building blocks to construct an optimal direct mechanism under in-

complete information are the priority functions. These assign to each agent

a unique priority level for each reported value. The construction of the prior-

ity functions follows the ironing technique, as developed in Myerson (1981).

Define, for all x ∈ [0, 1]:

Hi(x) =

∫ x

0

1− z

f(F−1(z))
dz Gi(x) = conv 〈Hi(x)〉 gi(x) = G′

i(x)

Here, conv 〈·〉 stands for the convex hull of the function.9 Where the deriva-

tive of Gi(v) is not defined, we extend it using the right or left derivative.

The priority function λi for agent i is:

λi(vi) = wigi(Fi(vi)) (3)

The next proposition characterizes the optimal direct mechanisms. The

statement is straightforward, but formalizing it requires a lot of notation.

Therefore I relegate in the appendix the formal statement and the proof.

Proposition 1. Fix F1, . . . , Fn and w1, . . . , wn. In the optimal direct mech-

anism agents report their values and the designer implements the following

outcome. The allocation rule p is: the m agents with values that achieve the

highest priority levels, as defined in (3), obtain the goods and ties in priority

are broken by an equal chance lottery. The cost rule c is defined in (2).

Suppose that all hazard rates of the distributions of values are mono-

tonically non-decreasing. Then, λi(vi) = wi E[vi] for all vi ∈ Vi. In fact,

Hi is concave and therefore Gi is a straight line going from Hi(0) = 0 to

9Gi(x) is the highest convex function such that Gi(x) ≤ Hi(x) ∀x.
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Hi(1) = E[vi]. The optimal mechanism is a priority list. All agents are

ranked according to their weighted expected value. Goods are assigned to

the agents with the highest rankings, until all goods are allocated. Lotteries

resolve ties. Agents do not need to sustain any cost because the allocation

is built only on the basis of the observable characteristics (i.e. F1, . . . , Fn).

The expected total value achieved by the priority list is equal to the sum of

the m highest expected values, within the n agents. Clearly, if all agents are

ex-ante symmetric and have equal weightings, then the optimal mechanism

is an equal chance lottery.

Next, consider the opposite case, where hazard rates are all monotonically

decreasing. Then λ(vi) = wi
1−Fi(vi)

fi(vi)
. In fact, Gi is convex and so Gi(x) =

Hi(x) for all x ∈ [0, 1]. If agents are ex-ante identical and weighted equally,

the optimal mechanism is a full screening mechanism. That is, goods are

allocated to the agents with the highest realized values. In fact, λi(v) is a

strictly increasing function and for all i and j and v, λi(v) = λj(v). Here,

screening takes place up to the point where the identities of the agents that

have the highest m values are known for sure. Therefore, the expected cost

of screening is equal to mE[v(n−m)] (where v(n−m) indicates the n−m highest

value out of a sample of n independent extractions from v). The total value

is given by
∑m

z=1 E[v(z)]−mE[v(n−m)]. If agents are ex-ante asymmetric (and

the planner adopts equal weights), then the optimal mechanism will tend to

be biased in favor of the agents that appear to have the strongest claims.10

Finally, suppose that agents are symmetric but hazard rates are not mono-

tonic. In this case there may be intervals in the type space where the priority

functions are constant (i.e. agents with different values receive the same pri-

ority) and other areas where these are increasing (i.e. agents with different

values receive different priority). This is illustrated by the following example,

which concludes the section.

10More precisely the mechanism will favor those agents whose distribution hazard-rate
dominates those of the other agents. In fact, agent i hazard-rate dominates that of agent j

if his hazard rate is always lower than that of j. Because under a monotonically decreasing
hazard rate we have that λi(v) = 1−Fi(v)

fi(v) for all v it follows that, fixing v, λj(v) < λi(v).
Therefore, i will get the good, even if, ex post, both i and j have the same value for
it. Recall that in the optimal auction problem the designer discriminates in favor of the
weakest bidder in order to extract higher payments from the strongest one.
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Example: Consider the problem of distributing m tests for a rare but dan-

gerous disease to a population of n > m ex-ante identical agents, whose

surplus is equally weighted by the designer. The disease can be successfully

treated once discovered, but is otherwise fatal. The occurrence of the disease

is highly correlated with lifestyle (e.g. sexual behavior, alcohol consumption).

Therefore, potential individual benefits from taking the test, measured as the

likelihood of having contracted the disease, depend on private information.11

Everyone believes that individuals’ values, measured as the willingness to

spend time in line, have been independently drawn from a piecewise uniform

bimodal distribution:

f(v) =





7
10

if v ∈ [0, 1]

1
10

if v ∈ (1, 2]

2
10

if v ∈ (2, 3]

The optimal mechanism computed according to Proposition 1, assigns prior-

ity as follows:

λi(v) =





0.65 if v ∈ [0, 1)

1.16 if v ∈ (1, 3]

In other words, it pools agents with values in [0, 1) and agents with values in

[1, 3], but screens between the two intervals. Therefore, screening is limited

to discovering whether an agent belongs to the first or the second interval.

Agents that declare a lower value obtain lower priority but are not re-

quired to sustain a cost, even if they obtain a good. Agents that declare a

value above 1 get priority in the allocation, but they are required to sustain

a positive cost if they obtain a good. This cost must be such that an agent

with value 1 is indifferent about declaring a value of 0 or a value of 1.12 F
11In a more general heterogeneous agents formulation of this example the expected

benefits may depend on a combination of private and public information.
12If, for example , n = 2 and m = 1, the expected cost sustained by a player with a

value above 1 must be set by the designer equal to: 2+Pr{v<1}
2+2 Pr{v<1} = 27

34 .
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4 Practical Implementation

The aim of this section is to design simple mechanisms suitable for practical

applications that will implement optimal outcomes when the distribution of

values is known. Proposition 1 shows that if all hazard rates are monoton-

ically non decreasing, then the optimal mechanism is a priority list, based

only on observable characteristics, or an equal chance lottery (under full

symmetry). Practical implementation in this case is straightforward.

When the condition above is not met it seems natural to study imple-

mentation via queuing games. In a queuing game the designer announces at

some time ts that the m goods will be distributed at some future date, td. At

ts, the designer also announces the separating region, T (i.e. a closed subset

of the time interval [ts, td], which contains td). Thereafter, agents indepen-

dently (i.e. without being able to monitor each other) decide if and when to

join the queue. Agents can join the queue only once but can leave at no cost

at any point in time. Upon joining the queue agents can see who is already

in line. In general, the agent that arrives earlier gets priority, and ties are

broken instantaneously via equal chance lotteries. However, anyone arriving

outside the separating region T is counted as having joined the queue at a

later time, equal to the closest subsequent point in T . 13 As agents are indif-

ferent about when they have to wait in line, I normalize td = 0 and assume

that the designer chooses ts instead. Moreover, I can re-label the possible

arrival times in terms of the unit of times that an agent should wait if he

had to stand in line from that arrival time until td.
14 Figure 1 depicts, with

an example, the timing and rules of a queuing game. Observe that depicted

arrival times are not the equilibrium ones.

13For example (see Figure 1), if the designer announces at 5:20pm that she will distribute
goods at 6pm and that the screening regions comprises the interval between 5:30pm and
5:40pm and the interval between 5:50pm and 6:00pm, then anyone arriving between 5:40pm
and 5:50pm will be counted as if he joined exactly at 5:50pm.

14For example (see Figure 1), by saying that ts = 40, that T = [0, 10]∪ [20, 30] and that
agent i = 4 arrives at t4 = 5, I mean that the distribution time has been set at 40 units
of time (i.e minutes in this example) after ts, that the screening region comprises arrival
times that are at most 10 units of time earlier than td or between 20 and 30 units of time
from td, and that agent 4 decides to join the queue 5 units of time earlier than td.
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ts=40

t(2)=18

td =0

5:20pm 6:00pm

t(3)=13 t(4)=5

( t’’’ , td ) is in the screening region 

t’’=20 t’’’=10

Example:  2 goods allocated to 4 agents. Distribution time at 
6:00pm and screening region is [5:30 , 5:40] and [5:50 , 6]. 

Outcome: one good is allocated to (1); the remaining good is 
allocated to (2) or (3) via an equal chance lottery. 

t(1)=25

t’=30

( t’ ,t’’ ) is in the screening region 

Hereinafter, I will restrict a ttention to the case where agents are ex-ante

symmetric, the support of possible valuations is bounded, and the planner

treats the agents equally (i.e. for all i, wi = 1/n and Fi = F for some F with

support in V = [v, v], where v < v < ∞).15 Under the stated hypotheses,

without loss of generality, it is possible to eliminate one variable from the

implementation problem by setting ts = v.

Therefore, for each initial distribution of values, implementation requires

identifying a queuing game, defined only by T , with an equilibrium such

that every agent obtains the same interim payoff that he would obtain in the

15If the space of possible valuations is unbounded and λ(x) is strictly increasing in some
interval [x,∞), then implementation in the queueing game above can only be approximate.
In fact, the designer would need to set an infinitely far off distribution time. Implementa-
tion of the asymmetric case appears difficult in this symmetric queuing game where those
who arrive first must get priority and agents that do not get a good do not stay in line.
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optimal direct mechanism. The following statements, which restrict agents’

equilibrium behavior in the queueing game, are easily verifiable:

1. everyone joins the queue at some point (but possibly at td);

2. no one joins the queue outside the separating region T ;

3. every agent that, upon joining the queue, observes that he has no

chance of obtaining a good, immediately leaves the queue;

4. each agent joins the queue at a time such that he would be willing to

wait until td in order to obtain a good for sure;

5. every agent that, upon joining the queue, expects to obtain a good,

remains in line until td.

Hence, a Bayesian equilibrium in pure strategies in the queuing game defined

by T can be fully characterized by a set of functions: ti : Vi → T with

i = 1, . . . , n. A strategy ti for agent i maps his possible values into arrival

times within the separating region.

To achieve practical implementation, I start from the optimal direct mech-

anism 〈p, c〉 and find a permissible cost rule ĉ that satisfies (1b) and where

only the winners pay a cost, independent of the realized values of the oppo-

nents. To do this I first need to resolve the uncertainty relative to lotteries

that may arise in pooling regions. At this purpose, I associate to p the ran-

dom vector `p. Finally, call t(vi) the cost in terms of waiting time that would

be assigned according to the new cost rule ĉ by the optimal direct mechanism

to an agent with a given value if he gets a good. Implementation works by

including in the separating region T all those arrival times that imply an

amount of waiting time, such that, in the optimal direct mechanism with the

new cost rule, there is some agent with some value that would be required

to wait for that amount of time in the case that he gets a good. I have the

following proposition. The proof is in the appendix.

Proposition 2. Fix F (·),m, n and let 〈p, c〉 be an optimal mechanism ac-

cording to Proposition 1. Define the random vector (`p
1 (v), . . . , `p

n(v)) as a

vector of 1 and 0, where 1 at position i indicates the award of an object to

13



agent i while 0 indicates that i will not obtain a good. Construct its probability

function by defining the marginal distributions as Prob{`p
i (v) = 1} = pi(v)

and fixing, for each v and i,
∑n

i=1 `p
i (v) = m. Define, for all vi ∈ [v, v],

t(vi) = Ev−i
[vi −

∫ vi

v
pi(xi, v−i)dxi

pi(v)
| `p

i (v) = 1]

Finally, define the separating region T as the image of t(·) over [v, v],

T ≡ {x ∈ [v, v] : t(v) = x for some v ∈ [v, v]}

For any v, everyone with value vi arriving at t(vi) in the queuing game defined

by the designer, combined together with statements 1-5 above, is a Bayesian

equilibrium that implements the optimal direct mechanism.

A few remarks are due. First, note that the formulation is general, as

a lottery can be implemented by including only the distribution time in

the screening region. Second, while the optimal direct mechanism is ex-post

implementable, the queuing game does not admit a dominant strategy for the

agents. Third, because the support of possible values is bounded, the hazard

rate of the distribution of values will be increasing in a neighborhood of vi,

implying that the separating region will always exclude arrival times close to

vi. This means that enforcing a cap on the queue (i.e. a limit on the advance

with which people can join the line) is always beneficial for welfare. Finally,

it is interesting that this implementation method can be used more generally

in mechanism design. In fact, Proposition 2 allows first-price implementation

(i.e. only winners pay their bids) of Myerson’s optimal auction when agents

are symmetric but the regularity condition on the distributions of values is

not met.

To conclude this section, I provide an example that clarifies the construc-

tion of the optimal, direct and indirect, mechanism in a symmetric environ-

ment where hazard rates are not monotonic.

Example: A government must distribute m food stamps to n citizens of a

given town, which are treated as ex-ante identical. Individual values, i.e.

the willingness to spend time in line to obtain the subsidy, are distributed

according to Fk(v) = vk with v ∈ [0, 1] and known k ∈ (0, 1]. Distributions in
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this family are everywhere decreasing (density is L-shaped), and distributions

with a higher k first order stochastically dominate distributions with lower

k (when k = 1 this is a uniform distribution). The inverse hazard rate is

increasing in (0, (1 − k)
1
k ) and decreasing in ((1 − k)

1
k , 1). Therefore, as k

increases, the interval where the inverse hazard rate is decreasing gets larger

(it always contains the upper bound of the support). Let p(k) ∈ [0, 1] be the

unique p that solve (1−p)p
1−k

k

k
= k

(1+k)(1−p)
− (1+k−p)p1/k

(1+k)(1−p)
for given k. Then, the

optimal mechanism, assigns priorities as follows:

λi(v) =





v1−k(1− vk)k−1 if v ∈ [0, p(k)
1
k )

p(k)1−k[1− p(k)k]k−1 if v ∈ [p(k)
1
k , 1]

It can be shown that both p(k) and F−1
k (p(k)) = p(k)1/k are decreasing in

k. Therefore, as expected, as k increases and the density puts more weight

on high types, the optimal mechanism increases the share of pooling in the

space of values. A profile of costs can be constructed that implements the

allocation rule.

Turning to practical implementation, assume for simplicity that n = 2

and m = 1. The candidate symmetric equilibrium strategy is:16

t(vi) =





E[vj | vj < vi] if vi ≤ p(k)1/k

E[vj | vj < p(k)1/k] 2p(k)
1+p(k)

+ (1−p(k))p(k)1/k

1+p(k)
if vi > p(k)1/k

The queuing game is as follows: set ts = 1 and set the screening region as the

image of the function t, i.e T ≡ [0, t(x)]. Note that when k = 1 this becomes

a lottery, as the only arrival time in T is the distribution time.F
16We have that c̄i(vi, vj) = 0 if `p

i (v) = 0 and c̄i(vi, vj) = min{vj , x} if `p
i (v) = 1. Note

that `p
i (v) = 0 if vi < vj and vi < p(k)1/k or if vi > p(k)1/k and vj > p(k)1/k but the

equal chance lottery favors agent j, while it is equal to 1 otherwise. Taking account of
expectations produces the following (ĉi(vi, vj) = 0 if `p

i (v) = 0):

ĉi(vi, vj) =





E[vj | vj < vi] if `p
i (v) = 1, vi < p(k)1/k

E[vj |vj<p(k)1/k]p(k)
1
2 (1−p(k))+p(k)

+
1
2 (1−p(k))

1
2 (1−p(k))+p(k)

p(k)1/k if `p
i (v) = 1, vi ≥ p(k)1/k
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5 Conclusion

In this paper I have shown how to construct a mechanism for the efficient

allocation of a set of scarce resources in an environment where money can-

not be used to transfer utility but agents can still signal their value for the

good at stake by engaging in wasteful activities, like waiting in line. In

this context, selecting an allocation mechanism involves a trade-off between

allocative efficiency and cost minimization that is not present when infor-

mation about individual values can be obtained without waste of resources.

The mechanisms I obtain are practically implementable, in the sense that

they work essentially as priority lists, lotteries or queues, where the set of

possible arrival times is appropriately restricted.

From a positive perspective, this paper suggests that one reason behind

the success of different mechanisms in different environments may be their

ability to balance the need to achieve an efficient allocation and the cost

of wasteful rent-seeking activities that agents perform in order to secure an

award. One normative implication, that is robust to different specifications of

the distribution of beliefs, is that standard queues, often observed in practice,

are rarely optimal. It always pays to put a cap on the queue in such a way

to prevent agents to join the queue too early.
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Appendix

Proposition 1 For each v, the set of agents is partitioned in a chain of

ordered sets, M1(v),M2(v), . . . according to their priority levels. Formally,

set M0(v) ≡ ∅ and define Mx(v) recursively as follows:

Mx+1(v) ≡
{

i ∈ N \
⋃
z≤x

Mz | λi(vi) = max
j∈{N\∪z≤xMz}

λj(vj)

}

Define Ij(v) as the set of agents with the highest priority levels, up to those

included in Mj(v): Ij(v) = {i ∈ ⋃
z≤j Mz(v)}.

Let |X| denote the cardinality of an arbitrary set X. Pick the highest

natural number s such that |Is(v)| ≤ m. Call k = m − |Is(v)|, and r =

|Ms+1(v)|. An incentive compatible symmetric direct allocation mechanism

〈p, c〉 maximizes (7) if, and only if, ∀i ∈ N, ∀v ∈ V n: 17

pi(v) =





1 if i ∈ Is(v)

k/r if i ∈ Ms+1(v)

0 otherwise

The cost rule can be any set of functions c such that for all i and v ∈ Vi:

Ci(vi) = viPi(vi)−
∫ vi

vi

Pi(x)dx

Proof: As a first step towards the solution to the problem, let us rewrite

the objective function using Lemma 1 to substitute for the cost functions:

Ev

{
n∑

i=1

wi[vipi(v)− ci(v)]

}
=

n∑
i=1

wi{
∫ vi

vi

(

∫ vi

v

Pi(x)dx)dFi(vi)}

By changing the order of integration, and integrating by parts:

Ev

[
n∑

i=1

wipi(v)
1− Fi(vi)

fi(ti)

]

17I restrict attention to symmetric mechanisms. This is without loss of generality here
because considering asymmetric mechanisms will not improve on the symmetric solution
obtained.
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The designer’s problem is now the following:

max
pi:V →[0,1] i=1,...,n

Ev

[
n∑

i=1

wipi(v)
1− Fi(vi)

fi(vi)

]

subject to:
n∑

i=1

pi(v) ≤ m ∀v ∈ V

Pi(v) ≥ Pi(v
∗) ∀i ∈ N, ∀v, v∗ ∈ Vi : v ≥ v∗

It can readily be seen that the candidate solution satisfies the first constraint

above, and that c satisfies (1b). To prove that (1a) is also satisfied, note that

λi(v) is the derivative of a convex function and therefore it is monotonically

increasing. Then, ∀v−i p(v) is increasing in vi, which implies that Pi(·) is

also increasing. Now, let us sum and subtract λi(vi)/wi inside the objective

function and rewrite it to obtain:

n∑
i=1

Evi

{
Pi(vi)λi(vi) + Pi(vi)

[
wi

1− Fi(vi)

fi(vi)
− λi(vi)

]}

Consider the second term of this expression for every i:

wi

∫ vi

vi

Pi(vi)

[
1− Fi(vi)

fi(vi)
− gi(Fi(vi))

]
f(vi)dvi

Integrating by parts:

wiPi(vi) [Hi(Fi(vi))−Gi(Fi(vi))] |vi
vi
−

wi

∫ vi

vi

[Hi(Fi(vi))−Gi(Fi(vi))] dPi(vi))

Consider the first term of the expression above. It is equal to zero: Hi(vi) =

Gi(vi) and Hi(vi) = Gi(vi), because Gi is the convex hull of the continuous

function Hi and thus they coincide at endpoints (the continuity of Hi follows

from assuming an atomless fi). The objective function becomes:

n∑
i=1

Ev [pi(v)λi(vi)]−
n∑

i=1

wi

∫ vi

vi

[Hi(Fi(vi))−Gi(Fi(vi))] dPi(vi)
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It is easy to see that the candidate solution 〈p, c〉 maximizes the first sum

as it puts all the probability on the players for whom λi(vi) is maximal. To

conclude the proof, I now show that the second term is equal to zero. It must

always be non negative, as ∀v ∈ [vi, vi) Hi ≥ Gi. That it is equal to zero,

follows because Gi is the convex hull of Hi and so, whenever Hi(Fi(vi)) >

Gi(Fi(vi)), then Gi must be linear. That is, if G(x) < H(x), G′′
i (x) = g′i(x) =

0. Therefore, to conclude, λi(v) will be a constant in a neighborhood of vi,

which implies that Pi(v) will also be a constant.

Proposition 2 Fix F (·),m, n and let 〈p, c〉 be an optimal mechanism accord-

ing to Proposition 1. Define the random vector (`p
1 (v), . . . , `p

n(v)) as a vector

of 1 and 0, where 1 at position i indicates the award of an object to agent

i while 0 indicates that i will not obtain a good. Construct its probability

function by defining the marginal distributions as Prob{`p
i (v) = 1} = pi(v)

and fixing, for each v and i,
∑n

i=1 `p
i (v) = m. Define, for all vi ∈ [v, v],

t(vi) = Ev−i
[vi −

∫ vi

v
pi(xi, v−i)dxi

pi(v)
| `p

i (v) = 1]

Finally, define the separating region T as the image of t(·) over [v, v],

T ≡ {x ∈ [v, v] : t(v) = x for some v ∈ [v, v]}

For any v, everyone with value vi arriving at t(vi) in the queuing game defined

by the designer, combined together with statements 1-5 above, is a Bayesian

equilibrium that implements the optimal direct mechanism.

Proof: First, I show that if everyone follows the candidate equilibrium strat-

egy in the queuing game, then the outcome of the optimal direct mechanism

is implemented. Second, I show that, the candidate equilibrium is indeed an

equilibrium. For any v ∈ V n, suppose that everyone arrives at t(vi). Ac-

cording to statements 3 and 5, an agent leaves immediately if he does not

get a good, but otherwise remains in line until the distribution time. In the

queuing game goods are allocated to the agents that join the queue earli-

est, within the set of arrival times T , and lotteries resolve ties immediately.

Hence, if everyone uses arrival strategy t(vi) goods are allocated to those

with the highest t(vi) and lotteries resolve ties. Those that do not get a good
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do not pay any cost. Consider now the optimal direct mechanism with the ĉ

cost rule, under symmetry. As Prob{`p
i (v) = 1} = pi(v), it is easy to verify

that it satisfies the requirement for incentive compatibility. Formally, this is

defined as follows:

c̄i(vi) =





0 if `p
i (v) = 0

Ev−i
[vi −

∫ vi
vi

pi(xi,v−i)dxi

pi(v)
| `p

i (v) = 1] if `p
i (v) = 1

Incentive compatibility (1a) requires that the priority λ(vi) in the assign-

ment is non-decreasing in the value of each agent. Furthermore, incentive

compatibility (1b) implies that agents obtaining the same priority bear the

same interim cost (i.e. Ĉ(vi)). It follows that they also bear the same cost

ex-post in the case of success (i.e. ĉ(vi) when `p(v) = 1), as the cost does

not depend on the realized values of all other agents. As a consequence, t(vi)

increases when λ(vi) increases and is constant otherwise. This proves, given

the rules of the queuing game, that the strategy considered implements the

same outcome as the optimal direct mechanism.

To conclude this proof, I need to show that this is indeed an equilibrium of

the queuing game defined by the designer. Remember that i has no interest

in arriving at any time outside the relevant set defined, which is the image

of t(·). Then, if everyone plays according to t(·), an agent i with value

vi essentially faces the choice between arriving at t(vi), or mimicking what

an agent with some other value would choose, according to the candidate

equilibrium strategy. Therefore, the payoffs are the same as in the direct

optimal mechanism. It follows that, if the agent chooses to use a strategy

other than t(vi), then he will obtain the outcome assigned to an agent with

a different value in the optimal direct mechanism. But this is not possible

because the optimal direct mechanism is incentive compatible.
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